Properties

Label 480.2.m.b.239.3
Level $480$
Weight $2$
Character 480.239
Analytic conductor $3.833$
Analytic rank $0$
Dimension $16$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [480,2,Mod(239,480)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(480, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("480.239");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 480 = 2^{5} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 480.m (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.83281929702\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 24x^{14} + 192x^{12} + 672x^{10} + 1092x^{8} + 880x^{6} + 352x^{4} + 64x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{17} \)
Twist minimal: no (minimal twist has level 120)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 239.3
Root \(-3.49930i\) of defining polynomial
Character \(\chi\) \(=\) 480.239
Dual form 480.2.m.b.239.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.30656 + 1.13705i) q^{3} +(-2.10100 + 0.765367i) q^{5} -2.27411 q^{7} +(0.414214 - 2.97127i) q^{9} -4.20201i q^{11} +3.21608 q^{13} +(1.87483 - 3.38896i) q^{15} +1.53073 q^{17} +4.82843 q^{19} +(2.97127 - 2.58579i) q^{21} +1.08239i q^{23} +(3.82843 - 3.21608i) q^{25} +(2.83730 + 4.35313i) q^{27} -1.74053 q^{29} -6.82843i q^{31} +(4.77791 + 5.49019i) q^{33} +(4.77791 - 1.74053i) q^{35} -7.76429 q^{37} +(-4.20201 + 3.65685i) q^{39} -2.46148i q^{41} -8.70626i q^{43} +(1.40385 + 6.55967i) q^{45} -1.08239i q^{47} -1.82843 q^{49} +(-2.00000 + 1.74053i) q^{51} -11.0866i q^{53} +(3.21608 + 8.82843i) q^{55} +(-6.30864 + 5.49019i) q^{57} +4.20201i q^{59} -8.48528i q^{61} +(-0.941967 + 6.75699i) q^{63} +(-6.75699 + 2.46148i) q^{65} -2.27411i q^{67} +(-1.23074 - 1.41421i) q^{69} +11.8851 q^{71} -4.54822i q^{73} +(-1.34523 + 8.55514i) q^{75} +9.55582i q^{77} -0.485281i q^{79} +(-8.65685 - 2.46148i) q^{81} -6.94269 q^{83} +(-3.21608 + 1.17157i) q^{85} +(2.27411 - 1.97908i) q^{87} +8.40401i q^{89} -7.31371 q^{91} +(7.76429 + 8.92177i) q^{93} +(-10.1445 + 3.69552i) q^{95} -10.9804i q^{97} +(-12.4853 - 1.74053i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 16 q^{9} + 32 q^{19} + 16 q^{25} + 16 q^{49} - 32 q^{51} - 32 q^{75} - 48 q^{81} + 64 q^{91} - 64 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/480\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(97\) \(161\) \(421\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.30656 + 1.13705i −0.754344 + 0.656479i
\(4\) 0 0
\(5\) −2.10100 + 0.765367i −0.939597 + 0.342282i
\(6\) 0 0
\(7\) −2.27411 −0.859533 −0.429766 0.902940i \(-0.641404\pi\)
−0.429766 + 0.902940i \(0.641404\pi\)
\(8\) 0 0
\(9\) 0.414214 2.97127i 0.138071 0.990422i
\(10\) 0 0
\(11\) 4.20201i 1.26695i −0.773762 0.633476i \(-0.781627\pi\)
0.773762 0.633476i \(-0.218373\pi\)
\(12\) 0 0
\(13\) 3.21608 0.891979 0.445990 0.895038i \(-0.352852\pi\)
0.445990 + 0.895038i \(0.352852\pi\)
\(14\) 0 0
\(15\) 1.87483 3.38896i 0.484079 0.875024i
\(16\) 0 0
\(17\) 1.53073 0.371257 0.185629 0.982620i \(-0.440568\pi\)
0.185629 + 0.982620i \(0.440568\pi\)
\(18\) 0 0
\(19\) 4.82843 1.10772 0.553859 0.832611i \(-0.313155\pi\)
0.553859 + 0.832611i \(0.313155\pi\)
\(20\) 0 0
\(21\) 2.97127 2.58579i 0.648384 0.564265i
\(22\) 0 0
\(23\) 1.08239i 0.225694i 0.993612 + 0.112847i \(0.0359971\pi\)
−0.993612 + 0.112847i \(0.964003\pi\)
\(24\) 0 0
\(25\) 3.82843 3.21608i 0.765685 0.643215i
\(26\) 0 0
\(27\) 2.83730 + 4.35313i 0.546038 + 0.837760i
\(28\) 0 0
\(29\) −1.74053 −0.323208 −0.161604 0.986856i \(-0.551667\pi\)
−0.161604 + 0.986856i \(0.551667\pi\)
\(30\) 0 0
\(31\) 6.82843i 1.22642i −0.789919 0.613211i \(-0.789878\pi\)
0.789919 0.613211i \(-0.210122\pi\)
\(32\) 0 0
\(33\) 4.77791 + 5.49019i 0.831727 + 0.955719i
\(34\) 0 0
\(35\) 4.77791 1.74053i 0.807614 0.294203i
\(36\) 0 0
\(37\) −7.76429 −1.27644 −0.638221 0.769853i \(-0.720329\pi\)
−0.638221 + 0.769853i \(0.720329\pi\)
\(38\) 0 0
\(39\) −4.20201 + 3.65685i −0.672859 + 0.585565i
\(40\) 0 0
\(41\) 2.46148i 0.384418i −0.981354 0.192209i \(-0.938435\pi\)
0.981354 0.192209i \(-0.0615652\pi\)
\(42\) 0 0
\(43\) 8.70626i 1.32769i −0.747869 0.663846i \(-0.768923\pi\)
0.747869 0.663846i \(-0.231077\pi\)
\(44\) 0 0
\(45\) 1.40385 + 6.55967i 0.209273 + 0.977857i
\(46\) 0 0
\(47\) 1.08239i 0.157883i −0.996879 0.0789416i \(-0.974846\pi\)
0.996879 0.0789416i \(-0.0251541\pi\)
\(48\) 0 0
\(49\) −1.82843 −0.261204
\(50\) 0 0
\(51\) −2.00000 + 1.74053i −0.280056 + 0.243723i
\(52\) 0 0
\(53\) 11.0866i 1.52286i −0.648250 0.761428i \(-0.724499\pi\)
0.648250 0.761428i \(-0.275501\pi\)
\(54\) 0 0
\(55\) 3.21608 + 8.82843i 0.433656 + 1.19042i
\(56\) 0 0
\(57\) −6.30864 + 5.49019i −0.835600 + 0.727193i
\(58\) 0 0
\(59\) 4.20201i 0.547055i 0.961864 + 0.273527i \(0.0881904\pi\)
−0.961864 + 0.273527i \(0.911810\pi\)
\(60\) 0 0
\(61\) 8.48528i 1.08643i −0.839594 0.543214i \(-0.817207\pi\)
0.839594 0.543214i \(-0.182793\pi\)
\(62\) 0 0
\(63\) −0.941967 + 6.75699i −0.118677 + 0.851300i
\(64\) 0 0
\(65\) −6.75699 + 2.46148i −0.838101 + 0.305309i
\(66\) 0 0
\(67\) 2.27411i 0.277827i −0.990305 0.138913i \(-0.955639\pi\)
0.990305 0.138913i \(-0.0443609\pi\)
\(68\) 0 0
\(69\) −1.23074 1.41421i −0.148164 0.170251i
\(70\) 0 0
\(71\) 11.8851 1.41050 0.705249 0.708960i \(-0.250835\pi\)
0.705249 + 0.708960i \(0.250835\pi\)
\(72\) 0 0
\(73\) 4.54822i 0.532329i −0.963928 0.266164i \(-0.914244\pi\)
0.963928 0.266164i \(-0.0857564\pi\)
\(74\) 0 0
\(75\) −1.34523 + 8.55514i −0.155333 + 0.987862i
\(76\) 0 0
\(77\) 9.55582i 1.08899i
\(78\) 0 0
\(79\) 0.485281i 0.0545984i −0.999627 0.0272992i \(-0.991309\pi\)
0.999627 0.0272992i \(-0.00869069\pi\)
\(80\) 0 0
\(81\) −8.65685 2.46148i −0.961873 0.273498i
\(82\) 0 0
\(83\) −6.94269 −0.762060 −0.381030 0.924563i \(-0.624431\pi\)
−0.381030 + 0.924563i \(0.624431\pi\)
\(84\) 0 0
\(85\) −3.21608 + 1.17157i −0.348832 + 0.127075i
\(86\) 0 0
\(87\) 2.27411 1.97908i 0.243810 0.212179i
\(88\) 0 0
\(89\) 8.40401i 0.890823i 0.895326 + 0.445412i \(0.146943\pi\)
−0.895326 + 0.445412i \(0.853057\pi\)
\(90\) 0 0
\(91\) −7.31371 −0.766685
\(92\) 0 0
\(93\) 7.76429 + 8.92177i 0.805120 + 0.925144i
\(94\) 0 0
\(95\) −10.1445 + 3.69552i −1.04081 + 0.379152i
\(96\) 0 0
\(97\) 10.9804i 1.11489i −0.830215 0.557444i \(-0.811782\pi\)
0.830215 0.557444i \(-0.188218\pi\)
\(98\) 0 0
\(99\) −12.4853 1.74053i −1.25482 0.174930i
\(100\) 0 0
\(101\) 13.6256 1.35580 0.677899 0.735155i \(-0.262891\pi\)
0.677899 + 0.735155i \(0.262891\pi\)
\(102\) 0 0
\(103\) −8.70626 −0.857853 −0.428927 0.903339i \(-0.641108\pi\)
−0.428927 + 0.903339i \(0.641108\pi\)
\(104\) 0 0
\(105\) −4.26357 + 7.70685i −0.416081 + 0.752112i
\(106\) 0 0
\(107\) −5.67459 −0.548584 −0.274292 0.961647i \(-0.588443\pi\)
−0.274292 + 0.961647i \(0.588443\pi\)
\(108\) 0 0
\(109\) 16.4853i 1.57900i 0.613748 + 0.789502i \(0.289661\pi\)
−0.613748 + 0.789502i \(0.710339\pi\)
\(110\) 0 0
\(111\) 10.1445 8.82843i 0.962877 0.837957i
\(112\) 0 0
\(113\) −0.634051 −0.0596465 −0.0298232 0.999555i \(-0.509494\pi\)
−0.0298232 + 0.999555i \(0.509494\pi\)
\(114\) 0 0
\(115\) −0.828427 2.27411i −0.0772512 0.212062i
\(116\) 0 0
\(117\) 1.33214 9.55582i 0.123157 0.883436i
\(118\) 0 0
\(119\) −3.48106 −0.319108
\(120\) 0 0
\(121\) −6.65685 −0.605169
\(122\) 0 0
\(123\) 2.79884 + 3.21608i 0.252362 + 0.289984i
\(124\) 0 0
\(125\) −5.58206 + 9.68714i −0.499275 + 0.866444i
\(126\) 0 0
\(127\) 2.27411 0.201795 0.100897 0.994897i \(-0.467829\pi\)
0.100897 + 0.994897i \(0.467829\pi\)
\(128\) 0 0
\(129\) 9.89949 + 11.3753i 0.871602 + 1.00154i
\(130\) 0 0
\(131\) 11.1641i 0.975413i 0.873008 + 0.487707i \(0.162166\pi\)
−0.873008 + 0.487707i \(0.837834\pi\)
\(132\) 0 0
\(133\) −10.9804 −0.952119
\(134\) 0 0
\(135\) −9.29291 6.97437i −0.799806 0.600258i
\(136\) 0 0
\(137\) 8.02509 0.685629 0.342815 0.939403i \(-0.388620\pi\)
0.342815 + 0.939403i \(0.388620\pi\)
\(138\) 0 0
\(139\) 2.48528 0.210799 0.105399 0.994430i \(-0.466388\pi\)
0.105399 + 0.994430i \(0.466388\pi\)
\(140\) 0 0
\(141\) 1.23074 + 1.41421i 0.103647 + 0.119098i
\(142\) 0 0
\(143\) 13.5140i 1.13010i
\(144\) 0 0
\(145\) 3.65685 1.33214i 0.303685 0.110628i
\(146\) 0 0
\(147\) 2.38896 2.07902i 0.197038 0.171475i
\(148\) 0 0
\(149\) −0.720950 −0.0590625 −0.0295313 0.999564i \(-0.509401\pi\)
−0.0295313 + 0.999564i \(0.509401\pi\)
\(150\) 0 0
\(151\) 2.82843i 0.230174i −0.993355 0.115087i \(-0.963285\pi\)
0.993355 0.115087i \(-0.0367147\pi\)
\(152\) 0 0
\(153\) 0.634051 4.54822i 0.0512600 0.367702i
\(154\) 0 0
\(155\) 5.22625 + 14.3465i 0.419783 + 1.15234i
\(156\) 0 0
\(157\) 23.2929 1.85897 0.929487 0.368854i \(-0.120250\pi\)
0.929487 + 0.368854i \(0.120250\pi\)
\(158\) 0 0
\(159\) 12.6060 + 14.4853i 0.999722 + 1.14876i
\(160\) 0 0
\(161\) 2.46148i 0.193992i
\(162\) 0 0
\(163\) 8.70626i 0.681927i 0.940077 + 0.340964i \(0.110753\pi\)
−0.940077 + 0.340964i \(0.889247\pi\)
\(164\) 0 0
\(165\) −14.2404 7.87804i −1.10861 0.613305i
\(166\) 0 0
\(167\) 5.04054i 0.390049i 0.980798 + 0.195024i \(0.0624786\pi\)
−0.980798 + 0.195024i \(0.937521\pi\)
\(168\) 0 0
\(169\) −2.65685 −0.204373
\(170\) 0 0
\(171\) 2.00000 14.3465i 0.152944 1.09711i
\(172\) 0 0
\(173\) 0.262632i 0.0199676i −0.999950 0.00998379i \(-0.996822\pi\)
0.999950 0.00998379i \(-0.00317799\pi\)
\(174\) 0 0
\(175\) −8.70626 + 7.31371i −0.658132 + 0.552864i
\(176\) 0 0
\(177\) −4.77791 5.49019i −0.359130 0.412668i
\(178\) 0 0
\(179\) 7.68306i 0.574259i −0.957892 0.287129i \(-0.907299\pi\)
0.957892 0.287129i \(-0.0927010\pi\)
\(180\) 0 0
\(181\) 21.6569i 1.60974i −0.593450 0.804871i \(-0.702235\pi\)
0.593450 0.804871i \(-0.297765\pi\)
\(182\) 0 0
\(183\) 9.64823 + 11.0866i 0.713218 + 0.819542i
\(184\) 0 0
\(185\) 16.3128 5.94253i 1.19934 0.436904i
\(186\) 0 0
\(187\) 6.43215i 0.470366i
\(188\) 0 0
\(189\) −6.45232 9.89949i −0.469337 0.720082i
\(190\) 0 0
\(191\) −8.40401 −0.608093 −0.304046 0.952657i \(-0.598338\pi\)
−0.304046 + 0.952657i \(0.598338\pi\)
\(192\) 0 0
\(193\) 13.6447i 0.982164i 0.871113 + 0.491082i \(0.163398\pi\)
−0.871113 + 0.491082i \(0.836602\pi\)
\(194\) 0 0
\(195\) 6.02959 10.8991i 0.431788 0.780503i
\(196\) 0 0
\(197\) 8.02509i 0.571764i −0.958265 0.285882i \(-0.907713\pi\)
0.958265 0.285882i \(-0.0922865\pi\)
\(198\) 0 0
\(199\) 14.8284i 1.05116i −0.850744 0.525580i \(-0.823848\pi\)
0.850744 0.525580i \(-0.176152\pi\)
\(200\) 0 0
\(201\) 2.58579 + 2.97127i 0.182387 + 0.209577i
\(202\) 0 0
\(203\) 3.95815 0.277808
\(204\) 0 0
\(205\) 1.88393 + 5.17157i 0.131580 + 0.361198i
\(206\) 0 0
\(207\) 3.21608 + 0.448342i 0.223533 + 0.0311619i
\(208\) 0 0
\(209\) 20.2891i 1.40342i
\(210\) 0 0
\(211\) −1.51472 −0.104278 −0.0521388 0.998640i \(-0.516604\pi\)
−0.0521388 + 0.998640i \(0.516604\pi\)
\(212\) 0 0
\(213\) −15.5286 + 13.5140i −1.06400 + 0.925962i
\(214\) 0 0
\(215\) 6.66348 + 18.2919i 0.454446 + 1.24750i
\(216\) 0 0
\(217\) 15.5286i 1.05415i
\(218\) 0 0
\(219\) 5.17157 + 5.94253i 0.349463 + 0.401559i
\(220\) 0 0
\(221\) 4.92296 0.331154
\(222\) 0 0
\(223\) 10.5902 0.709172 0.354586 0.935023i \(-0.384622\pi\)
0.354586 + 0.935023i \(0.384622\pi\)
\(224\) 0 0
\(225\) −7.97003 12.7074i −0.531336 0.847161i
\(226\) 0 0
\(227\) 4.77791 0.317121 0.158561 0.987349i \(-0.449315\pi\)
0.158561 + 0.987349i \(0.449315\pi\)
\(228\) 0 0
\(229\) 3.31371i 0.218976i 0.993988 + 0.109488i \(0.0349211\pi\)
−0.993988 + 0.109488i \(0.965079\pi\)
\(230\) 0 0
\(231\) −10.8655 12.4853i −0.714897 0.821471i
\(232\) 0 0
\(233\) −28.0334 −1.83653 −0.918265 0.395967i \(-0.870410\pi\)
−0.918265 + 0.395967i \(0.870410\pi\)
\(234\) 0 0
\(235\) 0.828427 + 2.27411i 0.0540406 + 0.148347i
\(236\) 0 0
\(237\) 0.551791 + 0.634051i 0.0358427 + 0.0411860i
\(238\) 0 0
\(239\) −13.3270 −0.862050 −0.431025 0.902340i \(-0.641848\pi\)
−0.431025 + 0.902340i \(0.641848\pi\)
\(240\) 0 0
\(241\) 10.4853 0.675416 0.337708 0.941251i \(-0.390348\pi\)
0.337708 + 0.941251i \(0.390348\pi\)
\(242\) 0 0
\(243\) 14.1096 6.62724i 0.905129 0.425138i
\(244\) 0 0
\(245\) 3.84153 1.39942i 0.245426 0.0894055i
\(246\) 0 0
\(247\) 15.5286 0.988060
\(248\) 0 0
\(249\) 9.07107 7.89422i 0.574856 0.500276i
\(250\) 0 0
\(251\) 27.9721i 1.76559i −0.469762 0.882793i \(-0.655660\pi\)
0.469762 0.882793i \(-0.344340\pi\)
\(252\) 0 0
\(253\) 4.54822 0.285944
\(254\) 0 0
\(255\) 2.86986 5.18759i 0.179718 0.324859i
\(256\) 0 0
\(257\) −2.42742 −0.151418 −0.0757090 0.997130i \(-0.524122\pi\)
−0.0757090 + 0.997130i \(0.524122\pi\)
\(258\) 0 0
\(259\) 17.6569 1.09714
\(260\) 0 0
\(261\) −0.720950 + 5.17157i −0.0446257 + 0.320112i
\(262\) 0 0
\(263\) 27.5851i 1.70097i −0.526001 0.850484i \(-0.676309\pi\)
0.526001 0.850484i \(-0.323691\pi\)
\(264\) 0 0
\(265\) 8.48528 + 23.2929i 0.521247 + 1.43087i
\(266\) 0 0
\(267\) −9.55582 10.9804i −0.584807 0.671988i
\(268\) 0 0
\(269\) −7.68306 −0.468445 −0.234222 0.972183i \(-0.575254\pi\)
−0.234222 + 0.972183i \(0.575254\pi\)
\(270\) 0 0
\(271\) 14.1421i 0.859074i 0.903049 + 0.429537i \(0.141323\pi\)
−0.903049 + 0.429537i \(0.858677\pi\)
\(272\) 0 0
\(273\) 9.55582 8.31609i 0.578345 0.503312i
\(274\) 0 0
\(275\) −13.5140 16.0871i −0.814923 0.970087i
\(276\) 0 0
\(277\) −16.8607 −1.01306 −0.506532 0.862221i \(-0.669073\pi\)
−0.506532 + 0.862221i \(0.669073\pi\)
\(278\) 0 0
\(279\) −20.2891 2.82843i −1.21468 0.169334i
\(280\) 0 0
\(281\) 5.94253i 0.354502i −0.984166 0.177251i \(-0.943280\pi\)
0.984166 0.177251i \(-0.0567204\pi\)
\(282\) 0 0
\(283\) 26.1188i 1.55260i 0.630363 + 0.776300i \(0.282906\pi\)
−0.630363 + 0.776300i \(0.717094\pi\)
\(284\) 0 0
\(285\) 9.05247 16.3633i 0.536222 0.969280i
\(286\) 0 0
\(287\) 5.59767i 0.330420i
\(288\) 0 0
\(289\) −14.6569 −0.862168
\(290\) 0 0
\(291\) 12.4853 + 14.3465i 0.731900 + 0.841009i
\(292\) 0 0
\(293\) 16.3128i 0.953004i −0.879173 0.476502i \(-0.841904\pi\)
0.879173 0.476502i \(-0.158096\pi\)
\(294\) 0 0
\(295\) −3.21608 8.82843i −0.187247 0.514011i
\(296\) 0 0
\(297\) 18.2919 11.9223i 1.06140 0.691804i
\(298\) 0 0
\(299\) 3.48106i 0.201315i
\(300\) 0 0
\(301\) 19.7990i 1.14119i
\(302\) 0 0
\(303\) −17.8027 + 15.4930i −1.02274 + 0.890052i
\(304\) 0 0
\(305\) 6.49435 + 17.8276i 0.371866 + 1.02081i
\(306\) 0 0
\(307\) 17.8027i 1.01605i 0.861341 + 0.508027i \(0.169625\pi\)
−0.861341 + 0.508027i \(0.830375\pi\)
\(308\) 0 0
\(309\) 11.3753 9.89949i 0.647117 0.563163i
\(310\) 0 0
\(311\) 9.84591 0.558310 0.279155 0.960246i \(-0.409946\pi\)
0.279155 + 0.960246i \(0.409946\pi\)
\(312\) 0 0
\(313\) 24.6250i 1.39189i −0.718096 0.695944i \(-0.754986\pi\)
0.718096 0.695944i \(-0.245014\pi\)
\(314\) 0 0
\(315\) −3.19250 14.9174i −0.179877 0.840500i
\(316\) 0 0
\(317\) 9.81845i 0.551459i 0.961235 + 0.275730i \(0.0889194\pi\)
−0.961235 + 0.275730i \(0.911081\pi\)
\(318\) 0 0
\(319\) 7.31371i 0.409489i
\(320\) 0 0
\(321\) 7.41421 6.45232i 0.413821 0.360134i
\(322\) 0 0
\(323\) 7.39104 0.411248
\(324\) 0 0
\(325\) 12.3125 10.3431i 0.682975 0.573734i
\(326\) 0 0
\(327\) −18.7447 21.5391i −1.03658 1.19111i
\(328\) 0 0
\(329\) 2.46148i 0.135706i
\(330\) 0 0
\(331\) 1.51472 0.0832565 0.0416282 0.999133i \(-0.486745\pi\)
0.0416282 + 0.999133i \(0.486745\pi\)
\(332\) 0 0
\(333\) −3.21608 + 23.0698i −0.176240 + 1.26422i
\(334\) 0 0
\(335\) 1.74053 + 4.77791i 0.0950952 + 0.261045i
\(336\) 0 0
\(337\) 19.2965i 1.05114i 0.850749 + 0.525572i \(0.176149\pi\)
−0.850749 + 0.525572i \(0.823851\pi\)
\(338\) 0 0
\(339\) 0.828427 0.720950i 0.0449940 0.0391566i
\(340\) 0 0
\(341\) −28.6931 −1.55382
\(342\) 0 0
\(343\) 20.0768 1.08405
\(344\) 0 0
\(345\) 3.66818 + 2.02930i 0.197488 + 0.109254i
\(346\) 0 0
\(347\) 15.2304 0.817611 0.408806 0.912621i \(-0.365945\pi\)
0.408806 + 0.912621i \(0.365945\pi\)
\(348\) 0 0
\(349\) 13.6569i 0.731035i −0.930805 0.365517i \(-0.880892\pi\)
0.930805 0.365517i \(-0.119108\pi\)
\(350\) 0 0
\(351\) 9.12496 + 14.0000i 0.487054 + 0.747265i
\(352\) 0 0
\(353\) 26.3939 1.40481 0.702403 0.711780i \(-0.252111\pi\)
0.702403 + 0.711780i \(0.252111\pi\)
\(354\) 0 0
\(355\) −24.9706 + 9.09644i −1.32530 + 0.482789i
\(356\) 0 0
\(357\) 4.54822 3.95815i 0.240717 0.209488i
\(358\) 0 0
\(359\) 32.1741 1.69809 0.849043 0.528323i \(-0.177179\pi\)
0.849043 + 0.528323i \(0.177179\pi\)
\(360\) 0 0
\(361\) 4.31371 0.227037
\(362\) 0 0
\(363\) 8.69760 7.56921i 0.456506 0.397280i
\(364\) 0 0
\(365\) 3.48106 + 9.55582i 0.182207 + 0.500175i
\(366\) 0 0
\(367\) −24.2349 −1.26505 −0.632524 0.774540i \(-0.717981\pi\)
−0.632524 + 0.774540i \(0.717981\pi\)
\(368\) 0 0
\(369\) −7.31371 1.01958i −0.380736 0.0530771i
\(370\) 0 0
\(371\) 25.2120i 1.30894i
\(372\) 0 0
\(373\) 10.4286 0.539971 0.269986 0.962864i \(-0.412981\pi\)
0.269986 + 0.962864i \(0.412981\pi\)
\(374\) 0 0
\(375\) −3.72149 19.0040i −0.192177 0.981360i
\(376\) 0 0
\(377\) −5.59767 −0.288295
\(378\) 0 0
\(379\) −15.1716 −0.779311 −0.389656 0.920961i \(-0.627406\pi\)
−0.389656 + 0.920961i \(0.627406\pi\)
\(380\) 0 0
\(381\) −2.97127 + 2.58579i −0.152223 + 0.132474i
\(382\) 0 0
\(383\) 18.5545i 0.948091i −0.880500 0.474046i \(-0.842793\pi\)
0.880500 0.474046i \(-0.157207\pi\)
\(384\) 0 0
\(385\) −7.31371 20.0768i −0.372741 1.02321i
\(386\) 0 0
\(387\) −25.8686 3.60625i −1.31498 0.183316i
\(388\) 0 0
\(389\) 12.6060 0.639150 0.319575 0.947561i \(-0.396460\pi\)
0.319575 + 0.947561i \(0.396460\pi\)
\(390\) 0 0
\(391\) 1.65685i 0.0837907i
\(392\) 0 0
\(393\) −12.6942 14.5866i −0.640338 0.735798i
\(394\) 0 0
\(395\) 0.371418 + 1.01958i 0.0186881 + 0.0513005i
\(396\) 0 0
\(397\) −0.551791 −0.0276936 −0.0138468 0.999904i \(-0.504408\pi\)
−0.0138468 + 0.999904i \(0.504408\pi\)
\(398\) 0 0
\(399\) 14.3465 12.4853i 0.718226 0.625046i
\(400\) 0 0
\(401\) 25.2120i 1.25903i 0.776989 + 0.629514i \(0.216746\pi\)
−0.776989 + 0.629514i \(0.783254\pi\)
\(402\) 0 0
\(403\) 21.9607i 1.09394i
\(404\) 0 0
\(405\) 20.0720 1.45410i 0.997386 0.0722546i
\(406\) 0 0
\(407\) 32.6256i 1.61719i
\(408\) 0 0
\(409\) −7.17157 −0.354611 −0.177306 0.984156i \(-0.556738\pi\)
−0.177306 + 0.984156i \(0.556738\pi\)
\(410\) 0 0
\(411\) −10.4853 + 9.12496i −0.517201 + 0.450101i
\(412\) 0 0
\(413\) 9.55582i 0.470211i
\(414\) 0 0
\(415\) 14.5866 5.31371i 0.716029 0.260840i
\(416\) 0 0
\(417\) −3.24718 + 2.82590i −0.159015 + 0.138385i
\(418\) 0 0
\(419\) 4.20201i 0.205281i −0.994718 0.102641i \(-0.967271\pi\)
0.994718 0.102641i \(-0.0327292\pi\)
\(420\) 0 0
\(421\) 29.1716i 1.42174i 0.703326 + 0.710868i \(0.251698\pi\)
−0.703326 + 0.710868i \(0.748302\pi\)
\(422\) 0 0
\(423\) −3.21608 0.448342i −0.156371 0.0217991i
\(424\) 0 0
\(425\) 5.86030 4.92296i 0.284266 0.238798i
\(426\) 0 0
\(427\) 19.2965i 0.933821i
\(428\) 0 0
\(429\) 15.3661 + 17.6569i 0.741883 + 0.852481i
\(430\) 0 0
\(431\) −21.7310 −1.04674 −0.523372 0.852104i \(-0.675326\pi\)
−0.523372 + 0.852104i \(0.675326\pi\)
\(432\) 0 0
\(433\) 29.1732i 1.40198i 0.713173 + 0.700988i \(0.247258\pi\)
−0.713173 + 0.700988i \(0.752742\pi\)
\(434\) 0 0
\(435\) −3.26319 + 5.89857i −0.156458 + 0.282815i
\(436\) 0 0
\(437\) 5.22625i 0.250006i
\(438\) 0 0
\(439\) 11.5147i 0.549568i 0.961506 + 0.274784i \(0.0886063\pi\)
−0.961506 + 0.274784i \(0.911394\pi\)
\(440\) 0 0
\(441\) −0.757359 + 5.43275i −0.0360647 + 0.258702i
\(442\) 0 0
\(443\) −40.4650 −1.92255 −0.961275 0.275591i \(-0.911126\pi\)
−0.961275 + 0.275591i \(0.911126\pi\)
\(444\) 0 0
\(445\) −6.43215 17.6569i −0.304913 0.837015i
\(446\) 0 0
\(447\) 0.941967 0.819760i 0.0445535 0.0387733i
\(448\) 0 0
\(449\) 24.7897i 1.16990i 0.811070 + 0.584949i \(0.198886\pi\)
−0.811070 + 0.584949i \(0.801114\pi\)
\(450\) 0 0
\(451\) −10.3431 −0.487040
\(452\) 0 0
\(453\) 3.21608 + 3.69552i 0.151104 + 0.173631i
\(454\) 0 0
\(455\) 15.3661 5.59767i 0.720375 0.262423i
\(456\) 0 0
\(457\) 12.8643i 0.601767i −0.953661 0.300883i \(-0.902719\pi\)
0.953661 0.300883i \(-0.0972815\pi\)
\(458\) 0 0
\(459\) 4.34315 + 6.66348i 0.202721 + 0.311025i
\(460\) 0 0
\(461\) −18.5486 −0.863892 −0.431946 0.901899i \(-0.642173\pi\)
−0.431946 + 0.901899i \(0.642173\pi\)
\(462\) 0 0
\(463\) 4.93839 0.229507 0.114753 0.993394i \(-0.463392\pi\)
0.114753 + 0.993394i \(0.463392\pi\)
\(464\) 0 0
\(465\) −23.1412 12.8021i −1.07315 0.593685i
\(466\) 0 0
\(467\) 8.73606 0.404257 0.202128 0.979359i \(-0.435214\pi\)
0.202128 + 0.979359i \(0.435214\pi\)
\(468\) 0 0
\(469\) 5.17157i 0.238801i
\(470\) 0 0
\(471\) −30.4336 + 26.4853i −1.40231 + 1.22038i
\(472\) 0 0
\(473\) −36.5838 −1.68212
\(474\) 0 0
\(475\) 18.4853 15.5286i 0.848163 0.712501i
\(476\) 0 0
\(477\) −32.9411 4.59220i −1.50827 0.210262i
\(478\) 0 0
\(479\) −15.3661 −0.702096 −0.351048 0.936357i \(-0.614175\pi\)
−0.351048 + 0.936357i \(0.614175\pi\)
\(480\) 0 0
\(481\) −24.9706 −1.13856
\(482\) 0 0
\(483\) 2.79884 + 3.21608i 0.127351 + 0.146337i
\(484\) 0 0
\(485\) 8.40401 + 23.0698i 0.381607 + 1.04755i
\(486\) 0 0
\(487\) −19.6866 −0.892086 −0.446043 0.895011i \(-0.647167\pi\)
−0.446043 + 0.895011i \(0.647167\pi\)
\(488\) 0 0
\(489\) −9.89949 11.3753i −0.447671 0.514408i
\(490\) 0 0
\(491\) 14.0479i 0.633974i 0.948430 + 0.316987i \(0.102671\pi\)
−0.948430 + 0.316987i \(0.897329\pi\)
\(492\) 0 0
\(493\) −2.66428 −0.119993
\(494\) 0 0
\(495\) 27.5638 5.89897i 1.23890 0.265139i
\(496\) 0 0
\(497\) −27.0279 −1.21237
\(498\) 0 0
\(499\) −25.1127 −1.12420 −0.562099 0.827070i \(-0.690006\pi\)
−0.562099 + 0.827070i \(0.690006\pi\)
\(500\) 0 0
\(501\) −5.73137 6.58579i −0.256059 0.294231i
\(502\) 0 0
\(503\) 28.4818i 1.26994i 0.772537 + 0.634969i \(0.218987\pi\)
−0.772537 + 0.634969i \(0.781013\pi\)
\(504\) 0 0
\(505\) −28.6274 + 10.4286i −1.27390 + 0.464066i
\(506\) 0 0
\(507\) 3.47135 3.02099i 0.154168 0.134167i
\(508\) 0 0
\(509\) 13.6256 0.603944 0.301972 0.953317i \(-0.402355\pi\)
0.301972 + 0.953317i \(0.402355\pi\)
\(510\) 0 0
\(511\) 10.3431i 0.457554i
\(512\) 0 0
\(513\) 13.6997 + 21.0188i 0.604856 + 0.928002i
\(514\) 0 0
\(515\) 18.2919 6.66348i 0.806037 0.293628i
\(516\) 0 0
\(517\) −4.54822 −0.200030
\(518\) 0 0
\(519\) 0.298627 + 0.343146i 0.0131083 + 0.0150624i
\(520\) 0 0
\(521\) 9.84591i 0.431357i 0.976464 + 0.215679i \(0.0691964\pi\)
−0.976464 + 0.215679i \(0.930804\pi\)
\(522\) 0 0
\(523\) 4.15804i 0.181819i −0.995859 0.0909093i \(-0.971023\pi\)
0.995859 0.0909093i \(-0.0289773\pi\)
\(524\) 0 0
\(525\) 3.05919 19.4553i 0.133514 0.849100i
\(526\) 0 0
\(527\) 10.4525i 0.455318i
\(528\) 0 0
\(529\) 21.8284 0.949062
\(530\) 0 0
\(531\) 12.4853 + 1.74053i 0.541815 + 0.0755325i
\(532\) 0 0
\(533\) 7.91630i 0.342893i
\(534\) 0 0
\(535\) 11.9223 4.34315i 0.515448 0.187771i
\(536\) 0 0
\(537\) 8.73606 + 10.0384i 0.376989 + 0.433189i
\(538\) 0 0
\(539\) 7.68306i 0.330933i
\(540\) 0 0
\(541\) 16.0000i 0.687894i 0.938989 + 0.343947i \(0.111764\pi\)
−0.938989 + 0.343947i \(0.888236\pi\)
\(542\) 0 0
\(543\) 24.6250 + 28.2960i 1.05676 + 1.21430i
\(544\) 0 0
\(545\) −12.6173 34.6356i −0.540465 1.48363i
\(546\) 0 0
\(547\) 33.3313i 1.42514i −0.701600 0.712571i \(-0.747530\pi\)
0.701600 0.712571i \(-0.252470\pi\)
\(548\) 0 0
\(549\) −25.2120 3.51472i −1.07602 0.150005i
\(550\) 0 0
\(551\) −8.40401 −0.358023
\(552\) 0 0
\(553\) 1.10358i 0.0469291i
\(554\) 0 0
\(555\) −14.5567 + 26.3128i −0.617898 + 1.11692i
\(556\) 0 0
\(557\) 19.3743i 0.820914i −0.911880 0.410457i \(-0.865369\pi\)
0.911880 0.410457i \(-0.134631\pi\)
\(558\) 0 0
\(559\) 28.0000i 1.18427i
\(560\) 0 0
\(561\) 7.31371 + 8.40401i 0.308785 + 0.354818i
\(562\) 0 0
\(563\) −6.04601 −0.254809 −0.127405 0.991851i \(-0.540665\pi\)
−0.127405 + 0.991851i \(0.540665\pi\)
\(564\) 0 0
\(565\) 1.33214 0.485281i 0.0560437 0.0204159i
\(566\) 0 0
\(567\) 19.6866 + 5.59767i 0.826761 + 0.235080i
\(568\) 0 0
\(569\) 9.42359i 0.395057i 0.980297 + 0.197529i \(0.0632916\pi\)
−0.980297 + 0.197529i \(0.936708\pi\)
\(570\) 0 0
\(571\) 41.1127 1.72051 0.860256 0.509862i \(-0.170303\pi\)
0.860256 + 0.509862i \(0.170303\pi\)
\(572\) 0 0
\(573\) 10.9804 9.55582i 0.458712 0.399200i
\(574\) 0 0
\(575\) 3.48106 + 4.14386i 0.145170 + 0.172811i
\(576\) 0 0
\(577\) 15.5286i 0.646464i −0.946320 0.323232i \(-0.895231\pi\)
0.946320 0.323232i \(-0.104769\pi\)
\(578\) 0 0
\(579\) −15.5147 17.8276i −0.644770 0.740890i
\(580\) 0 0
\(581\) 15.7884 0.655015
\(582\) 0 0
\(583\) −46.5858 −1.92939
\(584\) 0 0
\(585\) 4.51487 + 21.0964i 0.186667 + 0.872228i
\(586\) 0 0
\(587\) 12.1689 0.502266 0.251133 0.967953i \(-0.419197\pi\)
0.251133 + 0.967953i \(0.419197\pi\)
\(588\) 0 0
\(589\) 32.9706i 1.35853i
\(590\) 0 0
\(591\) 9.12496 + 10.4853i 0.375351 + 0.431307i
\(592\) 0 0
\(593\) 39.3826 1.61725 0.808625 0.588325i \(-0.200212\pi\)
0.808625 + 0.588325i \(0.200212\pi\)
\(594\) 0 0
\(595\) 7.31371 2.66428i 0.299833 0.109225i
\(596\) 0 0
\(597\) 16.8607 + 19.3743i 0.690064 + 0.792936i
\(598\) 0 0
\(599\) 30.1350 1.23128 0.615641 0.788027i \(-0.288897\pi\)
0.615641 + 0.788027i \(0.288897\pi\)
\(600\) 0 0
\(601\) 30.4853 1.24352 0.621760 0.783208i \(-0.286418\pi\)
0.621760 + 0.783208i \(0.286418\pi\)
\(602\) 0 0
\(603\) −6.75699 0.941967i −0.275166 0.0383599i
\(604\) 0 0
\(605\) 13.9861 5.09494i 0.568615 0.207139i
\(606\) 0 0
\(607\) 35.2152 1.42934 0.714671 0.699461i \(-0.246576\pi\)
0.714671 + 0.699461i \(0.246576\pi\)
\(608\) 0 0
\(609\) −5.17157 + 4.50063i −0.209563 + 0.182375i
\(610\) 0 0
\(611\) 3.48106i 0.140828i
\(612\) 0 0
\(613\) 16.0804 0.649480 0.324740 0.945803i \(-0.394723\pi\)
0.324740 + 0.945803i \(0.394723\pi\)
\(614\) 0 0
\(615\) −8.34184 4.61485i −0.336375 0.186089i
\(616\) 0 0
\(617\) 31.0949 1.25183 0.625916 0.779890i \(-0.284725\pi\)
0.625916 + 0.779890i \(0.284725\pi\)
\(618\) 0 0
\(619\) −14.4853 −0.582213 −0.291106 0.956691i \(-0.594023\pi\)
−0.291106 + 0.956691i \(0.594023\pi\)
\(620\) 0 0
\(621\) −4.71179 + 3.07107i −0.189078 + 0.123238i
\(622\) 0 0
\(623\) 19.1116i 0.765692i
\(624\) 0 0
\(625\) 4.31371 24.6250i 0.172548 0.985001i
\(626\) 0 0
\(627\) 23.0698 + 26.5090i 0.921319 + 1.05867i
\(628\) 0 0
\(629\) −11.8851 −0.473889
\(630\) 0 0
\(631\) 26.1421i 1.04070i 0.853952 + 0.520351i \(0.174199\pi\)
−0.853952 + 0.520351i \(0.825801\pi\)
\(632\) 0 0
\(633\) 1.97908 1.72232i 0.0786612 0.0684560i
\(634\) 0 0
\(635\) −4.77791 + 1.74053i −0.189606 + 0.0690707i
\(636\) 0 0
\(637\) −5.88036 −0.232988
\(638\) 0 0
\(639\) 4.92296 35.3137i 0.194749 1.39699i
\(640\) 0 0
\(641\) 24.7897i 0.979135i −0.871965 0.489567i \(-0.837155\pi\)
0.871965 0.489567i \(-0.162845\pi\)
\(642\) 0 0
\(643\) 1.49376i 0.0589081i −0.999566 0.0294540i \(-0.990623\pi\)
0.999566 0.0294540i \(-0.00937687\pi\)
\(644\) 0 0
\(645\) −29.5051 16.3227i −1.16176 0.642708i
\(646\) 0 0
\(647\) 42.3671i 1.66562i −0.553556 0.832812i \(-0.686729\pi\)
0.553556 0.832812i \(-0.313271\pi\)
\(648\) 0 0
\(649\) 17.6569 0.693092
\(650\) 0 0
\(651\) −17.6569 20.2891i −0.692027 0.795192i
\(652\) 0 0
\(653\) 37.5892i 1.47098i −0.677535 0.735490i \(-0.736952\pi\)
0.677535 0.735490i \(-0.263048\pi\)
\(654\) 0 0
\(655\) −8.54465 23.4558i −0.333867 0.916496i
\(656\) 0 0
\(657\) −13.5140 1.88393i −0.527230 0.0734993i
\(658\) 0 0
\(659\) 0.720950i 0.0280842i −0.999901 0.0140421i \(-0.995530\pi\)
0.999901 0.0140421i \(-0.00446989\pi\)
\(660\) 0 0
\(661\) 28.7696i 1.11901i 0.828828 + 0.559503i \(0.189008\pi\)
−0.828828 + 0.559503i \(0.810992\pi\)
\(662\) 0 0
\(663\) −6.43215 + 5.59767i −0.249804 + 0.217395i
\(664\) 0 0
\(665\) 23.0698 8.40401i 0.894608 0.325894i
\(666\) 0 0
\(667\) 1.88393i 0.0729462i
\(668\) 0 0
\(669\) −13.8368 + 12.0416i −0.534960 + 0.465556i
\(670\) 0 0
\(671\) −35.6552 −1.37645
\(672\) 0 0
\(673\) 5.65180i 0.217861i −0.994049 0.108930i \(-0.965257\pi\)
0.994049 0.108930i \(-0.0347426\pi\)
\(674\) 0 0
\(675\) 24.8624 + 7.54068i 0.956954 + 0.290241i
\(676\) 0 0
\(677\) 39.3826i 1.51360i 0.653649 + 0.756798i \(0.273237\pi\)
−0.653649 + 0.756798i \(0.726763\pi\)
\(678\) 0 0
\(679\) 24.9706i 0.958282i
\(680\) 0 0
\(681\) −6.24264 + 5.43275i −0.239219 + 0.208183i
\(682\) 0 0
\(683\) 21.3533 0.817063 0.408532 0.912744i \(-0.366041\pi\)
0.408532 + 0.912744i \(0.366041\pi\)
\(684\) 0 0
\(685\) −16.8607 + 6.14214i −0.644215 + 0.234679i
\(686\) 0 0
\(687\) −3.76787 4.32957i −0.143753 0.165183i
\(688\) 0 0
\(689\) 35.6552i 1.35836i
\(690\) 0 0
\(691\) 12.8284 0.488016 0.244008 0.969773i \(-0.421538\pi\)
0.244008 + 0.969773i \(0.421538\pi\)
\(692\) 0 0
\(693\) 28.3929 + 3.95815i 1.07856 + 0.150358i
\(694\) 0 0
\(695\) −5.22158 + 1.90215i −0.198066 + 0.0721527i
\(696\) 0 0
\(697\) 3.76787i 0.142718i
\(698\) 0 0
\(699\) 36.6274 31.8755i 1.38538 1.20564i
\(700\) 0 0
\(701\) 2.76011 0.104248 0.0521239 0.998641i \(-0.483401\pi\)
0.0521239 + 0.998641i \(0.483401\pi\)
\(702\) 0 0
\(703\) −37.4893 −1.41394
\(704\) 0 0
\(705\) −3.66818 2.02930i −0.138152 0.0764279i
\(706\) 0 0
\(707\) −30.9861 −1.16535
\(708\) 0 0
\(709\) 20.2843i 0.761792i −0.924618 0.380896i \(-0.875616\pi\)
0.924618 0.380896i \(-0.124384\pi\)
\(710\) 0 0
\(711\) −1.44190 0.201010i −0.0540755 0.00753847i
\(712\) 0 0
\(713\) 7.39104 0.276796
\(714\) 0 0
\(715\) 10.3431 + 28.3929i 0.386812 + 1.06183i
\(716\) 0 0
\(717\) 17.4125 15.1535i 0.650283 0.565917i
\(718\) 0 0
\(719\) −28.6931 −1.07007 −0.535036 0.844829i \(-0.679702\pi\)
−0.535036 + 0.844829i \(0.679702\pi\)
\(720\) 0 0
\(721\) 19.7990 0.737353
\(722\) 0 0
\(723\) −13.6997 + 11.9223i −0.509497 + 0.443397i
\(724\) 0 0
\(725\) −6.66348 + 5.59767i −0.247476 + 0.207892i
\(726\) 0 0
\(727\) 18.9063 0.701195 0.350598 0.936526i \(-0.385978\pi\)
0.350598 + 0.936526i \(0.385978\pi\)
\(728\) 0 0
\(729\) −10.8995 + 24.7022i −0.403685 + 0.914898i
\(730\) 0 0
\(731\) 13.3270i 0.492916i
\(732\) 0 0
\(733\) −38.8215 −1.43390 −0.716952 0.697123i \(-0.754463\pi\)
−0.716952 + 0.697123i \(0.754463\pi\)
\(734\) 0 0
\(735\) −3.42799 + 6.19646i −0.126443 + 0.228560i
\(736\) 0 0
\(737\) −9.55582 −0.351993
\(738\) 0 0
\(739\) 32.8284 1.20761 0.603807 0.797131i \(-0.293650\pi\)
0.603807 + 0.797131i \(0.293650\pi\)
\(740\) 0 0
\(741\) −20.2891 + 17.6569i −0.745338 + 0.648641i
\(742\) 0 0
\(743\) 0.185709i 0.00681301i −0.999994 0.00340650i \(-0.998916\pi\)
0.999994 0.00340650i \(-0.00108433\pi\)
\(744\) 0 0
\(745\) 1.51472 0.551791i 0.0554950 0.0202161i
\(746\) 0 0
\(747\) −2.87576 + 20.6286i −0.105218 + 0.754761i
\(748\) 0 0
\(749\) 12.9046 0.471525
\(750\) 0 0
\(751\) 27.1127i 0.989356i −0.869076 0.494678i \(-0.835286\pi\)
0.869076 0.494678i \(-0.164714\pi\)
\(752\) 0 0
\(753\) 31.8059 + 36.5474i 1.15907 + 1.33186i
\(754\) 0 0
\(755\) 2.16478 + 5.94253i 0.0787846 + 0.216271i
\(756\) 0 0
\(757\) 36.1572 1.31416 0.657078 0.753823i \(-0.271792\pi\)
0.657078 + 0.753823i \(0.271792\pi\)
\(758\) 0 0
\(759\) −5.94253 + 5.17157i −0.215700 + 0.187716i
\(760\) 0 0
\(761\) 4.92296i 0.178457i −0.996011 0.0892285i \(-0.971560\pi\)
0.996011 0.0892285i \(-0.0284401\pi\)
\(762\) 0 0
\(763\) 37.4893i 1.35720i
\(764\) 0 0
\(765\) 2.14891 + 10.0411i 0.0776941 + 0.363037i
\(766\) 0 0
\(767\) 13.5140i 0.487961i
\(768\) 0 0
\(769\) 29.5980 1.06733 0.533665 0.845696i \(-0.320814\pi\)
0.533665 + 0.845696i \(0.320814\pi\)
\(770\) 0 0
\(771\) 3.17157 2.76011i 0.114221 0.0994028i
\(772\) 0 0
\(773\) 38.1145i 1.37088i 0.728128 + 0.685442i \(0.240391\pi\)
−0.728128 + 0.685442i \(0.759609\pi\)
\(774\) 0 0
\(775\) −21.9607 26.1421i −0.788853 0.939053i
\(776\) 0 0
\(777\) −23.0698 + 20.0768i −0.827624 + 0.720251i
\(778\) 0 0
\(779\) 11.8851i 0.425827i
\(780\) 0 0
\(781\) 49.9411i 1.78703i
\(782\) 0 0
\(783\) −4.93839 7.57675i −0.176484 0.270771i
\(784\) 0 0
\(785\) −48.9384 + 17.8276i −1.74669 + 0.636294i
\(786\) 0 0
\(787\) 7.60268i 0.271006i 0.990777 + 0.135503i \(0.0432651\pi\)
−0.990777 + 0.135503i \(0.956735\pi\)
\(788\) 0 0
\(789\) 31.3657 + 36.0416i 1.11665 + 1.28312i
\(790\) 0 0
\(791\) 1.44190 0.0512681
\(792\) 0 0
\(793\) 27.2893i 0.969072i
\(794\) 0 0
\(795\) −37.5718 20.7854i −1.33254 0.737182i
\(796\) 0 0
\(797\) 0.634051i 0.0224592i −0.999937 0.0112296i \(-0.996425\pi\)
0.999937 0.0112296i \(-0.00357457\pi\)
\(798\) 0 0
\(799\) 1.65685i 0.0586153i
\(800\) 0 0
\(801\) 24.9706 + 3.48106i 0.882291 + 0.122997i
\(802\) 0 0
\(803\) −19.1116 −0.674435
\(804\) 0 0
\(805\) 1.88393 + 5.17157i 0.0663999 + 0.182274i
\(806\) 0 0
\(807\) 10.0384 8.73606i 0.353369 0.307524i
\(808\) 0 0
\(809\) 40.5782i 1.42665i −0.700832 0.713326i \(-0.747188\pi\)
0.700832 0.713326i \(-0.252812\pi\)
\(810\) 0 0
\(811\) −2.48528 −0.0872700 −0.0436350 0.999048i \(-0.513894\pi\)
−0.0436350 + 0.999048i \(0.513894\pi\)
\(812\) 0 0
\(813\) −16.0804 18.4776i −0.563964 0.648037i
\(814\) 0 0
\(815\) −6.66348 18.2919i −0.233412 0.640737i
\(816\) 0 0
\(817\) 42.0375i 1.47071i
\(818\) 0 0
\(819\) −3.02944 + 21.7310i −0.105857 + 0.759342i
\(820\) 0 0
\(821\) −31.4532 −1.09772 −0.548862 0.835913i \(-0.684939\pi\)
−0.548862 + 0.835913i \(0.684939\pi\)
\(822\) 0 0
\(823\) 48.0795 1.67595 0.837973 0.545711i \(-0.183740\pi\)
0.837973 + 0.545711i \(0.183740\pi\)
\(824\) 0 0
\(825\) 35.9487 + 5.65265i 1.25157 + 0.196800i
\(826\) 0 0
\(827\) −17.7666 −0.617806 −0.308903 0.951094i \(-0.599962\pi\)
−0.308903 + 0.951094i \(0.599962\pi\)
\(828\) 0 0
\(829\) 10.8284i 0.376087i 0.982161 + 0.188043i \(0.0602146\pi\)
−0.982161 + 0.188043i \(0.939785\pi\)
\(830\) 0 0
\(831\) 22.0296 19.1716i 0.764199 0.665054i
\(832\) 0 0
\(833\) −2.79884 −0.0969739
\(834\) 0 0
\(835\) −3.85786 10.5902i −0.133507 0.366489i
\(836\) 0 0
\(837\) 29.7250 19.3743i 1.02745 0.669673i
\(838\) 0 0
\(839\) 5.52021 0.190579 0.0952894 0.995450i \(-0.469622\pi\)
0.0952894 + 0.995450i \(0.469622\pi\)
\(840\) 0 0
\(841\) −25.9706 −0.895537
\(842\) 0 0
\(843\) 6.75699 + 7.76429i 0.232723 + 0.267417i
\(844\) 0 0
\(845\) 5.58206 2.03347i 0.192029 0.0699534i
\(846\) 0 0
\(847\) 15.1384 0.520162
\(848\) 0 0
\(849\) −29.6985 34.1258i −1.01925 1.17120i
\(850\) 0 0
\(851\) 8.40401i 0.288086i
\(852\) 0 0
\(853\) 6.98394 0.239126 0.119563 0.992827i \(-0.461851\pi\)
0.119563 + 0.992827i \(0.461851\pi\)
\(854\) 0 0
\(855\) 6.77836 + 31.6729i 0.231815 + 1.08319i
\(856\) 0 0
\(857\) 27.1367 0.926973 0.463486 0.886104i \(-0.346598\pi\)
0.463486 + 0.886104i \(0.346598\pi\)
\(858\) 0 0
\(859\) −32.1421 −1.09668 −0.548338 0.836257i \(-0.684739\pi\)
−0.548338 + 0.836257i \(0.684739\pi\)
\(860\) 0 0
\(861\) −6.36486 7.31371i −0.216914 0.249251i
\(862\) 0 0
\(863\) 32.8113i 1.11691i 0.829535 + 0.558455i \(0.188606\pi\)
−0.829535 + 0.558455i \(0.811394\pi\)
\(864\) 0 0
\(865\) 0.201010 + 0.551791i 0.00683455 + 0.0187615i
\(866\) 0 0
\(867\) 19.1501 16.6656i 0.650372 0.565995i
\(868\) 0 0
\(869\) −2.03916 −0.0691736
\(870\) 0 0
\(871\) 7.31371i 0.247816i
\(872\) 0 0
\(873\) −32.6256 4.54822i −1.10421 0.153934i
\(874\) 0 0
\(875\) 12.6942 22.0296i 0.429143 0.744737i
\(876\) 0 0
\(877\) −33.4929 −1.13098 −0.565488 0.824757i \(-0.691312\pi\)
−0.565488 + 0.824757i \(0.691312\pi\)
\(878\) 0 0
\(879\) 18.5486 + 21.3137i 0.625627 + 0.718894i
\(880\) 0 0
\(881\) 12.3074i 0.414647i −0.978272 0.207323i \(-0.933525\pi\)
0.978272 0.207323i \(-0.0664752\pi\)
\(882\) 0 0
\(883\) 12.4741i 0.419788i 0.977724 + 0.209894i \(0.0673119\pi\)
−0.977724 + 0.209894i \(0.932688\pi\)
\(884\) 0 0
\(885\) 14.2404 + 7.87804i 0.478686 + 0.264817i
\(886\) 0 0
\(887\) 37.6662i 1.26471i 0.774680 + 0.632353i \(0.217911\pi\)
−0.774680 + 0.632353i \(0.782089\pi\)
\(888\) 0 0
\(889\) −5.17157 −0.173449
\(890\) 0 0
\(891\) −10.3431 + 36.3762i −0.346508 + 1.21865i
\(892\) 0 0
\(893\) 5.22625i 0.174890i
\(894\) 0 0
\(895\) 5.88036 + 16.1421i 0.196559 + 0.539572i
\(896\) 0 0
\(897\) −3.95815 4.54822i −0.132159 0.151861i
\(898\) 0 0
\(899\) 11.8851i 0.396389i
\(900\) 0 0
\(901\) 16.9706i 0.565371i
\(902\) 0 0
\(903\) −22.5125 25.8686i −0.749170 0.860854i
\(904\) 0 0
\(905\) 16.5754 + 45.5011i 0.550986 + 1.51251i
\(906\) 0 0
\(907\) 46.1956i 1.53390i −0.641707 0.766950i \(-0.721774\pi\)
0.641707 0.766950i \(-0.278226\pi\)
\(908\) 0 0
\(909\) 5.64391 40.4853i 0.187197 1.34281i
\(910\) 0 0
\(911\) 28.6931 0.950645 0.475322 0.879812i \(-0.342331\pi\)
0.475322 + 0.879812i \(0.342331\pi\)
\(912\) 0 0
\(913\) 29.1732i 0.965493i
\(914\) 0 0
\(915\) −28.7562 15.9084i −0.950652 0.525917i
\(916\) 0 0
\(917\) 25.3884i 0.838400i
\(918\) 0 0
\(919\) 22.1421i 0.730402i 0.930929 + 0.365201i \(0.119000\pi\)
−0.930929 + 0.365201i \(0.881000\pi\)
\(920\) 0 0
\(921\) −20.2426 23.2603i −0.667018 0.766454i
\(922\) 0 0
\(923\) 38.2233 1.25813
\(924\) 0 0
\(925\) −29.7250 + 24.9706i −0.977353 + 0.821027i
\(926\) 0 0
\(927\) −3.60625 + 25.8686i −0.118445 + 0.849637i
\(928\) 0 0
\(929\) 56.3666i 1.84933i 0.380784 + 0.924664i \(0.375654\pi\)
−0.380784 + 0.924664i \(0.624346\pi\)
\(930\) 0 0
\(931\) −8.82843 −0.289340
\(932\) 0 0
\(933\) −12.8643 + 11.1953i −0.421158 + 0.366519i
\(934\) 0 0
\(935\) 4.92296 + 13.5140i 0.160998 + 0.441954i
\(936\) 0 0
\(937\) 32.9411i 1.07614i 0.842900 + 0.538070i \(0.180846\pi\)
−0.842900 + 0.538070i \(0.819154\pi\)
\(938\) 0 0
\(939\) 28.0000 + 32.1741i 0.913745 + 1.04996i
\(940\) 0 0
\(941\) −3.18243 −0.103744 −0.0518721 0.998654i \(-0.516519\pi\)
−0.0518721 + 0.998654i \(0.516519\pi\)
\(942\) 0 0
\(943\) 2.66428 0.0867610
\(944\) 0 0
\(945\) 21.1331 + 15.8605i 0.687460 + 0.515941i
\(946\) 0 0
\(947\) 36.5068 1.18631 0.593156 0.805087i \(-0.297882\pi\)
0.593156 + 0.805087i \(0.297882\pi\)
\(948\) 0 0
\(949\) 14.6274i 0.474826i
\(950\) 0 0
\(951\) −11.1641 12.8284i −0.362021 0.415990i
\(952\) 0 0
\(953\) −39.9079 −1.29274 −0.646371 0.763023i \(-0.723714\pi\)
−0.646371 + 0.763023i \(0.723714\pi\)
\(954\) 0 0
\(955\) 17.6569 6.43215i 0.571362 0.208140i
\(956\) 0 0
\(957\) −8.31609 9.55582i −0.268821 0.308896i
\(958\) 0 0
\(959\) −18.2499 −0.589321
\(960\) 0 0
\(961\) −15.6274 −0.504110
\(962\) 0 0
\(963\) −2.35049 + 16.8607i −0.0757436 + 0.543329i
\(964\) 0 0
\(965\) −10.4432 28.6675i −0.336177 0.922838i
\(966\) 0 0
\(967\) −51.8474 −1.66730 −0.833650 0.552293i \(-0.813753\pi\)
−0.833650 + 0.552293i \(0.813753\pi\)
\(968\) 0 0
\(969\) −9.65685 + 8.40401i −0.310223 + 0.269976i
\(970\) 0 0
\(971\) 48.2612i 1.54878i 0.632711 + 0.774388i \(0.281942\pi\)
−0.632711 + 0.774388i \(0.718058\pi\)
\(972\) 0 0
\(973\) −5.65180 −0.181188
\(974\) 0 0
\(975\) −4.32635 + 27.5140i −0.138554 + 0.881152i
\(976\) 0 0
\(977\) 13.7766 0.440753 0.220376 0.975415i \(-0.429271\pi\)
0.220376 + 0.975415i \(0.429271\pi\)
\(978\) 0 0
\(979\) 35.3137 1.12863
\(980\) 0 0
\(981\) 48.9822 + 6.82843i 1.56388 + 0.218015i
\(982\) 0 0
\(983\) 1.97908i 0.0631227i −0.999502 0.0315613i \(-0.989952\pi\)
0.999502 0.0315613i \(-0.0100480\pi\)
\(984\) 0 0
\(985\) 6.14214 + 16.8607i 0.195705 + 0.537228i
\(986\) 0 0
\(987\) −2.79884 3.21608i −0.0890879 0.102369i
\(988\) 0 0
\(989\) 9.42359 0.299653
\(990\) 0 0
\(991\) 19.7990i 0.628936i 0.949268 + 0.314468i \(0.101826\pi\)
−0.949268 + 0.314468i \(0.898174\pi\)
\(992\) 0 0
\(993\) −1.97908 + 1.72232i −0.0628041 + 0.0546561i
\(994\) 0 0
\(995\) 11.3492 + 31.1546i 0.359793 + 0.987666i
\(996\) 0 0
\(997\) 12.3125 0.389941 0.194971 0.980809i \(-0.437539\pi\)
0.194971 + 0.980809i \(0.437539\pi\)
\(998\) 0 0
\(999\) −22.0296 33.7990i −0.696986 1.06935i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 480.2.m.b.239.3 16
3.2 odd 2 inner 480.2.m.b.239.16 16
4.3 odd 2 120.2.m.b.59.9 yes 16
5.2 odd 4 2400.2.b.i.2351.11 16
5.3 odd 4 2400.2.b.i.2351.6 16
5.4 even 2 inner 480.2.m.b.239.13 16
8.3 odd 2 inner 480.2.m.b.239.4 16
8.5 even 2 120.2.m.b.59.11 yes 16
12.11 even 2 120.2.m.b.59.7 yes 16
15.2 even 4 2400.2.b.i.2351.9 16
15.8 even 4 2400.2.b.i.2351.8 16
15.14 odd 2 inner 480.2.m.b.239.2 16
20.3 even 4 600.2.b.i.251.2 16
20.7 even 4 600.2.b.i.251.15 16
20.19 odd 2 120.2.m.b.59.8 yes 16
24.5 odd 2 120.2.m.b.59.5 16
24.11 even 2 inner 480.2.m.b.239.15 16
40.3 even 4 2400.2.b.i.2351.5 16
40.13 odd 4 600.2.b.i.251.14 16
40.19 odd 2 inner 480.2.m.b.239.14 16
40.27 even 4 2400.2.b.i.2351.12 16
40.29 even 2 120.2.m.b.59.6 yes 16
40.37 odd 4 600.2.b.i.251.3 16
60.23 odd 4 600.2.b.i.251.16 16
60.47 odd 4 600.2.b.i.251.1 16
60.59 even 2 120.2.m.b.59.10 yes 16
120.29 odd 2 120.2.m.b.59.12 yes 16
120.53 even 4 600.2.b.i.251.4 16
120.59 even 2 inner 480.2.m.b.239.1 16
120.77 even 4 600.2.b.i.251.13 16
120.83 odd 4 2400.2.b.i.2351.7 16
120.107 odd 4 2400.2.b.i.2351.10 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
120.2.m.b.59.5 16 24.5 odd 2
120.2.m.b.59.6 yes 16 40.29 even 2
120.2.m.b.59.7 yes 16 12.11 even 2
120.2.m.b.59.8 yes 16 20.19 odd 2
120.2.m.b.59.9 yes 16 4.3 odd 2
120.2.m.b.59.10 yes 16 60.59 even 2
120.2.m.b.59.11 yes 16 8.5 even 2
120.2.m.b.59.12 yes 16 120.29 odd 2
480.2.m.b.239.1 16 120.59 even 2 inner
480.2.m.b.239.2 16 15.14 odd 2 inner
480.2.m.b.239.3 16 1.1 even 1 trivial
480.2.m.b.239.4 16 8.3 odd 2 inner
480.2.m.b.239.13 16 5.4 even 2 inner
480.2.m.b.239.14 16 40.19 odd 2 inner
480.2.m.b.239.15 16 24.11 even 2 inner
480.2.m.b.239.16 16 3.2 odd 2 inner
600.2.b.i.251.1 16 60.47 odd 4
600.2.b.i.251.2 16 20.3 even 4
600.2.b.i.251.3 16 40.37 odd 4
600.2.b.i.251.4 16 120.53 even 4
600.2.b.i.251.13 16 120.77 even 4
600.2.b.i.251.14 16 40.13 odd 4
600.2.b.i.251.15 16 20.7 even 4
600.2.b.i.251.16 16 60.23 odd 4
2400.2.b.i.2351.5 16 40.3 even 4
2400.2.b.i.2351.6 16 5.3 odd 4
2400.2.b.i.2351.7 16 120.83 odd 4
2400.2.b.i.2351.8 16 15.8 even 4
2400.2.b.i.2351.9 16 15.2 even 4
2400.2.b.i.2351.10 16 120.107 odd 4
2400.2.b.i.2351.11 16 5.2 odd 4
2400.2.b.i.2351.12 16 40.27 even 4