Properties

Label 48.4.c.a.47.2
Level $48$
Weight $4$
Character 48.47
Analytic conductor $2.832$
Analytic rank $0$
Dimension $2$
CM discriminant -3
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [48,4,Mod(47,48)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(48, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("48.47");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 48 = 2^{4} \cdot 3 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 48.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.83209168028\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2\cdot 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 47.2
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 48.47
Dual form 48.4.c.a.47.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+5.19615i q^{3} +31.1769i q^{7} -27.0000 q^{9} +70.0000 q^{13} -155.885i q^{19} -162.000 q^{21} +125.000 q^{25} -140.296i q^{27} +155.885i q^{31} +110.000 q^{37} +363.731i q^{39} +218.238i q^{43} -629.000 q^{49} +810.000 q^{57} +182.000 q^{61} -841.777i q^{63} -654.715i q^{67} -1190.00 q^{73} +649.519i q^{75} -1091.19i q^{79} +729.000 q^{81} +2182.38i q^{91} -810.000 q^{93} +1330.00 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 54 q^{9} + 140 q^{13} - 324 q^{21} + 250 q^{25} + 220 q^{37} - 1258 q^{49} + 1620 q^{57} + 364 q^{61} - 2380 q^{73} + 1458 q^{81} - 1620 q^{93} + 2660 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/48\mathbb{Z}\right)^\times\).

\(n\) \(17\) \(31\) \(37\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 5.19615i 1.00000i
\(4\) 0 0
\(5\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(6\) 0 0
\(7\) 31.1769i 1.68340i 0.539949 + 0.841698i \(0.318443\pi\)
−0.539949 + 0.841698i \(0.681557\pi\)
\(8\) 0 0
\(9\) −27.0000 −1.00000
\(10\) 0 0
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) 0 0
\(13\) 70.0000 1.49342 0.746712 0.665148i \(-0.231631\pi\)
0.746712 + 0.665148i \(0.231631\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(18\) 0 0
\(19\) − 155.885i − 1.88223i −0.338086 0.941115i \(-0.609780\pi\)
0.338086 0.941115i \(-0.390220\pi\)
\(20\) 0 0
\(21\) −162.000 −1.68340
\(22\) 0 0
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 0 0
\(25\) 125.000 1.00000
\(26\) 0 0
\(27\) − 140.296i − 1.00000i
\(28\) 0 0
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) 0 0
\(31\) 155.885i 0.903151i 0.892233 + 0.451576i \(0.149138\pi\)
−0.892233 + 0.451576i \(0.850862\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 110.000 0.488754 0.244377 0.969680i \(-0.421417\pi\)
0.244377 + 0.969680i \(0.421417\pi\)
\(38\) 0 0
\(39\) 363.731i 1.49342i
\(40\) 0 0
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 0 0
\(43\) 218.238i 0.773978i 0.922084 + 0.386989i \(0.126485\pi\)
−0.922084 + 0.386989i \(0.873515\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) −629.000 −1.83382
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 810.000 1.88223
\(58\) 0 0
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) 182.000 0.382012 0.191006 0.981589i \(-0.438825\pi\)
0.191006 + 0.981589i \(0.438825\pi\)
\(62\) 0 0
\(63\) − 841.777i − 1.68340i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) − 654.715i − 1.19382i −0.802307 0.596912i \(-0.796394\pi\)
0.802307 0.596912i \(-0.203606\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) −1190.00 −1.90793 −0.953966 0.299916i \(-0.903041\pi\)
−0.953966 + 0.299916i \(0.903041\pi\)
\(74\) 0 0
\(75\) 649.519i 1.00000i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) − 1091.19i − 1.55403i −0.629480 0.777017i \(-0.716732\pi\)
0.629480 0.777017i \(-0.283268\pi\)
\(80\) 0 0
\(81\) 729.000 1.00000
\(82\) 0 0
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) 0 0
\(91\) 2182.38i 2.51402i
\(92\) 0 0
\(93\) −810.000 −0.903151
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 1330.00 1.39218 0.696088 0.717957i \(-0.254922\pi\)
0.696088 + 0.717957i \(0.254922\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(102\) 0 0
\(103\) 1028.84i 0.984218i 0.870534 + 0.492109i \(0.163774\pi\)
−0.870534 + 0.492109i \(0.836226\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(108\) 0 0
\(109\) 646.000 0.567666 0.283833 0.958874i \(-0.408394\pi\)
0.283833 + 0.958874i \(0.408394\pi\)
\(110\) 0 0
\(111\) 571.577i 0.488754i
\(112\) 0 0
\(113\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −1890.00 −1.49342
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −1331.00 −1.00000
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) − 2837.10i − 1.98230i −0.132754 0.991149i \(-0.542382\pi\)
0.132754 0.991149i \(-0.457618\pi\)
\(128\) 0 0
\(129\) −1134.00 −0.773978
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) 4860.00 3.16854
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(138\) 0 0
\(139\) − 2026.50i − 1.23659i −0.785948 0.618293i \(-0.787825\pi\)
0.785948 0.618293i \(-0.212175\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) − 3268.38i − 1.83382i
\(148\) 0 0
\(149\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(150\) 0 0
\(151\) 3273.58i 1.76424i 0.471027 + 0.882119i \(0.343883\pi\)
−0.471027 + 0.882119i \(0.656117\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −3850.00 −1.95709 −0.978546 0.206028i \(-0.933946\pi\)
−0.978546 + 0.206028i \(0.933946\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) − 2400.62i − 1.15357i −0.816897 0.576783i \(-0.804308\pi\)
0.816897 0.576783i \(-0.195692\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) 2703.00 1.23031
\(170\) 0 0
\(171\) 4208.88i 1.88223i
\(172\) 0 0
\(173\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(174\) 0 0
\(175\) 3897.11i 1.68340i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) −3458.00 −1.42006 −0.710031 0.704171i \(-0.751319\pi\)
−0.710031 + 0.704171i \(0.751319\pi\)
\(182\) 0 0
\(183\) 945.700i 0.382012i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 4374.00 1.68340
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 0 0
\(193\) −1150.00 −0.428906 −0.214453 0.976734i \(-0.568797\pi\)
−0.214453 + 0.976734i \(0.568797\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) 0 0
\(199\) 2026.50i 0.721883i 0.932588 + 0.360942i \(0.117545\pi\)
−0.932588 + 0.360942i \(0.882455\pi\)
\(200\) 0 0
\(201\) 3402.00 1.19382
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 1091.19i 0.356023i 0.984028 + 0.178011i \(0.0569664\pi\)
−0.984028 + 0.178011i \(0.943034\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −4860.00 −1.52036
\(218\) 0 0
\(219\) − 6183.42i − 1.90793i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) − 5830.08i − 1.75072i −0.483469 0.875362i \(-0.660623\pi\)
0.483469 0.875362i \(-0.339377\pi\)
\(224\) 0 0
\(225\) −3375.00 −1.00000
\(226\) 0 0
\(227\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(228\) 0 0
\(229\) −4466.00 −1.28874 −0.644370 0.764714i \(-0.722880\pi\)
−0.644370 + 0.764714i \(0.722880\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 5670.00 1.55403
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) 7378.00 1.97203 0.986014 0.166662i \(-0.0532990\pi\)
0.986014 + 0.166662i \(0.0532990\pi\)
\(242\) 0 0
\(243\) 3788.00i 1.00000i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) − 10911.9i − 2.81097i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(258\) 0 0
\(259\) 3429.46i 0.822766i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(270\) 0 0
\(271\) 8885.42i 1.99170i 0.0910064 + 0.995850i \(0.470992\pi\)
−0.0910064 + 0.995850i \(0.529008\pi\)
\(272\) 0 0
\(273\) −11340.0 −2.51402
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 4030.00 0.874149 0.437074 0.899425i \(-0.356015\pi\)
0.437074 + 0.899425i \(0.356015\pi\)
\(278\) 0 0
\(279\) − 4208.88i − 0.903151i
\(280\) 0 0
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 0 0
\(283\) 7700.70i 1.61752i 0.588137 + 0.808761i \(0.299862\pi\)
−0.588137 + 0.808761i \(0.700138\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 4913.00 1.00000
\(290\) 0 0
\(291\) 6910.88i 1.39218i
\(292\) 0 0
\(293\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −6804.00 −1.30291
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 1590.02i 0.295594i 0.989018 + 0.147797i \(0.0472182\pi\)
−0.989018 + 0.147797i \(0.952782\pi\)
\(308\) 0 0
\(309\) −5346.00 −0.984218
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) 10010.0 1.80766 0.903832 0.427888i \(-0.140742\pi\)
0.903832 + 0.427888i \(0.140742\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 8750.00 1.49342
\(326\) 0 0
\(327\) 3356.71i 0.567666i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) − 12003.1i − 1.99320i −0.0823644 0.996602i \(-0.526247\pi\)
0.0823644 0.996602i \(-0.473753\pi\)
\(332\) 0 0
\(333\) −2970.00 −0.488754
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 4930.00 0.796897 0.398448 0.917191i \(-0.369549\pi\)
0.398448 + 0.917191i \(0.369549\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) − 8916.60i − 1.40365i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(348\) 0 0
\(349\) −11914.0 −1.82734 −0.913670 0.406456i \(-0.866764\pi\)
−0.913670 + 0.406456i \(0.866764\pi\)
\(350\) 0 0
\(351\) − 9820.73i − 1.49342i
\(352\) 0 0
\(353\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) −17441.0 −2.54279
\(362\) 0 0
\(363\) − 6916.08i − 1.00000i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 13374.9i 1.90235i 0.308646 + 0.951177i \(0.400124\pi\)
−0.308646 + 0.951177i \(0.599876\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 12350.0 1.71437 0.857183 0.515011i \(-0.172212\pi\)
0.857183 + 0.515011i \(0.172212\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) − 12003.1i − 1.62680i −0.581702 0.813402i \(-0.697613\pi\)
0.581702 0.813402i \(-0.302387\pi\)
\(380\) 0 0
\(381\) 14742.0 1.98230
\(382\) 0 0
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) − 5892.44i − 0.773978i
\(388\) 0 0
\(389\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 1190.00 0.150439 0.0752196 0.997167i \(-0.476034\pi\)
0.0752196 + 0.997167i \(0.476034\pi\)
\(398\) 0 0
\(399\) 25253.3i 3.16854i
\(400\) 0 0
\(401\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(402\) 0 0
\(403\) 10911.9i 1.34879i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −8246.00 −0.996916 −0.498458 0.866914i \(-0.666100\pi\)
−0.498458 + 0.866914i \(0.666100\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 10530.0 1.23659
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) −17138.0 −1.98398 −0.991989 0.126322i \(-0.959683\pi\)
−0.991989 + 0.126322i \(0.959683\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 5674.20i 0.643077i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) −2590.00 −0.287454 −0.143727 0.989617i \(-0.545909\pi\)
−0.143727 + 0.989617i \(0.545909\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 10756.0i 1.16938i 0.811257 + 0.584690i \(0.198784\pi\)
−0.811257 + 0.584690i \(0.801216\pi\)
\(440\) 0 0
\(441\) 16983.0 1.83382
\(442\) 0 0
\(443\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) −17010.0 −1.76424
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −12710.0 −1.30098 −0.650491 0.759514i \(-0.725437\pi\)
−0.650491 + 0.759514i \(0.725437\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) 2400.62i 0.240964i 0.992716 + 0.120482i \(0.0384440\pi\)
−0.992716 + 0.120482i \(0.961556\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(468\) 0 0
\(469\) 20412.0 2.00968
\(470\) 0 0
\(471\) − 20005.2i − 1.95709i
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) − 19485.6i − 1.88223i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 7700.00 0.729916
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 5019.48i 0.467052i 0.972351 + 0.233526i \(0.0750265\pi\)
−0.972351 + 0.233526i \(0.924974\pi\)
\(488\) 0 0
\(489\) 12474.0 1.15357
\(490\) 0 0
\(491\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) − 16367.9i − 1.46839i −0.678938 0.734195i \(-0.737560\pi\)
0.678938 0.734195i \(-0.262440\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 14045.2i 1.23031i
\(508\) 0 0
\(509\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(510\) 0 0
\(511\) − 37100.5i − 3.21180i
\(512\) 0 0
\(513\) −21870.0 −1.88223
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 0 0
\(523\) 20670.3i 1.72820i 0.503320 + 0.864100i \(0.332112\pi\)
−0.503320 + 0.864100i \(0.667888\pi\)
\(524\) 0 0
\(525\) −20250.0 −1.68340
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −12167.0 −1.00000
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 22678.0 1.80222 0.901112 0.433586i \(-0.142752\pi\)
0.901112 + 0.433586i \(0.142752\pi\)
\(542\) 0 0
\(543\) − 17968.3i − 1.42006i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 25533.9i 1.99589i 0.0640963 + 0.997944i \(0.479584\pi\)
−0.0640963 + 0.997944i \(0.520416\pi\)
\(548\) 0 0
\(549\) −4914.00 −0.382012
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 34020.0 2.61605
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(558\) 0 0
\(559\) 15276.7i 1.15588i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 22728.0i 1.68340i
\(568\) 0 0
\(569\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(570\) 0 0
\(571\) 14185.5i 1.03966i 0.854270 + 0.519829i \(0.174004\pi\)
−0.854270 + 0.519829i \(0.825996\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −17710.0 −1.27778 −0.638888 0.769300i \(-0.720605\pi\)
−0.638888 + 0.769300i \(0.720605\pi\)
\(578\) 0 0
\(579\) − 5975.58i − 0.428906i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(588\) 0 0
\(589\) 24300.0 1.69994
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −10530.0 −0.721883
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) −29302.0 −1.98877 −0.994387 0.105801i \(-0.966259\pi\)
−0.994387 + 0.105801i \(0.966259\pi\)
\(602\) 0 0
\(603\) 17677.3i 1.19382i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) − 9321.90i − 0.623335i −0.950191 0.311667i \(-0.899113\pi\)
0.950191 0.311667i \(-0.100887\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 17390.0 1.14580 0.572900 0.819625i \(-0.305818\pi\)
0.572900 + 0.819625i \(0.305818\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(618\) 0 0
\(619\) 15432.6i 1.00208i 0.865424 + 0.501040i \(0.167049\pi\)
−0.865424 + 0.501040i \(0.832951\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 15625.0 1.00000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) − 31644.6i − 1.99643i −0.0596825 0.998217i \(-0.519009\pi\)
0.0596825 0.998217i \(-0.480991\pi\)
\(632\) 0 0
\(633\) −5670.00 −0.356023
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −44030.0 −2.73867
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(642\) 0 0
\(643\) − 29836.3i − 1.82991i −0.403561 0.914953i \(-0.632228\pi\)
0.403561 0.914953i \(-0.367772\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) − 25253.3i − 1.52036i
\(652\) 0 0
\(653\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 32130.0 1.90793
\(658\) 0 0
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) −20482.0 −1.20523 −0.602615 0.798032i \(-0.705875\pi\)
−0.602615 + 0.798032i \(0.705875\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 30294.0 1.75072
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 24050.0 1.37750 0.688751 0.724998i \(-0.258159\pi\)
0.688751 + 0.724998i \(0.258159\pi\)
\(674\) 0 0
\(675\) − 17537.0i − 1.00000i
\(676\) 0 0
\(677\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(678\) 0 0
\(679\) 41465.3i 2.34358i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) − 23206.0i − 1.28874i
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) − 32579.9i − 1.79363i −0.442408 0.896814i \(-0.645876\pi\)
0.442408 0.896814i \(-0.354124\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) 0 0
\(703\) − 17147.3i − 0.919947i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −36146.0 −1.91466 −0.957328 0.289003i \(-0.906676\pi\)
−0.957328 + 0.289003i \(0.906676\pi\)
\(710\) 0 0
\(711\) 29462.2i 1.55403i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) −32076.0 −1.65683
\(722\) 0 0
\(723\) 38337.2i 1.97203i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 37692.9i 1.92290i 0.274971 + 0.961452i \(0.411332\pi\)
−0.274971 + 0.961452i \(0.588668\pi\)
\(728\) 0 0
\(729\) −19683.0 −1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) −15050.0 −0.758369 −0.379184 0.925321i \(-0.623795\pi\)
−0.379184 + 0.925321i \(0.623795\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) − 25097.4i − 1.24929i −0.780910 0.624644i \(-0.785244\pi\)
0.780910 0.624644i \(-0.214756\pi\)
\(740\) 0 0
\(741\) 56700.0 2.81097
\(742\) 0 0
\(743\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 33827.0i 1.64363i 0.569757 + 0.821813i \(0.307037\pi\)
−0.569757 + 0.821813i \(0.692963\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 41470.0 1.99109 0.995543 0.0943039i \(-0.0300625\pi\)
0.995543 + 0.0943039i \(0.0300625\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(762\) 0 0
\(763\) 20140.3i 0.955606i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −4606.00 −0.215990 −0.107995 0.994151i \(-0.534443\pi\)
−0.107995 + 0.994151i \(0.534443\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(774\) 0 0
\(775\) 19485.6i 0.903151i
\(776\) 0 0
\(777\) −17820.0 −0.822766
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) − 8137.17i − 0.368563i −0.982874 0.184281i \(-0.941004\pi\)
0.982874 0.184281i \(-0.0589958\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 12740.0 0.570505
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(810\) 0 0
\(811\) 24162.1i 1.04617i 0.852280 + 0.523087i \(0.175220\pi\)
−0.852280 + 0.523087i \(0.824780\pi\)
\(812\) 0 0
\(813\) −46170.0 −1.99170
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 34020.0 1.45680
\(818\) 0 0
\(819\) − 58924.4i − 2.51402i
\(820\) 0 0
\(821\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(822\) 0 0
\(823\) − 45611.8i − 1.93187i −0.258786 0.965935i \(-0.583323\pi\)
0.258786 0.965935i \(-0.416677\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(828\) 0 0
\(829\) −17066.0 −0.714990 −0.357495 0.933915i \(-0.616369\pi\)
−0.357495 + 0.933915i \(0.616369\pi\)
\(830\) 0 0
\(831\) 20940.5i 0.874149i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 21870.0 0.903151
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) 24389.0 1.00000
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) − 41496.5i − 1.68340i
\(848\) 0 0
\(849\) −40014.0 −1.61752
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) −46690.0 −1.87413 −0.937066 0.349151i \(-0.886470\pi\)
−0.937066 + 0.349151i \(0.886470\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(858\) 0 0
\(859\) − 39438.8i − 1.56651i −0.621699 0.783256i \(-0.713557\pi\)
0.621699 0.783256i \(-0.286443\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 25528.7i 1.00000i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) − 45830.1i − 1.78288i
\(872\) 0 0
\(873\) −35910.0 −1.39218
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 50150.0 1.93095 0.965476 0.260491i \(-0.0838846\pi\)
0.965476 + 0.260491i \(0.0838846\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(882\) 0 0
\(883\) 48230.7i 1.83816i 0.394076 + 0.919078i \(0.371065\pi\)
−0.394076 + 0.919078i \(0.628935\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(888\) 0 0
\(889\) 88452.0 3.33699
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) − 35354.6i − 1.30291i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) − 31208.1i − 1.14250i −0.820776 0.571250i \(-0.806459\pi\)
0.820776 0.571250i \(-0.193541\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 55650.8i 1.99755i 0.0494625 + 0.998776i \(0.484249\pi\)
−0.0494625 + 0.998776i \(0.515751\pi\)
\(920\) 0 0
\(921\) −8262.00 −0.295594
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 13750.0 0.488754
\(926\) 0 0
\(927\) − 27778.6i − 0.984218i
\(928\) 0 0
\(929\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(930\) 0 0
\(931\) 98051.4i 3.45167i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −55510.0 −1.93536 −0.967680 0.252181i \(-0.918852\pi\)
−0.967680 + 0.252181i \(0.918852\pi\)
\(938\) 0 0
\(939\) 52013.5i 1.80766i
\(940\) 0 0
\(941\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(948\) 0 0
\(949\) −83300.0 −2.84935
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 5491.00 0.184317
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) − 33390.5i − 1.11041i −0.831714 0.555204i \(-0.812640\pi\)
0.831714 0.555204i \(-0.187360\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) 0 0
\(973\) 63180.0 2.08166
\(974\) 0 0
\(975\) 45466.3i 1.49342i
\(976\) 0 0
\(977\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −17442.0 −0.567666
\(982\) 0 0
\(983\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 42556.5i 1.36413i 0.731292 + 0.682064i \(0.238918\pi\)
−0.731292 + 0.682064i \(0.761082\pi\)
\(992\) 0 0
\(993\) 62370.0 1.99320
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 28910.0 0.918344 0.459172 0.888347i \(-0.348146\pi\)
0.459172 + 0.888347i \(0.348146\pi\)
\(998\) 0 0
\(999\) − 15432.6i − 0.488754i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 48.4.c.a.47.2 yes 2
3.2 odd 2 CM 48.4.c.a.47.2 yes 2
4.3 odd 2 inner 48.4.c.a.47.1 2
8.3 odd 2 192.4.c.a.191.2 2
8.5 even 2 192.4.c.a.191.1 2
12.11 even 2 inner 48.4.c.a.47.1 2
16.3 odd 4 768.4.f.a.383.4 4
16.5 even 4 768.4.f.a.383.3 4
16.11 odd 4 768.4.f.a.383.2 4
16.13 even 4 768.4.f.a.383.1 4
24.5 odd 2 192.4.c.a.191.1 2
24.11 even 2 192.4.c.a.191.2 2
48.5 odd 4 768.4.f.a.383.3 4
48.11 even 4 768.4.f.a.383.2 4
48.29 odd 4 768.4.f.a.383.1 4
48.35 even 4 768.4.f.a.383.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
48.4.c.a.47.1 2 4.3 odd 2 inner
48.4.c.a.47.1 2 12.11 even 2 inner
48.4.c.a.47.2 yes 2 1.1 even 1 trivial
48.4.c.a.47.2 yes 2 3.2 odd 2 CM
192.4.c.a.191.1 2 8.5 even 2
192.4.c.a.191.1 2 24.5 odd 2
192.4.c.a.191.2 2 8.3 odd 2
192.4.c.a.191.2 2 24.11 even 2
768.4.f.a.383.1 4 16.13 even 4
768.4.f.a.383.1 4 48.29 odd 4
768.4.f.a.383.2 4 16.11 odd 4
768.4.f.a.383.2 4 48.11 even 4
768.4.f.a.383.3 4 16.5 even 4
768.4.f.a.383.3 4 48.5 odd 4
768.4.f.a.383.4 4 16.3 odd 4
768.4.f.a.383.4 4 48.35 even 4