Properties

Label 48.22.a.c
Level $48$
Weight $22$
Character orbit 48.a
Self dual yes
Analytic conductor $134.149$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [48,22,Mod(1,48)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(48, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 22, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("48.1");
 
S:= CuspForms(chi, 22);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 48 = 2^{4} \cdot 3 \)
Weight: \( k \) \(=\) \( 22 \)
Character orbit: \([\chi]\) \(=\) 48.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(134.149125258\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 6)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - 59049 q^{3} + 26444550 q^{5} - 166115864 q^{7} + 3486784401 q^{9} + 104878761780 q^{11} + 335591325758 q^{13} - 1561524232950 q^{15} + 14596144763634 q^{17} - 3569529974996 q^{19} + 9808975653336 q^{21}+ \cdots + 36\!\cdots\!80 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 −59049.0 0 2.64446e7 0 −1.66116e8 0 3.48678e9 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 48.22.a.c 1
4.b odd 2 1 6.22.a.a 1
12.b even 2 1 18.22.a.d 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
6.22.a.a 1 4.b odd 2 1
18.22.a.d 1 12.b even 2 1
48.22.a.c 1 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5} - 26444550 \) acting on \(S_{22}^{\mathrm{new}}(\Gamma_0(48))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T + 59049 \) Copy content Toggle raw display
$5$ \( T - 26444550 \) Copy content Toggle raw display
$7$ \( T + 166115864 \) Copy content Toggle raw display
$11$ \( T - 104878761780 \) Copy content Toggle raw display
$13$ \( T - 335591325758 \) Copy content Toggle raw display
$17$ \( T - 14596144763634 \) Copy content Toggle raw display
$19$ \( T + 3569529974996 \) Copy content Toggle raw display
$23$ \( T + 222369240588600 \) Copy content Toggle raw display
$29$ \( T - 2194109701319454 \) Copy content Toggle raw display
$31$ \( T - 8723627187590032 \) Copy content Toggle raw display
$37$ \( T - 37\!\cdots\!58 \) Copy content Toggle raw display
$41$ \( T - 86\!\cdots\!34 \) Copy content Toggle raw display
$43$ \( T + 13\!\cdots\!44 \) Copy content Toggle raw display
$47$ \( T + 33\!\cdots\!40 \) Copy content Toggle raw display
$53$ \( T + 15\!\cdots\!34 \) Copy content Toggle raw display
$59$ \( T + 52\!\cdots\!20 \) Copy content Toggle raw display
$61$ \( T + 47\!\cdots\!50 \) Copy content Toggle raw display
$67$ \( T - 15\!\cdots\!16 \) Copy content Toggle raw display
$71$ \( T - 12\!\cdots\!40 \) Copy content Toggle raw display
$73$ \( T + 44\!\cdots\!02 \) Copy content Toggle raw display
$79$ \( T - 14\!\cdots\!52 \) Copy content Toggle raw display
$83$ \( T + 37\!\cdots\!88 \) Copy content Toggle raw display
$89$ \( T + 10\!\cdots\!42 \) Copy content Toggle raw display
$97$ \( T - 13\!\cdots\!98 \) Copy content Toggle raw display
show more
show less