Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [480,4,Mod(191,480)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(480, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 0, 1, 0]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("480.191");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 480 = 2^{5} \cdot 3 \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 480.h (of order \(2\), degree \(1\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(28.3209168028\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
191.1 | 0 | −5.19596 | − | 0.0444499i | 0 | 5.00000i | 0 | − | 5.27888i | 0 | 26.9960 | + | 0.461920i | 0 | |||||||||||||
191.2 | 0 | −5.19596 | + | 0.0444499i | 0 | − | 5.00000i | 0 | 5.27888i | 0 | 26.9960 | − | 0.461920i | 0 | |||||||||||||
191.3 | 0 | −5.07498 | − | 1.11559i | 0 | − | 5.00000i | 0 | − | 17.6092i | 0 | 24.5109 | + | 11.3232i | 0 | ||||||||||||
191.4 | 0 | −5.07498 | + | 1.11559i | 0 | 5.00000i | 0 | 17.6092i | 0 | 24.5109 | − | 11.3232i | 0 | ||||||||||||||
191.5 | 0 | −3.78906 | − | 3.55571i | 0 | 5.00000i | 0 | − | 13.3637i | 0 | 1.71392 | + | 26.9455i | 0 | |||||||||||||
191.6 | 0 | −3.78906 | + | 3.55571i | 0 | − | 5.00000i | 0 | 13.3637i | 0 | 1.71392 | − | 26.9455i | 0 | |||||||||||||
191.7 | 0 | −3.26404 | − | 4.04302i | 0 | 5.00000i | 0 | 14.4221i | 0 | −5.69203 | + | 26.3932i | 0 | ||||||||||||||
191.8 | 0 | −3.26404 | + | 4.04302i | 0 | − | 5.00000i | 0 | − | 14.4221i | 0 | −5.69203 | − | 26.3932i | 0 | ||||||||||||
191.9 | 0 | −2.28458 | − | 4.66698i | 0 | − | 5.00000i | 0 | − | 8.51421i | 0 | −16.5614 | + | 21.3242i | 0 | ||||||||||||
191.10 | 0 | −2.28458 | + | 4.66698i | 0 | 5.00000i | 0 | 8.51421i | 0 | −16.5614 | − | 21.3242i | 0 | ||||||||||||||
191.11 | 0 | −0.991849 | − | 5.10061i | 0 | − | 5.00000i | 0 | 7.56208i | 0 | −25.0325 | + | 10.1181i | 0 | |||||||||||||
191.12 | 0 | −0.991849 | + | 5.10061i | 0 | 5.00000i | 0 | − | 7.56208i | 0 | −25.0325 | − | 10.1181i | 0 | |||||||||||||
191.13 | 0 | 0.637007 | − | 5.15696i | 0 | 5.00000i | 0 | − | 26.9030i | 0 | −26.1884 | − | 6.57004i | 0 | |||||||||||||
191.14 | 0 | 0.637007 | + | 5.15696i | 0 | − | 5.00000i | 0 | 26.9030i | 0 | −26.1884 | + | 6.57004i | 0 | |||||||||||||
191.15 | 0 | 2.67023 | − | 4.45756i | 0 | − | 5.00000i | 0 | 28.8929i | 0 | −12.7397 | − | 23.8055i | 0 | |||||||||||||
191.16 | 0 | 2.67023 | + | 4.45756i | 0 | 5.00000i | 0 | − | 28.8929i | 0 | −12.7397 | + | 23.8055i | 0 | |||||||||||||
191.17 | 0 | 3.76455 | − | 3.58164i | 0 | − | 5.00000i | 0 | − | 30.2049i | 0 | 1.34373 | − | 26.9665i | 0 | ||||||||||||
191.18 | 0 | 3.76455 | + | 3.58164i | 0 | 5.00000i | 0 | 30.2049i | 0 | 1.34373 | + | 26.9665i | 0 | ||||||||||||||
191.19 | 0 | 4.12770 | − | 3.15628i | 0 | 5.00000i | 0 | − | 3.91168i | 0 | 7.07583 | − | 26.0563i | 0 | |||||||||||||
191.20 | 0 | 4.12770 | + | 3.15628i | 0 | − | 5.00000i | 0 | 3.91168i | 0 | 7.07583 | + | 26.0563i | 0 | |||||||||||||
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
12.b | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 480.4.h.a | ✓ | 24 |
3.b | odd | 2 | 1 | 480.4.h.b | yes | 24 | |
4.b | odd | 2 | 1 | 480.4.h.b | yes | 24 | |
8.b | even | 2 | 1 | 960.4.h.e | 24 | ||
8.d | odd | 2 | 1 | 960.4.h.c | 24 | ||
12.b | even | 2 | 1 | inner | 480.4.h.a | ✓ | 24 |
24.f | even | 2 | 1 | 960.4.h.e | 24 | ||
24.h | odd | 2 | 1 | 960.4.h.c | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
480.4.h.a | ✓ | 24 | 1.a | even | 1 | 1 | trivial |
480.4.h.a | ✓ | 24 | 12.b | even | 2 | 1 | inner |
480.4.h.b | yes | 24 | 3.b | odd | 2 | 1 | |
480.4.h.b | yes | 24 | 4.b | odd | 2 | 1 | |
960.4.h.c | 24 | 8.d | odd | 2 | 1 | ||
960.4.h.c | 24 | 24.h | odd | 2 | 1 | ||
960.4.h.e | 24 | 8.b | even | 2 | 1 | ||
960.4.h.e | 24 | 24.f | even | 2 | 1 |