Properties

Label 480.4.h.a.191.15
Level $480$
Weight $4$
Character 480.191
Analytic conductor $28.321$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [480,4,Mod(191,480)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(480, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("480.191");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 480 = 2^{5} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 480.h (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(28.3209168028\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 191.15
Character \(\chi\) \(=\) 480.191
Dual form 480.4.h.a.191.16

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.67023 - 4.45756i) q^{3} -5.00000i q^{5} +28.8929i q^{7} +(-12.7397 - 23.8055i) q^{9} +26.6844 q^{11} -63.0266 q^{13} +(-22.2878 - 13.3512i) q^{15} +4.23575i q^{17} -158.425i q^{19} +(128.792 + 77.1507i) q^{21} -193.058 q^{23} -25.0000 q^{25} +(-140.132 - 6.77825i) q^{27} -225.068i q^{29} -176.599i q^{31} +(71.2536 - 118.947i) q^{33} +144.464 q^{35} -36.2616 q^{37} +(-168.296 + 280.945i) q^{39} +299.719i q^{41} -509.850i q^{43} +(-119.027 + 63.6985i) q^{45} -211.187 q^{47} -491.797 q^{49} +(18.8811 + 11.3104i) q^{51} +701.674i q^{53} -133.422i q^{55} +(-706.189 - 423.032i) q^{57} -299.376 q^{59} +133.906 q^{61} +(687.808 - 368.086i) q^{63} +315.133i q^{65} +292.983i q^{67} +(-515.510 + 860.568i) q^{69} +630.368 q^{71} -268.336 q^{73} +(-66.7559 + 111.439i) q^{75} +770.989i q^{77} +549.289i q^{79} +(-404.401 + 606.549i) q^{81} -192.312 q^{83} +21.1787 q^{85} +(-1003.25 - 600.983i) q^{87} -1202.98i q^{89} -1821.02i q^{91} +(-787.200 - 471.560i) q^{93} -792.125 q^{95} +831.831 q^{97} +(-339.951 - 635.235i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 20 q^{9} - 72 q^{11} - 72 q^{13} - 20 q^{15} - 68 q^{21} - 96 q^{23} - 600 q^{25} - 168 q^{27} - 80 q^{33} - 504 q^{37} + 456 q^{39} - 220 q^{45} - 432 q^{47} - 816 q^{49} - 1240 q^{51} + 40 q^{57}+ \cdots - 3160 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/480\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(97\) \(161\) \(421\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.67023 4.45756i 0.513887 0.857858i
\(4\) 0 0
\(5\) 5.00000i 0.447214i
\(6\) 0 0
\(7\) 28.8929i 1.56007i 0.625737 + 0.780034i \(0.284798\pi\)
−0.625737 + 0.780034i \(0.715202\pi\)
\(8\) 0 0
\(9\) −12.7397 23.8055i −0.471840 0.881684i
\(10\) 0 0
\(11\) 26.6844 0.731423 0.365711 0.930728i \(-0.380826\pi\)
0.365711 + 0.930728i \(0.380826\pi\)
\(12\) 0 0
\(13\) −63.0266 −1.34465 −0.672325 0.740256i \(-0.734704\pi\)
−0.672325 + 0.740256i \(0.734704\pi\)
\(14\) 0 0
\(15\) −22.2878 13.3512i −0.383646 0.229817i
\(16\) 0 0
\(17\) 4.23575i 0.0604306i 0.999543 + 0.0302153i \(0.00961929\pi\)
−0.999543 + 0.0302153i \(0.990381\pi\)
\(18\) 0 0
\(19\) 158.425i 1.91291i −0.291887 0.956453i \(-0.594283\pi\)
0.291887 0.956453i \(-0.405717\pi\)
\(20\) 0 0
\(21\) 128.792 + 77.1507i 1.33832 + 0.801698i
\(22\) 0 0
\(23\) −193.058 −1.75023 −0.875117 0.483911i \(-0.839216\pi\)
−0.875117 + 0.483911i \(0.839216\pi\)
\(24\) 0 0
\(25\) −25.0000 −0.200000
\(26\) 0 0
\(27\) −140.132 6.77825i −0.998832 0.0483139i
\(28\) 0 0
\(29\) 225.068i 1.44117i −0.693365 0.720586i \(-0.743873\pi\)
0.693365 0.720586i \(-0.256127\pi\)
\(30\) 0 0
\(31\) 176.599i 1.02316i −0.859235 0.511582i \(-0.829060\pi\)
0.859235 0.511582i \(-0.170940\pi\)
\(32\) 0 0
\(33\) 71.2536 118.947i 0.375869 0.627457i
\(34\) 0 0
\(35\) 144.464 0.697683
\(36\) 0 0
\(37\) −36.2616 −0.161118 −0.0805592 0.996750i \(-0.525671\pi\)
−0.0805592 + 0.996750i \(0.525671\pi\)
\(38\) 0 0
\(39\) −168.296 + 280.945i −0.690998 + 1.15352i
\(40\) 0 0
\(41\) 299.719i 1.14167i 0.821066 + 0.570833i \(0.193379\pi\)
−0.821066 + 0.570833i \(0.806621\pi\)
\(42\) 0 0
\(43\) 509.850i 1.80817i −0.427349 0.904087i \(-0.640552\pi\)
0.427349 0.904087i \(-0.359448\pi\)
\(44\) 0 0
\(45\) −119.027 + 63.6985i −0.394301 + 0.211013i
\(46\) 0 0
\(47\) −211.187 −0.655420 −0.327710 0.944778i \(-0.606277\pi\)
−0.327710 + 0.944778i \(0.606277\pi\)
\(48\) 0 0
\(49\) −491.797 −1.43381
\(50\) 0 0
\(51\) 18.8811 + 11.3104i 0.0518408 + 0.0310545i
\(52\) 0 0
\(53\) 701.674i 1.81854i 0.416212 + 0.909268i \(0.363357\pi\)
−0.416212 + 0.909268i \(0.636643\pi\)
\(54\) 0 0
\(55\) 133.422i 0.327102i
\(56\) 0 0
\(57\) −706.189 423.032i −1.64100 0.983017i
\(58\) 0 0
\(59\) −299.376 −0.660600 −0.330300 0.943876i \(-0.607150\pi\)
−0.330300 + 0.943876i \(0.607150\pi\)
\(60\) 0 0
\(61\) 133.906 0.281064 0.140532 0.990076i \(-0.455119\pi\)
0.140532 + 0.990076i \(0.455119\pi\)
\(62\) 0 0
\(63\) 687.808 368.086i 1.37549 0.736103i
\(64\) 0 0
\(65\) 315.133i 0.601346i
\(66\) 0 0
\(67\) 292.983i 0.534233i 0.963664 + 0.267116i \(0.0860708\pi\)
−0.963664 + 0.267116i \(0.913929\pi\)
\(68\) 0 0
\(69\) −515.510 + 860.568i −0.899423 + 1.50145i
\(70\) 0 0
\(71\) 630.368 1.05368 0.526838 0.849966i \(-0.323378\pi\)
0.526838 + 0.849966i \(0.323378\pi\)
\(72\) 0 0
\(73\) −268.336 −0.430225 −0.215112 0.976589i \(-0.569012\pi\)
−0.215112 + 0.976589i \(0.569012\pi\)
\(74\) 0 0
\(75\) −66.7559 + 111.439i −0.102777 + 0.171572i
\(76\) 0 0
\(77\) 770.989i 1.14107i
\(78\) 0 0
\(79\) 549.289i 0.782276i 0.920332 + 0.391138i \(0.127918\pi\)
−0.920332 + 0.391138i \(0.872082\pi\)
\(80\) 0 0
\(81\) −404.401 + 606.549i −0.554733 + 0.832028i
\(82\) 0 0
\(83\) −192.312 −0.254325 −0.127162 0.991882i \(-0.540587\pi\)
−0.127162 + 0.991882i \(0.540587\pi\)
\(84\) 0 0
\(85\) 21.1787 0.0270254
\(86\) 0 0
\(87\) −1003.25 600.983i −1.23632 0.740600i
\(88\) 0 0
\(89\) 1202.98i 1.43276i −0.697712 0.716379i \(-0.745798\pi\)
0.697712 0.716379i \(-0.254202\pi\)
\(90\) 0 0
\(91\) 1821.02i 2.09774i
\(92\) 0 0
\(93\) −787.200 471.560i −0.877729 0.525791i
\(94\) 0 0
\(95\) −792.125 −0.855477
\(96\) 0 0
\(97\) 831.831 0.870718 0.435359 0.900257i \(-0.356621\pi\)
0.435359 + 0.900257i \(0.356621\pi\)
\(98\) 0 0
\(99\) −339.951 635.235i −0.345115 0.644884i
\(100\) 0 0
\(101\) 161.237i 0.158848i −0.996841 0.0794240i \(-0.974692\pi\)
0.996841 0.0794240i \(-0.0253081\pi\)
\(102\) 0 0
\(103\) 775.670i 0.742029i −0.928627 0.371015i \(-0.879010\pi\)
0.928627 0.371015i \(-0.120990\pi\)
\(104\) 0 0
\(105\) 385.754 643.958i 0.358530 0.598513i
\(106\) 0 0
\(107\) 634.062 0.572870 0.286435 0.958100i \(-0.407530\pi\)
0.286435 + 0.958100i \(0.407530\pi\)
\(108\) 0 0
\(109\) −987.416 −0.867682 −0.433841 0.900989i \(-0.642842\pi\)
−0.433841 + 0.900989i \(0.642842\pi\)
\(110\) 0 0
\(111\) −96.8271 + 161.638i −0.0827966 + 0.138217i
\(112\) 0 0
\(113\) 121.165i 0.100870i −0.998727 0.0504348i \(-0.983939\pi\)
0.998727 0.0504348i \(-0.0160607\pi\)
\(114\) 0 0
\(115\) 965.290i 0.782729i
\(116\) 0 0
\(117\) 802.940 + 1500.38i 0.634460 + 1.18556i
\(118\) 0 0
\(119\) −122.383 −0.0942758
\(120\) 0 0
\(121\) −618.942 −0.465021
\(122\) 0 0
\(123\) 1336.02 + 800.321i 0.979387 + 0.586687i
\(124\) 0 0
\(125\) 125.000i 0.0894427i
\(126\) 0 0
\(127\) 2114.71i 1.47756i −0.673946 0.738781i \(-0.735402\pi\)
0.673946 0.738781i \(-0.264598\pi\)
\(128\) 0 0
\(129\) −2272.69 1361.42i −1.55116 0.929197i
\(130\) 0 0
\(131\) −854.166 −0.569685 −0.284843 0.958574i \(-0.591941\pi\)
−0.284843 + 0.958574i \(0.591941\pi\)
\(132\) 0 0
\(133\) 4577.35 2.98426
\(134\) 0 0
\(135\) −33.8912 + 700.661i −0.0216066 + 0.446691i
\(136\) 0 0
\(137\) 361.652i 0.225533i 0.993622 + 0.112766i \(0.0359712\pi\)
−0.993622 + 0.112766i \(0.964029\pi\)
\(138\) 0 0
\(139\) 455.917i 0.278204i 0.990278 + 0.139102i \(0.0444216\pi\)
−0.990278 + 0.139102i \(0.955578\pi\)
\(140\) 0 0
\(141\) −563.918 + 941.377i −0.336812 + 0.562257i
\(142\) 0 0
\(143\) −1681.83 −0.983507
\(144\) 0 0
\(145\) −1125.34 −0.644512
\(146\) 0 0
\(147\) −1313.21 + 2192.22i −0.736817 + 1.23001i
\(148\) 0 0
\(149\) 534.101i 0.293660i 0.989162 + 0.146830i \(0.0469070\pi\)
−0.989162 + 0.146830i \(0.953093\pi\)
\(150\) 0 0
\(151\) 376.313i 0.202807i 0.994845 + 0.101404i \(0.0323334\pi\)
−0.994845 + 0.101404i \(0.967667\pi\)
\(152\) 0 0
\(153\) 100.834 53.9621i 0.0532807 0.0285136i
\(154\) 0 0
\(155\) −882.994 −0.457573
\(156\) 0 0
\(157\) 1376.01 0.699475 0.349737 0.936848i \(-0.386271\pi\)
0.349737 + 0.936848i \(0.386271\pi\)
\(158\) 0 0
\(159\) 3127.76 + 1873.64i 1.56004 + 0.934522i
\(160\) 0 0
\(161\) 5578.00i 2.73048i
\(162\) 0 0
\(163\) 1699.68i 0.816742i −0.912816 0.408371i \(-0.866097\pi\)
0.912816 0.408371i \(-0.133903\pi\)
\(164\) 0 0
\(165\) −594.737 356.268i −0.280607 0.168094i
\(166\) 0 0
\(167\) 519.812 0.240864 0.120432 0.992722i \(-0.461572\pi\)
0.120432 + 0.992722i \(0.461572\pi\)
\(168\) 0 0
\(169\) 1775.36 0.808083
\(170\) 0 0
\(171\) −3771.38 + 2018.29i −1.68658 + 0.902586i
\(172\) 0 0
\(173\) 2232.08i 0.980937i 0.871459 + 0.490469i \(0.163174\pi\)
−0.871459 + 0.490469i \(0.836826\pi\)
\(174\) 0 0
\(175\) 722.321i 0.312014i
\(176\) 0 0
\(177\) −799.403 + 1334.49i −0.339474 + 0.566701i
\(178\) 0 0
\(179\) 1289.04 0.538254 0.269127 0.963105i \(-0.413265\pi\)
0.269127 + 0.963105i \(0.413265\pi\)
\(180\) 0 0
\(181\) 2499.79 1.02657 0.513283 0.858220i \(-0.328429\pi\)
0.513283 + 0.858220i \(0.328429\pi\)
\(182\) 0 0
\(183\) 357.561 596.895i 0.144435 0.241113i
\(184\) 0 0
\(185\) 181.308i 0.0720543i
\(186\) 0 0
\(187\) 113.028i 0.0442003i
\(188\) 0 0
\(189\) 195.843 4048.82i 0.0753729 1.55825i
\(190\) 0 0
\(191\) 1663.96 0.630364 0.315182 0.949031i \(-0.397934\pi\)
0.315182 + 0.949031i \(0.397934\pi\)
\(192\) 0 0
\(193\) −1442.16 −0.537870 −0.268935 0.963158i \(-0.586672\pi\)
−0.268935 + 0.963158i \(0.586672\pi\)
\(194\) 0 0
\(195\) 1404.73 + 841.480i 0.515869 + 0.309024i
\(196\) 0 0
\(197\) 2405.09i 0.869824i 0.900473 + 0.434912i \(0.143221\pi\)
−0.900473 + 0.434912i \(0.856779\pi\)
\(198\) 0 0
\(199\) 3959.74i 1.41055i −0.708936 0.705273i \(-0.750824\pi\)
0.708936 0.705273i \(-0.249176\pi\)
\(200\) 0 0
\(201\) 1305.99 + 782.334i 0.458296 + 0.274535i
\(202\) 0 0
\(203\) 6502.85 2.24833
\(204\) 0 0
\(205\) 1498.60 0.510568
\(206\) 0 0
\(207\) 2459.50 + 4595.84i 0.825831 + 1.54315i
\(208\) 0 0
\(209\) 4227.48i 1.39914i
\(210\) 0 0
\(211\) 1010.91i 0.329828i 0.986308 + 0.164914i \(0.0527347\pi\)
−0.986308 + 0.164914i \(0.947265\pi\)
\(212\) 0 0
\(213\) 1683.23 2809.91i 0.541470 0.903904i
\(214\) 0 0
\(215\) −2549.25 −0.808640
\(216\) 0 0
\(217\) 5102.44 1.59620
\(218\) 0 0
\(219\) −716.521 + 1196.13i −0.221087 + 0.369072i
\(220\) 0 0
\(221\) 266.965i 0.0812579i
\(222\) 0 0
\(223\) 1163.13i 0.349278i −0.984633 0.174639i \(-0.944124\pi\)
0.984633 0.174639i \(-0.0558758\pi\)
\(224\) 0 0
\(225\) 318.492 + 595.137i 0.0943681 + 0.176337i
\(226\) 0 0
\(227\) −3253.44 −0.951271 −0.475636 0.879642i \(-0.657782\pi\)
−0.475636 + 0.879642i \(0.657782\pi\)
\(228\) 0 0
\(229\) −818.571 −0.236212 −0.118106 0.993001i \(-0.537682\pi\)
−0.118106 + 0.993001i \(0.537682\pi\)
\(230\) 0 0
\(231\) 3436.73 + 2058.72i 0.978875 + 0.586380i
\(232\) 0 0
\(233\) 1180.72i 0.331981i −0.986127 0.165990i \(-0.946918\pi\)
0.986127 0.165990i \(-0.0530821\pi\)
\(234\) 0 0
\(235\) 1055.93i 0.293113i
\(236\) 0 0
\(237\) 2448.49 + 1466.73i 0.671082 + 0.402001i
\(238\) 0 0
\(239\) 5108.43 1.38258 0.691291 0.722576i \(-0.257042\pi\)
0.691291 + 0.722576i \(0.257042\pi\)
\(240\) 0 0
\(241\) 451.204 0.120600 0.0603000 0.998180i \(-0.480794\pi\)
0.0603000 + 0.998180i \(0.480794\pi\)
\(242\) 0 0
\(243\) 1623.88 + 3422.27i 0.428692 + 0.903451i
\(244\) 0 0
\(245\) 2458.99i 0.641220i
\(246\) 0 0
\(247\) 9985.00i 2.57219i
\(248\) 0 0
\(249\) −513.518 + 857.241i −0.130694 + 0.218175i
\(250\) 0 0
\(251\) 6881.30 1.73045 0.865226 0.501382i \(-0.167175\pi\)
0.865226 + 0.501382i \(0.167175\pi\)
\(252\) 0 0
\(253\) −5151.64 −1.28016
\(254\) 0 0
\(255\) 56.5522 94.4055i 0.0138880 0.0231839i
\(256\) 0 0
\(257\) 4051.17i 0.983288i 0.870796 + 0.491644i \(0.163604\pi\)
−0.870796 + 0.491644i \(0.836396\pi\)
\(258\) 0 0
\(259\) 1047.70i 0.251355i
\(260\) 0 0
\(261\) −5357.84 + 2867.29i −1.27066 + 0.680003i
\(262\) 0 0
\(263\) −3242.34 −0.760195 −0.380098 0.924946i \(-0.624110\pi\)
−0.380098 + 0.924946i \(0.624110\pi\)
\(264\) 0 0
\(265\) 3508.37 0.813274
\(266\) 0 0
\(267\) −5362.35 3212.23i −1.22910 0.736275i
\(268\) 0 0
\(269\) 3239.40i 0.734236i 0.930174 + 0.367118i \(0.119656\pi\)
−0.930174 + 0.367118i \(0.880344\pi\)
\(270\) 0 0
\(271\) 1311.45i 0.293965i 0.989139 + 0.146983i \(0.0469562\pi\)
−0.989139 + 0.146983i \(0.953044\pi\)
\(272\) 0 0
\(273\) −8117.31 4862.55i −1.79957 1.07800i
\(274\) 0 0
\(275\) −667.110 −0.146285
\(276\) 0 0
\(277\) 3169.82 0.687566 0.343783 0.939049i \(-0.388292\pi\)
0.343783 + 0.939049i \(0.388292\pi\)
\(278\) 0 0
\(279\) −4204.02 + 2249.81i −0.902107 + 0.482770i
\(280\) 0 0
\(281\) 4444.46i 0.943537i 0.881722 + 0.471769i \(0.156384\pi\)
−0.881722 + 0.471769i \(0.843616\pi\)
\(282\) 0 0
\(283\) 1059.45i 0.222537i 0.993790 + 0.111269i \(0.0354914\pi\)
−0.993790 + 0.111269i \(0.964509\pi\)
\(284\) 0 0
\(285\) −2115.16 + 3530.95i −0.439619 + 0.733878i
\(286\) 0 0
\(287\) −8659.74 −1.78107
\(288\) 0 0
\(289\) 4895.06 0.996348
\(290\) 0 0
\(291\) 2221.18 3707.94i 0.447451 0.746952i
\(292\) 0 0
\(293\) 9336.99i 1.86168i −0.365425 0.930841i \(-0.619076\pi\)
0.365425 0.930841i \(-0.380924\pi\)
\(294\) 0 0
\(295\) 1496.88i 0.295429i
\(296\) 0 0
\(297\) −3739.35 180.874i −0.730569 0.0353379i
\(298\) 0 0
\(299\) 12167.8 2.35345
\(300\) 0 0
\(301\) 14731.0 2.82087
\(302\) 0 0
\(303\) −718.722 430.540i −0.136269 0.0816299i
\(304\) 0 0
\(305\) 669.531i 0.125696i
\(306\) 0 0
\(307\) 1882.91i 0.350043i −0.984565 0.175021i \(-0.944001\pi\)
0.984565 0.175021i \(-0.0559995\pi\)
\(308\) 0 0
\(309\) −3457.59 2071.22i −0.636555 0.381319i
\(310\) 0 0
\(311\) −3394.17 −0.618860 −0.309430 0.950922i \(-0.600138\pi\)
−0.309430 + 0.950922i \(0.600138\pi\)
\(312\) 0 0
\(313\) 5075.88 0.916632 0.458316 0.888789i \(-0.348453\pi\)
0.458316 + 0.888789i \(0.348453\pi\)
\(314\) 0 0
\(315\) −1840.43 3439.04i −0.329195 0.615136i
\(316\) 0 0
\(317\) 7198.07i 1.27534i −0.770308 0.637671i \(-0.779898\pi\)
0.770308 0.637671i \(-0.220102\pi\)
\(318\) 0 0
\(319\) 6005.80i 1.05411i
\(320\) 0 0
\(321\) 1693.10 2826.37i 0.294391 0.491441i
\(322\) 0 0
\(323\) 671.049 0.115598
\(324\) 0 0
\(325\) 1575.67 0.268930
\(326\) 0 0
\(327\) −2636.63 + 4401.47i −0.445890 + 0.744348i
\(328\) 0 0
\(329\) 6101.79i 1.02250i
\(330\) 0 0
\(331\) 6817.22i 1.13205i −0.824388 0.566025i \(-0.808481\pi\)
0.824388 0.566025i \(-0.191519\pi\)
\(332\) 0 0
\(333\) 461.962 + 863.225i 0.0760221 + 0.142055i
\(334\) 0 0
\(335\) 1464.92 0.238916
\(336\) 0 0
\(337\) 3161.73 0.511070 0.255535 0.966800i \(-0.417748\pi\)
0.255535 + 0.966800i \(0.417748\pi\)
\(338\) 0 0
\(339\) −540.101 323.539i −0.0865318 0.0518356i
\(340\) 0 0
\(341\) 4712.43i 0.748365i
\(342\) 0 0
\(343\) 4299.17i 0.676774i
\(344\) 0 0
\(345\) 4302.84 + 2577.55i 0.671470 + 0.402234i
\(346\) 0 0
\(347\) −6583.03 −1.01843 −0.509215 0.860639i \(-0.670064\pi\)
−0.509215 + 0.860639i \(0.670064\pi\)
\(348\) 0 0
\(349\) −10406.5 −1.59613 −0.798064 0.602573i \(-0.794142\pi\)
−0.798064 + 0.602573i \(0.794142\pi\)
\(350\) 0 0
\(351\) 8832.07 + 427.210i 1.34308 + 0.0649652i
\(352\) 0 0
\(353\) 9283.14i 1.39969i 0.714293 + 0.699846i \(0.246748\pi\)
−0.714293 + 0.699846i \(0.753252\pi\)
\(354\) 0 0
\(355\) 3151.84i 0.471218i
\(356\) 0 0
\(357\) −326.791 + 545.529i −0.0484471 + 0.0808752i
\(358\) 0 0
\(359\) −2998.98 −0.440891 −0.220446 0.975399i \(-0.570751\pi\)
−0.220446 + 0.975399i \(0.570751\pi\)
\(360\) 0 0
\(361\) −18239.5 −2.65921
\(362\) 0 0
\(363\) −1652.72 + 2758.97i −0.238968 + 0.398922i
\(364\) 0 0
\(365\) 1341.68i 0.192402i
\(366\) 0 0
\(367\) 7161.60i 1.01862i −0.860584 0.509309i \(-0.829901\pi\)
0.860584 0.509309i \(-0.170099\pi\)
\(368\) 0 0
\(369\) 7134.96 3818.33i 1.00659 0.538684i
\(370\) 0 0
\(371\) −20273.4 −2.83704
\(372\) 0 0
\(373\) −1535.63 −0.213169 −0.106584 0.994304i \(-0.533991\pi\)
−0.106584 + 0.994304i \(0.533991\pi\)
\(374\) 0 0
\(375\) 557.195 + 333.779i 0.0767291 + 0.0459634i
\(376\) 0 0
\(377\) 14185.3i 1.93787i
\(378\) 0 0
\(379\) 11691.9i 1.58462i −0.610118 0.792311i \(-0.708878\pi\)
0.610118 0.792311i \(-0.291122\pi\)
\(380\) 0 0
\(381\) −9426.45 5646.78i −1.26754 0.759300i
\(382\) 0 0
\(383\) −3893.22 −0.519411 −0.259705 0.965688i \(-0.583625\pi\)
−0.259705 + 0.965688i \(0.583625\pi\)
\(384\) 0 0
\(385\) 3854.94 0.510302
\(386\) 0 0
\(387\) −12137.2 + 6495.34i −1.59424 + 0.853169i
\(388\) 0 0
\(389\) 9888.33i 1.28884i −0.764672 0.644419i \(-0.777099\pi\)
0.764672 0.644419i \(-0.222901\pi\)
\(390\) 0 0
\(391\) 817.745i 0.105768i
\(392\) 0 0
\(393\) −2280.82 + 3807.49i −0.292754 + 0.488709i
\(394\) 0 0
\(395\) 2746.44 0.349844
\(396\) 0 0
\(397\) −8095.45 −1.02342 −0.511712 0.859157i \(-0.670988\pi\)
−0.511712 + 0.859157i \(0.670988\pi\)
\(398\) 0 0
\(399\) 12222.6 20403.8i 1.53357 2.56007i
\(400\) 0 0
\(401\) 9999.28i 1.24524i 0.782525 + 0.622619i \(0.213931\pi\)
−0.782525 + 0.622619i \(0.786069\pi\)
\(402\) 0 0
\(403\) 11130.4i 1.37580i
\(404\) 0 0
\(405\) 3032.74 + 2022.00i 0.372094 + 0.248084i
\(406\) 0 0
\(407\) −967.620 −0.117846
\(408\) 0 0
\(409\) 2043.61 0.247066 0.123533 0.992340i \(-0.460578\pi\)
0.123533 + 0.992340i \(0.460578\pi\)
\(410\) 0 0
\(411\) 1612.09 + 965.696i 0.193475 + 0.115898i
\(412\) 0 0
\(413\) 8649.82i 1.03058i
\(414\) 0 0
\(415\) 961.559i 0.113737i
\(416\) 0 0
\(417\) 2032.28 + 1217.41i 0.238660 + 0.142966i
\(418\) 0 0
\(419\) 11593.8 1.35177 0.675887 0.737005i \(-0.263761\pi\)
0.675887 + 0.737005i \(0.263761\pi\)
\(420\) 0 0
\(421\) −12434.0 −1.43942 −0.719711 0.694274i \(-0.755726\pi\)
−0.719711 + 0.694274i \(0.755726\pi\)
\(422\) 0 0
\(423\) 2690.45 + 5027.40i 0.309254 + 0.577873i
\(424\) 0 0
\(425\) 105.894i 0.0120861i
\(426\) 0 0
\(427\) 3868.93i 0.438479i
\(428\) 0 0
\(429\) −4490.88 + 7496.85i −0.505412 + 0.843710i
\(430\) 0 0
\(431\) −3677.25 −0.410967 −0.205484 0.978661i \(-0.565877\pi\)
−0.205484 + 0.978661i \(0.565877\pi\)
\(432\) 0 0
\(433\) −17733.6 −1.96818 −0.984090 0.177672i \(-0.943143\pi\)
−0.984090 + 0.177672i \(0.943143\pi\)
\(434\) 0 0
\(435\) −3004.92 + 5016.26i −0.331206 + 0.552900i
\(436\) 0 0
\(437\) 30585.2i 3.34803i
\(438\) 0 0
\(439\) 5085.24i 0.552859i −0.961034 0.276430i \(-0.910849\pi\)
0.961034 0.276430i \(-0.0891513\pi\)
\(440\) 0 0
\(441\) 6265.34 + 11707.5i 0.676530 + 1.26417i
\(442\) 0 0
\(443\) 14786.8 1.58587 0.792935 0.609306i \(-0.208552\pi\)
0.792935 + 0.609306i \(0.208552\pi\)
\(444\) 0 0
\(445\) −6014.89 −0.640749
\(446\) 0 0
\(447\) 2380.79 + 1426.18i 0.251918 + 0.150908i
\(448\) 0 0
\(449\) 4836.54i 0.508353i 0.967158 + 0.254176i \(0.0818044\pi\)
−0.967158 + 0.254176i \(0.918196\pi\)
\(450\) 0 0
\(451\) 7997.83i 0.835040i
\(452\) 0 0
\(453\) 1677.44 + 1004.84i 0.173980 + 0.104220i
\(454\) 0 0
\(455\) −9105.10 −0.938140
\(456\) 0 0
\(457\) 1610.66 0.164866 0.0824329 0.996597i \(-0.473731\pi\)
0.0824329 + 0.996597i \(0.473731\pi\)
\(458\) 0 0
\(459\) 28.7110 593.565i 0.00291964 0.0603600i
\(460\) 0 0
\(461\) 14397.3i 1.45455i −0.686346 0.727275i \(-0.740786\pi\)
0.686346 0.727275i \(-0.259214\pi\)
\(462\) 0 0
\(463\) 4605.81i 0.462311i −0.972917 0.231156i \(-0.925749\pi\)
0.972917 0.231156i \(-0.0742506\pi\)
\(464\) 0 0
\(465\) −2357.80 + 3936.00i −0.235141 + 0.392532i
\(466\) 0 0
\(467\) 2603.62 0.257989 0.128995 0.991645i \(-0.458825\pi\)
0.128995 + 0.991645i \(0.458825\pi\)
\(468\) 0 0
\(469\) −8465.12 −0.833439
\(470\) 0 0
\(471\) 3674.27 6133.65i 0.359451 0.600050i
\(472\) 0 0
\(473\) 13605.1i 1.32254i
\(474\) 0 0
\(475\) 3960.63i 0.382581i
\(476\) 0 0
\(477\) 16703.7 8939.11i 1.60337 0.858058i
\(478\) 0 0
\(479\) 904.077 0.0862387 0.0431193 0.999070i \(-0.486270\pi\)
0.0431193 + 0.999070i \(0.486270\pi\)
\(480\) 0 0
\(481\) 2285.45 0.216648
\(482\) 0 0
\(483\) −24864.3 14894.6i −2.34237 1.40316i
\(484\) 0 0
\(485\) 4159.15i 0.389397i
\(486\) 0 0
\(487\) 2787.27i 0.259350i 0.991557 + 0.129675i \(0.0413934\pi\)
−0.991557 + 0.129675i \(0.958607\pi\)
\(488\) 0 0
\(489\) −7576.41 4538.53i −0.700648 0.419713i
\(490\) 0 0
\(491\) 6234.26 0.573011 0.286506 0.958079i \(-0.407506\pi\)
0.286506 + 0.958079i \(0.407506\pi\)
\(492\) 0 0
\(493\) 953.330 0.0870909
\(494\) 0 0
\(495\) −3176.17 + 1699.76i −0.288401 + 0.154340i
\(496\) 0 0
\(497\) 18213.1i 1.64381i
\(498\) 0 0
\(499\) 8631.50i 0.774347i −0.922007 0.387174i \(-0.873451\pi\)
0.922007 0.387174i \(-0.126549\pi\)
\(500\) 0 0
\(501\) 1388.02 2317.09i 0.123777 0.206627i
\(502\) 0 0
\(503\) 3401.02 0.301479 0.150740 0.988574i \(-0.451835\pi\)
0.150740 + 0.988574i \(0.451835\pi\)
\(504\) 0 0
\(505\) −806.183 −0.0710390
\(506\) 0 0
\(507\) 4740.62 7913.76i 0.415263 0.693220i
\(508\) 0 0
\(509\) 9241.80i 0.804785i 0.915467 + 0.402392i \(0.131821\pi\)
−0.915467 + 0.402392i \(0.868179\pi\)
\(510\) 0 0
\(511\) 7753.00i 0.671179i
\(512\) 0 0
\(513\) −1073.84 + 22200.5i −0.0924199 + 1.91067i
\(514\) 0 0
\(515\) −3878.35 −0.331845
\(516\) 0 0
\(517\) −5635.39 −0.479389
\(518\) 0 0
\(519\) 9949.65 + 5960.19i 0.841505 + 0.504091i
\(520\) 0 0
\(521\) 13462.9i 1.13209i −0.824374 0.566046i \(-0.808473\pi\)
0.824374 0.566046i \(-0.191527\pi\)
\(522\) 0 0
\(523\) 16904.0i 1.41331i −0.707560 0.706654i \(-0.750204\pi\)
0.707560 0.706654i \(-0.249796\pi\)
\(524\) 0 0
\(525\) −3219.79 1928.77i −0.267663 0.160340i
\(526\) 0 0
\(527\) 748.028 0.0618304
\(528\) 0 0
\(529\) 25104.4 2.06332
\(530\) 0 0
\(531\) 3813.95 + 7126.78i 0.311698 + 0.582440i
\(532\) 0 0
\(533\) 18890.3i 1.53514i
\(534\) 0 0
\(535\) 3170.31i 0.256195i
\(536\) 0 0
\(537\) 3442.04 5745.98i 0.276602 0.461746i
\(538\) 0 0
\(539\) −13123.3 −1.04872
\(540\) 0 0
\(541\) 1830.55 0.145474 0.0727372 0.997351i \(-0.476827\pi\)
0.0727372 + 0.997351i \(0.476827\pi\)
\(542\) 0 0
\(543\) 6675.04 11143.0i 0.527538 0.880647i
\(544\) 0 0
\(545\) 4937.08i 0.388039i
\(546\) 0 0
\(547\) 13415.3i 1.04862i 0.851527 + 0.524312i \(0.175677\pi\)
−0.851527 + 0.524312i \(0.824323\pi\)
\(548\) 0 0
\(549\) −1705.92 3187.70i −0.132618 0.247810i
\(550\) 0 0
\(551\) −35656.4 −2.75683
\(552\) 0 0
\(553\) −15870.5 −1.22040
\(554\) 0 0
\(555\) 808.192 + 484.136i 0.0618124 + 0.0370278i
\(556\) 0 0
\(557\) 11587.0i 0.881430i 0.897647 + 0.440715i \(0.145275\pi\)
−0.897647 + 0.440715i \(0.854725\pi\)
\(558\) 0 0
\(559\) 32134.2i 2.43136i
\(560\) 0 0
\(561\) 503.831 + 301.812i 0.0379176 + 0.0227140i
\(562\) 0 0
\(563\) 7284.20 0.545280 0.272640 0.962116i \(-0.412103\pi\)
0.272640 + 0.962116i \(0.412103\pi\)
\(564\) 0 0
\(565\) −605.826 −0.0451102
\(566\) 0 0
\(567\) −17524.9 11684.3i −1.29802 0.865421i
\(568\) 0 0
\(569\) 7036.03i 0.518393i 0.965825 + 0.259196i \(0.0834577\pi\)
−0.965825 + 0.259196i \(0.916542\pi\)
\(570\) 0 0
\(571\) 9718.85i 0.712296i 0.934430 + 0.356148i \(0.115910\pi\)
−0.934430 + 0.356148i \(0.884090\pi\)
\(572\) 0 0
\(573\) 4443.15 7417.18i 0.323936 0.540763i
\(574\) 0 0
\(575\) 4826.45 0.350047
\(576\) 0 0
\(577\) 8860.76 0.639304 0.319652 0.947535i \(-0.396434\pi\)
0.319652 + 0.947535i \(0.396434\pi\)
\(578\) 0 0
\(579\) −3850.91 + 6428.52i −0.276405 + 0.461416i
\(580\) 0 0
\(581\) 5556.44i 0.396764i
\(582\) 0 0
\(583\) 18723.8i 1.33012i
\(584\) 0 0
\(585\) 7501.89 4014.70i 0.530197 0.283739i
\(586\) 0 0
\(587\) 27951.9 1.96542 0.982708 0.185162i \(-0.0592811\pi\)
0.982708 + 0.185162i \(0.0592811\pi\)
\(588\) 0 0
\(589\) −27977.7 −1.95722
\(590\) 0 0
\(591\) 10720.8 + 6422.15i 0.746186 + 0.446991i
\(592\) 0 0
\(593\) 2873.12i 0.198962i 0.995039 + 0.0994812i \(0.0317183\pi\)
−0.995039 + 0.0994812i \(0.968282\pi\)
\(594\) 0 0
\(595\) 611.914i 0.0421614i
\(596\) 0 0
\(597\) −17650.8 10573.4i −1.21005 0.724861i
\(598\) 0 0
\(599\) 4288.34 0.292515 0.146258 0.989247i \(-0.453277\pi\)
0.146258 + 0.989247i \(0.453277\pi\)
\(600\) 0 0
\(601\) −3043.25 −0.206551 −0.103275 0.994653i \(-0.532932\pi\)
−0.103275 + 0.994653i \(0.532932\pi\)
\(602\) 0 0
\(603\) 6974.60 3732.52i 0.471024 0.252073i
\(604\) 0 0
\(605\) 3094.71i 0.207964i
\(606\) 0 0
\(607\) 1658.77i 0.110918i −0.998461 0.0554591i \(-0.982338\pi\)
0.998461 0.0554591i \(-0.0176622\pi\)
\(608\) 0 0
\(609\) 17364.1 28986.8i 1.15539 1.92874i
\(610\) 0 0
\(611\) 13310.4 0.881310
\(612\) 0 0
\(613\) 28493.9 1.87742 0.938710 0.344709i \(-0.112022\pi\)
0.938710 + 0.344709i \(0.112022\pi\)
\(614\) 0 0
\(615\) 4001.60 6680.08i 0.262374 0.437995i
\(616\) 0 0
\(617\) 20481.2i 1.33637i −0.743994 0.668186i \(-0.767071\pi\)
0.743994 0.668186i \(-0.232929\pi\)
\(618\) 0 0
\(619\) 1943.40i 0.126190i −0.998008 0.0630952i \(-0.979903\pi\)
0.998008 0.0630952i \(-0.0200972\pi\)
\(620\) 0 0
\(621\) 27053.7 + 1308.60i 1.74819 + 0.0845606i
\(622\) 0 0
\(623\) 34757.5 2.23520
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 0 0
\(627\) −18844.2 11288.4i −1.20027 0.719001i
\(628\) 0 0
\(629\) 153.595i 0.00973647i
\(630\) 0 0
\(631\) 15964.7i 1.00720i 0.863936 + 0.503602i \(0.167992\pi\)
−0.863936 + 0.503602i \(0.832008\pi\)
\(632\) 0 0
\(633\) 4506.18 + 2699.36i 0.282946 + 0.169494i
\(634\) 0 0
\(635\) −10573.6 −0.660786
\(636\) 0 0
\(637\) 30996.3 1.92797
\(638\) 0 0
\(639\) −8030.70 15006.2i −0.497167 0.929009i
\(640\) 0 0
\(641\) 4330.89i 0.266864i −0.991058 0.133432i \(-0.957400\pi\)
0.991058 0.133432i \(-0.0425998\pi\)
\(642\) 0 0
\(643\) 3889.04i 0.238520i 0.992863 + 0.119260i \(0.0380523\pi\)
−0.992863 + 0.119260i \(0.961948\pi\)
\(644\) 0 0
\(645\) −6807.10 + 11363.4i −0.415549 + 0.693698i
\(646\) 0 0
\(647\) −21741.6 −1.32110 −0.660548 0.750784i \(-0.729676\pi\)
−0.660548 + 0.750784i \(0.729676\pi\)
\(648\) 0 0
\(649\) −7988.66 −0.483178
\(650\) 0 0
\(651\) 13624.7 22744.4i 0.820269 1.36932i
\(652\) 0 0
\(653\) 15086.0i 0.904075i 0.891999 + 0.452037i \(0.149303\pi\)
−0.891999 + 0.452037i \(0.850697\pi\)
\(654\) 0 0
\(655\) 4270.83i 0.254771i
\(656\) 0 0
\(657\) 3418.52 + 6387.87i 0.202997 + 0.379322i
\(658\) 0 0
\(659\) −4047.71 −0.239266 −0.119633 0.992818i \(-0.538172\pi\)
−0.119633 + 0.992818i \(0.538172\pi\)
\(660\) 0 0
\(661\) −6148.64 −0.361807 −0.180904 0.983501i \(-0.557902\pi\)
−0.180904 + 0.983501i \(0.557902\pi\)
\(662\) 0 0
\(663\) −1190.01 712.859i −0.0697078 0.0417574i
\(664\) 0 0
\(665\) 22886.8i 1.33460i
\(666\) 0 0
\(667\) 43451.1i 2.52239i
\(668\) 0 0
\(669\) −5184.72 3105.83i −0.299631 0.179489i
\(670\) 0 0
\(671\) 3573.21 0.205577
\(672\) 0 0
\(673\) −5643.29 −0.323229 −0.161614 0.986854i \(-0.551670\pi\)
−0.161614 + 0.986854i \(0.551670\pi\)
\(674\) 0 0
\(675\) 3503.31 + 169.456i 0.199766 + 0.00966278i
\(676\) 0 0
\(677\) 21993.0i 1.24854i −0.781209 0.624269i \(-0.785397\pi\)
0.781209 0.624269i \(-0.214603\pi\)
\(678\) 0 0
\(679\) 24034.0i 1.35838i
\(680\) 0 0
\(681\) −8687.45 + 14502.4i −0.488846 + 0.816055i
\(682\) 0 0
\(683\) −26585.8 −1.48943 −0.744713 0.667384i \(-0.767414\pi\)
−0.744713 + 0.667384i \(0.767414\pi\)
\(684\) 0 0
\(685\) 1808.26 0.100861
\(686\) 0 0
\(687\) −2185.78 + 3648.83i −0.121387 + 0.202637i
\(688\) 0 0
\(689\) 44224.2i 2.44529i
\(690\) 0 0
\(691\) 4363.60i 0.240231i −0.992760 0.120115i \(-0.961674\pi\)
0.992760 0.120115i \(-0.0383264\pi\)
\(692\) 0 0
\(693\) 18353.7 9822.16i 1.00606 0.538402i
\(694\) 0 0
\(695\) 2279.59 0.124417
\(696\) 0 0
\(697\) −1269.53 −0.0689915
\(698\) 0 0
\(699\) −5263.13 3152.80i −0.284792 0.170601i
\(700\) 0 0
\(701\) 15497.9i 0.835016i 0.908673 + 0.417508i \(0.137096\pi\)
−0.908673 + 0.417508i \(0.862904\pi\)
\(702\) 0 0
\(703\) 5744.75i 0.308204i
\(704\) 0 0
\(705\) 4706.89 + 2819.59i 0.251449 + 0.150627i
\(706\) 0 0
\(707\) 4658.59 0.247814
\(708\) 0 0
\(709\) −24070.2 −1.27500 −0.637500 0.770450i \(-0.720032\pi\)
−0.637500 + 0.770450i \(0.720032\pi\)
\(710\) 0 0
\(711\) 13076.1 6997.77i 0.689720 0.369109i
\(712\) 0 0
\(713\) 34093.8i 1.79078i
\(714\) 0 0
\(715\) 8409.14i 0.439838i
\(716\) 0 0
\(717\) 13640.7 22771.2i 0.710491 1.18606i
\(718\) 0 0
\(719\) 9769.54 0.506735 0.253367 0.967370i \(-0.418462\pi\)
0.253367 + 0.967370i \(0.418462\pi\)
\(720\) 0 0
\(721\) 22411.3 1.15762
\(722\) 0 0
\(723\) 1204.82 2011.27i 0.0619747 0.103458i
\(724\) 0 0
\(725\) 5626.69i 0.288235i
\(726\) 0 0
\(727\) 10716.6i 0.546707i −0.961914 0.273354i \(-0.911867\pi\)
0.961914 0.273354i \(-0.0881329\pi\)
\(728\) 0 0
\(729\) 19591.1 + 1899.70i 0.995332 + 0.0965149i
\(730\) 0 0
\(731\) 2159.60 0.109269
\(732\) 0 0
\(733\) 22492.7 1.13341 0.566703 0.823922i \(-0.308219\pi\)
0.566703 + 0.823922i \(0.308219\pi\)
\(734\) 0 0
\(735\) 10961.1 + 6566.07i 0.550075 + 0.329514i
\(736\) 0 0
\(737\) 7818.08i 0.390750i
\(738\) 0 0
\(739\) 25323.1i 1.26052i 0.776385 + 0.630260i \(0.217052\pi\)
−0.776385 + 0.630260i \(0.782948\pi\)
\(740\) 0 0
\(741\) 44508.7 + 26662.3i 2.20657 + 1.32181i
\(742\) 0 0
\(743\) −17744.8 −0.876171 −0.438086 0.898933i \(-0.644343\pi\)
−0.438086 + 0.898933i \(0.644343\pi\)
\(744\) 0 0
\(745\) 2670.51 0.131329
\(746\) 0 0
\(747\) 2449.99 + 4578.07i 0.120001 + 0.224234i
\(748\) 0 0
\(749\) 18319.9i 0.893716i
\(750\) 0 0
\(751\) 8439.26i 0.410057i −0.978756 0.205029i \(-0.934271\pi\)
0.978756 0.205029i \(-0.0657287\pi\)
\(752\) 0 0
\(753\) 18374.7 30673.8i 0.889257 1.48448i
\(754\) 0 0
\(755\) 1881.56 0.0906982
\(756\) 0 0
\(757\) −10486.3 −0.503475 −0.251738 0.967796i \(-0.581002\pi\)
−0.251738 + 0.967796i \(0.581002\pi\)
\(758\) 0 0
\(759\) −13756.1 + 22963.7i −0.657858 + 1.09820i
\(760\) 0 0
\(761\) 136.290i 0.00649213i 0.999995 + 0.00324607i \(0.00103326\pi\)
−0.999995 + 0.00324607i \(0.998967\pi\)
\(762\) 0 0
\(763\) 28529.3i 1.35364i
\(764\) 0 0
\(765\) −269.811 504.170i −0.0127517 0.0238278i
\(766\) 0 0
\(767\) 18868.6 0.888275
\(768\) 0 0
\(769\) −28694.9 −1.34560 −0.672798 0.739826i \(-0.734908\pi\)
−0.672798 + 0.739826i \(0.734908\pi\)
\(770\) 0 0
\(771\) 18058.3 + 10817.6i 0.843522 + 0.505299i
\(772\) 0 0
\(773\) 1959.31i 0.0911663i 0.998961 + 0.0455831i \(0.0145146\pi\)
−0.998961 + 0.0455831i \(0.985485\pi\)
\(774\) 0 0
\(775\) 4414.97i 0.204633i
\(776\) 0 0
\(777\) −4670.20 2797.61i −0.215627 0.129168i
\(778\) 0 0
\(779\) 47483.0 2.18390
\(780\) 0 0
\(781\) 16821.0 0.770682
\(782\) 0 0
\(783\) −1525.56 + 31539.2i −0.0696286 + 1.43949i
\(784\) 0 0
\(785\) 6880.05i 0.312815i
\(786\) 0 0
\(787\) 7819.69i 0.354183i −0.984194 0.177091i \(-0.943331\pi\)
0.984194 0.177091i \(-0.0566688\pi\)
\(788\) 0 0
\(789\) −8657.81 + 14452.9i −0.390654 + 0.652140i
\(790\) 0 0
\(791\) 3500.81 0.157363
\(792\) 0 0
\(793\) −8439.66 −0.377933
\(794\) 0 0
\(795\) 9368.18 15638.8i 0.417931 0.697673i
\(796\) 0 0
\(797\) 12070.6i 0.536466i 0.963354 + 0.268233i \(0.0864397\pi\)
−0.963354 + 0.268233i \(0.913560\pi\)
\(798\) 0 0
\(799\) 894.533i 0.0396074i
\(800\) 0 0
\(801\) −28637.5 + 15325.6i −1.26324 + 0.676033i
\(802\) 0 0
\(803\) −7160.40 −0.314676
\(804\) 0 0
\(805\) −27890.0 −1.22111
\(806\) 0 0
\(807\) 14439.8 + 8649.95i 0.629871 + 0.377315i
\(808\) 0 0
\(809\) 12118.8i 0.526666i 0.964705 + 0.263333i \(0.0848218\pi\)
−0.964705 + 0.263333i \(0.915178\pi\)
\(810\) 0 0
\(811\) 26889.8i 1.16428i −0.813090 0.582138i \(-0.802216\pi\)
0.813090 0.582138i \(-0.197784\pi\)
\(812\) 0 0
\(813\) 5845.85 + 3501.87i 0.252181 + 0.151065i
\(814\) 0 0
\(815\) −8498.38 −0.365258
\(816\) 0 0
\(817\) −80773.1 −3.45887
\(818\) 0 0
\(819\) −43350.2 + 23199.2i −1.84955 + 0.989800i
\(820\) 0 0
\(821\) 23410.7i 0.995176i −0.867414 0.497588i \(-0.834219\pi\)
0.867414 0.497588i \(-0.165781\pi\)
\(822\) 0 0
\(823\) 33677.4i 1.42639i 0.700965 + 0.713196i \(0.252753\pi\)
−0.700965 + 0.713196i \(0.747247\pi\)
\(824\) 0 0
\(825\) −1781.34 + 2973.68i −0.0751737 + 0.125491i
\(826\) 0 0
\(827\) 38868.3 1.63432 0.817161 0.576409i \(-0.195547\pi\)
0.817161 + 0.576409i \(0.195547\pi\)
\(828\) 0 0
\(829\) 17670.7 0.740325 0.370162 0.928967i \(-0.379302\pi\)
0.370162 + 0.928967i \(0.379302\pi\)
\(830\) 0 0
\(831\) 8464.15 14129.6i 0.353331 0.589834i
\(832\) 0 0
\(833\) 2083.13i 0.0866460i
\(834\) 0 0
\(835\) 2599.06i 0.107718i
\(836\) 0 0
\(837\) −1197.03 + 24747.2i −0.0494330 + 1.02197i
\(838\) 0 0
\(839\) −20023.0 −0.823924 −0.411962 0.911201i \(-0.635156\pi\)
−0.411962 + 0.911201i \(0.635156\pi\)
\(840\) 0 0
\(841\) −26266.4 −1.07698
\(842\) 0 0
\(843\) 19811.4 + 11867.7i 0.809421 + 0.484872i
\(844\) 0 0
\(845\) 8876.79i 0.361386i
\(846\) 0 0
\(847\) 17883.0i 0.725464i
\(848\) 0 0
\(849\) 4722.58 + 2828.99i 0.190905 + 0.114359i
\(850\) 0 0
\(851\) 7000.60 0.281995
\(852\) 0 0
\(853\) 18904.0 0.758807 0.379403 0.925231i \(-0.376129\pi\)
0.379403 + 0.925231i \(0.376129\pi\)
\(854\) 0 0
\(855\) 10091.4 + 18856.9i 0.403649 + 0.754261i
\(856\) 0 0
\(857\) 26919.1i 1.07297i −0.843908 0.536487i \(-0.819751\pi\)
0.843908 0.536487i \(-0.180249\pi\)
\(858\) 0 0
\(859\) 20880.5i 0.829377i 0.909964 + 0.414688i \(0.136109\pi\)
−0.909964 + 0.414688i \(0.863891\pi\)
\(860\) 0 0
\(861\) −23123.5 + 38601.3i −0.915271 + 1.52791i
\(862\) 0 0
\(863\) 14655.5 0.578077 0.289038 0.957318i \(-0.406664\pi\)
0.289038 + 0.957318i \(0.406664\pi\)
\(864\) 0 0
\(865\) 11160.4 0.438689
\(866\) 0 0
\(867\) 13071.0 21820.0i 0.512010 0.854725i
\(868\) 0 0
\(869\) 14657.4i 0.572175i
\(870\) 0 0
\(871\) 18465.7i 0.718356i
\(872\) 0 0
\(873\) −10597.3 19802.1i −0.410840 0.767698i
\(874\) 0 0
\(875\) −3611.61 −0.139537
\(876\) 0 0
\(877\) −16056.0 −0.618214 −0.309107 0.951027i \(-0.600030\pi\)
−0.309107 + 0.951027i \(0.600030\pi\)
\(878\) 0 0
\(879\) −41620.2 24932.0i −1.59706 0.956694i
\(880\) 0 0
\(881\) 37335.5i 1.42777i −0.700264 0.713884i \(-0.746934\pi\)
0.700264 0.713884i \(-0.253066\pi\)
\(882\) 0 0
\(883\) 29969.1i 1.14217i 0.820890 + 0.571087i \(0.193478\pi\)
−0.820890 + 0.571087i \(0.806522\pi\)
\(884\) 0 0
\(885\) 6672.43 + 3997.02i 0.253436 + 0.151817i
\(886\) 0 0
\(887\) 15847.3 0.599887 0.299944 0.953957i \(-0.403032\pi\)
0.299944 + 0.953957i \(0.403032\pi\)
\(888\) 0 0
\(889\) 61100.1 2.30510
\(890\) 0 0
\(891\) −10791.2 + 16185.4i −0.405745 + 0.608564i
\(892\) 0 0
\(893\) 33457.3i 1.25376i
\(894\) 0 0
\(895\) 6445.21i 0.240715i
\(896\) 0 0
\(897\) 32490.9 54238.7i 1.20941 2.01893i
\(898\) 0 0
\(899\) −39746.7 −1.47456
\(900\) 0 0
\(901\) −2972.11 −0.109895
\(902\) 0 0
\(903\) 39335.3 65664.5i 1.44961 2.41991i
\(904\) 0 0
\(905\) 12499.0i 0.459094i
\(906\) 0 0
\(907\) 41184.7i 1.50773i −0.657027 0.753867i \(-0.728186\pi\)
0.657027 0.753867i \(-0.271814\pi\)
\(908\) 0 0
\(909\) −3838.31 + 2054.10i −0.140054 + 0.0749509i
\(910\) 0 0
\(911\) −36382.4 −1.32316 −0.661582 0.749873i \(-0.730115\pi\)
−0.661582 + 0.749873i \(0.730115\pi\)
\(912\) 0 0
\(913\) −5131.72 −0.186019
\(914\) 0 0
\(915\) −2984.47 1787.80i −0.107829 0.0645934i
\(916\) 0 0
\(917\) 24679.3i 0.888748i
\(918\) 0 0
\(919\) 21252.5i 0.762844i −0.924401 0.381422i \(-0.875434\pi\)
0.924401 0.381422i \(-0.124566\pi\)
\(920\) 0 0
\(921\) −8393.17 5027.80i −0.300287 0.179882i
\(922\) 0 0
\(923\) −39730.0 −1.41682
\(924\) 0 0
\(925\) 906.541 0.0322237
\(926\) 0 0
\(927\) −18465.2 + 9881.79i −0.654235 + 0.350119i
\(928\) 0 0
\(929\) 21790.5i 0.769563i 0.923008 + 0.384781i \(0.125723\pi\)
−0.923008 + 0.384781i \(0.874277\pi\)
\(930\) 0 0
\(931\) 77913.0i 2.74274i
\(932\) 0 0
\(933\) −9063.23 + 15129.7i −0.318024 + 0.530894i
\(934\) 0 0
\(935\) 565.142 0.0197670
\(936\) 0 0
\(937\) 8598.71 0.299795 0.149897 0.988702i \(-0.452106\pi\)
0.149897 + 0.988702i \(0.452106\pi\)
\(938\) 0 0
\(939\) 13553.8 22626.1i 0.471045 0.786340i
\(940\) 0 0
\(941\) 49480.0i 1.71414i −0.515203 0.857068i \(-0.672283\pi\)
0.515203 0.857068i \(-0.327717\pi\)
\(942\) 0 0
\(943\) 57863.2i 1.99818i
\(944\) 0 0
\(945\) −20244.1 979.215i −0.696869 0.0337078i
\(946\) 0 0
\(947\) −24727.0 −0.848489 −0.424245 0.905548i \(-0.639460\pi\)
−0.424245 + 0.905548i \(0.639460\pi\)
\(948\) 0 0
\(949\) 16912.3 0.578501
\(950\) 0 0
\(951\) −32085.8 19220.5i −1.09406 0.655382i
\(952\) 0 0
\(953\) 52173.5i 1.77341i 0.462331 + 0.886707i \(0.347013\pi\)
−0.462331 + 0.886707i \(0.652987\pi\)
\(954\) 0 0
\(955\) 8319.78i 0.281907i
\(956\) 0 0
\(957\) −26771.2 16036.9i −0.904274 0.541692i
\(958\) 0 0
\(959\) −10449.2 −0.351847
\(960\) 0 0
\(961\) −1396.13 −0.0468642
\(962\) 0 0
\(963\) −8077.76 15094.1i −0.270303 0.505091i
\(964\) 0 0
\(965\) 7210.80i 0.240543i
\(966\) 0 0
\(967\) 5925.67i 0.197060i −0.995134 0.0985298i \(-0.968586\pi\)
0.995134 0.0985298i \(-0.0314140\pi\)
\(968\) 0 0
\(969\) 1791.86 2991.24i 0.0594043 0.0991666i
\(970\) 0 0
\(971\) −56824.1 −1.87803 −0.939017 0.343869i \(-0.888262\pi\)
−0.939017 + 0.343869i \(0.888262\pi\)
\(972\) 0 0
\(973\) −13172.7 −0.434017
\(974\) 0 0
\(975\) 4207.40 7023.63i 0.138200 0.230704i
\(976\) 0 0
\(977\) 59000.6i 1.93203i 0.258477 + 0.966017i \(0.416779\pi\)
−0.258477 + 0.966017i \(0.583221\pi\)
\(978\) 0 0
\(979\) 32100.8i 1.04795i
\(980\) 0 0
\(981\) 12579.4 + 23505.9i 0.409407 + 0.765021i
\(982\) 0 0
\(983\) −30068.3 −0.975615 −0.487807 0.872951i \(-0.662203\pi\)
−0.487807 + 0.872951i \(0.662203\pi\)
\(984\) 0 0
\(985\) 12025.4 0.388997
\(986\) 0 0
\(987\) −27199.1 16293.2i −0.877159 0.525449i
\(988\) 0 0
\(989\) 98430.7i 3.16473i
\(990\) 0 0
\(991\) 30736.5i 0.985243i 0.870244 + 0.492622i \(0.163961\pi\)
−0.870244 + 0.492622i \(0.836039\pi\)
\(992\) 0 0
\(993\) −30388.2 18203.6i −0.971137 0.581745i
\(994\) 0 0
\(995\) −19798.7 −0.630816
\(996\) 0 0
\(997\) 34289.3 1.08922 0.544610 0.838689i \(-0.316678\pi\)
0.544610 + 0.838689i \(0.316678\pi\)
\(998\) 0 0
\(999\) 5081.43 + 245.790i 0.160930 + 0.00778425i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 480.4.h.a.191.15 24
3.2 odd 2 480.4.h.b.191.9 yes 24
4.3 odd 2 480.4.h.b.191.10 yes 24
8.3 odd 2 960.4.h.c.191.15 24
8.5 even 2 960.4.h.e.191.10 24
12.11 even 2 inner 480.4.h.a.191.16 yes 24
24.5 odd 2 960.4.h.c.191.16 24
24.11 even 2 960.4.h.e.191.9 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
480.4.h.a.191.15 24 1.1 even 1 trivial
480.4.h.a.191.16 yes 24 12.11 even 2 inner
480.4.h.b.191.9 yes 24 3.2 odd 2
480.4.h.b.191.10 yes 24 4.3 odd 2
960.4.h.c.191.15 24 8.3 odd 2
960.4.h.c.191.16 24 24.5 odd 2
960.4.h.e.191.9 24 24.11 even 2
960.4.h.e.191.10 24 8.5 even 2