Properties

Label 480.4.h.a.191.22
Level $480$
Weight $4$
Character 480.191
Analytic conductor $28.321$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [480,4,Mod(191,480)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(480, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("480.191");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 480 = 2^{5} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 480.h (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(28.3209168028\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 191.22
Character \(\chi\) \(=\) 480.191
Dual form 480.4.h.a.191.21

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(4.47955 + 2.63318i) q^{3} -5.00000i q^{5} -30.6962i q^{7} +(13.1328 + 23.5909i) q^{9} +8.44415 q^{11} +1.42157 q^{13} +(13.1659 - 22.3978i) q^{15} -53.1406i q^{17} +42.2378i q^{19} +(80.8285 - 137.505i) q^{21} -75.5043 q^{23} -25.0000 q^{25} +(-3.29015 + 140.258i) q^{27} -184.020i q^{29} -313.528i q^{31} +(37.8260 + 22.2349i) q^{33} -153.481 q^{35} -344.423 q^{37} +(6.36799 + 3.74324i) q^{39} -349.174i q^{41} -161.727i q^{43} +(117.955 - 65.6638i) q^{45} +505.194 q^{47} -599.257 q^{49} +(139.929 - 238.046i) q^{51} +215.195i q^{53} -42.2207i q^{55} +(-111.220 + 189.207i) q^{57} +582.343 q^{59} +635.634 q^{61} +(724.151 - 403.126i) q^{63} -7.10785i q^{65} +143.076i q^{67} +(-338.225 - 198.816i) q^{69} +473.307 q^{71} -224.614 q^{73} +(-111.989 - 65.8294i) q^{75} -259.203i q^{77} +1188.82i q^{79} +(-384.061 + 619.627i) q^{81} +425.854 q^{83} -265.703 q^{85} +(484.557 - 824.327i) q^{87} -827.327i q^{89} -43.6368i q^{91} +(825.575 - 1404.46i) q^{93} +211.189 q^{95} -1041.70 q^{97} +(110.895 + 199.205i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 20 q^{9} - 72 q^{11} - 72 q^{13} - 20 q^{15} - 68 q^{21} - 96 q^{23} - 600 q^{25} - 168 q^{27} - 80 q^{33} - 504 q^{37} + 456 q^{39} - 220 q^{45} - 432 q^{47} - 816 q^{49} - 1240 q^{51} + 40 q^{57}+ \cdots - 3160 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/480\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(97\) \(161\) \(421\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 4.47955 + 2.63318i 0.862090 + 0.506755i
\(4\) 0 0
\(5\) 5.00000i 0.447214i
\(6\) 0 0
\(7\) 30.6962i 1.65744i −0.559664 0.828720i \(-0.689070\pi\)
0.559664 0.828720i \(-0.310930\pi\)
\(8\) 0 0
\(9\) 13.1328 + 23.5909i 0.486398 + 0.873737i
\(10\) 0 0
\(11\) 8.44415 0.231455 0.115728 0.993281i \(-0.463080\pi\)
0.115728 + 0.993281i \(0.463080\pi\)
\(12\) 0 0
\(13\) 1.42157 0.0303287 0.0151643 0.999885i \(-0.495173\pi\)
0.0151643 + 0.999885i \(0.495173\pi\)
\(14\) 0 0
\(15\) 13.1659 22.3978i 0.226628 0.385538i
\(16\) 0 0
\(17\) 53.1406i 0.758147i −0.925367 0.379074i \(-0.876243\pi\)
0.925367 0.379074i \(-0.123757\pi\)
\(18\) 0 0
\(19\) 42.2378i 0.510001i 0.966941 + 0.255001i \(0.0820757\pi\)
−0.966941 + 0.255001i \(0.917924\pi\)
\(20\) 0 0
\(21\) 80.8285 137.505i 0.839916 1.42886i
\(22\) 0 0
\(23\) −75.5043 −0.684510 −0.342255 0.939607i \(-0.611191\pi\)
−0.342255 + 0.939607i \(0.611191\pi\)
\(24\) 0 0
\(25\) −25.0000 −0.200000
\(26\) 0 0
\(27\) −3.29015 + 140.258i −0.0234515 + 0.999725i
\(28\) 0 0
\(29\) 184.020i 1.17833i −0.808012 0.589167i \(-0.799456\pi\)
0.808012 0.589167i \(-0.200544\pi\)
\(30\) 0 0
\(31\) 313.528i 1.81649i −0.418435 0.908247i \(-0.637421\pi\)
0.418435 0.908247i \(-0.362579\pi\)
\(32\) 0 0
\(33\) 37.8260 + 22.2349i 0.199535 + 0.117291i
\(34\) 0 0
\(35\) −153.481 −0.741229
\(36\) 0 0
\(37\) −344.423 −1.53035 −0.765174 0.643824i \(-0.777347\pi\)
−0.765174 + 0.643824i \(0.777347\pi\)
\(38\) 0 0
\(39\) 6.36799 + 3.74324i 0.0261460 + 0.0153692i
\(40\) 0 0
\(41\) 349.174i 1.33004i −0.746824 0.665022i \(-0.768422\pi\)
0.746824 0.665022i \(-0.231578\pi\)
\(42\) 0 0
\(43\) 161.727i 0.573562i −0.957996 0.286781i \(-0.907415\pi\)
0.957996 0.286781i \(-0.0925852\pi\)
\(44\) 0 0
\(45\) 117.955 65.6638i 0.390747 0.217524i
\(46\) 0 0
\(47\) 505.194 1.56788 0.783938 0.620839i \(-0.213208\pi\)
0.783938 + 0.620839i \(0.213208\pi\)
\(48\) 0 0
\(49\) −599.257 −1.74710
\(50\) 0 0
\(51\) 139.929 238.046i 0.384195 0.653591i
\(52\) 0 0
\(53\) 215.195i 0.557722i 0.960331 + 0.278861i \(0.0899569\pi\)
−0.960331 + 0.278861i \(0.910043\pi\)
\(54\) 0 0
\(55\) 42.2207i 0.103510i
\(56\) 0 0
\(57\) −111.220 + 189.207i −0.258446 + 0.439667i
\(58\) 0 0
\(59\) 582.343 1.28499 0.642497 0.766288i \(-0.277899\pi\)
0.642497 + 0.766288i \(0.277899\pi\)
\(60\) 0 0
\(61\) 635.634 1.33417 0.667087 0.744980i \(-0.267541\pi\)
0.667087 + 0.744980i \(0.267541\pi\)
\(62\) 0 0
\(63\) 724.151 403.126i 1.44817 0.806176i
\(64\) 0 0
\(65\) 7.10785i 0.0135634i
\(66\) 0 0
\(67\) 143.076i 0.260889i 0.991456 + 0.130444i \(0.0416404\pi\)
−0.991456 + 0.130444i \(0.958360\pi\)
\(68\) 0 0
\(69\) −338.225 198.816i −0.590109 0.346879i
\(70\) 0 0
\(71\) 473.307 0.791144 0.395572 0.918435i \(-0.370546\pi\)
0.395572 + 0.918435i \(0.370546\pi\)
\(72\) 0 0
\(73\) −224.614 −0.360124 −0.180062 0.983655i \(-0.557630\pi\)
−0.180062 + 0.983655i \(0.557630\pi\)
\(74\) 0 0
\(75\) −111.989 65.8294i −0.172418 0.101351i
\(76\) 0 0
\(77\) 259.203i 0.383623i
\(78\) 0 0
\(79\) 1188.82i 1.69307i 0.532334 + 0.846534i \(0.321315\pi\)
−0.532334 + 0.846534i \(0.678685\pi\)
\(80\) 0 0
\(81\) −384.061 + 619.627i −0.526833 + 0.849969i
\(82\) 0 0
\(83\) 425.854 0.563175 0.281588 0.959535i \(-0.409139\pi\)
0.281588 + 0.959535i \(0.409139\pi\)
\(84\) 0 0
\(85\) −265.703 −0.339054
\(86\) 0 0
\(87\) 484.557 824.327i 0.597126 1.01583i
\(88\) 0 0
\(89\) 827.327i 0.985354i −0.870212 0.492677i \(-0.836018\pi\)
0.870212 0.492677i \(-0.163982\pi\)
\(90\) 0 0
\(91\) 43.6368i 0.0502679i
\(92\) 0 0
\(93\) 825.575 1404.46i 0.920517 1.56598i
\(94\) 0 0
\(95\) 211.189 0.228079
\(96\) 0 0
\(97\) −1041.70 −1.09040 −0.545199 0.838307i \(-0.683546\pi\)
−0.545199 + 0.838307i \(0.683546\pi\)
\(98\) 0 0
\(99\) 110.895 + 199.205i 0.112579 + 0.202231i
\(100\) 0 0
\(101\) 1024.94i 1.00975i −0.863192 0.504876i \(-0.831538\pi\)
0.863192 0.504876i \(-0.168462\pi\)
\(102\) 0 0
\(103\) 509.724i 0.487617i 0.969823 + 0.243809i \(0.0783968\pi\)
−0.969823 + 0.243809i \(0.921603\pi\)
\(104\) 0 0
\(105\) −687.526 404.143i −0.639006 0.375622i
\(106\) 0 0
\(107\) −371.393 −0.335550 −0.167775 0.985825i \(-0.553658\pi\)
−0.167775 + 0.985825i \(0.553658\pi\)
\(108\) 0 0
\(109\) 96.7636 0.0850300 0.0425150 0.999096i \(-0.486463\pi\)
0.0425150 + 0.999096i \(0.486463\pi\)
\(110\) 0 0
\(111\) −1542.86 906.928i −1.31930 0.775511i
\(112\) 0 0
\(113\) 1027.85i 0.855683i 0.903854 + 0.427842i \(0.140726\pi\)
−0.903854 + 0.427842i \(0.859274\pi\)
\(114\) 0 0
\(115\) 377.521i 0.306122i
\(116\) 0 0
\(117\) 18.6691 + 33.5361i 0.0147518 + 0.0264993i
\(118\) 0 0
\(119\) −1631.22 −1.25658
\(120\) 0 0
\(121\) −1259.70 −0.946429
\(122\) 0 0
\(123\) 919.437 1564.14i 0.674007 1.14662i
\(124\) 0 0
\(125\) 125.000i 0.0894427i
\(126\) 0 0
\(127\) 1704.60i 1.19101i −0.803350 0.595507i \(-0.796951\pi\)
0.803350 0.595507i \(-0.203049\pi\)
\(128\) 0 0
\(129\) 425.856 724.465i 0.290655 0.494462i
\(130\) 0 0
\(131\) 2830.28 1.88766 0.943828 0.330437i \(-0.107196\pi\)
0.943828 + 0.330437i \(0.107196\pi\)
\(132\) 0 0
\(133\) 1296.54 0.845296
\(134\) 0 0
\(135\) 701.288 + 16.4507i 0.447091 + 0.0104878i
\(136\) 0 0
\(137\) 822.413i 0.512872i 0.966561 + 0.256436i \(0.0825483\pi\)
−0.966561 + 0.256436i \(0.917452\pi\)
\(138\) 0 0
\(139\) 939.127i 0.573063i 0.958071 + 0.286531i \(0.0925022\pi\)
−0.958071 + 0.286531i \(0.907498\pi\)
\(140\) 0 0
\(141\) 2263.04 + 1330.27i 1.35165 + 0.794529i
\(142\) 0 0
\(143\) 12.0039 0.00701972
\(144\) 0 0
\(145\) −920.100 −0.526967
\(146\) 0 0
\(147\) −2684.40 1577.95i −1.50616 0.885354i
\(148\) 0 0
\(149\) 1598.11i 0.878675i −0.898322 0.439338i \(-0.855213\pi\)
0.898322 0.439338i \(-0.144787\pi\)
\(150\) 0 0
\(151\) 2314.47i 1.24734i 0.781687 + 0.623671i \(0.214360\pi\)
−0.781687 + 0.623671i \(0.785640\pi\)
\(152\) 0 0
\(153\) 1253.64 697.883i 0.662421 0.368762i
\(154\) 0 0
\(155\) −1567.64 −0.812360
\(156\) 0 0
\(157\) 1902.00 0.966853 0.483426 0.875385i \(-0.339392\pi\)
0.483426 + 0.875385i \(0.339392\pi\)
\(158\) 0 0
\(159\) −566.646 + 963.976i −0.282629 + 0.480807i
\(160\) 0 0
\(161\) 2317.69i 1.13453i
\(162\) 0 0
\(163\) 1448.44i 0.696014i −0.937492 0.348007i \(-0.886859\pi\)
0.937492 0.348007i \(-0.113141\pi\)
\(164\) 0 0
\(165\) 111.175 189.130i 0.0524542 0.0892348i
\(166\) 0 0
\(167\) −2873.68 −1.33157 −0.665784 0.746144i \(-0.731903\pi\)
−0.665784 + 0.746144i \(0.731903\pi\)
\(168\) 0 0
\(169\) −2194.98 −0.999080
\(170\) 0 0
\(171\) −996.428 + 554.699i −0.445607 + 0.248064i
\(172\) 0 0
\(173\) 84.4452i 0.0371113i −0.999828 0.0185556i \(-0.994093\pi\)
0.999828 0.0185556i \(-0.00590678\pi\)
\(174\) 0 0
\(175\) 767.405i 0.331488i
\(176\) 0 0
\(177\) 2608.64 + 1533.41i 1.10778 + 0.651177i
\(178\) 0 0
\(179\) 1333.14 0.556670 0.278335 0.960484i \(-0.410217\pi\)
0.278335 + 0.960484i \(0.410217\pi\)
\(180\) 0 0
\(181\) −3560.10 −1.46199 −0.730996 0.682382i \(-0.760944\pi\)
−0.730996 + 0.682382i \(0.760944\pi\)
\(182\) 0 0
\(183\) 2847.35 + 1673.74i 1.15018 + 0.676099i
\(184\) 0 0
\(185\) 1722.12i 0.684392i
\(186\) 0 0
\(187\) 448.728i 0.175477i
\(188\) 0 0
\(189\) 4305.37 + 100.995i 1.65698 + 0.0388694i
\(190\) 0 0
\(191\) −1156.95 −0.438293 −0.219146 0.975692i \(-0.570327\pi\)
−0.219146 + 0.975692i \(0.570327\pi\)
\(192\) 0 0
\(193\) 947.332 0.353318 0.176659 0.984272i \(-0.443471\pi\)
0.176659 + 0.984272i \(0.443471\pi\)
\(194\) 0 0
\(195\) 18.7162 31.8400i 0.00687332 0.0116929i
\(196\) 0 0
\(197\) 1578.72i 0.570960i −0.958385 0.285480i \(-0.907847\pi\)
0.958385 0.285480i \(-0.0921530\pi\)
\(198\) 0 0
\(199\) 3388.77i 1.20715i 0.797305 + 0.603576i \(0.206258\pi\)
−0.797305 + 0.603576i \(0.793742\pi\)
\(200\) 0 0
\(201\) −376.745 + 640.918i −0.132207 + 0.224910i
\(202\) 0 0
\(203\) −5648.72 −1.95302
\(204\) 0 0
\(205\) −1745.87 −0.594814
\(206\) 0 0
\(207\) −991.579 1781.21i −0.332945 0.598082i
\(208\) 0 0
\(209\) 356.663i 0.118042i
\(210\) 0 0
\(211\) 4291.74i 1.40026i 0.714014 + 0.700132i \(0.246875\pi\)
−0.714014 + 0.700132i \(0.753125\pi\)
\(212\) 0 0
\(213\) 2120.20 + 1246.30i 0.682037 + 0.400916i
\(214\) 0 0
\(215\) −808.636 −0.256505
\(216\) 0 0
\(217\) −9624.12 −3.01073
\(218\) 0 0
\(219\) −1006.17 591.447i −0.310459 0.182495i
\(220\) 0 0
\(221\) 75.5431i 0.0229936i
\(222\) 0 0
\(223\) 3722.34i 1.11779i 0.829239 + 0.558894i \(0.188774\pi\)
−0.829239 + 0.558894i \(0.811226\pi\)
\(224\) 0 0
\(225\) −328.319 589.773i −0.0972797 0.174747i
\(226\) 0 0
\(227\) 2987.21 0.873428 0.436714 0.899600i \(-0.356142\pi\)
0.436714 + 0.899600i \(0.356142\pi\)
\(228\) 0 0
\(229\) 5291.96 1.52708 0.763542 0.645758i \(-0.223458\pi\)
0.763542 + 0.645758i \(0.223458\pi\)
\(230\) 0 0
\(231\) 682.528 1161.11i 0.194403 0.330717i
\(232\) 0 0
\(233\) 6277.11i 1.76492i 0.470385 + 0.882461i \(0.344115\pi\)
−0.470385 + 0.882461i \(0.655885\pi\)
\(234\) 0 0
\(235\) 2525.97i 0.701176i
\(236\) 0 0
\(237\) −3130.37 + 5325.37i −0.857971 + 1.45958i
\(238\) 0 0
\(239\) 960.397 0.259929 0.129964 0.991519i \(-0.458514\pi\)
0.129964 + 0.991519i \(0.458514\pi\)
\(240\) 0 0
\(241\) 7032.90 1.87979 0.939894 0.341467i \(-0.110924\pi\)
0.939894 + 0.341467i \(0.110924\pi\)
\(242\) 0 0
\(243\) −3352.01 + 1764.35i −0.884904 + 0.465774i
\(244\) 0 0
\(245\) 2996.28i 0.781329i
\(246\) 0 0
\(247\) 60.0440i 0.0154676i
\(248\) 0 0
\(249\) 1907.64 + 1121.35i 0.485508 + 0.285392i
\(250\) 0 0
\(251\) 3405.37 0.856354 0.428177 0.903695i \(-0.359156\pi\)
0.428177 + 0.903695i \(0.359156\pi\)
\(252\) 0 0
\(253\) −637.569 −0.158433
\(254\) 0 0
\(255\) −1190.23 699.644i −0.292295 0.171817i
\(256\) 0 0
\(257\) 3398.21i 0.824804i 0.911002 + 0.412402i \(0.135310\pi\)
−0.911002 + 0.412402i \(0.864690\pi\)
\(258\) 0 0
\(259\) 10572.5i 2.53646i
\(260\) 0 0
\(261\) 4341.20 2416.69i 1.02955 0.573139i
\(262\) 0 0
\(263\) 2025.02 0.474783 0.237391 0.971414i \(-0.423708\pi\)
0.237391 + 0.971414i \(0.423708\pi\)
\(264\) 0 0
\(265\) 1075.97 0.249421
\(266\) 0 0
\(267\) 2178.50 3706.05i 0.499333 0.849464i
\(268\) 0 0
\(269\) 3700.78i 0.838812i 0.907799 + 0.419406i \(0.137762\pi\)
−0.907799 + 0.419406i \(0.862238\pi\)
\(270\) 0 0
\(271\) 5405.03i 1.21156i −0.795633 0.605779i \(-0.792861\pi\)
0.795633 0.605779i \(-0.207139\pi\)
\(272\) 0 0
\(273\) 114.903 195.473i 0.0254735 0.0433355i
\(274\) 0 0
\(275\) −211.104 −0.0462910
\(276\) 0 0
\(277\) −2927.21 −0.634943 −0.317471 0.948268i \(-0.602834\pi\)
−0.317471 + 0.948268i \(0.602834\pi\)
\(278\) 0 0
\(279\) 7396.41 4117.49i 1.58714 0.883540i
\(280\) 0 0
\(281\) 3813.62i 0.809613i −0.914402 0.404807i \(-0.867339\pi\)
0.914402 0.404807i \(-0.132661\pi\)
\(282\) 0 0
\(283\) 7631.39i 1.60297i 0.598018 + 0.801483i \(0.295955\pi\)
−0.598018 + 0.801483i \(0.704045\pi\)
\(284\) 0 0
\(285\) 946.033 + 556.098i 0.196625 + 0.115580i
\(286\) 0 0
\(287\) −10718.3 −2.20447
\(288\) 0 0
\(289\) 2089.07 0.425213
\(290\) 0 0
\(291\) −4666.35 2742.98i −0.940021 0.552565i
\(292\) 0 0
\(293\) 3321.29i 0.662226i −0.943591 0.331113i \(-0.892576\pi\)
0.943591 0.331113i \(-0.107424\pi\)
\(294\) 0 0
\(295\) 2911.72i 0.574667i
\(296\) 0 0
\(297\) −27.7825 + 1184.36i −0.00542796 + 0.231391i
\(298\) 0 0
\(299\) −107.335 −0.0207603
\(300\) 0 0
\(301\) −4964.41 −0.950644
\(302\) 0 0
\(303\) 2698.84 4591.25i 0.511697 0.870497i
\(304\) 0 0
\(305\) 3178.17i 0.596661i
\(306\) 0 0
\(307\) 309.855i 0.0576037i 0.999585 + 0.0288019i \(0.00916918\pi\)
−0.999585 + 0.0288019i \(0.990831\pi\)
\(308\) 0 0
\(309\) −1342.19 + 2283.33i −0.247102 + 0.420370i
\(310\) 0 0
\(311\) −7712.08 −1.40615 −0.703074 0.711117i \(-0.748190\pi\)
−0.703074 + 0.711117i \(0.748190\pi\)
\(312\) 0 0
\(313\) −305.245 −0.0551229 −0.0275615 0.999620i \(-0.508774\pi\)
−0.0275615 + 0.999620i \(0.508774\pi\)
\(314\) 0 0
\(315\) −2015.63 3620.76i −0.360533 0.647640i
\(316\) 0 0
\(317\) 6944.11i 1.23035i 0.788391 + 0.615174i \(0.210914\pi\)
−0.788391 + 0.615174i \(0.789086\pi\)
\(318\) 0 0
\(319\) 1553.89i 0.272731i
\(320\) 0 0
\(321\) −1663.67 977.943i −0.289275 0.170042i
\(322\) 0 0
\(323\) 2244.55 0.386656
\(324\) 0 0
\(325\) −35.5392 −0.00606573
\(326\) 0 0
\(327\) 433.458 + 254.796i 0.0733036 + 0.0430894i
\(328\) 0 0
\(329\) 15507.5i 2.59866i
\(330\) 0 0
\(331\) 1753.57i 0.291193i 0.989344 + 0.145596i \(0.0465100\pi\)
−0.989344 + 0.145596i \(0.953490\pi\)
\(332\) 0 0
\(333\) −4523.23 8125.26i −0.744359 1.33712i
\(334\) 0 0
\(335\) 715.381 0.116673
\(336\) 0 0
\(337\) −3893.43 −0.629343 −0.314671 0.949201i \(-0.601894\pi\)
−0.314671 + 0.949201i \(0.601894\pi\)
\(338\) 0 0
\(339\) −2706.52 + 4604.32i −0.433622 + 0.737676i
\(340\) 0 0
\(341\) 2647.48i 0.420437i
\(342\) 0 0
\(343\) 7866.11i 1.23828i
\(344\) 0 0
\(345\) −994.080 + 1691.13i −0.155129 + 0.263905i
\(346\) 0 0
\(347\) −3069.04 −0.474798 −0.237399 0.971412i \(-0.576295\pi\)
−0.237399 + 0.971412i \(0.576295\pi\)
\(348\) 0 0
\(349\) 9549.74 1.46472 0.732358 0.680919i \(-0.238420\pi\)
0.732358 + 0.680919i \(0.238420\pi\)
\(350\) 0 0
\(351\) −4.67717 + 199.386i −0.000711251 + 0.0303203i
\(352\) 0 0
\(353\) 12359.0i 1.86346i −0.363150 0.931731i \(-0.618299\pi\)
0.363150 0.931731i \(-0.381701\pi\)
\(354\) 0 0
\(355\) 2366.53i 0.353810i
\(356\) 0 0
\(357\) −7307.12 4295.28i −1.08329 0.636780i
\(358\) 0 0
\(359\) 8035.82 1.18138 0.590689 0.806900i \(-0.298856\pi\)
0.590689 + 0.806900i \(0.298856\pi\)
\(360\) 0 0
\(361\) 5074.97 0.739899
\(362\) 0 0
\(363\) −5642.87 3317.00i −0.815907 0.479607i
\(364\) 0 0
\(365\) 1123.07i 0.161052i
\(366\) 0 0
\(367\) 5634.42i 0.801402i −0.916209 0.400701i \(-0.868767\pi\)
0.916209 0.400701i \(-0.131233\pi\)
\(368\) 0 0
\(369\) 8237.33 4585.62i 1.16211 0.646931i
\(370\) 0 0
\(371\) 6605.66 0.924390
\(372\) 0 0
\(373\) −6939.30 −0.963280 −0.481640 0.876369i \(-0.659959\pi\)
−0.481640 + 0.876369i \(0.659959\pi\)
\(374\) 0 0
\(375\) −329.147 + 559.944i −0.0453256 + 0.0771077i
\(376\) 0 0
\(377\) 261.597i 0.0357373i
\(378\) 0 0
\(379\) 12425.5i 1.68404i −0.539443 0.842022i \(-0.681365\pi\)
0.539443 0.842022i \(-0.318635\pi\)
\(380\) 0 0
\(381\) 4488.51 7635.84i 0.603552 1.02676i
\(382\) 0 0
\(383\) 4037.90 0.538713 0.269356 0.963041i \(-0.413189\pi\)
0.269356 + 0.963041i \(0.413189\pi\)
\(384\) 0 0
\(385\) −1296.02 −0.171561
\(386\) 0 0
\(387\) 3815.29 2123.92i 0.501142 0.278980i
\(388\) 0 0
\(389\) 9958.38i 1.29797i 0.760802 + 0.648984i \(0.224806\pi\)
−0.760802 + 0.648984i \(0.775194\pi\)
\(390\) 0 0
\(391\) 4012.35i 0.518959i
\(392\) 0 0
\(393\) 12678.4 + 7452.64i 1.62733 + 0.956580i
\(394\) 0 0
\(395\) 5944.09 0.757163
\(396\) 0 0
\(397\) −15000.3 −1.89633 −0.948164 0.317781i \(-0.897062\pi\)
−0.948164 + 0.317781i \(0.897062\pi\)
\(398\) 0 0
\(399\) 5807.92 + 3414.02i 0.728721 + 0.428358i
\(400\) 0 0
\(401\) 12157.9i 1.51406i 0.653382 + 0.757029i \(0.273350\pi\)
−0.653382 + 0.757029i \(0.726650\pi\)
\(402\) 0 0
\(403\) 445.702i 0.0550918i
\(404\) 0 0
\(405\) 3098.14 + 1920.31i 0.380118 + 0.235607i
\(406\) 0 0
\(407\) −2908.36 −0.354207
\(408\) 0 0
\(409\) 7049.34 0.852243 0.426121 0.904666i \(-0.359880\pi\)
0.426121 + 0.904666i \(0.359880\pi\)
\(410\) 0 0
\(411\) −2165.56 + 3684.04i −0.259901 + 0.442142i
\(412\) 0 0
\(413\) 17875.7i 2.12980i
\(414\) 0 0
\(415\) 2129.27i 0.251860i
\(416\) 0 0
\(417\) −2472.89 + 4206.87i −0.290402 + 0.494032i
\(418\) 0 0
\(419\) 14345.9 1.67265 0.836327 0.548231i \(-0.184699\pi\)
0.836327 + 0.548231i \(0.184699\pi\)
\(420\) 0 0
\(421\) −12852.8 −1.48790 −0.743949 0.668236i \(-0.767049\pi\)
−0.743949 + 0.668236i \(0.767049\pi\)
\(422\) 0 0
\(423\) 6634.60 + 11918.0i 0.762613 + 1.36991i
\(424\) 0 0
\(425\) 1328.52i 0.151629i
\(426\) 0 0
\(427\) 19511.5i 2.21131i
\(428\) 0 0
\(429\) 53.7723 + 31.6085i 0.00605163 + 0.00355728i
\(430\) 0 0
\(431\) 2402.92 0.268548 0.134274 0.990944i \(-0.457130\pi\)
0.134274 + 0.990944i \(0.457130\pi\)
\(432\) 0 0
\(433\) −494.140 −0.0548426 −0.0274213 0.999624i \(-0.508730\pi\)
−0.0274213 + 0.999624i \(0.508730\pi\)
\(434\) 0 0
\(435\) −4121.64 2422.79i −0.454293 0.267043i
\(436\) 0 0
\(437\) 3189.14i 0.349101i
\(438\) 0 0
\(439\) 6222.73i 0.676525i 0.941052 + 0.338263i \(0.109839\pi\)
−0.941052 + 0.338263i \(0.890161\pi\)
\(440\) 0 0
\(441\) −7869.89 14137.0i −0.849789 1.52651i
\(442\) 0 0
\(443\) 15317.1 1.64275 0.821375 0.570389i \(-0.193207\pi\)
0.821375 + 0.570389i \(0.193207\pi\)
\(444\) 0 0
\(445\) −4136.63 −0.440664
\(446\) 0 0
\(447\) 4208.12 7158.83i 0.445273 0.757497i
\(448\) 0 0
\(449\) 3891.31i 0.409003i −0.978866 0.204501i \(-0.934443\pi\)
0.978866 0.204501i \(-0.0655573\pi\)
\(450\) 0 0
\(451\) 2948.48i 0.307846i
\(452\) 0 0
\(453\) −6094.40 + 10367.8i −0.632097 + 1.07532i
\(454\) 0 0
\(455\) −218.184 −0.0224805
\(456\) 0 0
\(457\) 2951.67 0.302130 0.151065 0.988524i \(-0.451730\pi\)
0.151065 + 0.988524i \(0.451730\pi\)
\(458\) 0 0
\(459\) 7453.38 + 174.841i 0.757939 + 0.0177796i
\(460\) 0 0
\(461\) 18289.8i 1.84781i 0.382622 + 0.923905i \(0.375021\pi\)
−0.382622 + 0.923905i \(0.624979\pi\)
\(462\) 0 0
\(463\) 5620.10i 0.564122i −0.959397 0.282061i \(-0.908982\pi\)
0.959397 0.282061i \(-0.0910180\pi\)
\(464\) 0 0
\(465\) −7022.32 4127.87i −0.700328 0.411668i
\(466\) 0 0
\(467\) −926.584 −0.0918141 −0.0459070 0.998946i \(-0.514618\pi\)
−0.0459070 + 0.998946i \(0.514618\pi\)
\(468\) 0 0
\(469\) 4391.90 0.432407
\(470\) 0 0
\(471\) 8520.09 + 5008.29i 0.833514 + 0.489957i
\(472\) 0 0
\(473\) 1365.65i 0.132754i
\(474\) 0 0
\(475\) 1055.95i 0.102000i
\(476\) 0 0
\(477\) −5076.64 + 2826.10i −0.487302 + 0.271275i
\(478\) 0 0
\(479\) −9333.96 −0.890354 −0.445177 0.895443i \(-0.646859\pi\)
−0.445177 + 0.895443i \(0.646859\pi\)
\(480\) 0 0
\(481\) −489.622 −0.0464134
\(482\) 0 0
\(483\) −6102.90 + 10382.2i −0.574931 + 0.978070i
\(484\) 0 0
\(485\) 5208.50i 0.487641i
\(486\) 0 0
\(487\) 10323.9i 0.960619i −0.877099 0.480309i \(-0.840524\pi\)
0.877099 0.480309i \(-0.159476\pi\)
\(488\) 0 0
\(489\) 3813.99 6488.34i 0.352709 0.600027i
\(490\) 0 0
\(491\) 4918.30 0.452056 0.226028 0.974121i \(-0.427426\pi\)
0.226028 + 0.974121i \(0.427426\pi\)
\(492\) 0 0
\(493\) −9778.94 −0.893350
\(494\) 0 0
\(495\) 996.025 554.475i 0.0904404 0.0503471i
\(496\) 0 0
\(497\) 14528.7i 1.31127i
\(498\) 0 0
\(499\) 4521.90i 0.405667i 0.979213 + 0.202834i \(0.0650151\pi\)
−0.979213 + 0.202834i \(0.934985\pi\)
\(500\) 0 0
\(501\) −12872.8 7566.90i −1.14793 0.674779i
\(502\) 0 0
\(503\) −3614.99 −0.320446 −0.160223 0.987081i \(-0.551221\pi\)
−0.160223 + 0.987081i \(0.551221\pi\)
\(504\) 0 0
\(505\) −5124.68 −0.451575
\(506\) 0 0
\(507\) −9832.52 5779.77i −0.861297 0.506289i
\(508\) 0 0
\(509\) 9543.27i 0.831037i −0.909585 0.415519i \(-0.863600\pi\)
0.909585 0.415519i \(-0.136400\pi\)
\(510\) 0 0
\(511\) 6894.78i 0.596883i
\(512\) 0 0
\(513\) −5924.17 138.969i −0.509861 0.0119603i
\(514\) 0 0
\(515\) 2548.62 0.218069
\(516\) 0 0
\(517\) 4265.94 0.362893
\(518\) 0 0
\(519\) 222.359 378.277i 0.0188063 0.0319933i
\(520\) 0 0
\(521\) 5298.70i 0.445567i 0.974868 + 0.222783i \(0.0715143\pi\)
−0.974868 + 0.222783i \(0.928486\pi\)
\(522\) 0 0
\(523\) 7441.69i 0.622184i −0.950380 0.311092i \(-0.899305\pi\)
0.950380 0.311092i \(-0.100695\pi\)
\(524\) 0 0
\(525\) −2020.71 + 3437.63i −0.167983 + 0.285772i
\(526\) 0 0
\(527\) −16661.1 −1.37717
\(528\) 0 0
\(529\) −6466.11 −0.531446
\(530\) 0 0
\(531\) 7647.77 + 13738.0i 0.625019 + 1.12275i
\(532\) 0 0
\(533\) 496.375i 0.0403384i
\(534\) 0 0
\(535\) 1856.96i 0.150063i
\(536\) 0 0
\(537\) 5971.89 + 3510.40i 0.479899 + 0.282095i
\(538\) 0 0
\(539\) −5060.21 −0.404376
\(540\) 0 0
\(541\) 5059.45 0.402075 0.201038 0.979583i \(-0.435569\pi\)
0.201038 + 0.979583i \(0.435569\pi\)
\(542\) 0 0
\(543\) −15947.7 9374.39i −1.26037 0.740872i
\(544\) 0 0
\(545\) 483.818i 0.0380266i
\(546\) 0 0
\(547\) 10615.4i 0.829769i 0.909874 + 0.414884i \(0.136178\pi\)
−0.909874 + 0.414884i \(0.863822\pi\)
\(548\) 0 0
\(549\) 8347.63 + 14995.2i 0.648940 + 1.16572i
\(550\) 0 0
\(551\) 7772.61 0.600951
\(552\) 0 0
\(553\) 36492.2 2.80616
\(554\) 0 0
\(555\) −4534.64 + 7714.31i −0.346819 + 0.590008i
\(556\) 0 0
\(557\) 2043.42i 0.155445i 0.996975 + 0.0777223i \(0.0247648\pi\)
−0.996975 + 0.0777223i \(0.975235\pi\)
\(558\) 0 0
\(559\) 229.906i 0.0173954i
\(560\) 0 0
\(561\) 1181.58 2010.10i 0.0889239 0.151277i
\(562\) 0 0
\(563\) 16858.7 1.26201 0.631004 0.775779i \(-0.282643\pi\)
0.631004 + 0.775779i \(0.282643\pi\)
\(564\) 0 0
\(565\) 5139.26 0.382673
\(566\) 0 0
\(567\) 19020.2 + 11789.2i 1.40877 + 0.873194i
\(568\) 0 0
\(569\) 21832.7i 1.60857i −0.594244 0.804285i \(-0.702549\pi\)
0.594244 0.804285i \(-0.297451\pi\)
\(570\) 0 0
\(571\) 7921.03i 0.580534i −0.956946 0.290267i \(-0.906256\pi\)
0.956946 0.290267i \(-0.0937440\pi\)
\(572\) 0 0
\(573\) −5182.61 3046.45i −0.377848 0.222107i
\(574\) 0 0
\(575\) 1887.61 0.136902
\(576\) 0 0
\(577\) 12065.5 0.870526 0.435263 0.900303i \(-0.356655\pi\)
0.435263 + 0.900303i \(0.356655\pi\)
\(578\) 0 0
\(579\) 4243.62 + 2494.49i 0.304592 + 0.179046i
\(580\) 0 0
\(581\) 13072.1i 0.933429i
\(582\) 0 0
\(583\) 1817.14i 0.129088i
\(584\) 0 0
\(585\) 167.681 93.3457i 0.0118508 0.00659721i
\(586\) 0 0
\(587\) −19991.9 −1.40571 −0.702855 0.711333i \(-0.748092\pi\)
−0.702855 + 0.711333i \(0.748092\pi\)
\(588\) 0 0
\(589\) 13242.7 0.926414
\(590\) 0 0
\(591\) 4157.05 7071.95i 0.289337 0.492219i
\(592\) 0 0
\(593\) 21435.3i 1.48439i 0.670183 + 0.742196i \(0.266215\pi\)
−0.670183 + 0.742196i \(0.733785\pi\)
\(594\) 0 0
\(595\) 8156.08i 0.561961i
\(596\) 0 0
\(597\) −8923.22 + 15180.2i −0.611730 + 1.04067i
\(598\) 0 0
\(599\) −13834.2 −0.943655 −0.471828 0.881691i \(-0.656406\pi\)
−0.471828 + 0.881691i \(0.656406\pi\)
\(600\) 0 0
\(601\) 8360.75 0.567458 0.283729 0.958905i \(-0.408428\pi\)
0.283729 + 0.958905i \(0.408428\pi\)
\(602\) 0 0
\(603\) −3375.30 + 1878.99i −0.227948 + 0.126896i
\(604\) 0 0
\(605\) 6298.48i 0.423256i
\(606\) 0 0
\(607\) 21745.8i 1.45410i −0.686587 0.727048i \(-0.740892\pi\)
0.686587 0.727048i \(-0.259108\pi\)
\(608\) 0 0
\(609\) −25303.7 14874.1i −1.68368 0.989701i
\(610\) 0 0
\(611\) 718.169 0.0475516
\(612\) 0 0
\(613\) 24312.8 1.60193 0.800966 0.598709i \(-0.204320\pi\)
0.800966 + 0.598709i \(0.204320\pi\)
\(614\) 0 0
\(615\) −7820.71 4597.18i −0.512783 0.301425i
\(616\) 0 0
\(617\) 19786.2i 1.29102i 0.763750 + 0.645512i \(0.223356\pi\)
−0.763750 + 0.645512i \(0.776644\pi\)
\(618\) 0 0
\(619\) 3627.94i 0.235572i −0.993039 0.117786i \(-0.962420\pi\)
0.993039 0.117786i \(-0.0375798\pi\)
\(620\) 0 0
\(621\) 248.420 10590.0i 0.0160527 0.684322i
\(622\) 0 0
\(623\) −25395.8 −1.63316
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 0 0
\(627\) −939.155 + 1597.69i −0.0598186 + 0.101763i
\(628\) 0 0
\(629\) 18302.9i 1.16023i
\(630\) 0 0
\(631\) 3799.85i 0.239730i 0.992790 + 0.119865i \(0.0382461\pi\)
−0.992790 + 0.119865i \(0.961754\pi\)
\(632\) 0 0
\(633\) −11300.9 + 19225.1i −0.709591 + 1.20715i
\(634\) 0 0
\(635\) −8523.00 −0.532638
\(636\) 0 0
\(637\) −851.885 −0.0529873
\(638\) 0 0
\(639\) 6215.83 + 11165.7i 0.384811 + 0.691251i
\(640\) 0 0
\(641\) 17703.6i 1.09088i 0.838151 + 0.545438i \(0.183637\pi\)
−0.838151 + 0.545438i \(0.816363\pi\)
\(642\) 0 0
\(643\) 5277.19i 0.323658i −0.986819 0.161829i \(-0.948261\pi\)
0.986819 0.161829i \(-0.0517393\pi\)
\(644\) 0 0
\(645\) −3622.33 2129.28i −0.221130 0.129985i
\(646\) 0 0
\(647\) 15962.4 0.969931 0.484966 0.874533i \(-0.338832\pi\)
0.484966 + 0.874533i \(0.338832\pi\)
\(648\) 0 0
\(649\) 4917.39 0.297418
\(650\) 0 0
\(651\) −43111.7 25342.0i −2.59552 1.52570i
\(652\) 0 0
\(653\) 21347.1i 1.27929i −0.768671 0.639645i \(-0.779081\pi\)
0.768671 0.639645i \(-0.220919\pi\)
\(654\) 0 0
\(655\) 14151.4i 0.844186i
\(656\) 0 0
\(657\) −2949.80 5298.84i −0.175164 0.314653i
\(658\) 0 0
\(659\) −4923.78 −0.291052 −0.145526 0.989354i \(-0.546487\pi\)
−0.145526 + 0.989354i \(0.546487\pi\)
\(660\) 0 0
\(661\) 24819.3 1.46045 0.730226 0.683206i \(-0.239415\pi\)
0.730226 + 0.683206i \(0.239415\pi\)
\(662\) 0 0
\(663\) 198.918 338.399i 0.0116521 0.0198225i
\(664\) 0 0
\(665\) 6482.70i 0.378028i
\(666\) 0 0
\(667\) 13894.3i 0.806581i
\(668\) 0 0
\(669\) −9801.59 + 16674.4i −0.566444 + 0.963633i
\(670\) 0 0
\(671\) 5367.39 0.308801
\(672\) 0 0
\(673\) 1774.38 0.101631 0.0508154 0.998708i \(-0.483818\pi\)
0.0508154 + 0.998708i \(0.483818\pi\)
\(674\) 0 0
\(675\) 82.2537 3506.44i 0.00469029 0.199945i
\(676\) 0 0
\(677\) 24981.1i 1.41817i −0.705122 0.709086i \(-0.749108\pi\)
0.705122 0.709086i \(-0.250892\pi\)
\(678\) 0 0
\(679\) 31976.2i 1.80727i
\(680\) 0 0
\(681\) 13381.4 + 7865.85i 0.752973 + 0.442614i
\(682\) 0 0
\(683\) −5711.76 −0.319992 −0.159996 0.987118i \(-0.551148\pi\)
−0.159996 + 0.987118i \(0.551148\pi\)
\(684\) 0 0
\(685\) 4112.06 0.229363
\(686\) 0 0
\(687\) 23705.6 + 13934.7i 1.31648 + 0.773858i
\(688\) 0 0
\(689\) 305.914i 0.0169150i
\(690\) 0 0
\(691\) 6656.68i 0.366472i −0.983069 0.183236i \(-0.941343\pi\)
0.983069 0.183236i \(-0.0586573\pi\)
\(692\) 0 0
\(693\) 6114.84 3404.05i 0.335185 0.186594i
\(694\) 0 0
\(695\) 4695.63 0.256281
\(696\) 0 0
\(697\) −18555.3 −1.00837
\(698\) 0 0
\(699\) −16528.7 + 28118.6i −0.894383 + 1.52152i
\(700\) 0 0
\(701\) 7363.29i 0.396730i 0.980128 + 0.198365i \(0.0635631\pi\)
−0.980128 + 0.198365i \(0.936437\pi\)
\(702\) 0 0
\(703\) 14547.7i 0.780479i
\(704\) 0 0
\(705\) 6651.33 11315.2i 0.355324 0.604476i
\(706\) 0 0
\(707\) −31461.6 −1.67360
\(708\) 0 0
\(709\) −5408.48 −0.286487 −0.143244 0.989687i \(-0.545753\pi\)
−0.143244 + 0.989687i \(0.545753\pi\)
\(710\) 0 0
\(711\) −28045.3 + 15612.5i −1.47930 + 0.823506i
\(712\) 0 0
\(713\) 23672.7i 1.24341i
\(714\) 0 0
\(715\) 60.0197i 0.00313932i
\(716\) 0 0
\(717\) 4302.15 + 2528.90i 0.224082 + 0.131720i
\(718\) 0 0
\(719\) −33674.5 −1.74666 −0.873329 0.487131i \(-0.838043\pi\)
−0.873329 + 0.487131i \(0.838043\pi\)
\(720\) 0 0
\(721\) 15646.6 0.808196
\(722\) 0 0
\(723\) 31504.2 + 18518.9i 1.62055 + 0.952592i
\(724\) 0 0
\(725\) 4600.50i 0.235667i
\(726\) 0 0
\(727\) 355.017i 0.0181112i −0.999959 0.00905559i \(-0.997117\pi\)
0.999959 0.00905559i \(-0.00288252\pi\)
\(728\) 0 0
\(729\) −19661.3 922.936i −0.998900 0.0468900i
\(730\) 0 0
\(731\) −8594.29 −0.434844
\(732\) 0 0
\(733\) −13274.7 −0.668911 −0.334456 0.942411i \(-0.608552\pi\)
−0.334456 + 0.942411i \(0.608552\pi\)
\(734\) 0 0
\(735\) −7889.75 + 13422.0i −0.395942 + 0.673576i
\(736\) 0 0
\(737\) 1208.16i 0.0603841i
\(738\) 0 0
\(739\) 2921.85i 0.145443i 0.997352 + 0.0727213i \(0.0231683\pi\)
−0.997352 + 0.0727213i \(0.976832\pi\)
\(740\) 0 0
\(741\) −158.107 + 268.970i −0.00783831 + 0.0133345i
\(742\) 0 0
\(743\) 1539.97 0.0760377 0.0380189 0.999277i \(-0.487895\pi\)
0.0380189 + 0.999277i \(0.487895\pi\)
\(744\) 0 0
\(745\) −7990.57 −0.392955
\(746\) 0 0
\(747\) 5592.64 + 10046.3i 0.273928 + 0.492067i
\(748\) 0 0
\(749\) 11400.3i 0.556154i
\(750\) 0 0
\(751\) 28405.8i 1.38022i −0.723707 0.690108i \(-0.757563\pi\)
0.723707 0.690108i \(-0.242437\pi\)
\(752\) 0 0
\(753\) 15254.5 + 8966.94i 0.738254 + 0.433962i
\(754\) 0 0
\(755\) 11572.3 0.557829
\(756\) 0 0
\(757\) 24017.6 1.15315 0.576575 0.817044i \(-0.304389\pi\)
0.576575 + 0.817044i \(0.304389\pi\)
\(758\) 0 0
\(759\) −2856.02 1678.83i −0.136584 0.0802869i
\(760\) 0 0
\(761\) 27752.8i 1.32200i 0.750388 + 0.660998i \(0.229867\pi\)
−0.750388 + 0.660998i \(0.770133\pi\)
\(762\) 0 0
\(763\) 2970.28i 0.140932i
\(764\) 0 0
\(765\) −3489.42 6268.18i −0.164915 0.296244i
\(766\) 0 0
\(767\) 827.842 0.0389721
\(768\) 0 0
\(769\) −32632.8 −1.53026 −0.765129 0.643877i \(-0.777325\pi\)
−0.765129 + 0.643877i \(0.777325\pi\)
\(770\) 0 0
\(771\) −8948.09 + 15222.5i −0.417973 + 0.711055i
\(772\) 0 0
\(773\) 1400.10i 0.0651463i 0.999469 + 0.0325731i \(0.0103702\pi\)
−0.999469 + 0.0325731i \(0.989630\pi\)
\(774\) 0 0
\(775\) 7838.20i 0.363299i
\(776\) 0 0
\(777\) −27839.2 + 47360.0i −1.28536 + 2.18666i
\(778\) 0 0
\(779\) 14748.3 0.678324
\(780\) 0 0
\(781\) 3996.67 0.183114
\(782\) 0 0
\(783\) 25810.2 + 605.453i 1.17801 + 0.0276336i
\(784\) 0 0
\(785\) 9509.98i 0.432390i
\(786\) 0 0
\(787\) 13989.4i 0.633634i 0.948487 + 0.316817i \(0.102614\pi\)
−0.948487 + 0.316817i \(0.897386\pi\)
\(788\) 0 0
\(789\) 9071.17 + 5332.23i 0.409305 + 0.240599i
\(790\) 0 0
\(791\) 31551.2 1.41824
\(792\) 0 0
\(793\) 903.598 0.0404637
\(794\) 0 0
\(795\) 4819.88 + 2833.23i 0.215023 + 0.126395i
\(796\) 0 0
\(797\) 24386.5i 1.08383i 0.840432 + 0.541917i \(0.182301\pi\)
−0.840432 + 0.541917i \(0.817699\pi\)
\(798\) 0 0
\(799\) 26846.4i 1.18868i
\(800\) 0 0
\(801\) 19517.4 10865.1i 0.860940 0.479275i
\(802\) 0 0
\(803\) −1896.67 −0.0833525
\(804\) 0 0
\(805\) 11588.5 0.507379
\(806\) 0 0
\(807\) −9744.80 + 16577.8i −0.425072 + 0.723131i
\(808\) 0 0
\(809\) 24639.1i 1.07079i −0.844603 0.535393i \(-0.820164\pi\)
0.844603 0.535393i \(-0.179836\pi\)
\(810\) 0 0
\(811\) 11558.0i 0.500438i −0.968189 0.250219i \(-0.919497\pi\)
0.968189 0.250219i \(-0.0805026\pi\)
\(812\) 0 0
\(813\) 14232.4 24212.1i 0.613963 1.04447i
\(814\) 0 0
\(815\) −7242.18 −0.311267
\(816\) 0 0
\(817\) 6831.01 0.292517
\(818\) 0 0
\(819\) 1029.43 573.071i 0.0439209 0.0244502i
\(820\) 0 0
\(821\) 11931.0i 0.507182i 0.967312 + 0.253591i \(0.0816117\pi\)
−0.967312 + 0.253591i \(0.918388\pi\)
\(822\) 0 0
\(823\) 29996.1i 1.27047i −0.772319 0.635235i \(-0.780903\pi\)
0.772319 0.635235i \(-0.219097\pi\)
\(824\) 0 0
\(825\) −945.650 555.873i −0.0399070 0.0234582i
\(826\) 0 0
\(827\) 43041.2 1.80978 0.904891 0.425644i \(-0.139952\pi\)
0.904891 + 0.425644i \(0.139952\pi\)
\(828\) 0 0
\(829\) 11938.5 0.500172 0.250086 0.968224i \(-0.419541\pi\)
0.250086 + 0.968224i \(0.419541\pi\)
\(830\) 0 0
\(831\) −13112.6 7707.87i −0.547378 0.321760i
\(832\) 0 0
\(833\) 31844.9i 1.32456i
\(834\) 0 0
\(835\) 14368.4i 0.595495i
\(836\) 0 0
\(837\) 43974.7 + 1031.55i 1.81599 + 0.0425994i
\(838\) 0 0
\(839\) 24079.1 0.990825 0.495412 0.868658i \(-0.335017\pi\)
0.495412 + 0.868658i \(0.335017\pi\)
\(840\) 0 0
\(841\) −9474.37 −0.388469
\(842\) 0 0
\(843\) 10041.9 17083.3i 0.410276 0.697959i
\(844\) 0 0
\(845\) 10974.9i 0.446802i
\(846\) 0 0
\(847\) 38667.9i 1.56865i
\(848\) 0 0
\(849\) −20094.8 + 34185.2i −0.812311 + 1.38190i
\(850\) 0 0
\(851\) 26005.4 1.04754
\(852\) 0 0
\(853\) −20697.6 −0.830801 −0.415400 0.909639i \(-0.636358\pi\)
−0.415400 + 0.909639i \(0.636358\pi\)
\(854\) 0 0
\(855\) 2773.50 + 4982.14i 0.110938 + 0.199281i
\(856\) 0 0
\(857\) 40049.1i 1.59633i −0.602441 0.798163i \(-0.705805\pi\)
0.602441 0.798163i \(-0.294195\pi\)
\(858\) 0 0
\(859\) 36206.3i 1.43812i −0.694948 0.719060i \(-0.744573\pi\)
0.694948 0.719060i \(-0.255427\pi\)
\(860\) 0 0
\(861\) −48013.2 28223.2i −1.90045 1.11712i
\(862\) 0 0
\(863\) −16377.6 −0.646002 −0.323001 0.946399i \(-0.604692\pi\)
−0.323001 + 0.946399i \(0.604692\pi\)
\(864\) 0 0
\(865\) −422.226 −0.0165967
\(866\) 0 0
\(867\) 9358.10 + 5500.89i 0.366572 + 0.215479i
\(868\) 0 0
\(869\) 10038.6i 0.391869i
\(870\) 0 0
\(871\) 203.393i 0.00791241i
\(872\) 0 0
\(873\) −13680.4 24574.6i −0.530368 0.952721i
\(874\) 0 0
\(875\) 3837.03 0.148246
\(876\) 0 0
\(877\) 20486.3 0.788795 0.394397 0.918940i \(-0.370953\pi\)
0.394397 + 0.918940i \(0.370953\pi\)
\(878\) 0 0
\(879\) 8745.56 14877.9i 0.335586 0.570898i
\(880\) 0 0
\(881\) 5581.92i 0.213461i 0.994288 + 0.106731i \(0.0340383\pi\)
−0.994288 + 0.106731i \(0.965962\pi\)
\(882\) 0 0
\(883\) 13037.8i 0.496892i 0.968646 + 0.248446i \(0.0799199\pi\)
−0.968646 + 0.248446i \(0.920080\pi\)
\(884\) 0 0
\(885\) 7667.06 13043.2i 0.291215 0.495414i
\(886\) 0 0
\(887\) −25693.7 −0.972614 −0.486307 0.873788i \(-0.661656\pi\)
−0.486307 + 0.873788i \(0.661656\pi\)
\(888\) 0 0
\(889\) −52324.7 −1.97403
\(890\) 0 0
\(891\) −3243.07 + 5232.22i −0.121938 + 0.196730i
\(892\) 0 0
\(893\) 21338.3i 0.799619i
\(894\) 0 0
\(895\) 6665.72i 0.248950i
\(896\) 0 0
\(897\) −480.811 282.631i −0.0178972 0.0105204i
\(898\) 0 0
\(899\) −57695.4 −2.14043
\(900\) 0 0
\(901\) 11435.6 0.422835
\(902\) 0 0
\(903\) −22238.3 13072.2i −0.819541 0.481744i
\(904\) 0 0
\(905\) 17800.5i 0.653823i
\(906\) 0 0
\(907\) 10443.8i 0.382339i −0.981557 0.191170i \(-0.938772\pi\)
0.981557 0.191170i \(-0.0612280\pi\)
\(908\) 0 0
\(909\) 24179.2 13460.2i 0.882257 0.491142i
\(910\) 0 0
\(911\) 29090.8 1.05798 0.528991 0.848627i \(-0.322571\pi\)
0.528991 + 0.848627i \(0.322571\pi\)
\(912\) 0 0
\(913\) 3595.98 0.130350
\(914\) 0 0
\(915\) 8368.68 14236.8i 0.302361 0.514375i
\(916\) 0 0
\(917\) 86878.9i 3.12868i
\(918\) 0 0
\(919\) 8558.40i 0.307199i 0.988133 + 0.153599i \(0.0490865\pi\)
−0.988133 + 0.153599i \(0.950914\pi\)
\(920\) 0 0
\(921\) −815.902 + 1388.01i −0.0291910 + 0.0496596i
\(922\) 0 0
\(923\) 672.839 0.0239943
\(924\) 0 0
\(925\) 8610.59 0.306070
\(926\) 0 0
\(927\) −12024.8 + 6694.08i −0.426049 + 0.237176i
\(928\) 0 0
\(929\) 24717.9i 0.872948i −0.899717 0.436474i \(-0.856227\pi\)
0.899717 0.436474i \(-0.143773\pi\)
\(930\) 0 0
\(931\) 25311.3i 0.891025i
\(932\) 0 0
\(933\) −34546.6 20307.3i −1.21223 0.712572i
\(934\) 0 0
\(935\) −2243.64 −0.0784757
\(936\) 0 0
\(937\) 55762.6 1.94417 0.972083 0.234638i \(-0.0753905\pi\)
0.972083 + 0.234638i \(0.0753905\pi\)
\(938\) 0 0
\(939\) −1367.36 803.765i −0.0475209 0.0279338i
\(940\) 0 0
\(941\) 24516.0i 0.849306i −0.905356 0.424653i \(-0.860396\pi\)
0.905356 0.424653i \(-0.139604\pi\)
\(942\) 0 0
\(943\) 26364.1i 0.910428i
\(944\) 0 0
\(945\) 504.975 21526.9i 0.0173829 0.741025i
\(946\) 0 0
\(947\) 15597.2 0.535207 0.267603 0.963529i \(-0.413768\pi\)
0.267603 + 0.963529i \(0.413768\pi\)
\(948\) 0 0
\(949\) −319.304 −0.0109221
\(950\) 0 0
\(951\) −18285.1 + 31106.5i −0.623485 + 1.06067i
\(952\) 0 0
\(953\) 10953.5i 0.372317i −0.982520 0.186159i \(-0.940396\pi\)
0.982520 0.186159i \(-0.0596038\pi\)
\(954\) 0 0
\(955\) 5784.75i 0.196010i
\(956\) 0 0
\(957\) 4091.67 6960.74i 0.138208 0.235119i
\(958\) 0 0
\(959\) 25244.9 0.850054
\(960\) 0 0
\(961\) −68508.8 −2.29965
\(962\) 0 0
\(963\) −4877.41 8761.49i −0.163211 0.293183i
\(964\) 0 0
\(965\) 4736.66i 0.158009i
\(966\) 0 0
\(967\) 3021.09i 0.100467i −0.998737 0.0502336i \(-0.984003\pi\)
0.998737 0.0502336i \(-0.0159966\pi\)
\(968\) 0 0
\(969\) 10054.6 + 5910.29i 0.333332 + 0.195940i
\(970\) 0 0
\(971\) 800.261 0.0264486 0.0132243 0.999913i \(-0.495790\pi\)
0.0132243 + 0.999913i \(0.495790\pi\)
\(972\) 0 0
\(973\) 28827.6 0.949816
\(974\) 0 0
\(975\) −159.200 93.5811i −0.00522921 0.00307384i
\(976\) 0 0
\(977\) 45423.5i 1.48744i −0.668493 0.743719i \(-0.733060\pi\)
0.668493 0.743719i \(-0.266940\pi\)
\(978\) 0 0
\(979\) 6986.07i 0.228065i
\(980\) 0 0
\(981\) 1270.77 + 2282.74i 0.0413585 + 0.0742939i
\(982\) 0 0
\(983\) −23420.3 −0.759910 −0.379955 0.925005i \(-0.624061\pi\)
−0.379955 + 0.925005i \(0.624061\pi\)
\(984\) 0 0
\(985\) −7893.59 −0.255341
\(986\) 0 0
\(987\) 40834.1 69466.9i 1.31688 2.24028i
\(988\) 0 0
\(989\) 12211.1i 0.392609i
\(990\) 0 0
\(991\) 44803.2i 1.43615i 0.695968 + 0.718073i \(0.254976\pi\)
−0.695968 + 0.718073i \(0.745024\pi\)
\(992\) 0 0
\(993\) −4617.45 + 7855.19i −0.147563 + 0.251034i
\(994\) 0 0
\(995\) 16943.8 0.539855
\(996\) 0 0
\(997\) −31601.9 −1.00385 −0.501927 0.864910i \(-0.667375\pi\)
−0.501927 + 0.864910i \(0.667375\pi\)
\(998\) 0 0
\(999\) 1133.20 48308.0i 0.0358889 1.52993i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 480.4.h.a.191.22 yes 24
3.2 odd 2 480.4.h.b.191.4 yes 24
4.3 odd 2 480.4.h.b.191.3 yes 24
8.3 odd 2 960.4.h.c.191.22 24
8.5 even 2 960.4.h.e.191.3 24
12.11 even 2 inner 480.4.h.a.191.21 24
24.5 odd 2 960.4.h.c.191.21 24
24.11 even 2 960.4.h.e.191.4 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
480.4.h.a.191.21 24 12.11 even 2 inner
480.4.h.a.191.22 yes 24 1.1 even 1 trivial
480.4.h.b.191.3 yes 24 4.3 odd 2
480.4.h.b.191.4 yes 24 3.2 odd 2
960.4.h.c.191.21 24 24.5 odd 2
960.4.h.c.191.22 24 8.3 odd 2
960.4.h.e.191.3 24 8.5 even 2
960.4.h.e.191.4 24 24.11 even 2