Properties

Label 768.4.f.a.383.3
Level $768$
Weight $4$
Character 768.383
Analytic conductor $45.313$
Analytic rank $0$
Dimension $4$
CM discriminant -3
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [768,4,Mod(383,768)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(768, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("768.383");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 768 = 2^{8} \cdot 3 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 768.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(45.3134668844\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{4}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 48)
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 383.3
Root \(-0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 768.383
Dual form 768.4.f.a.383.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+5.19615 q^{3} -31.1769i q^{7} +27.0000 q^{9} -70.0000i q^{13} -155.885 q^{19} -162.000i q^{21} -125.000 q^{25} +140.296 q^{27} +155.885i q^{31} +110.000i q^{37} -363.731i q^{39} -218.238 q^{43} -629.000 q^{49} -810.000 q^{57} -182.000i q^{61} -841.777i q^{63} -654.715 q^{67} +1190.00 q^{73} -649.519 q^{75} -1091.19i q^{79} +729.000 q^{81} -2182.38 q^{91} +810.000i q^{93} +1330.00 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 108 q^{9} - 500 q^{25} - 2516 q^{49} - 3240 q^{57} + 4760 q^{73} + 2916 q^{81} + 5320 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/768\mathbb{Z}\right)^\times\).

\(n\) \(257\) \(511\) \(517\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 5.19615 1.00000
\(4\) 0 0
\(5\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(6\) 0 0
\(7\) − 31.1769i − 1.68340i −0.539949 0.841698i \(-0.681557\pi\)
0.539949 0.841698i \(-0.318443\pi\)
\(8\) 0 0
\(9\) 27.0000 1.00000
\(10\) 0 0
\(11\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(12\) 0 0
\(13\) − 70.0000i − 1.49342i −0.665148 0.746712i \(-0.731631\pi\)
0.665148 0.746712i \(-0.268369\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(18\) 0 0
\(19\) −155.885 −1.88223 −0.941115 0.338086i \(-0.890220\pi\)
−0.941115 + 0.338086i \(0.890220\pi\)
\(20\) 0 0
\(21\) − 162.000i − 1.68340i
\(22\) 0 0
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 0 0
\(25\) −125.000 −1.00000
\(26\) 0 0
\(27\) 140.296 1.00000
\(28\) 0 0
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) 155.885i 0.903151i 0.892233 + 0.451576i \(0.149138\pi\)
−0.892233 + 0.451576i \(0.850862\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 110.000i 0.488754i 0.969680 + 0.244377i \(0.0785834\pi\)
−0.969680 + 0.244377i \(0.921417\pi\)
\(38\) 0 0
\(39\) − 363.731i − 1.49342i
\(40\) 0 0
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 0 0
\(43\) −218.238 −0.773978 −0.386989 0.922084i \(-0.626485\pi\)
−0.386989 + 0.922084i \(0.626485\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) −629.000 −1.83382
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −810.000 −1.88223
\(58\) 0 0
\(59\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(60\) 0 0
\(61\) − 182.000i − 0.382012i −0.981589 0.191006i \(-0.938825\pi\)
0.981589 0.191006i \(-0.0611749\pi\)
\(62\) 0 0
\(63\) − 841.777i − 1.68340i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −654.715 −1.19382 −0.596912 0.802307i \(-0.703606\pi\)
−0.596912 + 0.802307i \(0.703606\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) 1190.00 1.90793 0.953966 0.299916i \(-0.0969588\pi\)
0.953966 + 0.299916i \(0.0969588\pi\)
\(74\) 0 0
\(75\) −649.519 −1.00000
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) − 1091.19i − 1.55403i −0.629480 0.777017i \(-0.716732\pi\)
0.629480 0.777017i \(-0.283268\pi\)
\(80\) 0 0
\(81\) 729.000 1.00000
\(82\) 0 0
\(83\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) 0 0
\(91\) −2182.38 −2.51402
\(92\) 0 0
\(93\) 810.000i 0.903151i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 1330.00 1.39218 0.696088 0.717957i \(-0.254922\pi\)
0.696088 + 0.717957i \(0.254922\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(102\) 0 0
\(103\) − 1028.84i − 0.984218i −0.870534 0.492109i \(-0.836226\pi\)
0.870534 0.492109i \(-0.163774\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(108\) 0 0
\(109\) − 646.000i − 0.567666i −0.958874 0.283833i \(-0.908394\pi\)
0.958874 0.283833i \(-0.0916061\pi\)
\(110\) 0 0
\(111\) 571.577i 0.488754i
\(112\) 0 0
\(113\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) − 1890.00i − 1.49342i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 1331.00 1.00000
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) − 2837.10i − 1.98230i −0.132754 0.991149i \(-0.542382\pi\)
0.132754 0.991149i \(-0.457618\pi\)
\(128\) 0 0
\(129\) −1134.00 −0.773978
\(130\) 0 0
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) 0 0
\(133\) 4860.00i 3.16854i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(138\) 0 0
\(139\) 2026.50 1.23659 0.618293 0.785948i \(-0.287825\pi\)
0.618293 + 0.785948i \(0.287825\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −3268.38 −1.83382
\(148\) 0 0
\(149\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(150\) 0 0
\(151\) − 3273.58i − 1.76424i −0.471027 0.882119i \(-0.656117\pi\)
0.471027 0.882119i \(-0.343883\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 3850.00i 1.95709i 0.206028 + 0.978546i \(0.433946\pi\)
−0.206028 + 0.978546i \(0.566054\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −2400.62 −1.15357 −0.576783 0.816897i \(-0.695692\pi\)
−0.576783 + 0.816897i \(0.695692\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) −2703.00 −1.23031
\(170\) 0 0
\(171\) −4208.88 −1.88223
\(172\) 0 0
\(173\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(174\) 0 0
\(175\) 3897.11i 1.68340i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(180\) 0 0
\(181\) − 3458.00i − 1.42006i −0.704171 0.710031i \(-0.748681\pi\)
0.704171 0.710031i \(-0.251319\pi\)
\(182\) 0 0
\(183\) − 945.700i − 0.382012i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) − 4374.00i − 1.68340i
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 0 0
\(193\) −1150.00 −0.428906 −0.214453 0.976734i \(-0.568797\pi\)
−0.214453 + 0.976734i \(0.568797\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(198\) 0 0
\(199\) − 2026.50i − 0.721883i −0.932588 0.360942i \(-0.882455\pi\)
0.932588 0.360942i \(-0.117545\pi\)
\(200\) 0 0
\(201\) −3402.00 −1.19382
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 1091.19 0.356023 0.178011 0.984028i \(-0.443034\pi\)
0.178011 + 0.984028i \(0.443034\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 4860.00 1.52036
\(218\) 0 0
\(219\) 6183.42 1.90793
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) − 5830.08i − 1.75072i −0.483469 0.875362i \(-0.660623\pi\)
0.483469 0.875362i \(-0.339377\pi\)
\(224\) 0 0
\(225\) −3375.00 −1.00000
\(226\) 0 0
\(227\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(228\) 0 0
\(229\) − 4466.00i − 1.28874i −0.764714 0.644370i \(-0.777120\pi\)
0.764714 0.644370i \(-0.222880\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) − 5670.00i − 1.55403i
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) 7378.00 1.97203 0.986014 0.166662i \(-0.0532990\pi\)
0.986014 + 0.166662i \(0.0532990\pi\)
\(242\) 0 0
\(243\) 3788.00 1.00000
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 10911.9i 2.81097i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(258\) 0 0
\(259\) 3429.46 0.822766
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 0 0
\(271\) 8885.42i 1.99170i 0.0910064 + 0.995850i \(0.470992\pi\)
−0.0910064 + 0.995850i \(0.529008\pi\)
\(272\) 0 0
\(273\) −11340.0 −2.51402
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 4030.00i 0.874149i 0.899425 + 0.437074i \(0.143985\pi\)
−0.899425 + 0.437074i \(0.856015\pi\)
\(278\) 0 0
\(279\) 4208.88i 0.903151i
\(280\) 0 0
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 0 0
\(283\) −7700.70 −1.61752 −0.808761 0.588137i \(-0.799862\pi\)
−0.808761 + 0.588137i \(0.799862\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 4913.00 1.00000
\(290\) 0 0
\(291\) 6910.88 1.39218
\(292\) 0 0
\(293\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 6804.00i 1.30291i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 1590.02 0.295594 0.147797 0.989018i \(-0.452782\pi\)
0.147797 + 0.989018i \(0.452782\pi\)
\(308\) 0 0
\(309\) − 5346.00i − 0.984218i
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) −10010.0 −1.80766 −0.903832 0.427888i \(-0.859258\pi\)
−0.903832 + 0.427888i \(0.859258\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 8750.00i 1.49342i
\(326\) 0 0
\(327\) − 3356.71i − 0.567666i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 12003.1 1.99320 0.996602 0.0823644i \(-0.0262471\pi\)
0.996602 + 0.0823644i \(0.0262471\pi\)
\(332\) 0 0
\(333\) 2970.00i 0.488754i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 4930.00 0.796897 0.398448 0.917191i \(-0.369549\pi\)
0.398448 + 0.917191i \(0.369549\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 8916.60i 1.40365i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(348\) 0 0
\(349\) 11914.0i 1.82734i 0.406456 + 0.913670i \(0.366764\pi\)
−0.406456 + 0.913670i \(0.633236\pi\)
\(350\) 0 0
\(351\) − 9820.73i − 1.49342i
\(352\) 0 0
\(353\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) 17441.0 2.54279
\(362\) 0 0
\(363\) 6916.08 1.00000
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 13374.9i 1.90235i 0.308646 + 0.951177i \(0.400124\pi\)
−0.308646 + 0.951177i \(0.599876\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 12350.0i 1.71437i 0.515011 + 0.857183i \(0.327788\pi\)
−0.515011 + 0.857183i \(0.672212\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 12003.1 1.62680 0.813402 0.581702i \(-0.197613\pi\)
0.813402 + 0.581702i \(0.197613\pi\)
\(380\) 0 0
\(381\) − 14742.0i − 1.98230i
\(382\) 0 0
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −5892.44 −0.773978
\(388\) 0 0
\(389\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) − 1190.00i − 0.150439i −0.997167 0.0752196i \(-0.976034\pi\)
0.997167 0.0752196i \(-0.0239658\pi\)
\(398\) 0 0
\(399\) 25253.3i 3.16854i
\(400\) 0 0
\(401\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(402\) 0 0
\(403\) 10911.9 1.34879
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 8246.00 0.996916 0.498458 0.866914i \(-0.333900\pi\)
0.498458 + 0.866914i \(0.333900\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 10530.0 1.23659
\(418\) 0 0
\(419\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(420\) 0 0
\(421\) − 17138.0i − 1.98398i −0.126322 0.991989i \(-0.540317\pi\)
0.126322 0.991989i \(-0.459683\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −5674.20 −0.643077
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) −2590.00 −0.287454 −0.143727 0.989617i \(-0.545909\pi\)
−0.143727 + 0.989617i \(0.545909\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) − 10756.0i − 1.16938i −0.811257 0.584690i \(-0.801216\pi\)
0.811257 0.584690i \(-0.198784\pi\)
\(440\) 0 0
\(441\) −16983.0 −1.83382
\(442\) 0 0
\(443\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) − 17010.0i − 1.76424i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 12710.0 1.30098 0.650491 0.759514i \(-0.274563\pi\)
0.650491 + 0.759514i \(0.274563\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(462\) 0 0
\(463\) 2400.62i 0.240964i 0.992716 + 0.120482i \(0.0384440\pi\)
−0.992716 + 0.120482i \(0.961556\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(468\) 0 0
\(469\) 20412.0i 2.00968i
\(470\) 0 0
\(471\) 20005.2i 1.95709i
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 19485.6 1.88223
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 7700.00 0.729916
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) − 5019.48i − 0.467052i −0.972351 0.233526i \(-0.924974\pi\)
0.972351 0.233526i \(-0.0750265\pi\)
\(488\) 0 0
\(489\) −12474.0 −1.15357
\(490\) 0 0
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −16367.9 −1.46839 −0.734195 0.678938i \(-0.762440\pi\)
−0.734195 + 0.678938i \(0.762440\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −14045.2 −1.23031
\(508\) 0 0
\(509\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(510\) 0 0
\(511\) − 37100.5i − 3.21180i
\(512\) 0 0
\(513\) −21870.0 −1.88223
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 0 0
\(523\) −20670.3 −1.72820 −0.864100 0.503320i \(-0.832112\pi\)
−0.864100 + 0.503320i \(0.832112\pi\)
\(524\) 0 0
\(525\) 20250.0i 1.68340i
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −12167.0 −1.00000
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) − 22678.0i − 1.80222i −0.433586 0.901112i \(-0.642752\pi\)
0.433586 0.901112i \(-0.357248\pi\)
\(542\) 0 0
\(543\) − 17968.3i − 1.42006i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 25533.9 1.99589 0.997944 0.0640963i \(-0.0204165\pi\)
0.997944 + 0.0640963i \(0.0204165\pi\)
\(548\) 0 0
\(549\) − 4914.00i − 0.382012i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) −34020.0 −2.61605
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(558\) 0 0
\(559\) 15276.7i 1.15588i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) − 22728.0i − 1.68340i
\(568\) 0 0
\(569\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(570\) 0 0
\(571\) −14185.5 −1.03966 −0.519829 0.854270i \(-0.674004\pi\)
−0.519829 + 0.854270i \(0.674004\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −17710.0 −1.27778 −0.638888 0.769300i \(-0.720605\pi\)
−0.638888 + 0.769300i \(0.720605\pi\)
\(578\) 0 0
\(579\) −5975.58 −0.428906
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(588\) 0 0
\(589\) − 24300.0i − 1.69994i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) − 10530.0i − 0.721883i
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) 29302.0 1.98877 0.994387 0.105801i \(-0.0337408\pi\)
0.994387 + 0.105801i \(0.0337408\pi\)
\(602\) 0 0
\(603\) −17677.3 −1.19382
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) − 9321.90i − 0.623335i −0.950191 0.311667i \(-0.899113\pi\)
0.950191 0.311667i \(-0.100887\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 17390.0i 1.14580i 0.819625 + 0.572900i \(0.194182\pi\)
−0.819625 + 0.572900i \(0.805818\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(618\) 0 0
\(619\) −15432.6 −1.00208 −0.501040 0.865424i \(-0.667049\pi\)
−0.501040 + 0.865424i \(0.667049\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 15625.0 1.00000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 31644.6i 1.99643i 0.0596825 + 0.998217i \(0.480991\pi\)
−0.0596825 + 0.998217i \(0.519009\pi\)
\(632\) 0 0
\(633\) 5670.00 0.356023
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 44030.0i 2.73867i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(642\) 0 0
\(643\) −29836.3 −1.82991 −0.914953 0.403561i \(-0.867772\pi\)
−0.914953 + 0.403561i \(0.867772\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 25253.3 1.52036
\(652\) 0 0
\(653\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 32130.0 1.90793
\(658\) 0 0
\(659\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(660\) 0 0
\(661\) − 20482.0i − 1.20523i −0.798032 0.602615i \(-0.794125\pi\)
0.798032 0.602615i \(-0.205875\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) − 30294.0i − 1.75072i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 24050.0 1.37750 0.688751 0.724998i \(-0.258159\pi\)
0.688751 + 0.724998i \(0.258159\pi\)
\(674\) 0 0
\(675\) −17537.0 −1.00000
\(676\) 0 0
\(677\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(678\) 0 0
\(679\) − 41465.3i − 2.34358i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) − 23206.0i − 1.28874i
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −32579.9 −1.79363 −0.896814 0.442408i \(-0.854124\pi\)
−0.896814 + 0.442408i \(0.854124\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(702\) 0 0
\(703\) − 17147.3i − 0.919947i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) − 36146.0i − 1.91466i −0.289003 0.957328i \(-0.593324\pi\)
0.289003 0.957328i \(-0.406676\pi\)
\(710\) 0 0
\(711\) − 29462.2i − 1.55403i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) −32076.0 −1.65683
\(722\) 0 0
\(723\) 38337.2 1.97203
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) − 37692.9i − 1.92290i −0.274971 0.961452i \(-0.588668\pi\)
0.274971 0.961452i \(-0.411332\pi\)
\(728\) 0 0
\(729\) 19683.0 1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 15050.0i 0.758369i 0.925321 + 0.379184i \(0.123795\pi\)
−0.925321 + 0.379184i \(0.876205\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −25097.4 −1.24929 −0.624644 0.780910i \(-0.714756\pi\)
−0.624644 + 0.780910i \(0.714756\pi\)
\(740\) 0 0
\(741\) 56700.0i 2.81097i
\(742\) 0 0
\(743\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 33827.0i 1.64363i 0.569757 + 0.821813i \(0.307037\pi\)
−0.569757 + 0.821813i \(0.692963\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 41470.0i 1.99109i 0.0943039 + 0.995543i \(0.469937\pi\)
−0.0943039 + 0.995543i \(0.530063\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(762\) 0 0
\(763\) −20140.3 −0.955606
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −4606.00 −0.215990 −0.107995 0.994151i \(-0.534443\pi\)
−0.107995 + 0.994151i \(0.534443\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(774\) 0 0
\(775\) − 19485.6i − 0.903151i
\(776\) 0 0
\(777\) 17820.0 0.822766
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −8137.17 −0.368563 −0.184281 0.982874i \(-0.558996\pi\)
−0.184281 + 0.982874i \(0.558996\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −12740.0 −0.570505
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(810\) 0 0
\(811\) −24162.1 −1.04617 −0.523087 0.852280i \(-0.675220\pi\)
−0.523087 + 0.852280i \(0.675220\pi\)
\(812\) 0 0
\(813\) 46170.0i 1.99170i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 34020.0 1.45680
\(818\) 0 0
\(819\) −58924.4 −2.51402
\(820\) 0 0
\(821\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(822\) 0 0
\(823\) 45611.8i 1.93187i 0.258786 + 0.965935i \(0.416677\pi\)
−0.258786 + 0.965935i \(0.583323\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(828\) 0 0
\(829\) 17066.0i 0.714990i 0.933915 + 0.357495i \(0.116369\pi\)
−0.933915 + 0.357495i \(0.883631\pi\)
\(830\) 0 0
\(831\) 20940.5i 0.874149i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 21870.0i 0.903151i
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) −24389.0 −1.00000
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) − 41496.5i − 1.68340i
\(848\) 0 0
\(849\) −40014.0 −1.61752
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) − 46690.0i − 1.87413i −0.349151 0.937066i \(-0.613530\pi\)
0.349151 0.937066i \(-0.386470\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(858\) 0 0
\(859\) 39438.8 1.56651 0.783256 0.621699i \(-0.213557\pi\)
0.783256 + 0.621699i \(0.213557\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 25528.7 1.00000
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 45830.1i 1.78288i
\(872\) 0 0
\(873\) 35910.0 1.39218
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) − 50150.0i − 1.93095i −0.260491 0.965476i \(-0.583885\pi\)
0.260491 0.965476i \(-0.416115\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(882\) 0 0
\(883\) 48230.7 1.83816 0.919078 0.394076i \(-0.128935\pi\)
0.919078 + 0.394076i \(0.128935\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(888\) 0 0
\(889\) −88452.0 −3.33699
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 35354.6i 1.30291i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 31208.1 1.14250 0.571250 0.820776i \(-0.306459\pi\)
0.571250 + 0.820776i \(0.306459\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) − 55650.8i − 1.99755i −0.0494625 0.998776i \(-0.515751\pi\)
0.0494625 0.998776i \(-0.484249\pi\)
\(920\) 0 0
\(921\) 8262.00 0.295594
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) − 13750.0i − 0.488754i
\(926\) 0 0
\(927\) − 27778.6i − 0.984218i
\(928\) 0 0
\(929\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(930\) 0 0
\(931\) 98051.4 3.45167
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 55510.0 1.93536 0.967680 0.252181i \(-0.0811477\pi\)
0.967680 + 0.252181i \(0.0811477\pi\)
\(938\) 0 0
\(939\) −52013.5 −1.80766
\(940\) 0 0
\(941\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(948\) 0 0
\(949\) − 83300.0i − 2.84935i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 5491.00 0.184317
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 33390.5i 1.11041i 0.831714 + 0.555204i \(0.187360\pi\)
−0.831714 + 0.555204i \(0.812640\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(972\) 0 0
\(973\) − 63180.0i − 2.08166i
\(974\) 0 0
\(975\) 45466.3i 1.49342i
\(976\) 0 0
\(977\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) − 17442.0i − 0.567666i
\(982\) 0 0
\(983\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 42556.5i 1.36413i 0.731292 + 0.682064i \(0.238918\pi\)
−0.731292 + 0.682064i \(0.761082\pi\)
\(992\) 0 0
\(993\) 62370.0 1.99320
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 28910.0i 0.918344i 0.888347 + 0.459172i \(0.151854\pi\)
−0.888347 + 0.459172i \(0.848146\pi\)
\(998\) 0 0
\(999\) 15432.6i 0.488754i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 768.4.f.a.383.3 4
3.2 odd 2 CM 768.4.f.a.383.3 4
4.3 odd 2 inner 768.4.f.a.383.2 4
8.3 odd 2 inner 768.4.f.a.383.4 4
8.5 even 2 inner 768.4.f.a.383.1 4
12.11 even 2 inner 768.4.f.a.383.2 4
16.3 odd 4 48.4.c.a.47.1 2
16.5 even 4 192.4.c.a.191.1 2
16.11 odd 4 192.4.c.a.191.2 2
16.13 even 4 48.4.c.a.47.2 yes 2
24.5 odd 2 inner 768.4.f.a.383.1 4
24.11 even 2 inner 768.4.f.a.383.4 4
48.5 odd 4 192.4.c.a.191.1 2
48.11 even 4 192.4.c.a.191.2 2
48.29 odd 4 48.4.c.a.47.2 yes 2
48.35 even 4 48.4.c.a.47.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
48.4.c.a.47.1 2 16.3 odd 4
48.4.c.a.47.1 2 48.35 even 4
48.4.c.a.47.2 yes 2 16.13 even 4
48.4.c.a.47.2 yes 2 48.29 odd 4
192.4.c.a.191.1 2 16.5 even 4
192.4.c.a.191.1 2 48.5 odd 4
192.4.c.a.191.2 2 16.11 odd 4
192.4.c.a.191.2 2 48.11 even 4
768.4.f.a.383.1 4 8.5 even 2 inner
768.4.f.a.383.1 4 24.5 odd 2 inner
768.4.f.a.383.2 4 4.3 odd 2 inner
768.4.f.a.383.2 4 12.11 even 2 inner
768.4.f.a.383.3 4 1.1 even 1 trivial
768.4.f.a.383.3 4 3.2 odd 2 CM
768.4.f.a.383.4 4 8.3 odd 2 inner
768.4.f.a.383.4 4 24.11 even 2 inner