Properties

Label 600.2.b.i.251.15
Level $600$
Weight $2$
Character 600.251
Analytic conductor $4.791$
Analytic rank $0$
Dimension $16$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [600,2,Mod(251,600)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(600, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("600.251");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 600 = 2^{3} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 600.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.79102412128\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 24x^{14} + 192x^{12} + 672x^{10} + 1092x^{8} + 880x^{6} + 352x^{4} + 64x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{15} \)
Twist minimal: no (minimal twist has level 120)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 251.15
Root \(-0.886177i\) of defining polynomial
Character \(\chi\) \(=\) 600.251
Dual form 600.2.b.i.251.13

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.30656 + 0.541196i) q^{2} +(-1.13705 - 1.30656i) q^{3} +(1.41421 + 1.41421i) q^{4} +(-0.778527 - 2.32248i) q^{6} +2.27411i q^{7} +(1.08239 + 2.61313i) q^{8} +(-0.414214 + 2.97127i) q^{9} +4.20201i q^{11} +(0.239721 - 3.45580i) q^{12} -3.21608i q^{13} +(-1.23074 + 2.97127i) q^{14} +4.00000i q^{16} +1.53073i q^{17} +(-2.14923 + 3.65798i) q^{18} +4.82843 q^{19} +(2.97127 - 2.58579i) q^{21} +(-2.27411 + 5.49019i) q^{22} -1.08239 q^{23} +(2.18347 - 4.38548i) q^{24} +(1.74053 - 4.20201i) q^{26} +(4.35313 - 2.83730i) q^{27} +(-3.21608 + 3.21608i) q^{28} +1.74053 q^{29} +6.82843i q^{31} +(-2.16478 + 5.22625i) q^{32} +(5.49019 - 4.77791i) q^{33} +(-0.828427 + 2.00000i) q^{34} +(-4.78779 + 3.61622i) q^{36} -7.76429i q^{37} +(6.30864 + 2.61313i) q^{38} +(-4.20201 + 3.65685i) q^{39} -2.46148i q^{41} +(5.28156 - 1.77045i) q^{42} +8.70626 q^{43} +(-5.94253 + 5.94253i) q^{44} +(-1.41421 - 0.585786i) q^{46} -1.08239 q^{47} +(5.22625 - 4.54822i) q^{48} +1.82843 q^{49} +(2.00000 - 1.74053i) q^{51} +(4.54822 - 4.54822i) q^{52} -11.0866 q^{53} +(7.22317 - 1.35121i) q^{54} +(-5.94253 + 2.46148i) q^{56} +(-5.49019 - 6.30864i) q^{57} +(2.27411 + 0.941967i) q^{58} +4.20201i q^{59} -8.48528i q^{61} +(-3.69552 + 8.92177i) q^{62} +(-6.75699 - 0.941967i) q^{63} +(-5.65685 + 5.65685i) q^{64} +(9.75906 - 3.27137i) q^{66} -2.27411 q^{67} +(-2.16478 + 2.16478i) q^{68} +(1.23074 + 1.41421i) q^{69} -11.8851 q^{71} +(-8.21264 + 2.13368i) q^{72} -4.54822 q^{73} +(4.20201 - 10.1445i) q^{74} +(6.82843 + 6.82843i) q^{76} -9.55582 q^{77} +(-7.46926 + 2.50380i) q^{78} -0.485281i q^{79} +(-8.65685 - 2.46148i) q^{81} +(1.33214 - 3.21608i) q^{82} -6.94269i q^{83} +(7.85886 + 0.545152i) q^{84} +(11.3753 + 4.71179i) q^{86} +(-1.97908 - 2.27411i) q^{87} +(-10.9804 + 4.54822i) q^{88} -8.40401i q^{89} +7.31371 q^{91} +(-1.53073 - 1.53073i) q^{92} +(8.92177 - 7.76429i) q^{93} +(-1.41421 - 0.585786i) q^{94} +(9.28991 - 3.11411i) q^{96} +10.9804 q^{97} +(2.38896 + 0.989538i) q^{98} +(-12.4853 - 1.74053i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 16 q^{9} + 32 q^{19} + 32 q^{24} + 32 q^{34} - 32 q^{36} - 16 q^{49} + 32 q^{51} - 32 q^{54} + 64 q^{66} + 64 q^{76} - 48 q^{81} - 32 q^{84} - 64 q^{91} + 64 q^{96} - 64 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/600\mathbb{Z}\right)^\times\).

\(n\) \(151\) \(301\) \(401\) \(577\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.30656 + 0.541196i 0.923880 + 0.382683i
\(3\) −1.13705 1.30656i −0.656479 0.754344i
\(4\) 1.41421 + 1.41421i 0.707107 + 0.707107i
\(5\) 0 0
\(6\) −0.778527 2.32248i −0.317832 0.948147i
\(7\) 2.27411i 0.859533i 0.902940 + 0.429766i \(0.141404\pi\)
−0.902940 + 0.429766i \(0.858596\pi\)
\(8\) 1.08239 + 2.61313i 0.382683 + 0.923880i
\(9\) −0.414214 + 2.97127i −0.138071 + 0.990422i
\(10\) 0 0
\(11\) 4.20201i 1.26695i 0.773762 + 0.633476i \(0.218373\pi\)
−0.773762 + 0.633476i \(0.781627\pi\)
\(12\) 0.239721 3.45580i 0.0692015 0.997603i
\(13\) 3.21608i 0.891979i −0.895038 0.445990i \(-0.852852\pi\)
0.895038 0.445990i \(-0.147148\pi\)
\(14\) −1.23074 + 2.97127i −0.328929 + 0.794104i
\(15\) 0 0
\(16\) 4.00000i 1.00000i
\(17\) 1.53073i 0.371257i 0.982620 + 0.185629i \(0.0594322\pi\)
−0.982620 + 0.185629i \(0.940568\pi\)
\(18\) −2.14923 + 3.65798i −0.506579 + 0.862193i
\(19\) 4.82843 1.10772 0.553859 0.832611i \(-0.313155\pi\)
0.553859 + 0.832611i \(0.313155\pi\)
\(20\) 0 0
\(21\) 2.97127 2.58579i 0.648384 0.564265i
\(22\) −2.27411 + 5.49019i −0.484842 + 1.17051i
\(23\) −1.08239 −0.225694 −0.112847 0.993612i \(-0.535997\pi\)
−0.112847 + 0.993612i \(0.535997\pi\)
\(24\) 2.18347 4.38548i 0.445700 0.895182i
\(25\) 0 0
\(26\) 1.74053 4.20201i 0.341346 0.824081i
\(27\) 4.35313 2.83730i 0.837760 0.546038i
\(28\) −3.21608 + 3.21608i −0.607781 + 0.607781i
\(29\) 1.74053 0.323208 0.161604 0.986856i \(-0.448333\pi\)
0.161604 + 0.986856i \(0.448333\pi\)
\(30\) 0 0
\(31\) 6.82843i 1.22642i 0.789919 + 0.613211i \(0.210122\pi\)
−0.789919 + 0.613211i \(0.789878\pi\)
\(32\) −2.16478 + 5.22625i −0.382683 + 0.923880i
\(33\) 5.49019 4.77791i 0.955719 0.831727i
\(34\) −0.828427 + 2.00000i −0.142074 + 0.342997i
\(35\) 0 0
\(36\) −4.78779 + 3.61622i −0.797965 + 0.602703i
\(37\) 7.76429i 1.27644i −0.769853 0.638221i \(-0.779671\pi\)
0.769853 0.638221i \(-0.220329\pi\)
\(38\) 6.30864 + 2.61313i 1.02340 + 0.423905i
\(39\) −4.20201 + 3.65685i −0.672859 + 0.585565i
\(40\) 0 0
\(41\) 2.46148i 0.384418i −0.981354 0.192209i \(-0.938435\pi\)
0.981354 0.192209i \(-0.0615652\pi\)
\(42\) 5.28156 1.77045i 0.814963 0.273187i
\(43\) 8.70626 1.32769 0.663846 0.747869i \(-0.268923\pi\)
0.663846 + 0.747869i \(0.268923\pi\)
\(44\) −5.94253 + 5.94253i −0.895871 + 0.895871i
\(45\) 0 0
\(46\) −1.41421 0.585786i −0.208514 0.0863695i
\(47\) −1.08239 −0.157883 −0.0789416 0.996879i \(-0.525154\pi\)
−0.0789416 + 0.996879i \(0.525154\pi\)
\(48\) 5.22625 4.54822i 0.754344 0.656479i
\(49\) 1.82843 0.261204
\(50\) 0 0
\(51\) 2.00000 1.74053i 0.280056 0.243723i
\(52\) 4.54822 4.54822i 0.630724 0.630724i
\(53\) −11.0866 −1.52286 −0.761428 0.648250i \(-0.775501\pi\)
−0.761428 + 0.648250i \(0.775501\pi\)
\(54\) 7.22317 1.35121i 0.982949 0.183876i
\(55\) 0 0
\(56\) −5.94253 + 2.46148i −0.794104 + 0.328929i
\(57\) −5.49019 6.30864i −0.727193 0.835600i
\(58\) 2.27411 + 0.941967i 0.298605 + 0.123686i
\(59\) 4.20201i 0.547055i 0.961864 + 0.273527i \(0.0881904\pi\)
−0.961864 + 0.273527i \(0.911810\pi\)
\(60\) 0 0
\(61\) 8.48528i 1.08643i −0.839594 0.543214i \(-0.817207\pi\)
0.839594 0.543214i \(-0.182793\pi\)
\(62\) −3.69552 + 8.92177i −0.469331 + 1.13307i
\(63\) −6.75699 0.941967i −0.851300 0.118677i
\(64\) −5.65685 + 5.65685i −0.707107 + 0.707107i
\(65\) 0 0
\(66\) 9.75906 3.27137i 1.20126 0.402678i
\(67\) −2.27411 −0.277827 −0.138913 0.990305i \(-0.544361\pi\)
−0.138913 + 0.990305i \(0.544361\pi\)
\(68\) −2.16478 + 2.16478i −0.262519 + 0.262519i
\(69\) 1.23074 + 1.41421i 0.148164 + 0.170251i
\(70\) 0 0
\(71\) −11.8851 −1.41050 −0.705249 0.708960i \(-0.749165\pi\)
−0.705249 + 0.708960i \(0.749165\pi\)
\(72\) −8.21264 + 2.13368i −0.967868 + 0.251457i
\(73\) −4.54822 −0.532329 −0.266164 0.963928i \(-0.585756\pi\)
−0.266164 + 0.963928i \(0.585756\pi\)
\(74\) 4.20201 10.1445i 0.488473 1.17928i
\(75\) 0 0
\(76\) 6.82843 + 6.82843i 0.783274 + 0.783274i
\(77\) −9.55582 −1.08899
\(78\) −7.46926 + 2.50380i −0.845727 + 0.283500i
\(79\) 0.485281i 0.0545984i −0.999627 0.0272992i \(-0.991309\pi\)
0.999627 0.0272992i \(-0.00869069\pi\)
\(80\) 0 0
\(81\) −8.65685 2.46148i −0.961873 0.273498i
\(82\) 1.33214 3.21608i 0.147111 0.355156i
\(83\) 6.94269i 0.762060i −0.924563 0.381030i \(-0.875569\pi\)
0.924563 0.381030i \(-0.124431\pi\)
\(84\) 7.85886 + 0.545152i 0.857472 + 0.0594809i
\(85\) 0 0
\(86\) 11.3753 + 4.71179i 1.22663 + 0.508086i
\(87\) −1.97908 2.27411i −0.212179 0.243810i
\(88\) −10.9804 + 4.54822i −1.17051 + 0.484842i
\(89\) 8.40401i 0.890823i −0.895326 0.445412i \(-0.853057\pi\)
0.895326 0.445412i \(-0.146943\pi\)
\(90\) 0 0
\(91\) 7.31371 0.766685
\(92\) −1.53073 1.53073i −0.159590 0.159590i
\(93\) 8.92177 7.76429i 0.925144 0.805120i
\(94\) −1.41421 0.585786i −0.145865 0.0604193i
\(95\) 0 0
\(96\) 9.28991 3.11411i 0.948147 0.317832i
\(97\) 10.9804 1.11489 0.557444 0.830215i \(-0.311782\pi\)
0.557444 + 0.830215i \(0.311782\pi\)
\(98\) 2.38896 + 0.989538i 0.241321 + 0.0999584i
\(99\) −12.4853 1.74053i −1.25482 0.174930i
\(100\) 0 0
\(101\) 13.6256 1.35580 0.677899 0.735155i \(-0.262891\pi\)
0.677899 + 0.735155i \(0.262891\pi\)
\(102\) 3.55509 1.19172i 0.352007 0.117998i
\(103\) 8.70626i 0.857853i −0.903339 0.428927i \(-0.858892\pi\)
0.903339 0.428927i \(-0.141108\pi\)
\(104\) 8.40401 3.48106i 0.824081 0.341346i
\(105\) 0 0
\(106\) −14.4853 6.00000i −1.40693 0.582772i
\(107\) 5.67459i 0.548584i 0.961647 + 0.274292i \(0.0884434\pi\)
−0.961647 + 0.274292i \(0.911557\pi\)
\(108\) 10.1688 + 2.14371i 0.978493 + 0.206279i
\(109\) 16.4853i 1.57900i −0.613748 0.789502i \(-0.710339\pi\)
0.613748 0.789502i \(-0.289661\pi\)
\(110\) 0 0
\(111\) −10.1445 + 8.82843i −0.962877 + 0.837957i
\(112\) −9.09644 −0.859533
\(113\) 0.634051i 0.0596465i 0.999555 + 0.0298232i \(0.00949444\pi\)
−0.999555 + 0.0298232i \(0.990506\pi\)
\(114\) −3.75906 11.2139i −0.352068 1.05028i
\(115\) 0 0
\(116\) 2.46148 + 2.46148i 0.228543 + 0.228543i
\(117\) 9.55582 + 1.33214i 0.883436 + 0.123157i
\(118\) −2.27411 + 5.49019i −0.209349 + 0.505413i
\(119\) −3.48106 −0.319108
\(120\) 0 0
\(121\) −6.65685 −0.605169
\(122\) 4.59220 11.0866i 0.415758 1.00373i
\(123\) −3.21608 + 2.79884i −0.289984 + 0.252362i
\(124\) −9.65685 + 9.65685i −0.867211 + 0.867211i
\(125\) 0 0
\(126\) −8.31864 4.88759i −0.741083 0.435421i
\(127\) 2.27411i 0.201795i −0.994897 0.100897i \(-0.967829\pi\)
0.994897 0.100897i \(-0.0321713\pi\)
\(128\) −10.4525 + 4.32957i −0.923880 + 0.382683i
\(129\) −9.89949 11.3753i −0.871602 1.00154i
\(130\) 0 0
\(131\) 11.1641i 0.975413i −0.873008 0.487707i \(-0.837834\pi\)
0.873008 0.487707i \(-0.162166\pi\)
\(132\) 14.5213 + 1.00731i 1.26392 + 0.0876750i
\(133\) 10.9804i 0.952119i
\(134\) −2.97127 1.23074i −0.256678 0.106320i
\(135\) 0 0
\(136\) −4.00000 + 1.65685i −0.342997 + 0.142074i
\(137\) 8.02509i 0.685629i 0.939403 + 0.342815i \(0.111380\pi\)
−0.939403 + 0.342815i \(0.888620\pi\)
\(138\) 0.842671 + 2.51383i 0.0717329 + 0.213991i
\(139\) 2.48528 0.210799 0.105399 0.994430i \(-0.466388\pi\)
0.105399 + 0.994430i \(0.466388\pi\)
\(140\) 0 0
\(141\) 1.23074 + 1.41421i 0.103647 + 0.119098i
\(142\) −15.5286 6.43215i −1.30313 0.539774i
\(143\) 13.5140 1.13010
\(144\) −11.8851 1.65685i −0.990422 0.138071i
\(145\) 0 0
\(146\) −5.94253 2.46148i −0.491808 0.203713i
\(147\) −2.07902 2.38896i −0.171475 0.197038i
\(148\) 10.9804 10.9804i 0.902581 0.902581i
\(149\) 0.720950 0.0590625 0.0295313 0.999564i \(-0.490599\pi\)
0.0295313 + 0.999564i \(0.490599\pi\)
\(150\) 0 0
\(151\) 2.82843i 0.230174i 0.993355 + 0.115087i \(0.0367147\pi\)
−0.993355 + 0.115087i \(0.963285\pi\)
\(152\) 5.22625 + 12.6173i 0.423905 + 1.02340i
\(153\) −4.54822 0.634051i −0.367702 0.0512600i
\(154\) −12.4853 5.17157i −1.00609 0.416737i
\(155\) 0 0
\(156\) −11.1141 0.770961i −0.889841 0.0617263i
\(157\) 23.2929i 1.85897i 0.368854 + 0.929487i \(0.379750\pi\)
−0.368854 + 0.929487i \(0.620250\pi\)
\(158\) 0.262632 0.634051i 0.0208939 0.0504424i
\(159\) 12.6060 + 14.4853i 0.999722 + 1.14876i
\(160\) 0 0
\(161\) 2.46148i 0.193992i
\(162\) −9.97858 7.90113i −0.783992 0.620772i
\(163\) −8.70626 −0.681927 −0.340964 0.940077i \(-0.610753\pi\)
−0.340964 + 0.940077i \(0.610753\pi\)
\(164\) 3.48106 3.48106i 0.271825 0.271825i
\(165\) 0 0
\(166\) 3.75736 9.07107i 0.291628 0.704051i
\(167\) 5.04054 0.390049 0.195024 0.980798i \(-0.437521\pi\)
0.195024 + 0.980798i \(0.437521\pi\)
\(168\) 9.97306 + 4.96546i 0.769438 + 0.383094i
\(169\) 2.65685 0.204373
\(170\) 0 0
\(171\) −2.00000 + 14.3465i −0.152944 + 1.09711i
\(172\) 12.3125 + 12.3125i 0.938820 + 0.938820i
\(173\) −0.262632 −0.0199676 −0.00998379 0.999950i \(-0.503178\pi\)
−0.00998379 + 0.999950i \(0.503178\pi\)
\(174\) −1.35505 4.04233i −0.102726 0.306449i
\(175\) 0 0
\(176\) −16.8080 −1.26695
\(177\) 5.49019 4.77791i 0.412668 0.359130i
\(178\) 4.54822 10.9804i 0.340903 0.823014i
\(179\) 7.68306i 0.574259i −0.957892 0.287129i \(-0.907299\pi\)
0.957892 0.287129i \(-0.0927010\pi\)
\(180\) 0 0
\(181\) 21.6569i 1.60974i −0.593450 0.804871i \(-0.702235\pi\)
0.593450 0.804871i \(-0.297765\pi\)
\(182\) 9.55582 + 3.95815i 0.708325 + 0.293398i
\(183\) −11.0866 + 9.64823i −0.819542 + 0.713218i
\(184\) −1.17157 2.82843i −0.0863695 0.208514i
\(185\) 0 0
\(186\) 15.8589 5.31611i 1.16283 0.389796i
\(187\) −6.43215 −0.470366
\(188\) −1.53073 1.53073i −0.111640 0.111640i
\(189\) 6.45232 + 9.89949i 0.469337 + 0.720082i
\(190\) 0 0
\(191\) 8.40401 0.608093 0.304046 0.952657i \(-0.401662\pi\)
0.304046 + 0.952657i \(0.401662\pi\)
\(192\) 13.8232 + 0.958884i 0.997603 + 0.0692015i
\(193\) 13.6447 0.982164 0.491082 0.871113i \(-0.336602\pi\)
0.491082 + 0.871113i \(0.336602\pi\)
\(194\) 14.3465 + 5.94253i 1.03002 + 0.426649i
\(195\) 0 0
\(196\) 2.58579 + 2.58579i 0.184699 + 0.184699i
\(197\) 8.02509 0.571764 0.285882 0.958265i \(-0.407713\pi\)
0.285882 + 0.958265i \(0.407713\pi\)
\(198\) −15.3708 9.03109i −1.09236 0.641812i
\(199\) 14.8284i 1.05116i −0.850744 0.525580i \(-0.823848\pi\)
0.850744 0.525580i \(-0.176152\pi\)
\(200\) 0 0
\(201\) 2.58579 + 2.97127i 0.182387 + 0.209577i
\(202\) 17.8027 + 7.37412i 1.25259 + 0.518841i
\(203\) 3.95815i 0.277808i
\(204\) 5.28991 + 0.366949i 0.370367 + 0.0256916i
\(205\) 0 0
\(206\) 4.71179 11.3753i 0.328286 0.792553i
\(207\) 0.448342 3.21608i 0.0311619 0.223533i
\(208\) 12.8643 0.891979
\(209\) 20.2891i 1.40342i
\(210\) 0 0
\(211\) 1.51472 0.104278 0.0521388 0.998640i \(-0.483396\pi\)
0.0521388 + 0.998640i \(0.483396\pi\)
\(212\) −15.6788 15.6788i −1.07682 1.07682i
\(213\) 13.5140 + 15.5286i 0.925962 + 1.06400i
\(214\) −3.07107 + 7.41421i −0.209934 + 0.506825i
\(215\) 0 0
\(216\) 12.1260 + 8.30421i 0.825070 + 0.565030i
\(217\) −15.5286 −1.05415
\(218\) 8.92177 21.5391i 0.604259 1.45881i
\(219\) 5.17157 + 5.94253i 0.349463 + 0.401559i
\(220\) 0 0
\(221\) 4.92296 0.331154
\(222\) −18.0324 + 6.04471i −1.21025 + 0.405694i
\(223\) 10.5902i 0.709172i 0.935023 + 0.354586i \(0.115378\pi\)
−0.935023 + 0.354586i \(0.884622\pi\)
\(224\) −11.8851 4.92296i −0.794104 0.328929i
\(225\) 0 0
\(226\) −0.343146 + 0.828427i −0.0228257 + 0.0551062i
\(227\) 4.77791i 0.317121i −0.987349 0.158561i \(-0.949315\pi\)
0.987349 0.158561i \(-0.0506853\pi\)
\(228\) 1.15748 16.6861i 0.0766557 1.10506i
\(229\) 3.31371i 0.218976i −0.993988 0.109488i \(-0.965079\pi\)
0.993988 0.109488i \(-0.0349211\pi\)
\(230\) 0 0
\(231\) 10.8655 + 12.4853i 0.714897 + 0.821471i
\(232\) 1.88393 + 4.54822i 0.123686 + 0.298605i
\(233\) 28.0334i 1.83653i 0.395967 + 0.918265i \(0.370410\pi\)
−0.395967 + 0.918265i \(0.629590\pi\)
\(234\) 11.7643 + 6.91210i 0.769058 + 0.451858i
\(235\) 0 0
\(236\) −5.94253 + 5.94253i −0.386826 + 0.386826i
\(237\) −0.634051 + 0.551791i −0.0411860 + 0.0358427i
\(238\) −4.54822 1.88393i −0.294817 0.122117i
\(239\) −13.3270 −0.862050 −0.431025 0.902340i \(-0.641848\pi\)
−0.431025 + 0.902340i \(0.641848\pi\)
\(240\) 0 0
\(241\) 10.4853 0.675416 0.337708 0.941251i \(-0.390348\pi\)
0.337708 + 0.941251i \(0.390348\pi\)
\(242\) −8.69760 3.60266i −0.559103 0.231588i
\(243\) 6.62724 + 14.1096i 0.425138 + 0.905129i
\(244\) 12.0000 12.0000i 0.768221 0.768221i
\(245\) 0 0
\(246\) −5.71672 + 1.91633i −0.364485 + 0.122181i
\(247\) 15.5286i 0.988060i
\(248\) −17.8435 + 7.39104i −1.13307 + 0.469331i
\(249\) −9.07107 + 7.89422i −0.574856 + 0.500276i
\(250\) 0 0
\(251\) 27.9721i 1.76559i 0.469762 + 0.882793i \(0.344340\pi\)
−0.469762 + 0.882793i \(0.655660\pi\)
\(252\) −8.22368 10.8880i −0.518043 0.685877i
\(253\) 4.54822i 0.285944i
\(254\) 1.23074 2.97127i 0.0772234 0.186434i
\(255\) 0 0
\(256\) −16.0000 −1.00000
\(257\) 2.42742i 0.151418i −0.997130 0.0757090i \(-0.975878\pi\)
0.997130 0.0757090i \(-0.0241220\pi\)
\(258\) −6.77806 20.2201i −0.421983 1.25885i
\(259\) 17.6569 1.09714
\(260\) 0 0
\(261\) −0.720950 + 5.17157i −0.0446257 + 0.320112i
\(262\) 6.04198 14.5866i 0.373275 0.901165i
\(263\) 27.5851 1.70097 0.850484 0.526001i \(-0.176309\pi\)
0.850484 + 0.526001i \(0.176309\pi\)
\(264\) 18.4278 + 9.17497i 1.13415 + 0.564681i
\(265\) 0 0
\(266\) −5.94253 + 14.3465i −0.364360 + 0.879643i
\(267\) −10.9804 + 9.55582i −0.671988 + 0.584807i
\(268\) −3.21608 3.21608i −0.196453 0.196453i
\(269\) 7.68306 0.468445 0.234222 0.972183i \(-0.424746\pi\)
0.234222 + 0.972183i \(0.424746\pi\)
\(270\) 0 0
\(271\) 14.1421i 0.859074i −0.903049 0.429537i \(-0.858677\pi\)
0.903049 0.429537i \(-0.141323\pi\)
\(272\) −6.12293 −0.371257
\(273\) −8.31609 9.55582i −0.503312 0.578345i
\(274\) −4.34315 + 10.4853i −0.262379 + 0.633439i
\(275\) 0 0
\(276\) −0.259472 + 3.74053i −0.0156184 + 0.225153i
\(277\) 16.8607i 1.01306i −0.862221 0.506532i \(-0.830927\pi\)
0.862221 0.506532i \(-0.169073\pi\)
\(278\) 3.24718 + 1.34502i 0.194753 + 0.0806692i
\(279\) −20.2891 2.82843i −1.21468 0.169334i
\(280\) 0 0
\(281\) 5.94253i 0.354502i −0.984166 0.177251i \(-0.943280\pi\)
0.984166 0.177251i \(-0.0567204\pi\)
\(282\) 0.842671 + 2.51383i 0.0501803 + 0.149696i
\(283\) −26.1188 −1.55260 −0.776300 0.630363i \(-0.782906\pi\)
−0.776300 + 0.630363i \(0.782906\pi\)
\(284\) −16.8080 16.8080i −0.997373 0.997373i
\(285\) 0 0
\(286\) 17.6569 + 7.31371i 1.04407 + 0.432469i
\(287\) 5.59767 0.330420
\(288\) −14.6319 8.59694i −0.862193 0.506579i
\(289\) 14.6569 0.862168
\(290\) 0 0
\(291\) −12.4853 14.3465i −0.731900 0.841009i
\(292\) −6.43215 6.43215i −0.376413 0.376413i
\(293\) −16.3128 −0.953004 −0.476502 0.879173i \(-0.658096\pi\)
−0.476502 + 0.879173i \(0.658096\pi\)
\(294\) −1.42348 4.24648i −0.0830190 0.247660i
\(295\) 0 0
\(296\) 20.2891 8.40401i 1.17928 0.488473i
\(297\) 11.9223 + 18.2919i 0.691804 + 1.06140i
\(298\) 0.941967 + 0.390175i 0.0545667 + 0.0226023i
\(299\) 3.48106i 0.201315i
\(300\) 0 0
\(301\) 19.7990i 1.14119i
\(302\) −1.53073 + 3.69552i −0.0880838 + 0.212653i
\(303\) −15.4930 17.8027i −0.890052 1.02274i
\(304\) 19.3137i 1.10772i
\(305\) 0 0
\(306\) −5.59939 3.28991i −0.320096 0.188071i
\(307\) 17.8027 1.01605 0.508027 0.861341i \(-0.330375\pi\)
0.508027 + 0.861341i \(0.330375\pi\)
\(308\) −13.5140 13.5140i −0.770030 0.770030i
\(309\) −11.3753 + 9.89949i −0.647117 + 0.563163i
\(310\) 0 0
\(311\) −9.84591 −0.558310 −0.279155 0.960246i \(-0.590054\pi\)
−0.279155 + 0.960246i \(0.590054\pi\)
\(312\) −14.1040 7.02222i −0.798484 0.397555i
\(313\) −24.6250 −1.39189 −0.695944 0.718096i \(-0.745014\pi\)
−0.695944 + 0.718096i \(0.745014\pi\)
\(314\) −12.6060 + 30.4336i −0.711399 + 1.71747i
\(315\) 0 0
\(316\) 0.686292 0.686292i 0.0386069 0.0386069i
\(317\) −9.81845 −0.551459 −0.275730 0.961235i \(-0.588919\pi\)
−0.275730 + 0.961235i \(0.588919\pi\)
\(318\) 8.63118 + 25.7483i 0.484012 + 1.44389i
\(319\) 7.31371i 0.409489i
\(320\) 0 0
\(321\) 7.41421 6.45232i 0.413821 0.360134i
\(322\) 1.33214 3.21608i 0.0742374 0.179225i
\(323\) 7.39104i 0.411248i
\(324\) −8.76158 15.7237i −0.486755 0.873539i
\(325\) 0 0
\(326\) −11.3753 4.71179i −0.630018 0.260962i
\(327\) −21.5391 + 18.7447i −1.19111 + 1.03658i
\(328\) 6.43215 2.66428i 0.355156 0.147111i
\(329\) 2.46148i 0.135706i
\(330\) 0 0
\(331\) −1.51472 −0.0832565 −0.0416282 0.999133i \(-0.513255\pi\)
−0.0416282 + 0.999133i \(0.513255\pi\)
\(332\) 9.81845 9.81845i 0.538858 0.538858i
\(333\) 23.0698 + 3.21608i 1.26422 + 0.176240i
\(334\) 6.58579 + 2.72792i 0.360358 + 0.149265i
\(335\) 0 0
\(336\) 10.3431 + 11.8851i 0.564265 + 0.648384i
\(337\) −19.2965 −1.05114 −0.525572 0.850749i \(-0.676149\pi\)
−0.525572 + 0.850749i \(0.676149\pi\)
\(338\) 3.47135 + 1.43788i 0.188816 + 0.0782103i
\(339\) 0.828427 0.720950i 0.0449940 0.0391566i
\(340\) 0 0
\(341\) −28.6931 −1.55382
\(342\) −10.3774 + 17.6623i −0.561147 + 0.955066i
\(343\) 20.0768i 1.08405i
\(344\) 9.42359 + 22.7506i 0.508086 + 1.22663i
\(345\) 0 0
\(346\) −0.343146 0.142136i −0.0184476 0.00764126i
\(347\) 15.2304i 0.817611i −0.912621 0.408806i \(-0.865945\pi\)
0.912621 0.408806i \(-0.134055\pi\)
\(348\) 0.417241 6.01491i 0.0223665 0.322433i
\(349\) 13.6569i 0.731035i 0.930805 + 0.365517i \(0.119108\pi\)
−0.930805 + 0.365517i \(0.880892\pi\)
\(350\) 0 0
\(351\) −9.12496 14.0000i −0.487054 0.747265i
\(352\) −21.9607 9.09644i −1.17051 0.484842i
\(353\) 26.3939i 1.40481i −0.711780 0.702403i \(-0.752111\pi\)
0.711780 0.702403i \(-0.247889\pi\)
\(354\) 9.75906 3.27137i 0.518688 0.173872i
\(355\) 0 0
\(356\) 11.8851 11.8851i 0.629907 0.629907i
\(357\) 3.95815 + 4.54822i 0.209488 + 0.240717i
\(358\) 4.15804 10.0384i 0.219759 0.530546i
\(359\) 32.1741 1.69809 0.849043 0.528323i \(-0.177179\pi\)
0.849043 + 0.528323i \(0.177179\pi\)
\(360\) 0 0
\(361\) 4.31371 0.227037
\(362\) 11.7206 28.2960i 0.616021 1.48721i
\(363\) 7.56921 + 8.69760i 0.397280 + 0.456506i
\(364\) 10.3431 + 10.3431i 0.542128 + 0.542128i
\(365\) 0 0
\(366\) −19.7069 + 6.60602i −1.03009 + 0.345302i
\(367\) 24.2349i 1.26505i 0.774540 + 0.632524i \(0.217981\pi\)
−0.774540 + 0.632524i \(0.782019\pi\)
\(368\) 4.32957i 0.225694i
\(369\) 7.31371 + 1.01958i 0.380736 + 0.0530771i
\(370\) 0 0
\(371\) 25.2120i 1.30894i
\(372\) 23.5977 + 1.63692i 1.22348 + 0.0848702i
\(373\) 10.4286i 0.539971i −0.962864 0.269986i \(-0.912981\pi\)
0.962864 0.269986i \(-0.0870190\pi\)
\(374\) −8.40401 3.48106i −0.434561 0.180001i
\(375\) 0 0
\(376\) −1.17157 2.82843i −0.0604193 0.145865i
\(377\) 5.59767i 0.288295i
\(378\) 3.07280 + 16.4263i 0.158048 + 0.844877i
\(379\) −15.1716 −0.779311 −0.389656 0.920961i \(-0.627406\pi\)
−0.389656 + 0.920961i \(0.627406\pi\)
\(380\) 0 0
\(381\) −2.97127 + 2.58579i −0.152223 + 0.132474i
\(382\) 10.9804 + 4.54822i 0.561805 + 0.232707i
\(383\) 18.5545 0.948091 0.474046 0.880500i \(-0.342793\pi\)
0.474046 + 0.880500i \(0.342793\pi\)
\(384\) 17.5419 + 8.73390i 0.895182 + 0.445700i
\(385\) 0 0
\(386\) 17.8276 + 7.38443i 0.907401 + 0.375858i
\(387\) −3.60625 + 25.8686i −0.183316 + 1.31498i
\(388\) 15.5286 + 15.5286i 0.788345 + 0.788345i
\(389\) −12.6060 −0.639150 −0.319575 0.947561i \(-0.603540\pi\)
−0.319575 + 0.947561i \(0.603540\pi\)
\(390\) 0 0
\(391\) 1.65685i 0.0837907i
\(392\) 1.97908 + 4.77791i 0.0999584 + 0.241321i
\(393\) −14.5866 + 12.6942i −0.735798 + 0.640338i
\(394\) 10.4853 + 4.34315i 0.528241 + 0.218805i
\(395\) 0 0
\(396\) −15.1954 20.1183i −0.763596 1.01098i
\(397\) 0.551791i 0.0276936i −0.999904 0.0138468i \(-0.995592\pi\)
0.999904 0.0138468i \(-0.00440772\pi\)
\(398\) 8.02509 19.3743i 0.402261 0.971145i
\(399\) 14.3465 12.4853i 0.718226 0.625046i
\(400\) 0 0
\(401\) 25.2120i 1.25903i 0.776989 + 0.629514i \(0.216746\pi\)
−0.776989 + 0.629514i \(0.783254\pi\)
\(402\) 1.77045 + 5.28156i 0.0883023 + 0.263421i
\(403\) 21.9607 1.09394
\(404\) 19.2695 + 19.2695i 0.958694 + 0.958694i
\(405\) 0 0
\(406\) −2.14214 + 5.17157i −0.106312 + 0.256661i
\(407\) 32.6256 1.61719
\(408\) 6.71300 + 3.34232i 0.332343 + 0.165469i
\(409\) 7.17157 0.354611 0.177306 0.984156i \(-0.443262\pi\)
0.177306 + 0.984156i \(0.443262\pi\)
\(410\) 0 0
\(411\) 10.4853 9.12496i 0.517201 0.450101i
\(412\) 12.3125 12.3125i 0.606594 0.606594i
\(413\) −9.55582 −0.470211
\(414\) 2.32631 3.95937i 0.114332 0.194592i
\(415\) 0 0
\(416\) 16.8080 + 6.96211i 0.824081 + 0.341346i
\(417\) −2.82590 3.24718i −0.138385 0.159015i
\(418\) −10.9804 + 26.5090i −0.537067 + 1.29660i
\(419\) 4.20201i 0.205281i −0.994718 0.102641i \(-0.967271\pi\)
0.994718 0.102641i \(-0.0327292\pi\)
\(420\) 0 0
\(421\) 29.1716i 1.42174i 0.703326 + 0.710868i \(0.251698\pi\)
−0.703326 + 0.710868i \(0.748302\pi\)
\(422\) 1.97908 + 0.819760i 0.0963399 + 0.0399053i
\(423\) 0.448342 3.21608i 0.0217991 0.156371i
\(424\) −12.0000 28.9706i −0.582772 1.40693i
\(425\) 0 0
\(426\) 9.25284 + 27.6028i 0.448302 + 1.33736i
\(427\) 19.2965 0.933821
\(428\) −8.02509 + 8.02509i −0.387907 + 0.387907i
\(429\) −15.3661 17.6569i −0.741883 0.852481i
\(430\) 0 0
\(431\) 21.7310 1.04674 0.523372 0.852104i \(-0.324674\pi\)
0.523372 + 0.852104i \(0.324674\pi\)
\(432\) 11.3492 + 17.4125i 0.546038 + 0.837760i
\(433\) 29.1732 1.40198 0.700988 0.713173i \(-0.252742\pi\)
0.700988 + 0.713173i \(0.252742\pi\)
\(434\) −20.2891 8.40401i −0.973907 0.403405i
\(435\) 0 0
\(436\) 23.3137 23.3137i 1.11652 1.11652i
\(437\) −5.22625 −0.250006
\(438\) 3.54091 + 10.5631i 0.169191 + 0.504726i
\(439\) 11.5147i 0.549568i 0.961506 + 0.274784i \(0.0886063\pi\)
−0.961506 + 0.274784i \(0.911394\pi\)
\(440\) 0 0
\(441\) −0.757359 + 5.43275i −0.0360647 + 0.258702i
\(442\) 6.43215 + 2.66428i 0.305946 + 0.126727i
\(443\) 40.4650i 1.92255i −0.275591 0.961275i \(-0.588874\pi\)
0.275591 0.961275i \(-0.411126\pi\)
\(444\) −26.8318 1.86126i −1.27338 0.0883317i
\(445\) 0 0
\(446\) −5.73137 + 13.8368i −0.271388 + 0.655189i
\(447\) −0.819760 0.941967i −0.0387733 0.0445535i
\(448\) −12.8643 12.8643i −0.607781 0.607781i
\(449\) 24.7897i 1.16990i −0.811070 0.584949i \(-0.801114\pi\)
0.811070 0.584949i \(-0.198886\pi\)
\(450\) 0 0
\(451\) 10.3431 0.487040
\(452\) −0.896683 + 0.896683i −0.0421764 + 0.0421764i
\(453\) 3.69552 3.21608i 0.173631 0.151104i
\(454\) 2.58579 6.24264i 0.121357 0.292982i
\(455\) 0 0
\(456\) 10.5427 21.1750i 0.493709 0.991609i
\(457\) 12.8643 0.601767 0.300883 0.953661i \(-0.402719\pi\)
0.300883 + 0.953661i \(0.402719\pi\)
\(458\) 1.79337 4.32957i 0.0837985 0.202307i
\(459\) 4.34315 + 6.66348i 0.202721 + 0.311025i
\(460\) 0 0
\(461\) −18.5486 −0.863892 −0.431946 0.901899i \(-0.642173\pi\)
−0.431946 + 0.901899i \(0.642173\pi\)
\(462\) 7.43946 + 22.1932i 0.346115 + 1.03252i
\(463\) 4.93839i 0.229507i 0.993394 + 0.114753i \(0.0366078\pi\)
−0.993394 + 0.114753i \(0.963392\pi\)
\(464\) 6.96211i 0.323208i
\(465\) 0 0
\(466\) −15.1716 + 36.6274i −0.702810 + 1.69673i
\(467\) 8.73606i 0.404257i −0.979359 0.202128i \(-0.935214\pi\)
0.979359 0.202128i \(-0.0647858\pi\)
\(468\) 11.6300 + 15.3979i 0.537599 + 0.711768i
\(469\) 5.17157i 0.238801i
\(470\) 0 0
\(471\) 30.4336 26.4853i 1.40231 1.22038i
\(472\) −10.9804 + 4.54822i −0.505413 + 0.209349i
\(473\) 36.5838i 1.68212i
\(474\) −1.12705 + 0.377804i −0.0517673 + 0.0173531i
\(475\) 0 0
\(476\) −4.92296 4.92296i −0.225643 0.225643i
\(477\) 4.59220 32.9411i 0.210262 1.50827i
\(478\) −17.4125 7.21250i −0.796430 0.329892i
\(479\) −15.3661 −0.702096 −0.351048 0.936357i \(-0.614175\pi\)
−0.351048 + 0.936357i \(0.614175\pi\)
\(480\) 0 0
\(481\) −24.9706 −1.13856
\(482\) 13.6997 + 5.67459i 0.624003 + 0.258471i
\(483\) −3.21608 + 2.79884i −0.146337 + 0.127351i
\(484\) −9.41421 9.41421i −0.427919 0.427919i
\(485\) 0 0
\(486\) 1.02287 + 22.0217i 0.0463982 + 0.998923i
\(487\) 19.6866i 0.892086i 0.895011 + 0.446043i \(0.147167\pi\)
−0.895011 + 0.446043i \(0.852833\pi\)
\(488\) 22.1731 9.18440i 1.00373 0.415758i
\(489\) 9.89949 + 11.3753i 0.447671 + 0.514408i
\(490\) 0 0
\(491\) 14.0479i 0.633974i −0.948430 0.316987i \(-0.897329\pi\)
0.948430 0.316987i \(-0.102671\pi\)
\(492\) −8.50637 0.590068i −0.383497 0.0266023i
\(493\) 2.66428i 0.119993i
\(494\) 8.40401 20.2891i 0.378114 0.912849i
\(495\) 0 0
\(496\) −27.3137 −1.22642
\(497\) 27.0279i 1.21237i
\(498\) −16.1242 + 5.40507i −0.722545 + 0.242207i
\(499\) −25.1127 −1.12420 −0.562099 0.827070i \(-0.690006\pi\)
−0.562099 + 0.827070i \(0.690006\pi\)
\(500\) 0 0
\(501\) −5.73137 6.58579i −0.256059 0.294231i
\(502\) −15.1384 + 36.5474i −0.675660 + 1.63119i
\(503\) −28.4818 −1.26994 −0.634969 0.772537i \(-0.718987\pi\)
−0.634969 + 0.772537i \(0.718987\pi\)
\(504\) −4.85223 18.6764i −0.216136 0.831914i
\(505\) 0 0
\(506\) 2.46148 5.94253i 0.109426 0.264178i
\(507\) −3.02099 3.47135i −0.134167 0.154168i
\(508\) 3.21608 3.21608i 0.142690 0.142690i
\(509\) −13.6256 −0.603944 −0.301972 0.953317i \(-0.597645\pi\)
−0.301972 + 0.953317i \(0.597645\pi\)
\(510\) 0 0
\(511\) 10.3431i 0.457554i
\(512\) −20.9050 8.65914i −0.923880 0.382683i
\(513\) 21.0188 13.6997i 0.928002 0.604856i
\(514\) 1.31371 3.17157i 0.0579452 0.139892i
\(515\) 0 0
\(516\) 2.08707 30.0871i 0.0918783 1.32451i
\(517\) 4.54822i 0.200030i
\(518\) 23.0698 + 9.55582i 1.01363 + 0.419859i
\(519\) 0.298627 + 0.343146i 0.0131083 + 0.0150624i
\(520\) 0 0
\(521\) 9.84591i 0.431357i 0.976464 + 0.215679i \(0.0691964\pi\)
−0.976464 + 0.215679i \(0.930804\pi\)
\(522\) −3.74080 + 6.36681i −0.163730 + 0.278668i
\(523\) 4.15804 0.181819 0.0909093 0.995859i \(-0.471023\pi\)
0.0909093 + 0.995859i \(0.471023\pi\)
\(524\) 15.7884 15.7884i 0.689721 0.689721i
\(525\) 0 0
\(526\) 36.0416 + 14.9289i 1.57149 + 0.650932i
\(527\) −10.4525 −0.455318
\(528\) 19.1116 + 21.9607i 0.831727 + 0.955719i
\(529\) −21.8284 −0.949062
\(530\) 0 0
\(531\) −12.4853 1.74053i −0.541815 0.0755325i
\(532\) −15.5286 + 15.5286i −0.673250 + 0.673250i
\(533\) −7.91630 −0.342893
\(534\) −19.5181 + 6.54275i −0.844632 + 0.283132i
\(535\) 0 0
\(536\) −2.46148 5.94253i −0.106320 0.256678i
\(537\) −10.0384 + 8.73606i −0.433189 + 0.376989i
\(538\) 10.0384 + 4.15804i 0.432786 + 0.179266i
\(539\) 7.68306i 0.330933i
\(540\) 0 0
\(541\) 16.0000i 0.687894i 0.938989 + 0.343947i \(0.111764\pi\)
−0.938989 + 0.343947i \(0.888236\pi\)
\(542\) 7.65367 18.4776i 0.328753 0.793680i
\(543\) −28.2960 + 24.6250i −1.21430 + 1.05676i
\(544\) −8.00000 3.31371i −0.342997 0.142074i
\(545\) 0 0
\(546\) −5.69392 16.9859i −0.243677 0.726930i
\(547\) −33.3313 −1.42514 −0.712571 0.701600i \(-0.752470\pi\)
−0.712571 + 0.701600i \(0.752470\pi\)
\(548\) −11.3492 + 11.3492i −0.484813 + 0.484813i
\(549\) 25.2120 + 3.51472i 1.07602 + 0.150005i
\(550\) 0 0
\(551\) 8.40401 0.358023
\(552\) −2.36338 + 4.74681i −0.100592 + 0.202038i
\(553\) 1.10358 0.0469291
\(554\) 9.12496 22.0296i 0.387682 0.935948i
\(555\) 0 0
\(556\) 3.51472 + 3.51472i 0.149057 + 0.149057i
\(557\) 19.3743 0.820914 0.410457 0.911880i \(-0.365369\pi\)
0.410457 + 0.911880i \(0.365369\pi\)
\(558\) −24.9782 14.6759i −1.05741 0.621280i
\(559\) 28.0000i 1.18427i
\(560\) 0 0
\(561\) 7.31371 + 8.40401i 0.308785 + 0.354818i
\(562\) 3.21608 7.76429i 0.135662 0.327517i
\(563\) 6.04601i 0.254809i −0.991851 0.127405i \(-0.959335\pi\)
0.991851 0.127405i \(-0.0406646\pi\)
\(564\) −0.259472 + 3.74053i −0.0109257 + 0.157505i
\(565\) 0 0
\(566\) −34.1258 14.1354i −1.43442 0.594155i
\(567\) 5.59767 19.6866i 0.235080 0.826761i
\(568\) −12.8643 31.0572i −0.539774 1.30313i
\(569\) 9.42359i 0.395057i −0.980297 0.197529i \(-0.936708\pi\)
0.980297 0.197529i \(-0.0632916\pi\)
\(570\) 0 0
\(571\) −41.1127 −1.72051 −0.860256 0.509862i \(-0.829697\pi\)
−0.860256 + 0.509862i \(0.829697\pi\)
\(572\) 19.1116 + 19.1116i 0.799098 + 0.799098i
\(573\) −9.55582 10.9804i −0.399200 0.458712i
\(574\) 7.31371 + 3.02944i 0.305268 + 0.126446i
\(575\) 0 0
\(576\) −14.4649 19.1512i −0.602703 0.797965i
\(577\) 15.5286 0.646464 0.323232 0.946320i \(-0.395231\pi\)
0.323232 + 0.946320i \(0.395231\pi\)
\(578\) 19.1501 + 7.93223i 0.796539 + 0.329937i
\(579\) −15.5147 17.8276i −0.644770 0.740890i
\(580\) 0 0
\(581\) 15.7884 0.655015
\(582\) −8.54851 25.5017i −0.354347 1.05708i
\(583\) 46.5858i 1.92939i
\(584\) −4.92296 11.8851i −0.203713 0.491808i
\(585\) 0 0
\(586\) −21.3137 8.82843i −0.880461 0.364699i
\(587\) 12.1689i 0.502266i −0.967953 0.251133i \(-0.919197\pi\)
0.967953 0.251133i \(-0.0808032\pi\)
\(588\) 0.438312 6.31867i 0.0180757 0.260578i
\(589\) 32.9706i 1.35853i
\(590\) 0 0
\(591\) −9.12496 10.4853i −0.375351 0.431307i
\(592\) 31.0572 1.27644
\(593\) 39.3826i 1.61725i −0.588325 0.808625i \(-0.700212\pi\)
0.588325 0.808625i \(-0.299788\pi\)
\(594\) 5.67779 + 30.3518i 0.232963 + 1.24535i
\(595\) 0 0
\(596\) 1.01958 + 1.01958i 0.0417635 + 0.0417635i
\(597\) −19.3743 + 16.8607i −0.792936 + 0.690064i
\(598\) −1.88393 + 4.54822i −0.0770398 + 0.185990i
\(599\) 30.1350 1.23128 0.615641 0.788027i \(-0.288897\pi\)
0.615641 + 0.788027i \(0.288897\pi\)
\(600\) 0 0
\(601\) 30.4853 1.24352 0.621760 0.783208i \(-0.286418\pi\)
0.621760 + 0.783208i \(0.286418\pi\)
\(602\) −10.7151 + 25.8686i −0.436716 + 1.05433i
\(603\) 0.941967 6.75699i 0.0383599 0.275166i
\(604\) −4.00000 + 4.00000i −0.162758 + 0.162758i
\(605\) 0 0
\(606\) −10.6079 31.6451i −0.430916 1.28550i
\(607\) 35.2152i 1.42934i −0.699461 0.714671i \(-0.746576\pi\)
0.699461 0.714671i \(-0.253424\pi\)
\(608\) −10.4525 + 25.2346i −0.423905 + 1.02340i
\(609\) 5.17157 4.50063i 0.209563 0.182375i
\(610\) 0 0
\(611\) 3.48106i 0.140828i
\(612\) −5.53547 7.32884i −0.223758 0.296251i
\(613\) 16.0804i 0.649480i −0.945803 0.324740i \(-0.894723\pi\)
0.945803 0.324740i \(-0.105277\pi\)
\(614\) 23.2603 + 9.63475i 0.938711 + 0.388827i
\(615\) 0 0
\(616\) −10.3431 24.9706i −0.416737 1.00609i
\(617\) 31.0949i 1.25183i 0.779890 + 0.625916i \(0.215275\pi\)
−0.779890 + 0.625916i \(0.784725\pi\)
\(618\) −20.2201 + 6.77806i −0.813371 + 0.272653i
\(619\) −14.4853 −0.582213 −0.291106 0.956691i \(-0.594023\pi\)
−0.291106 + 0.956691i \(0.594023\pi\)
\(620\) 0 0
\(621\) −4.71179 + 3.07107i −0.189078 + 0.123238i
\(622\) −12.8643 5.32857i −0.515812 0.213656i
\(623\) 19.1116 0.765692
\(624\) −14.6274 16.8080i −0.585565 0.672859i
\(625\) 0 0
\(626\) −32.1741 13.3270i −1.28594 0.532653i
\(627\) 26.5090 23.0698i 1.05867 0.921319i
\(628\) −32.9411 + 32.9411i −1.31449 + 1.31449i
\(629\) 11.8851 0.473889
\(630\) 0 0
\(631\) 26.1421i 1.04070i −0.853952 0.520351i \(-0.825801\pi\)
0.853952 0.520351i \(-0.174199\pi\)
\(632\) 1.26810 0.525265i 0.0504424 0.0208939i
\(633\) −1.72232 1.97908i −0.0684560 0.0786612i
\(634\) −12.8284 5.31371i −0.509482 0.211034i
\(635\) 0 0
\(636\) −2.65768 + 38.3129i −0.105384 + 1.51920i
\(637\) 5.88036i 0.232988i
\(638\) −3.95815 + 9.55582i −0.156705 + 0.378319i
\(639\) 4.92296 35.3137i 0.194749 1.39699i
\(640\) 0 0
\(641\) 24.7897i 0.979135i −0.871965 0.489567i \(-0.837155\pi\)
0.871965 0.489567i \(-0.162845\pi\)
\(642\) 13.1791 4.41782i 0.520138 0.174358i
\(643\) 1.49376 0.0589081 0.0294540 0.999566i \(-0.490623\pi\)
0.0294540 + 0.999566i \(0.490623\pi\)
\(644\) 3.48106 3.48106i 0.137173 0.137173i
\(645\) 0 0
\(646\) −4.00000 + 9.65685i −0.157378 + 0.379944i
\(647\) −42.3671 −1.66562 −0.832812 0.553556i \(-0.813271\pi\)
−0.832812 + 0.553556i \(0.813271\pi\)
\(648\) −2.93796 25.2857i −0.115414 0.993317i
\(649\) −17.6569 −0.693092
\(650\) 0 0
\(651\) 17.6569 + 20.2891i 0.692027 + 0.795192i
\(652\) −12.3125 12.3125i −0.482195 0.482195i
\(653\) −37.5892 −1.47098 −0.735490 0.677535i \(-0.763048\pi\)
−0.735490 + 0.677535i \(0.763048\pi\)
\(654\) −38.2867 + 12.8342i −1.49713 + 0.501858i
\(655\) 0 0
\(656\) 9.84591 0.384418
\(657\) 1.88393 13.5140i 0.0734993 0.527230i
\(658\) 1.33214 3.21608i 0.0519323 0.125376i
\(659\) 0.720950i 0.0280842i −0.999901 0.0140421i \(-0.995530\pi\)
0.999901 0.0140421i \(-0.00446989\pi\)
\(660\) 0 0
\(661\) 28.7696i 1.11901i 0.828828 + 0.559503i \(0.189008\pi\)
−0.828828 + 0.559503i \(0.810992\pi\)
\(662\) −1.97908 0.819760i −0.0769189 0.0318609i
\(663\) −5.59767 6.43215i −0.217395 0.249804i
\(664\) 18.1421 7.51472i 0.704051 0.291628i
\(665\) 0 0
\(666\) 28.4016 + 16.6873i 1.10054 + 0.646619i
\(667\) −1.88393 −0.0729462
\(668\) 7.12840 + 7.12840i 0.275806 + 0.275806i
\(669\) 13.8368 12.0416i 0.534960 0.465556i
\(670\) 0 0
\(671\) 35.6552 1.37645
\(672\) 7.08182 + 21.1263i 0.273187 + 0.814963i
\(673\) −5.65180 −0.217861 −0.108930 0.994049i \(-0.534743\pi\)
−0.108930 + 0.994049i \(0.534743\pi\)
\(674\) −25.2120 10.4432i −0.971131 0.402256i
\(675\) 0 0
\(676\) 3.75736 + 3.75736i 0.144514 + 0.144514i
\(677\) −39.3826 −1.51360 −0.756798 0.653649i \(-0.773237\pi\)
−0.756798 + 0.653649i \(0.773237\pi\)
\(678\) 1.47257 0.493625i 0.0565536 0.0189576i
\(679\) 24.9706i 0.958282i
\(680\) 0 0
\(681\) −6.24264 + 5.43275i −0.239219 + 0.208183i
\(682\) −37.4893 15.5286i −1.43554 0.594620i
\(683\) 21.3533i 0.817063i 0.912744 + 0.408532i \(0.133959\pi\)
−0.912744 + 0.408532i \(0.866041\pi\)
\(684\) −23.1175 + 17.4607i −0.883920 + 0.667625i
\(685\) 0 0
\(686\) −10.8655 + 26.2316i −0.414846 + 1.00153i
\(687\) −4.32957 + 3.76787i −0.165183 + 0.143753i
\(688\) 34.8250i 1.32769i
\(689\) 35.6552i 1.35836i
\(690\) 0 0
\(691\) −12.8284 −0.488016 −0.244008 0.969773i \(-0.578462\pi\)
−0.244008 + 0.969773i \(0.578462\pi\)
\(692\) −0.371418 0.371418i −0.0141192 0.0141192i
\(693\) 3.95815 28.3929i 0.150358 1.07856i
\(694\) 8.24264 19.8995i 0.312886 0.755374i
\(695\) 0 0
\(696\) 3.80040 7.63305i 0.144054 0.289330i
\(697\) 3.76787 0.142718
\(698\) −7.39104 + 17.8435i −0.279755 + 0.675388i
\(699\) 36.6274 31.8755i 1.38538 1.20564i
\(700\) 0 0
\(701\) 2.76011 0.104248 0.0521239 0.998641i \(-0.483401\pi\)
0.0521239 + 0.998641i \(0.483401\pi\)
\(702\) −4.34559 23.2303i −0.164014 0.876770i
\(703\) 37.4893i 1.41394i
\(704\) −23.7701 23.7701i −0.895871 0.895871i
\(705\) 0 0
\(706\) 14.2843 34.4853i 0.537596 1.29787i
\(707\) 30.9861i 1.16535i
\(708\) 14.5213 + 1.00731i 0.545743 + 0.0378570i
\(709\) 20.2843i 0.761792i 0.924618 + 0.380896i \(0.124384\pi\)
−0.924618 + 0.380896i \(0.875616\pi\)
\(710\) 0 0
\(711\) 1.44190 + 0.201010i 0.0540755 + 0.00753847i
\(712\) 21.9607 9.09644i 0.823014 0.340903i
\(713\) 7.39104i 0.276796i
\(714\) 2.71009 + 8.08467i 0.101423 + 0.302561i
\(715\) 0 0
\(716\) 10.8655 10.8655i 0.406062 0.406062i
\(717\) 15.1535 + 17.4125i 0.565917 + 0.650283i
\(718\) 42.0375 + 17.4125i 1.56883 + 0.649830i
\(719\) −28.6931 −1.07007 −0.535036 0.844829i \(-0.679702\pi\)
−0.535036 + 0.844829i \(0.679702\pi\)
\(720\) 0 0
\(721\) 19.7990 0.737353
\(722\) 5.63613 + 2.33456i 0.209755 + 0.0868834i
\(723\) −11.9223 13.6997i −0.443397 0.509497i
\(724\) 30.6274 30.6274i 1.13826 1.13826i
\(725\) 0 0
\(726\) 5.18254 + 15.4604i 0.192342 + 0.573789i
\(727\) 18.9063i 0.701195i −0.936526 0.350598i \(-0.885978\pi\)
0.936526 0.350598i \(-0.114022\pi\)
\(728\) 7.91630 + 19.1116i 0.293398 + 0.708325i
\(729\) 10.8995 24.7022i 0.403685 0.914898i
\(730\) 0 0
\(731\) 13.3270i 0.492916i
\(732\) −29.3234 2.03410i −1.08382 0.0751825i
\(733\) 38.8215i 1.43390i 0.697123 + 0.716952i \(0.254463\pi\)
−0.697123 + 0.716952i \(0.745537\pi\)
\(734\) −13.1158 + 31.6644i −0.484113 + 1.16875i
\(735\) 0 0
\(736\) 2.34315 5.65685i 0.0863695 0.208514i
\(737\) 9.55582i 0.351993i
\(738\) 9.00403 + 5.29029i 0.331443 + 0.194738i
\(739\) 32.8284 1.20761 0.603807 0.797131i \(-0.293650\pi\)
0.603807 + 0.797131i \(0.293650\pi\)
\(740\) 0 0
\(741\) −20.2891 + 17.6569i −0.745338 + 0.648641i
\(742\) 13.6447 32.9411i 0.500911 1.20931i
\(743\) 0.185709 0.00681301 0.00340650 0.999994i \(-0.498916\pi\)
0.00340650 + 0.999994i \(0.498916\pi\)
\(744\) 29.9459 + 14.9097i 1.09787 + 0.546616i
\(745\) 0 0
\(746\) 5.64391 13.6256i 0.206638 0.498868i
\(747\) 20.6286 + 2.87576i 0.754761 + 0.105218i
\(748\) −9.09644 9.09644i −0.332599 0.332599i
\(749\) −12.9046 −0.471525
\(750\) 0 0
\(751\) 27.1127i 0.989356i 0.869076 + 0.494678i \(0.164714\pi\)
−0.869076 + 0.494678i \(0.835286\pi\)
\(752\) 4.32957i 0.157883i
\(753\) 36.5474 31.8059i 1.33186 1.15907i
\(754\) 3.02944 7.31371i 0.110326 0.266350i
\(755\) 0 0
\(756\) −4.87504 + 23.1250i −0.177303 + 0.841047i
\(757\) 36.1572i 1.31416i 0.753823 + 0.657078i \(0.228208\pi\)
−0.753823 + 0.657078i \(0.771792\pi\)
\(758\) −19.8226 8.21080i −0.719990 0.298230i
\(759\) −5.94253 + 5.17157i −0.215700 + 0.187716i
\(760\) 0 0
\(761\) 4.92296i 0.178457i −0.996011 0.0892285i \(-0.971560\pi\)
0.996011 0.0892285i \(-0.0284401\pi\)
\(762\) −5.28156 + 1.77045i −0.191331 + 0.0641368i
\(763\) 37.4893 1.35720
\(764\) 11.8851 + 11.8851i 0.429987 + 0.429987i
\(765\) 0 0
\(766\) 24.2426 + 10.0416i 0.875922 + 0.362819i
\(767\) 13.5140 0.487961
\(768\) 18.1929 + 20.9050i 0.656479 + 0.754344i
\(769\) −29.5980 −1.06733 −0.533665 0.845696i \(-0.679186\pi\)
−0.533665 + 0.845696i \(0.679186\pi\)
\(770\) 0 0
\(771\) −3.17157 + 2.76011i −0.114221 + 0.0994028i
\(772\) 19.2965 + 19.2965i 0.694495 + 0.694495i
\(773\) 38.1145 1.37088 0.685442 0.728128i \(-0.259609\pi\)
0.685442 + 0.728128i \(0.259609\pi\)
\(774\) −18.7118 + 31.8473i −0.672582 + 1.14473i
\(775\) 0 0
\(776\) 11.8851 + 28.6931i 0.426649 + 1.03002i
\(777\) −20.0768 23.0698i −0.720251 0.827624i
\(778\) −16.4706 6.82233i −0.590498 0.244592i
\(779\) 11.8851i 0.425827i
\(780\) 0 0
\(781\) 49.9411i 1.78703i
\(782\) 0.896683 2.16478i 0.0320653 0.0774125i
\(783\) 7.57675 4.93839i 0.270771 0.176484i
\(784\) 7.31371i 0.261204i
\(785\) 0 0
\(786\) −25.9284 + 8.69156i −0.924835 + 0.310018i
\(787\) 7.60268 0.271006 0.135503 0.990777i \(-0.456735\pi\)
0.135503 + 0.990777i \(0.456735\pi\)
\(788\) 11.3492 + 11.3492i 0.404298 + 0.404298i
\(789\) −31.3657 36.0416i −1.11665 1.28312i
\(790\) 0 0
\(791\) −1.44190 −0.0512681
\(792\) −8.96575 34.5095i −0.318584 1.22624i
\(793\) −27.2893 −0.969072
\(794\) 0.298627 0.720950i 0.0105979 0.0255856i
\(795\) 0 0
\(796\) 20.9706 20.9706i 0.743282 0.743282i
\(797\) 0.634051 0.0224592 0.0112296 0.999937i \(-0.496425\pi\)
0.0112296 + 0.999937i \(0.496425\pi\)
\(798\) 25.5017 8.54851i 0.902749 0.302614i
\(799\) 1.65685i 0.0586153i
\(800\) 0 0
\(801\) 24.9706 + 3.48106i 0.882291 + 0.122997i
\(802\) −13.6447 + 32.9411i −0.481810 + 1.16319i
\(803\) 19.1116i 0.674435i
\(804\) −0.545152 + 7.85886i −0.0192260 + 0.277161i
\(805\) 0 0
\(806\) 28.6931 + 11.8851i 1.01067 + 0.418634i
\(807\) −8.73606 10.0384i −0.307524 0.353369i
\(808\) 14.7482 + 35.6054i 0.518841 + 1.25259i
\(809\) 40.5782i 1.42665i 0.700832 + 0.713326i \(0.252812\pi\)
−0.700832 + 0.713326i \(0.747188\pi\)
\(810\) 0 0
\(811\) 2.48528 0.0872700 0.0436350 0.999048i \(-0.486106\pi\)
0.0436350 + 0.999048i \(0.486106\pi\)
\(812\) −5.59767 + 5.59767i −0.196440 + 0.196440i
\(813\) −18.4776 + 16.0804i −0.648037 + 0.563964i
\(814\) 42.6274 + 17.6569i 1.49409 + 0.618872i
\(815\) 0 0
\(816\) 6.96211 + 8.00000i 0.243723 + 0.280056i
\(817\) 42.0375 1.47071
\(818\) 9.37011 + 3.88123i 0.327618 + 0.135704i
\(819\) −3.02944 + 21.7310i −0.105857 + 0.759342i
\(820\) 0 0
\(821\) −31.4532 −1.09772 −0.548862 0.835913i \(-0.684939\pi\)
−0.548862 + 0.835913i \(0.684939\pi\)
\(822\) 18.6381 6.24774i 0.650077 0.217915i
\(823\) 48.0795i 1.67595i 0.545711 + 0.837973i \(0.316260\pi\)
−0.545711 + 0.837973i \(0.683740\pi\)
\(824\) 22.7506 9.42359i 0.792553 0.328286i
\(825\) 0 0
\(826\) −12.4853 5.17157i −0.434418 0.179942i
\(827\) 17.7666i 0.617806i 0.951094 + 0.308903i \(0.0999618\pi\)
−0.951094 + 0.308903i \(0.900038\pi\)
\(828\) 5.18227 3.91417i 0.180096 0.136027i
\(829\) 10.8284i 0.376087i −0.982161 0.188043i \(-0.939785\pi\)
0.982161 0.188043i \(-0.0602146\pi\)
\(830\) 0 0
\(831\) −22.0296 + 19.1716i −0.764199 + 0.665054i
\(832\) 18.1929 + 18.1929i 0.630724 + 0.630724i
\(833\) 2.79884i 0.0969739i
\(834\) −1.93486 5.77201i −0.0669986 0.199868i
\(835\) 0 0
\(836\) −28.6931 + 28.6931i −0.992371 + 0.992371i
\(837\) 19.3743 + 29.7250i 0.669673 + 1.02745i
\(838\) 2.27411 5.49019i 0.0785578 0.189655i
\(839\) 5.52021 0.190579 0.0952894 0.995450i \(-0.469622\pi\)
0.0952894 + 0.995450i \(0.469622\pi\)
\(840\) 0 0
\(841\) −25.9706 −0.895537
\(842\) −15.7875 + 38.1145i −0.544075 + 1.31351i
\(843\) −7.76429 + 6.75699i −0.267417 + 0.232723i
\(844\) 2.14214 + 2.14214i 0.0737353 + 0.0737353i
\(845\) 0 0
\(846\) 2.32631 3.95937i 0.0799803 0.136126i
\(847\) 15.1384i 0.520162i
\(848\) 44.3462i 1.52286i
\(849\) 29.6985 + 34.1258i 1.01925 + 1.17120i
\(850\) 0 0
\(851\) 8.40401i 0.288086i
\(852\) −2.84910 + 41.0724i −0.0976086 + 1.40712i
\(853\) 6.98394i 0.239126i −0.992827 0.119563i \(-0.961851\pi\)
0.992827 0.119563i \(-0.0381493\pi\)
\(854\) 25.2120 + 10.4432i 0.862738 + 0.357358i
\(855\) 0 0
\(856\) −14.8284 + 6.14214i −0.506825 + 0.209934i
\(857\) 27.1367i 0.926973i 0.886104 + 0.463486i \(0.153402\pi\)
−0.886104 + 0.463486i \(0.846598\pi\)
\(858\) −10.5210 31.3859i −0.359181 1.07150i
\(859\) −32.1421 −1.09668 −0.548338 0.836257i \(-0.684739\pi\)
−0.548338 + 0.836257i \(0.684739\pi\)
\(860\) 0 0
\(861\) −6.36486 7.31371i −0.216914 0.249251i
\(862\) 28.3929 + 11.7607i 0.967066 + 0.400572i
\(863\) −32.8113 −1.11691 −0.558455 0.829535i \(-0.688606\pi\)
−0.558455 + 0.829535i \(0.688606\pi\)
\(864\) 5.40484 + 28.8927i 0.183876 + 0.982949i
\(865\) 0 0
\(866\) 38.1167 + 15.7884i 1.29526 + 0.536513i
\(867\) −16.6656 19.1501i −0.565995 0.650372i
\(868\) −21.9607 21.9607i −0.745396 0.745396i
\(869\) 2.03916 0.0691736
\(870\) 0 0
\(871\) 7.31371i 0.247816i
\(872\) 43.0781 17.8435i 1.45881 0.604259i
\(873\) −4.54822 + 32.6256i −0.153934 + 1.10421i
\(874\) −6.82843 2.82843i −0.230975 0.0956730i
\(875\) 0 0
\(876\) −1.09030 + 15.7177i −0.0368379 + 0.531053i
\(877\) 33.4929i 1.13098i −0.824757 0.565488i \(-0.808688\pi\)
0.824757 0.565488i \(-0.191312\pi\)
\(878\) −6.23172 + 15.0447i −0.210310 + 0.507734i
\(879\) 18.5486 + 21.3137i 0.625627 + 0.718894i
\(880\) 0 0
\(881\) 12.3074i 0.414647i −0.978272 0.207323i \(-0.933525\pi\)
0.978272 0.207323i \(-0.0664752\pi\)
\(882\) −3.92972 + 6.68834i −0.132320 + 0.225208i
\(883\) −12.4741 −0.419788 −0.209894 0.977724i \(-0.567312\pi\)
−0.209894 + 0.977724i \(0.567312\pi\)
\(884\) 6.96211 + 6.96211i 0.234161 + 0.234161i
\(885\) 0 0
\(886\) 21.8995 52.8701i 0.735728 1.77620i
\(887\) 37.6662 1.26471 0.632353 0.774680i \(-0.282089\pi\)
0.632353 + 0.774680i \(0.282089\pi\)
\(888\) −34.0502 16.9531i −1.14265 0.568910i
\(889\) 5.17157 0.173449
\(890\) 0 0
\(891\) 10.3431 36.3762i 0.346508 1.21865i
\(892\) −14.9768 + 14.9768i −0.501460 + 0.501460i
\(893\) −5.22625 −0.174890
\(894\) −0.561279 1.67439i −0.0187720 0.0560000i
\(895\) 0 0
\(896\) −9.84591 23.7701i −0.328929 0.794104i
\(897\) 4.54822 3.95815i 0.151861 0.132159i
\(898\) 13.4161 32.3893i 0.447701 1.08085i
\(899\) 11.8851i 0.396389i
\(900\) 0 0
\(901\) 16.9706i 0.565371i
\(902\) 13.5140 + 5.59767i 0.449966 + 0.186382i
\(903\) 25.8686 22.5125i 0.860854 0.749170i
\(904\) −1.65685 + 0.686292i −0.0551062 + 0.0228257i
\(905\) 0 0
\(906\) 6.56895 2.20201i 0.218239 0.0731567i
\(907\) −46.1956 −1.53390 −0.766950 0.641707i \(-0.778226\pi\)
−0.766950 + 0.641707i \(0.778226\pi\)
\(908\) 6.75699 6.75699i 0.224238 0.224238i
\(909\) −5.64391 + 40.4853i −0.187197 + 1.34281i
\(910\) 0 0
\(911\) −28.6931 −0.950645 −0.475322 0.879812i \(-0.657669\pi\)
−0.475322 + 0.879812i \(0.657669\pi\)
\(912\) 25.2346 21.9607i 0.835600 0.727193i
\(913\) 29.1732 0.965493
\(914\) 16.8080 + 6.96211i 0.555960 + 0.230286i
\(915\) 0 0
\(916\) 4.68629 4.68629i 0.154839 0.154839i
\(917\) 25.3884 0.838400
\(918\) 2.06834 + 11.0568i 0.0682655 + 0.364927i
\(919\) 22.1421i 0.730402i 0.930929 + 0.365201i \(0.119000\pi\)
−0.930929 + 0.365201i \(0.881000\pi\)
\(920\) 0 0
\(921\) −20.2426 23.2603i −0.667018 0.766454i
\(922\) −24.2349 10.0384i −0.798132 0.330597i
\(923\) 38.2233i 1.25813i
\(924\) −2.29073 + 33.0230i −0.0753595 + 1.08638i
\(925\) 0 0
\(926\) −2.67264 + 6.45232i −0.0878284 + 0.212036i
\(927\) 25.8686 + 3.60625i 0.849637 + 0.118445i
\(928\) −3.76787 + 9.09644i −0.123686 + 0.298605i
\(929\) 56.3666i 1.84933i −0.380784 0.924664i \(-0.624346\pi\)
0.380784 0.924664i \(-0.375654\pi\)
\(930\) 0 0
\(931\) 8.82843 0.289340
\(932\) −39.6452 + 39.6452i −1.29862 + 1.29862i
\(933\) 11.1953 + 12.8643i 0.366519 + 0.421158i
\(934\) 4.72792 11.4142i 0.154702 0.373484i
\(935\) 0 0
\(936\) 6.86209 + 26.4125i 0.224294 + 0.863318i
\(937\) −32.9411 −1.07614 −0.538070 0.842900i \(-0.680846\pi\)
−0.538070 + 0.842900i \(0.680846\pi\)
\(938\) 2.79884 6.75699i 0.0913852 0.220623i
\(939\) 28.0000 + 32.1741i 0.913745 + 1.04996i
\(940\) 0 0
\(941\) −3.18243 −0.103744 −0.0518721 0.998654i \(-0.516519\pi\)
−0.0518721 + 0.998654i \(0.516519\pi\)
\(942\) 54.0972 18.1341i 1.76258 0.590842i
\(943\) 2.66428i 0.0867610i
\(944\) −16.8080 −0.547055
\(945\) 0 0
\(946\) −19.7990 + 47.7990i −0.643721 + 1.55408i
\(947\) 36.5068i 1.18631i −0.805087 0.593156i \(-0.797882\pi\)
0.805087 0.593156i \(-0.202118\pi\)
\(948\) −1.67703 0.116332i −0.0544675 0.00377829i
\(949\) 14.6274i 0.474826i
\(950\) 0 0
\(951\) 11.1641 + 12.8284i 0.362021 + 0.415990i
\(952\) −3.76787 9.09644i −0.122117 0.294817i
\(953\) 39.9079i 1.29274i 0.763023 + 0.646371i \(0.223714\pi\)
−0.763023 + 0.646371i \(0.776286\pi\)
\(954\) 23.8276 40.5544i 0.771447 1.31300i
\(955\) 0 0
\(956\) −18.8472 18.8472i −0.609561 0.609561i
\(957\) 9.55582 8.31609i 0.308896 0.268821i
\(958\) −20.0768 8.31609i −0.648652 0.268681i
\(959\) −18.2499 −0.589321
\(960\) 0 0
\(961\) −15.6274 −0.504110
\(962\) −32.6256 13.5140i −1.05189 0.435708i
\(963\) −16.8607 2.35049i −0.543329 0.0757436i
\(964\) 14.8284 + 14.8284i 0.477591 + 0.477591i
\(965\) 0 0
\(966\) −5.71672 + 1.91633i −0.183933 + 0.0616568i
\(967\) 51.8474i 1.66730i 0.552293 + 0.833650i \(0.313753\pi\)
−0.552293 + 0.833650i \(0.686247\pi\)
\(968\) −7.20533 17.3952i −0.231588 0.559103i
\(969\) 9.65685 8.40401i 0.310223 0.269976i
\(970\) 0 0
\(971\) 48.2612i 1.54878i −0.632711 0.774388i \(-0.718058\pi\)
0.632711 0.774388i \(-0.281942\pi\)
\(972\) −10.5816 + 29.3263i −0.339405 + 0.940640i
\(973\) 5.65180i 0.181188i
\(974\) −10.6543 + 25.7218i −0.341387 + 0.824180i
\(975\) 0 0
\(976\) 33.9411 1.08643
\(977\) 13.7766i 0.440753i 0.975415 + 0.220376i \(0.0707285\pi\)
−0.975415 + 0.220376i \(0.929271\pi\)
\(978\) 6.77806 + 20.2201i 0.216738 + 0.646567i
\(979\) 35.3137 1.12863
\(980\) 0 0
\(981\) 48.9822 + 6.82843i 1.56388 + 0.218015i
\(982\) 7.60268 18.3545i 0.242611 0.585715i
\(983\) 1.97908 0.0631227 0.0315613 0.999502i \(-0.489952\pi\)
0.0315613 + 0.999502i \(0.489952\pi\)
\(984\) −10.7948 5.37457i −0.344125 0.171335i
\(985\) 0 0
\(986\) −1.44190 + 3.48106i −0.0459195 + 0.110859i
\(987\) −3.21608 + 2.79884i −0.102369 + 0.0890879i
\(988\) 21.9607 21.9607i 0.698664 0.698664i
\(989\) −9.42359 −0.299653
\(990\) 0 0
\(991\) 19.7990i 0.628936i −0.949268 0.314468i \(-0.898174\pi\)
0.949268 0.314468i \(-0.101826\pi\)
\(992\) −35.6871 14.7821i −1.13307 0.469331i
\(993\) 1.72232 + 1.97908i 0.0546561 + 0.0628041i
\(994\) 14.6274 35.3137i 0.463953 1.12008i
\(995\) 0 0
\(996\) −23.9925 1.66431i −0.760233 0.0527357i
\(997\) 12.3125i 0.389941i 0.980809 + 0.194971i \(0.0624611\pi\)
−0.980809 + 0.194971i \(0.937539\pi\)
\(998\) −32.8113 13.5909i −1.03862 0.430212i
\(999\) −22.0296 33.7990i −0.696986 1.06935i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 600.2.b.i.251.15 16
3.2 odd 2 inner 600.2.b.i.251.1 16
4.3 odd 2 2400.2.b.i.2351.11 16
5.2 odd 4 120.2.m.b.59.8 yes 16
5.3 odd 4 120.2.m.b.59.9 yes 16
5.4 even 2 inner 600.2.b.i.251.2 16
8.3 odd 2 inner 600.2.b.i.251.3 16
8.5 even 2 2400.2.b.i.2351.12 16
12.11 even 2 2400.2.b.i.2351.9 16
15.2 even 4 120.2.m.b.59.10 yes 16
15.8 even 4 120.2.m.b.59.7 yes 16
15.14 odd 2 inner 600.2.b.i.251.16 16
20.3 even 4 480.2.m.b.239.3 16
20.7 even 4 480.2.m.b.239.13 16
20.19 odd 2 2400.2.b.i.2351.6 16
24.5 odd 2 2400.2.b.i.2351.10 16
24.11 even 2 inner 600.2.b.i.251.13 16
40.3 even 4 120.2.m.b.59.11 yes 16
40.13 odd 4 480.2.m.b.239.4 16
40.19 odd 2 inner 600.2.b.i.251.14 16
40.27 even 4 120.2.m.b.59.6 yes 16
40.29 even 2 2400.2.b.i.2351.5 16
40.37 odd 4 480.2.m.b.239.14 16
60.23 odd 4 480.2.m.b.239.16 16
60.47 odd 4 480.2.m.b.239.2 16
60.59 even 2 2400.2.b.i.2351.8 16
120.29 odd 2 2400.2.b.i.2351.7 16
120.53 even 4 480.2.m.b.239.15 16
120.59 even 2 inner 600.2.b.i.251.4 16
120.77 even 4 480.2.m.b.239.1 16
120.83 odd 4 120.2.m.b.59.5 16
120.107 odd 4 120.2.m.b.59.12 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
120.2.m.b.59.5 16 120.83 odd 4
120.2.m.b.59.6 yes 16 40.27 even 4
120.2.m.b.59.7 yes 16 15.8 even 4
120.2.m.b.59.8 yes 16 5.2 odd 4
120.2.m.b.59.9 yes 16 5.3 odd 4
120.2.m.b.59.10 yes 16 15.2 even 4
120.2.m.b.59.11 yes 16 40.3 even 4
120.2.m.b.59.12 yes 16 120.107 odd 4
480.2.m.b.239.1 16 120.77 even 4
480.2.m.b.239.2 16 60.47 odd 4
480.2.m.b.239.3 16 20.3 even 4
480.2.m.b.239.4 16 40.13 odd 4
480.2.m.b.239.13 16 20.7 even 4
480.2.m.b.239.14 16 40.37 odd 4
480.2.m.b.239.15 16 120.53 even 4
480.2.m.b.239.16 16 60.23 odd 4
600.2.b.i.251.1 16 3.2 odd 2 inner
600.2.b.i.251.2 16 5.4 even 2 inner
600.2.b.i.251.3 16 8.3 odd 2 inner
600.2.b.i.251.4 16 120.59 even 2 inner
600.2.b.i.251.13 16 24.11 even 2 inner
600.2.b.i.251.14 16 40.19 odd 2 inner
600.2.b.i.251.15 16 1.1 even 1 trivial
600.2.b.i.251.16 16 15.14 odd 2 inner
2400.2.b.i.2351.5 16 40.29 even 2
2400.2.b.i.2351.6 16 20.19 odd 2
2400.2.b.i.2351.7 16 120.29 odd 2
2400.2.b.i.2351.8 16 60.59 even 2
2400.2.b.i.2351.9 16 12.11 even 2
2400.2.b.i.2351.10 16 24.5 odd 2
2400.2.b.i.2351.11 16 4.3 odd 2
2400.2.b.i.2351.12 16 8.5 even 2