Properties

Label 480.4.h.a.191.8
Level $480$
Weight $4$
Character 480.191
Analytic conductor $28.321$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [480,4,Mod(191,480)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(480, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("480.191");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 480 = 2^{5} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 480.h (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(28.3209168028\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 191.8
Character \(\chi\) \(=\) 480.191
Dual form 480.4.h.a.191.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-3.26404 + 4.04302i) q^{3} -5.00000i q^{5} -14.4221i q^{7} +(-5.69203 - 26.3932i) q^{9} +44.8665 q^{11} -42.0732 q^{13} +(20.2151 + 16.3202i) q^{15} +133.779i q^{17} -140.796i q^{19} +(58.3090 + 47.0745i) q^{21} -98.4863 q^{23} -25.0000 q^{25} +(125.287 + 63.1355i) q^{27} +135.968i q^{29} +295.061i q^{31} +(-146.446 + 181.396i) q^{33} -72.1107 q^{35} -329.068 q^{37} +(137.329 - 170.103i) q^{39} -249.262i q^{41} -345.344i q^{43} +(-131.966 + 28.4602i) q^{45} -137.582 q^{47} +135.002 q^{49} +(-540.873 - 436.662i) q^{51} +64.8334i q^{53} -224.332i q^{55} +(569.241 + 459.564i) q^{57} -325.168 q^{59} -833.723 q^{61} +(-380.646 + 82.0913i) q^{63} +210.366i q^{65} -197.315i q^{67} +(321.464 - 398.182i) q^{69} -471.780 q^{71} -592.769 q^{73} +(81.6011 - 101.076i) q^{75} -647.070i q^{77} -728.542i q^{79} +(-664.202 + 300.462i) q^{81} +278.801 q^{83} +668.897 q^{85} +(-549.722 - 443.806i) q^{87} +1137.49i q^{89} +606.786i q^{91} +(-1192.94 - 963.093i) q^{93} -703.980 q^{95} -462.063 q^{97} +(-255.381 - 1184.17i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 20 q^{9} - 72 q^{11} - 72 q^{13} - 20 q^{15} - 68 q^{21} - 96 q^{23} - 600 q^{25} - 168 q^{27} - 80 q^{33} - 504 q^{37} + 456 q^{39} - 220 q^{45} - 432 q^{47} - 816 q^{49} - 1240 q^{51} + 40 q^{57}+ \cdots - 3160 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/480\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(97\) \(161\) \(421\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.26404 + 4.04302i −0.628166 + 0.778080i
\(4\) 0 0
\(5\) 5.00000i 0.447214i
\(6\) 0 0
\(7\) 14.4221i 0.778723i −0.921085 0.389361i \(-0.872696\pi\)
0.921085 0.389361i \(-0.127304\pi\)
\(8\) 0 0
\(9\) −5.69203 26.3932i −0.210816 0.977526i
\(10\) 0 0
\(11\) 44.8665 1.22979 0.614897 0.788607i \(-0.289197\pi\)
0.614897 + 0.788607i \(0.289197\pi\)
\(12\) 0 0
\(13\) −42.0732 −0.897616 −0.448808 0.893628i \(-0.648151\pi\)
−0.448808 + 0.893628i \(0.648151\pi\)
\(14\) 0 0
\(15\) 20.2151 + 16.3202i 0.347968 + 0.280924i
\(16\) 0 0
\(17\) 133.779i 1.90860i 0.298845 + 0.954302i \(0.403399\pi\)
−0.298845 + 0.954302i \(0.596601\pi\)
\(18\) 0 0
\(19\) 140.796i 1.70004i −0.526748 0.850022i \(-0.676589\pi\)
0.526748 0.850022i \(-0.323411\pi\)
\(20\) 0 0
\(21\) 58.3090 + 47.0745i 0.605908 + 0.489167i
\(22\) 0 0
\(23\) −98.4863 −0.892862 −0.446431 0.894818i \(-0.647305\pi\)
−0.446431 + 0.894818i \(0.647305\pi\)
\(24\) 0 0
\(25\) −25.0000 −0.200000
\(26\) 0 0
\(27\) 125.287 + 63.1355i 0.893020 + 0.450016i
\(28\) 0 0
\(29\) 135.968i 0.870644i 0.900275 + 0.435322i \(0.143365\pi\)
−0.900275 + 0.435322i \(0.856635\pi\)
\(30\) 0 0
\(31\) 295.061i 1.70950i 0.519038 + 0.854751i \(0.326290\pi\)
−0.519038 + 0.854751i \(0.673710\pi\)
\(32\) 0 0
\(33\) −146.446 + 181.396i −0.772515 + 0.956878i
\(34\) 0 0
\(35\) −72.1107 −0.348255
\(36\) 0 0
\(37\) −329.068 −1.46212 −0.731061 0.682312i \(-0.760975\pi\)
−0.731061 + 0.682312i \(0.760975\pi\)
\(38\) 0 0
\(39\) 137.329 170.103i 0.563851 0.698417i
\(40\) 0 0
\(41\) 249.262i 0.949468i −0.880129 0.474734i \(-0.842544\pi\)
0.880129 0.474734i \(-0.157456\pi\)
\(42\) 0 0
\(43\) 345.344i 1.22475i −0.790566 0.612377i \(-0.790214\pi\)
0.790566 0.612377i \(-0.209786\pi\)
\(44\) 0 0
\(45\) −131.966 + 28.4602i −0.437163 + 0.0942798i
\(46\) 0 0
\(47\) −137.582 −0.426988 −0.213494 0.976944i \(-0.568484\pi\)
−0.213494 + 0.976944i \(0.568484\pi\)
\(48\) 0 0
\(49\) 135.002 0.393591
\(50\) 0 0
\(51\) −540.873 436.662i −1.48505 1.19892i
\(52\) 0 0
\(53\) 64.8334i 0.168029i 0.996465 + 0.0840147i \(0.0267743\pi\)
−0.996465 + 0.0840147i \(0.973226\pi\)
\(54\) 0 0
\(55\) 224.332i 0.549981i
\(56\) 0 0
\(57\) 569.241 + 459.564i 1.32277 + 1.06791i
\(58\) 0 0
\(59\) −325.168 −0.717514 −0.358757 0.933431i \(-0.616799\pi\)
−0.358757 + 0.933431i \(0.616799\pi\)
\(60\) 0 0
\(61\) −833.723 −1.74996 −0.874978 0.484162i \(-0.839124\pi\)
−0.874978 + 0.484162i \(0.839124\pi\)
\(62\) 0 0
\(63\) −380.646 + 82.0913i −0.761221 + 0.164167i
\(64\) 0 0
\(65\) 210.366i 0.401426i
\(66\) 0 0
\(67\) 197.315i 0.359789i −0.983686 0.179895i \(-0.942424\pi\)
0.983686 0.179895i \(-0.0575757\pi\)
\(68\) 0 0
\(69\) 321.464 398.182i 0.560865 0.694718i
\(70\) 0 0
\(71\) −471.780 −0.788591 −0.394296 0.918984i \(-0.629011\pi\)
−0.394296 + 0.918984i \(0.629011\pi\)
\(72\) 0 0
\(73\) −592.769 −0.950388 −0.475194 0.879881i \(-0.657622\pi\)
−0.475194 + 0.879881i \(0.657622\pi\)
\(74\) 0 0
\(75\) 81.6011 101.076i 0.125633 0.155616i
\(76\) 0 0
\(77\) 647.070i 0.957669i
\(78\) 0 0
\(79\) 728.542i 1.03756i −0.854907 0.518781i \(-0.826386\pi\)
0.854907 0.518781i \(-0.173614\pi\)
\(80\) 0 0
\(81\) −664.202 + 300.462i −0.911113 + 0.412156i
\(82\) 0 0
\(83\) 278.801 0.368703 0.184352 0.982860i \(-0.440981\pi\)
0.184352 + 0.982860i \(0.440981\pi\)
\(84\) 0 0
\(85\) 668.897 0.853553
\(86\) 0 0
\(87\) −549.722 443.806i −0.677430 0.546908i
\(88\) 0 0
\(89\) 1137.49i 1.35477i 0.735631 + 0.677383i \(0.236886\pi\)
−0.735631 + 0.677383i \(0.763114\pi\)
\(90\) 0 0
\(91\) 606.786i 0.698994i
\(92\) 0 0
\(93\) −1192.94 963.093i −1.33013 1.07385i
\(94\) 0 0
\(95\) −703.980 −0.760282
\(96\) 0 0
\(97\) −462.063 −0.483663 −0.241832 0.970318i \(-0.577748\pi\)
−0.241832 + 0.970318i \(0.577748\pi\)
\(98\) 0 0
\(99\) −255.381 1184.17i −0.259261 1.20216i
\(100\) 0 0
\(101\) 318.476i 0.313758i 0.987618 + 0.156879i \(0.0501433\pi\)
−0.987618 + 0.156879i \(0.949857\pi\)
\(102\) 0 0
\(103\) 1084.14i 1.03712i 0.855040 + 0.518562i \(0.173532\pi\)
−0.855040 + 0.518562i \(0.826468\pi\)
\(104\) 0 0
\(105\) 235.373 291.545i 0.218762 0.270970i
\(106\) 0 0
\(107\) −1372.64 −1.24017 −0.620084 0.784535i \(-0.712902\pi\)
−0.620084 + 0.784535i \(0.712902\pi\)
\(108\) 0 0
\(109\) −1117.24 −0.981766 −0.490883 0.871225i \(-0.663326\pi\)
−0.490883 + 0.871225i \(0.663326\pi\)
\(110\) 0 0
\(111\) 1074.09 1330.43i 0.918455 1.13765i
\(112\) 0 0
\(113\) 466.146i 0.388065i 0.980995 + 0.194032i \(0.0621567\pi\)
−0.980995 + 0.194032i \(0.937843\pi\)
\(114\) 0 0
\(115\) 492.432i 0.399300i
\(116\) 0 0
\(117\) 239.482 + 1110.45i 0.189232 + 0.877443i
\(118\) 0 0
\(119\) 1929.38 1.48627
\(120\) 0 0
\(121\) 681.999 0.512396
\(122\) 0 0
\(123\) 1007.77 + 813.602i 0.738762 + 0.596423i
\(124\) 0 0
\(125\) 125.000i 0.0894427i
\(126\) 0 0
\(127\) 340.558i 0.237950i 0.992897 + 0.118975i \(0.0379608\pi\)
−0.992897 + 0.118975i \(0.962039\pi\)
\(128\) 0 0
\(129\) 1396.23 + 1127.22i 0.952956 + 0.769348i
\(130\) 0 0
\(131\) 1226.37 0.817930 0.408965 0.912550i \(-0.365890\pi\)
0.408965 + 0.912550i \(0.365890\pi\)
\(132\) 0 0
\(133\) −2030.58 −1.32386
\(134\) 0 0
\(135\) 315.678 626.436i 0.201253 0.399371i
\(136\) 0 0
\(137\) 2054.30i 1.28110i 0.767918 + 0.640549i \(0.221293\pi\)
−0.767918 + 0.640549i \(0.778707\pi\)
\(138\) 0 0
\(139\) 1331.26i 0.812345i −0.913796 0.406172i \(-0.866863\pi\)
0.913796 0.406172i \(-0.133137\pi\)
\(140\) 0 0
\(141\) 449.075 556.248i 0.268219 0.332231i
\(142\) 0 0
\(143\) −1887.68 −1.10388
\(144\) 0 0
\(145\) 679.841 0.389364
\(146\) 0 0
\(147\) −440.652 + 545.815i −0.247240 + 0.306245i
\(148\) 0 0
\(149\) 3011.30i 1.65567i −0.560968 0.827837i \(-0.689571\pi\)
0.560968 0.827837i \(-0.310429\pi\)
\(150\) 0 0
\(151\) 1293.28i 0.696989i 0.937311 + 0.348494i \(0.113307\pi\)
−0.937311 + 0.348494i \(0.886693\pi\)
\(152\) 0 0
\(153\) 3530.86 761.476i 1.86571 0.402364i
\(154\) 0 0
\(155\) 1475.31 0.764513
\(156\) 0 0
\(157\) −584.560 −0.297153 −0.148576 0.988901i \(-0.547469\pi\)
−0.148576 + 0.988901i \(0.547469\pi\)
\(158\) 0 0
\(159\) −262.123 211.619i −0.130740 0.105550i
\(160\) 0 0
\(161\) 1420.38i 0.695292i
\(162\) 0 0
\(163\) 2997.44i 1.44035i 0.693790 + 0.720177i \(0.255940\pi\)
−0.693790 + 0.720177i \(0.744060\pi\)
\(164\) 0 0
\(165\) 906.980 + 732.230i 0.427929 + 0.345479i
\(166\) 0 0
\(167\) −401.720 −0.186144 −0.0930720 0.995659i \(-0.529669\pi\)
−0.0930720 + 0.995659i \(0.529669\pi\)
\(168\) 0 0
\(169\) −426.845 −0.194285
\(170\) 0 0
\(171\) −3716.06 + 801.416i −1.66184 + 0.358396i
\(172\) 0 0
\(173\) 90.7400i 0.0398777i 0.999801 + 0.0199388i \(0.00634715\pi\)
−0.999801 + 0.0199388i \(0.993653\pi\)
\(174\) 0 0
\(175\) 360.554i 0.155745i
\(176\) 0 0
\(177\) 1061.36 1314.66i 0.450717 0.558283i
\(178\) 0 0
\(179\) 3103.41 1.29587 0.647933 0.761697i \(-0.275634\pi\)
0.647933 + 0.761697i \(0.275634\pi\)
\(180\) 0 0
\(181\) −2135.81 −0.877091 −0.438546 0.898709i \(-0.644506\pi\)
−0.438546 + 0.898709i \(0.644506\pi\)
\(182\) 0 0
\(183\) 2721.31 3370.76i 1.09926 1.36161i
\(184\) 0 0
\(185\) 1645.34i 0.653881i
\(186\) 0 0
\(187\) 6002.20i 2.34719i
\(188\) 0 0
\(189\) 910.550 1806.91i 0.350438 0.695415i
\(190\) 0 0
\(191\) 3520.17 1.33356 0.666782 0.745253i \(-0.267671\pi\)
0.666782 + 0.745253i \(0.267671\pi\)
\(192\) 0 0
\(193\) −2066.06 −0.770561 −0.385281 0.922799i \(-0.625895\pi\)
−0.385281 + 0.922799i \(0.625895\pi\)
\(194\) 0 0
\(195\) −850.514 686.644i −0.312342 0.252162i
\(196\) 0 0
\(197\) 1341.14i 0.485037i −0.970147 0.242518i \(-0.922027\pi\)
0.970147 0.242518i \(-0.0779735\pi\)
\(198\) 0 0
\(199\) 1149.61i 0.409515i −0.978813 0.204757i \(-0.934359\pi\)
0.978813 0.204757i \(-0.0656406\pi\)
\(200\) 0 0
\(201\) 797.750 + 644.046i 0.279945 + 0.226007i
\(202\) 0 0
\(203\) 1960.95 0.677990
\(204\) 0 0
\(205\) −1246.31 −0.424615
\(206\) 0 0
\(207\) 560.587 + 2599.37i 0.188230 + 0.872795i
\(208\) 0 0
\(209\) 6317.02i 2.09070i
\(210\) 0 0
\(211\) 1622.24i 0.529286i −0.964346 0.264643i \(-0.914746\pi\)
0.964346 0.264643i \(-0.0852541\pi\)
\(212\) 0 0
\(213\) 1539.91 1907.42i 0.495366 0.613587i
\(214\) 0 0
\(215\) −1726.72 −0.547726
\(216\) 0 0
\(217\) 4255.42 1.33123
\(218\) 0 0
\(219\) 1934.82 2396.58i 0.597001 0.739478i
\(220\) 0 0
\(221\) 5628.53i 1.71319i
\(222\) 0 0
\(223\) 985.075i 0.295810i 0.989002 + 0.147905i \(0.0472529\pi\)
−0.989002 + 0.147905i \(0.952747\pi\)
\(224\) 0 0
\(225\) 142.301 + 659.830i 0.0421632 + 0.195505i
\(226\) 0 0
\(227\) −896.149 −0.262024 −0.131012 0.991381i \(-0.541823\pi\)
−0.131012 + 0.991381i \(0.541823\pi\)
\(228\) 0 0
\(229\) 3529.31 1.01844 0.509221 0.860636i \(-0.329934\pi\)
0.509221 + 0.860636i \(0.329934\pi\)
\(230\) 0 0
\(231\) 2616.12 + 2112.07i 0.745143 + 0.601575i
\(232\) 0 0
\(233\) 3045.50i 0.856299i −0.903708 0.428149i \(-0.859166\pi\)
0.903708 0.428149i \(-0.140834\pi\)
\(234\) 0 0
\(235\) 687.911i 0.190955i
\(236\) 0 0
\(237\) 2945.51 + 2377.99i 0.807306 + 0.651761i
\(238\) 0 0
\(239\) −3021.00 −0.817625 −0.408813 0.912618i \(-0.634057\pi\)
−0.408813 + 0.912618i \(0.634057\pi\)
\(240\) 0 0
\(241\) 4055.85 1.08407 0.542034 0.840356i \(-0.317654\pi\)
0.542034 + 0.840356i \(0.317654\pi\)
\(242\) 0 0
\(243\) 953.209 3666.10i 0.251640 0.967821i
\(244\) 0 0
\(245\) 675.009i 0.176019i
\(246\) 0 0
\(247\) 5923.74i 1.52599i
\(248\) 0 0
\(249\) −910.019 + 1127.20i −0.231607 + 0.286881i
\(250\) 0 0
\(251\) −1851.94 −0.465711 −0.232855 0.972511i \(-0.574807\pi\)
−0.232855 + 0.972511i \(0.574807\pi\)
\(252\) 0 0
\(253\) −4418.73 −1.09804
\(254\) 0 0
\(255\) −2183.31 + 2704.36i −0.536173 + 0.664132i
\(256\) 0 0
\(257\) 4407.29i 1.06972i 0.844939 + 0.534862i \(0.179636\pi\)
−0.844939 + 0.534862i \(0.820364\pi\)
\(258\) 0 0
\(259\) 4745.87i 1.13859i
\(260\) 0 0
\(261\) 3588.64 773.936i 0.851077 0.183546i
\(262\) 0 0
\(263\) −5276.74 −1.23718 −0.618588 0.785715i \(-0.712295\pi\)
−0.618588 + 0.785715i \(0.712295\pi\)
\(264\) 0 0
\(265\) 324.167 0.0751450
\(266\) 0 0
\(267\) −4598.91 3712.83i −1.05412 0.851017i
\(268\) 0 0
\(269\) 341.373i 0.0773751i 0.999251 + 0.0386875i \(0.0123177\pi\)
−0.999251 + 0.0386875i \(0.987682\pi\)
\(270\) 0 0
\(271\) 2686.79i 0.602255i 0.953584 + 0.301127i \(0.0973629\pi\)
−0.953584 + 0.301127i \(0.902637\pi\)
\(272\) 0 0
\(273\) −2453.25 1980.58i −0.543873 0.439084i
\(274\) 0 0
\(275\) −1121.66 −0.245959
\(276\) 0 0
\(277\) 5760.38 1.24949 0.624743 0.780830i \(-0.285204\pi\)
0.624743 + 0.780830i \(0.285204\pi\)
\(278\) 0 0
\(279\) 7787.61 1679.50i 1.67108 0.360391i
\(280\) 0 0
\(281\) 2432.21i 0.516347i −0.966099 0.258174i \(-0.916879\pi\)
0.966099 0.258174i \(-0.0831206\pi\)
\(282\) 0 0
\(283\) 1769.84i 0.371754i −0.982573 0.185877i \(-0.940487\pi\)
0.982573 0.185877i \(-0.0595126\pi\)
\(284\) 0 0
\(285\) 2297.82 2846.21i 0.477583 0.591560i
\(286\) 0 0
\(287\) −3594.89 −0.739372
\(288\) 0 0
\(289\) −12983.9 −2.64277
\(290\) 0 0
\(291\) 1508.19 1868.13i 0.303821 0.376329i
\(292\) 0 0
\(293\) 865.261i 0.172522i −0.996273 0.0862612i \(-0.972508\pi\)
0.996273 0.0862612i \(-0.0274920\pi\)
\(294\) 0 0
\(295\) 1625.84i 0.320882i
\(296\) 0 0
\(297\) 5621.20 + 2832.67i 1.09823 + 0.553428i
\(298\) 0 0
\(299\) 4143.64 0.801447
\(300\) 0 0
\(301\) −4980.59 −0.953743
\(302\) 0 0
\(303\) −1287.61 1039.52i −0.244129 0.197092i
\(304\) 0 0
\(305\) 4168.62i 0.782604i
\(306\) 0 0
\(307\) 4820.25i 0.896112i −0.894006 0.448056i \(-0.852117\pi\)
0.894006 0.448056i \(-0.147883\pi\)
\(308\) 0 0
\(309\) −4383.21 3538.69i −0.806965 0.651485i
\(310\) 0 0
\(311\) 3467.58 0.632245 0.316123 0.948718i \(-0.397619\pi\)
0.316123 + 0.948718i \(0.397619\pi\)
\(312\) 0 0
\(313\) 8018.37 1.44800 0.724002 0.689798i \(-0.242301\pi\)
0.724002 + 0.689798i \(0.242301\pi\)
\(314\) 0 0
\(315\) 410.457 + 1903.23i 0.0734178 + 0.340429i
\(316\) 0 0
\(317\) 7460.45i 1.32183i 0.750460 + 0.660916i \(0.229832\pi\)
−0.750460 + 0.660916i \(0.770168\pi\)
\(318\) 0 0
\(319\) 6100.41i 1.07071i
\(320\) 0 0
\(321\) 4480.36 5549.61i 0.779031 0.964950i
\(322\) 0 0
\(323\) 18835.6 3.24471
\(324\) 0 0
\(325\) 1051.83 0.179523
\(326\) 0 0
\(327\) 3646.73 4517.04i 0.616712 0.763892i
\(328\) 0 0
\(329\) 1984.23i 0.332505i
\(330\) 0 0
\(331\) 3446.80i 0.572367i 0.958175 + 0.286183i \(0.0923866\pi\)
−0.958175 + 0.286183i \(0.907613\pi\)
\(332\) 0 0
\(333\) 1873.07 + 8685.17i 0.308239 + 1.42926i
\(334\) 0 0
\(335\) −986.576 −0.160903
\(336\) 0 0
\(337\) −3122.33 −0.504701 −0.252350 0.967636i \(-0.581204\pi\)
−0.252350 + 0.967636i \(0.581204\pi\)
\(338\) 0 0
\(339\) −1884.64 1521.52i −0.301945 0.243769i
\(340\) 0 0
\(341\) 13238.4i 2.10234i
\(342\) 0 0
\(343\) 6893.81i 1.08522i
\(344\) 0 0
\(345\) −1990.91 1607.32i −0.310687 0.250826i
\(346\) 0 0
\(347\) −7557.98 −1.16926 −0.584631 0.811300i \(-0.698761\pi\)
−0.584631 + 0.811300i \(0.698761\pi\)
\(348\) 0 0
\(349\) −5253.77 −0.805811 −0.402905 0.915242i \(-0.632000\pi\)
−0.402905 + 0.915242i \(0.632000\pi\)
\(350\) 0 0
\(351\) −5271.24 2656.31i −0.801589 0.403942i
\(352\) 0 0
\(353\) 5382.98i 0.811635i −0.913954 0.405817i \(-0.866987\pi\)
0.913954 0.405817i \(-0.133013\pi\)
\(354\) 0 0
\(355\) 2358.90i 0.352669i
\(356\) 0 0
\(357\) −6297.60 + 7800.54i −0.933625 + 1.15644i
\(358\) 0 0
\(359\) 2471.10 0.363285 0.181643 0.983365i \(-0.441859\pi\)
0.181643 + 0.983365i \(0.441859\pi\)
\(360\) 0 0
\(361\) −12964.5 −1.89015
\(362\) 0 0
\(363\) −2226.07 + 2757.33i −0.321869 + 0.398685i
\(364\) 0 0
\(365\) 2963.84i 0.425027i
\(366\) 0 0
\(367\) 8326.08i 1.18424i 0.805848 + 0.592122i \(0.201710\pi\)
−0.805848 + 0.592122i \(0.798290\pi\)
\(368\) 0 0
\(369\) −6578.82 + 1418.81i −0.928130 + 0.200163i
\(370\) 0 0
\(371\) 935.037 0.130848
\(372\) 0 0
\(373\) 4237.46 0.588224 0.294112 0.955771i \(-0.404976\pi\)
0.294112 + 0.955771i \(0.404976\pi\)
\(374\) 0 0
\(375\) −505.378 408.006i −0.0695936 0.0561848i
\(376\) 0 0
\(377\) 5720.62i 0.781504i
\(378\) 0 0
\(379\) 4157.49i 0.563472i −0.959492 0.281736i \(-0.909090\pi\)
0.959492 0.281736i \(-0.0909103\pi\)
\(380\) 0 0
\(381\) −1376.88 1111.60i −0.185144 0.149472i
\(382\) 0 0
\(383\) 961.981 0.128342 0.0641709 0.997939i \(-0.479560\pi\)
0.0641709 + 0.997939i \(0.479560\pi\)
\(384\) 0 0
\(385\) −3235.35 −0.428283
\(386\) 0 0
\(387\) −9114.72 + 1965.71i −1.19723 + 0.258198i
\(388\) 0 0
\(389\) 11662.8i 1.52012i −0.649851 0.760061i \(-0.725169\pi\)
0.649851 0.760061i \(-0.274831\pi\)
\(390\) 0 0
\(391\) 13175.4i 1.70412i
\(392\) 0 0
\(393\) −4002.94 + 4958.26i −0.513795 + 0.636415i
\(394\) 0 0
\(395\) −3642.71 −0.464012
\(396\) 0 0
\(397\) 12670.6 1.60181 0.800907 0.598789i \(-0.204351\pi\)
0.800907 + 0.598789i \(0.204351\pi\)
\(398\) 0 0
\(399\) 6627.90 8209.68i 0.831604 1.03007i
\(400\) 0 0
\(401\) 404.911i 0.0504247i 0.999682 + 0.0252123i \(0.00802619\pi\)
−0.999682 + 0.0252123i \(0.991974\pi\)
\(402\) 0 0
\(403\) 12414.2i 1.53448i
\(404\) 0 0
\(405\) 1502.31 + 3321.01i 0.184322 + 0.407462i
\(406\) 0 0
\(407\) −14764.1 −1.79811
\(408\) 0 0
\(409\) −13515.2 −1.63395 −0.816974 0.576675i \(-0.804350\pi\)
−0.816974 + 0.576675i \(0.804350\pi\)
\(410\) 0 0
\(411\) −8305.56 6705.31i −0.996796 0.804741i
\(412\) 0 0
\(413\) 4689.62i 0.558744i
\(414\) 0 0
\(415\) 1394.00i 0.164889i
\(416\) 0 0
\(417\) 5382.31 + 4345.29i 0.632069 + 0.510287i
\(418\) 0 0
\(419\) 2392.20 0.278918 0.139459 0.990228i \(-0.455464\pi\)
0.139459 + 0.990228i \(0.455464\pi\)
\(420\) 0 0
\(421\) −3223.75 −0.373197 −0.186598 0.982436i \(-0.559746\pi\)
−0.186598 + 0.982436i \(0.559746\pi\)
\(422\) 0 0
\(423\) 783.123 + 3631.24i 0.0900159 + 0.417392i
\(424\) 0 0
\(425\) 3344.48i 0.381721i
\(426\) 0 0
\(427\) 12024.1i 1.36273i
\(428\) 0 0
\(429\) 6161.46 7631.91i 0.693422 0.858909i
\(430\) 0 0
\(431\) −7467.21 −0.834531 −0.417266 0.908785i \(-0.637011\pi\)
−0.417266 + 0.908785i \(0.637011\pi\)
\(432\) 0 0
\(433\) 7058.81 0.783429 0.391714 0.920087i \(-0.371882\pi\)
0.391714 + 0.920087i \(0.371882\pi\)
\(434\) 0 0
\(435\) −2219.03 + 2748.61i −0.244585 + 0.302956i
\(436\) 0 0
\(437\) 13866.5i 1.51790i
\(438\) 0 0
\(439\) 14738.2i 1.60231i −0.598455 0.801157i \(-0.704218\pi\)
0.598455 0.801157i \(-0.295782\pi\)
\(440\) 0 0
\(441\) −768.435 3563.13i −0.0829754 0.384746i
\(442\) 0 0
\(443\) −12124.9 −1.30039 −0.650196 0.759767i \(-0.725313\pi\)
−0.650196 + 0.759767i \(0.725313\pi\)
\(444\) 0 0
\(445\) 5687.47 0.605870
\(446\) 0 0
\(447\) 12174.8 + 9829.03i 1.28825 + 1.04004i
\(448\) 0 0
\(449\) 2844.47i 0.298973i −0.988764 0.149487i \(-0.952238\pi\)
0.988764 0.149487i \(-0.0477621\pi\)
\(450\) 0 0
\(451\) 11183.5i 1.16765i
\(452\) 0 0
\(453\) −5228.74 4221.31i −0.542313 0.437824i
\(454\) 0 0
\(455\) 3033.93 0.312600
\(456\) 0 0
\(457\) −9582.44 −0.980848 −0.490424 0.871484i \(-0.663158\pi\)
−0.490424 + 0.871484i \(0.663158\pi\)
\(458\) 0 0
\(459\) −8446.23 + 16760.8i −0.858903 + 1.70442i
\(460\) 0 0
\(461\) 16696.5i 1.68684i 0.537257 + 0.843419i \(0.319461\pi\)
−0.537257 + 0.843419i \(0.680539\pi\)
\(462\) 0 0
\(463\) 9088.87i 0.912302i −0.889902 0.456151i \(-0.849228\pi\)
0.889902 0.456151i \(-0.150772\pi\)
\(464\) 0 0
\(465\) −4815.47 + 5964.70i −0.480241 + 0.594852i
\(466\) 0 0
\(467\) 2840.80 0.281492 0.140746 0.990046i \(-0.455050\pi\)
0.140746 + 0.990046i \(0.455050\pi\)
\(468\) 0 0
\(469\) −2845.71 −0.280176
\(470\) 0 0
\(471\) 1908.03 2363.39i 0.186661 0.231209i
\(472\) 0 0
\(473\) 15494.3i 1.50620i
\(474\) 0 0
\(475\) 3519.90i 0.340009i
\(476\) 0 0
\(477\) 1711.16 369.034i 0.164253 0.0354233i
\(478\) 0 0
\(479\) −10410.2 −0.993017 −0.496509 0.868032i \(-0.665385\pi\)
−0.496509 + 0.868032i \(0.665385\pi\)
\(480\) 0 0
\(481\) 13845.0 1.31242
\(482\) 0 0
\(483\) −5742.64 4636.20i −0.540992 0.436758i
\(484\) 0 0
\(485\) 2310.31i 0.216301i
\(486\) 0 0
\(487\) 15786.9i 1.46893i −0.678644 0.734467i \(-0.737432\pi\)
0.678644 0.734467i \(-0.262568\pi\)
\(488\) 0 0
\(489\) −12118.7 9783.78i −1.12071 0.904781i
\(490\) 0 0
\(491\) 12936.6 1.18905 0.594523 0.804079i \(-0.297341\pi\)
0.594523 + 0.804079i \(0.297341\pi\)
\(492\) 0 0
\(493\) −18189.7 −1.66171
\(494\) 0 0
\(495\) −5920.85 + 1276.91i −0.537621 + 0.115945i
\(496\) 0 0
\(497\) 6804.08i 0.614094i
\(498\) 0 0
\(499\) 12533.0i 1.12435i −0.827017 0.562177i \(-0.809964\pi\)
0.827017 0.562177i \(-0.190036\pi\)
\(500\) 0 0
\(501\) 1311.23 1624.16i 0.116929 0.144835i
\(502\) 0 0
\(503\) −640.555 −0.0567812 −0.0283906 0.999597i \(-0.509038\pi\)
−0.0283906 + 0.999597i \(0.509038\pi\)
\(504\) 0 0
\(505\) 1592.38 0.140317
\(506\) 0 0
\(507\) 1393.24 1725.74i 0.122043 0.151170i
\(508\) 0 0
\(509\) 6917.78i 0.602407i −0.953560 0.301204i \(-0.902612\pi\)
0.953560 0.301204i \(-0.0973884\pi\)
\(510\) 0 0
\(511\) 8549.00i 0.740089i
\(512\) 0 0
\(513\) 8889.23 17639.9i 0.765047 1.51817i
\(514\) 0 0
\(515\) 5420.71 0.463816
\(516\) 0 0
\(517\) −6172.83 −0.525108
\(518\) 0 0
\(519\) −366.864 296.179i −0.0310280 0.0250498i
\(520\) 0 0
\(521\) 253.276i 0.0212980i 0.999943 + 0.0106490i \(0.00338974\pi\)
−0.999943 + 0.0106490i \(0.996610\pi\)
\(522\) 0 0
\(523\) 8978.68i 0.750689i 0.926885 + 0.375344i \(0.122476\pi\)
−0.926885 + 0.375344i \(0.877524\pi\)
\(524\) 0 0
\(525\) −1457.73 1176.86i −0.121182 0.0978333i
\(526\) 0 0
\(527\) −39473.1 −3.26276
\(528\) 0 0
\(529\) −2467.44 −0.202798
\(530\) 0 0
\(531\) 1850.87 + 8582.23i 0.151263 + 0.701388i
\(532\) 0 0
\(533\) 10487.3i 0.852258i
\(534\) 0 0
\(535\) 6863.20i 0.554620i
\(536\) 0 0
\(537\) −10129.7 + 12547.2i −0.814018 + 1.00829i
\(538\) 0 0
\(539\) 6057.05 0.484037
\(540\) 0 0
\(541\) 23716.2 1.88473 0.942364 0.334590i \(-0.108598\pi\)
0.942364 + 0.334590i \(0.108598\pi\)
\(542\) 0 0
\(543\) 6971.38 8635.13i 0.550959 0.682447i
\(544\) 0 0
\(545\) 5586.22i 0.439059i
\(546\) 0 0
\(547\) 9271.56i 0.724722i 0.932038 + 0.362361i \(0.118029\pi\)
−0.932038 + 0.362361i \(0.881971\pi\)
\(548\) 0 0
\(549\) 4745.58 + 22004.6i 0.368919 + 1.71063i
\(550\) 0 0
\(551\) 19143.8 1.48013
\(552\) 0 0
\(553\) −10507.1 −0.807973
\(554\) 0 0
\(555\) −6652.15 5370.47i −0.508771 0.410745i
\(556\) 0 0
\(557\) 19268.7i 1.46578i −0.680345 0.732892i \(-0.738170\pi\)
0.680345 0.732892i \(-0.261830\pi\)
\(558\) 0 0
\(559\) 14529.7i 1.09936i
\(560\) 0 0
\(561\) −24267.0 19591.5i −1.82630 1.47442i
\(562\) 0 0
\(563\) 9228.75 0.690844 0.345422 0.938447i \(-0.387736\pi\)
0.345422 + 0.938447i \(0.387736\pi\)
\(564\) 0 0
\(565\) 2330.73 0.173548
\(566\) 0 0
\(567\) 4333.30 + 9579.21i 0.320955 + 0.709504i
\(568\) 0 0
\(569\) 20222.1i 1.48991i 0.667118 + 0.744953i \(0.267528\pi\)
−0.667118 + 0.744953i \(0.732472\pi\)
\(570\) 0 0
\(571\) 5905.92i 0.432846i 0.976300 + 0.216423i \(0.0694391\pi\)
−0.976300 + 0.216423i \(0.930561\pi\)
\(572\) 0 0
\(573\) −11490.0 + 14232.1i −0.837699 + 1.03762i
\(574\) 0 0
\(575\) 2462.16 0.178572
\(576\) 0 0
\(577\) 25069.6 1.80877 0.904384 0.426720i \(-0.140331\pi\)
0.904384 + 0.426720i \(0.140331\pi\)
\(578\) 0 0
\(579\) 6743.71 8353.13i 0.484040 0.599558i
\(580\) 0 0
\(581\) 4020.91i 0.287118i
\(582\) 0 0
\(583\) 2908.84i 0.206642i
\(584\) 0 0
\(585\) 5552.23 1197.41i 0.392404 0.0846271i
\(586\) 0 0
\(587\) −7484.02 −0.526232 −0.263116 0.964764i \(-0.584750\pi\)
−0.263116 + 0.964764i \(0.584750\pi\)
\(588\) 0 0
\(589\) 41543.5 2.90623
\(590\) 0 0
\(591\) 5422.26 + 4377.54i 0.377397 + 0.304683i
\(592\) 0 0
\(593\) 4020.39i 0.278411i 0.990264 + 0.139206i \(0.0444549\pi\)
−0.990264 + 0.139206i \(0.955545\pi\)
\(594\) 0 0
\(595\) 9646.92i 0.664681i
\(596\) 0 0
\(597\) 4647.88 + 3752.37i 0.318635 + 0.257243i
\(598\) 0 0
\(599\) 15236.3 1.03930 0.519649 0.854380i \(-0.326063\pi\)
0.519649 + 0.854380i \(0.326063\pi\)
\(600\) 0 0
\(601\) 17173.1 1.16557 0.582784 0.812627i \(-0.301963\pi\)
0.582784 + 0.812627i \(0.301963\pi\)
\(602\) 0 0
\(603\) −5207.78 + 1123.12i −0.351703 + 0.0758494i
\(604\) 0 0
\(605\) 3409.99i 0.229150i
\(606\) 0 0
\(607\) 14868.7i 0.994237i −0.867683 0.497118i \(-0.834391\pi\)
0.867683 0.497118i \(-0.165609\pi\)
\(608\) 0 0
\(609\) −6400.64 + 7928.18i −0.425890 + 0.527530i
\(610\) 0 0
\(611\) 5788.53 0.383271
\(612\) 0 0
\(613\) −2566.79 −0.169122 −0.0845608 0.996418i \(-0.526949\pi\)
−0.0845608 + 0.996418i \(0.526949\pi\)
\(614\) 0 0
\(615\) 4068.01 5038.86i 0.266729 0.330384i
\(616\) 0 0
\(617\) 25317.1i 1.65191i −0.563734 0.825956i \(-0.690636\pi\)
0.563734 0.825956i \(-0.309364\pi\)
\(618\) 0 0
\(619\) 24229.3i 1.57327i −0.617416 0.786637i \(-0.711820\pi\)
0.617416 0.786637i \(-0.288180\pi\)
\(620\) 0 0
\(621\) −12339.1 6217.99i −0.797344 0.401802i
\(622\) 0 0
\(623\) 16405.1 1.05499
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 0 0
\(627\) 25539.8 + 20619.0i 1.62673 + 1.31331i
\(628\) 0 0
\(629\) 44022.6i 2.79061i
\(630\) 0 0
\(631\) 10560.6i 0.666261i 0.942881 + 0.333131i \(0.108105\pi\)
−0.942881 + 0.333131i \(0.891895\pi\)
\(632\) 0 0
\(633\) 6558.73 + 5295.05i 0.411827 + 0.332479i
\(634\) 0 0
\(635\) 1702.79 0.106414
\(636\) 0 0
\(637\) −5679.96 −0.353294
\(638\) 0 0
\(639\) 2685.39 + 12451.8i 0.166248 + 0.770868i
\(640\) 0 0
\(641\) 5599.55i 0.345037i 0.985006 + 0.172519i \(0.0551905\pi\)
−0.985006 + 0.172519i \(0.944810\pi\)
\(642\) 0 0
\(643\) 5597.59i 0.343308i −0.985157 0.171654i \(-0.945089\pi\)
0.985157 0.171654i \(-0.0549112\pi\)
\(644\) 0 0
\(645\) 5636.08 6981.16i 0.344063 0.426175i
\(646\) 0 0
\(647\) 27855.2 1.69258 0.846290 0.532722i \(-0.178831\pi\)
0.846290 + 0.532722i \(0.178831\pi\)
\(648\) 0 0
\(649\) −14589.1 −0.882395
\(650\) 0 0
\(651\) −13889.9 + 17204.7i −0.836232 + 1.03580i
\(652\) 0 0
\(653\) 4511.63i 0.270373i 0.990820 + 0.135187i \(0.0431634\pi\)
−0.990820 + 0.135187i \(0.956837\pi\)
\(654\) 0 0
\(655\) 6131.87i 0.365789i
\(656\) 0 0
\(657\) 3374.06 + 15645.1i 0.200357 + 0.929029i
\(658\) 0 0
\(659\) 17264.4 1.02053 0.510263 0.860018i \(-0.329548\pi\)
0.510263 + 0.860018i \(0.329548\pi\)
\(660\) 0 0
\(661\) −22656.6 −1.33319 −0.666595 0.745420i \(-0.732249\pi\)
−0.666595 + 0.745420i \(0.732249\pi\)
\(662\) 0 0
\(663\) 22756.2 + 18371.8i 1.33300 + 1.07617i
\(664\) 0 0
\(665\) 10152.9i 0.592049i
\(666\) 0 0
\(667\) 13391.0i 0.777365i
\(668\) 0 0
\(669\) −3982.68 3215.33i −0.230163 0.185817i
\(670\) 0 0
\(671\) −37406.2 −2.15209
\(672\) 0 0
\(673\) 10868.2 0.622495 0.311248 0.950329i \(-0.399253\pi\)
0.311248 + 0.950329i \(0.399253\pi\)
\(674\) 0 0
\(675\) −3132.18 1578.39i −0.178604 0.0900033i
\(676\) 0 0
\(677\) 8676.98i 0.492590i 0.969195 + 0.246295i \(0.0792132\pi\)
−0.969195 + 0.246295i \(0.920787\pi\)
\(678\) 0 0
\(679\) 6663.93i 0.376640i
\(680\) 0 0
\(681\) 2925.07 3623.15i 0.164595 0.203876i
\(682\) 0 0
\(683\) −22090.2 −1.23756 −0.618782 0.785563i \(-0.712374\pi\)
−0.618782 + 0.785563i \(0.712374\pi\)
\(684\) 0 0
\(685\) 10271.5 0.572924
\(686\) 0 0
\(687\) −11519.8 + 14269.1i −0.639750 + 0.792428i
\(688\) 0 0
\(689\) 2727.75i 0.150826i
\(690\) 0 0
\(691\) 3408.19i 0.187632i 0.995590 + 0.0938160i \(0.0299065\pi\)
−0.995590 + 0.0938160i \(0.970093\pi\)
\(692\) 0 0
\(693\) −17078.3 + 3683.15i −0.936146 + 0.201892i
\(694\) 0 0
\(695\) −6656.30 −0.363292
\(696\) 0 0
\(697\) 33346.1 1.81216
\(698\) 0 0
\(699\) 12313.0 + 9940.66i 0.666269 + 0.537897i
\(700\) 0 0
\(701\) 15940.1i 0.858843i 0.903104 + 0.429421i \(0.141282\pi\)
−0.903104 + 0.429421i \(0.858718\pi\)
\(702\) 0 0
\(703\) 46331.5i 2.48567i
\(704\) 0 0
\(705\) −2781.24 2245.37i −0.148578 0.119951i
\(706\) 0 0
\(707\) 4593.11 0.244330
\(708\) 0 0
\(709\) 29390.4 1.55681 0.778407 0.627760i \(-0.216028\pi\)
0.778407 + 0.627760i \(0.216028\pi\)
\(710\) 0 0
\(711\) −19228.6 + 4146.89i −1.01424 + 0.218735i
\(712\) 0 0
\(713\) 29059.5i 1.52635i
\(714\) 0 0
\(715\) 9438.38i 0.493672i
\(716\) 0 0
\(717\) 9860.69 12214.0i 0.513604 0.636178i
\(718\) 0 0
\(719\) −8719.04 −0.452247 −0.226123 0.974099i \(-0.572605\pi\)
−0.226123 + 0.974099i \(0.572605\pi\)
\(720\) 0 0
\(721\) 15635.7 0.807631
\(722\) 0 0
\(723\) −13238.5 + 16397.9i −0.680974 + 0.843492i
\(724\) 0 0
\(725\) 3399.21i 0.174129i
\(726\) 0 0
\(727\) 1864.65i 0.0951254i 0.998868 + 0.0475627i \(0.0151454\pi\)
−0.998868 + 0.0475627i \(0.984855\pi\)
\(728\) 0 0
\(729\) 11710.8 + 15820.2i 0.594971 + 0.803747i
\(730\) 0 0
\(731\) 46199.8 2.33757
\(732\) 0 0
\(733\) 8671.73 0.436968 0.218484 0.975841i \(-0.429889\pi\)
0.218484 + 0.975841i \(0.429889\pi\)
\(734\) 0 0
\(735\) 2729.08 + 2203.26i 0.136957 + 0.110569i
\(736\) 0 0
\(737\) 8852.83i 0.442467i
\(738\) 0 0
\(739\) 12190.9i 0.606832i −0.952858 0.303416i \(-0.901873\pi\)
0.952858 0.303416i \(-0.0981271\pi\)
\(740\) 0 0
\(741\) −23949.8 19335.3i −1.18734 0.958572i
\(742\) 0 0
\(743\) 7417.63 0.366254 0.183127 0.983089i \(-0.441378\pi\)
0.183127 + 0.983089i \(0.441378\pi\)
\(744\) 0 0
\(745\) −15056.5 −0.740440
\(746\) 0 0
\(747\) −1586.94 7358.45i −0.0777286 0.360417i
\(748\) 0 0
\(749\) 19796.4i 0.965747i
\(750\) 0 0
\(751\) 26901.6i 1.30713i −0.756872 0.653563i \(-0.773273\pi\)
0.756872 0.653563i \(-0.226727\pi\)
\(752\) 0 0
\(753\) 6044.81 7487.43i 0.292543 0.362360i
\(754\) 0 0
\(755\) 6466.38 0.311703
\(756\) 0 0
\(757\) 2029.01 0.0974184 0.0487092 0.998813i \(-0.484489\pi\)
0.0487092 + 0.998813i \(0.484489\pi\)
\(758\) 0 0
\(759\) 14422.9 17865.0i 0.689749 0.854360i
\(760\) 0 0
\(761\) 16579.6i 0.789765i 0.918732 + 0.394883i \(0.129215\pi\)
−0.918732 + 0.394883i \(0.870785\pi\)
\(762\) 0 0
\(763\) 16113.0i 0.764523i
\(764\) 0 0
\(765\) −3807.38 17654.3i −0.179943 0.834370i
\(766\) 0 0
\(767\) 13680.9 0.644052
\(768\) 0 0
\(769\) 28853.0 1.35301 0.676506 0.736437i \(-0.263493\pi\)
0.676506 + 0.736437i \(0.263493\pi\)
\(770\) 0 0
\(771\) −17818.8 14385.6i −0.832330 0.671964i
\(772\) 0 0
\(773\) 29347.9i 1.36555i −0.730627 0.682776i \(-0.760772\pi\)
0.730627 0.682776i \(-0.239228\pi\)
\(774\) 0 0
\(775\) 7376.53i 0.341901i
\(776\) 0 0
\(777\) −19187.7 15490.7i −0.885912 0.715221i
\(778\) 0 0
\(779\) −35095.1 −1.61414
\(780\) 0 0
\(781\) −21167.1 −0.969806
\(782\) 0 0
\(783\) −8584.43 + 17035.1i −0.391804 + 0.777503i
\(784\) 0 0
\(785\) 2922.80i 0.132891i
\(786\) 0 0
\(787\) 5150.59i 0.233289i −0.993174 0.116645i \(-0.962786\pi\)
0.993174 0.116645i \(-0.0372139\pi\)
\(788\) 0 0
\(789\) 17223.5 21334.0i 0.777152 0.962622i
\(790\) 0 0
\(791\) 6722.82 0.302195
\(792\) 0 0
\(793\) 35077.4 1.57079
\(794\) 0 0
\(795\) −1058.10 + 1310.61i −0.0472035 + 0.0584688i
\(796\) 0 0
\(797\) 8587.65i 0.381669i −0.981622 0.190835i \(-0.938881\pi\)
0.981622 0.190835i \(-0.0611194\pi\)
\(798\) 0 0
\(799\) 18405.7i 0.814951i
\(800\) 0 0
\(801\) 30022.1 6474.65i 1.32432 0.285606i
\(802\) 0 0
\(803\) −26595.4 −1.16878
\(804\) 0 0
\(805\) 7101.92 0.310944
\(806\) 0 0
\(807\) −1380.18 1114.26i −0.0602040 0.0486044i
\(808\) 0 0
\(809\) 33494.4i 1.45562i 0.685777 + 0.727812i \(0.259463\pi\)
−0.685777 + 0.727812i \(0.740537\pi\)
\(810\) 0 0
\(811\) 14657.7i 0.634649i 0.948317 + 0.317324i \(0.102784\pi\)
−0.948317 + 0.317324i \(0.897216\pi\)
\(812\) 0 0
\(813\) −10862.8 8769.81i −0.468602 0.378316i
\(814\) 0 0
\(815\) 14987.2 0.644146
\(816\) 0 0
\(817\) −48623.0 −2.08213
\(818\) 0 0
\(819\) 16015.0 3453.85i 0.683284 0.147359i
\(820\) 0 0
\(821\) 21764.5i 0.925197i −0.886568 0.462598i \(-0.846917\pi\)
0.886568 0.462598i \(-0.153083\pi\)
\(822\) 0 0
\(823\) 40675.3i 1.72279i −0.507939 0.861393i \(-0.669592\pi\)
0.507939 0.861393i \(-0.330408\pi\)
\(824\) 0 0
\(825\) 3661.15 4534.90i 0.154503 0.191376i
\(826\) 0 0
\(827\) −2336.34 −0.0982378 −0.0491189 0.998793i \(-0.515641\pi\)
−0.0491189 + 0.998793i \(0.515641\pi\)
\(828\) 0 0
\(829\) −7687.68 −0.322080 −0.161040 0.986948i \(-0.551485\pi\)
−0.161040 + 0.986948i \(0.551485\pi\)
\(830\) 0 0
\(831\) −18802.1 + 23289.3i −0.784884 + 0.972200i
\(832\) 0 0
\(833\) 18060.5i 0.751210i
\(834\) 0 0
\(835\) 2008.60i 0.0832461i
\(836\) 0 0
\(837\) −18628.9 + 36967.4i −0.769304 + 1.52662i
\(838\) 0 0
\(839\) −48190.7 −1.98299 −0.991495 0.130147i \(-0.958455\pi\)
−0.991495 + 0.130147i \(0.958455\pi\)
\(840\) 0 0
\(841\) 5901.63 0.241979
\(842\) 0 0
\(843\) 9833.48 + 7938.84i 0.401759 + 0.324351i
\(844\) 0 0
\(845\) 2134.23i 0.0868871i
\(846\) 0 0
\(847\) 9835.88i 0.399014i
\(848\) 0 0
\(849\) 7155.52 + 5776.85i 0.289254 + 0.233523i
\(850\) 0 0
\(851\) 32408.7 1.30547
\(852\) 0 0
\(853\) −23473.3 −0.942216 −0.471108 0.882076i \(-0.656146\pi\)
−0.471108 + 0.882076i \(0.656146\pi\)
\(854\) 0 0
\(855\) 4007.08 + 18580.3i 0.160280 + 0.743196i
\(856\) 0 0
\(857\) 37662.1i 1.50118i −0.660767 0.750591i \(-0.729769\pi\)
0.660767 0.750591i \(-0.270231\pi\)
\(858\) 0 0
\(859\) 18961.8i 0.753166i 0.926383 + 0.376583i \(0.122901\pi\)
−0.926383 + 0.376583i \(0.877099\pi\)
\(860\) 0 0
\(861\) 11733.9 14534.2i 0.464448 0.575291i
\(862\) 0 0
\(863\) −18661.2 −0.736077 −0.368039 0.929811i \(-0.619971\pi\)
−0.368039 + 0.929811i \(0.619971\pi\)
\(864\) 0 0
\(865\) 453.700 0.0178338
\(866\) 0 0
\(867\) 42380.1 52494.2i 1.66009 2.05628i
\(868\) 0 0
\(869\) 32687.1i 1.27599i
\(870\) 0 0
\(871\) 8301.69i 0.322953i
\(872\) 0 0
\(873\) 2630.08 + 12195.3i 0.101964 + 0.472793i
\(874\) 0 0
\(875\) 1802.77 0.0696511
\(876\) 0 0
\(877\) −36118.3 −1.39068 −0.695341 0.718680i \(-0.744746\pi\)
−0.695341 + 0.718680i \(0.744746\pi\)
\(878\) 0 0
\(879\) 3498.27 + 2824.25i 0.134236 + 0.108373i
\(880\) 0 0
\(881\) 1414.90i 0.0541082i 0.999634 + 0.0270541i \(0.00861263\pi\)
−0.999634 + 0.0270541i \(0.991387\pi\)
\(882\) 0 0
\(883\) 30126.3i 1.14817i −0.818797 0.574083i \(-0.805359\pi\)
0.818797 0.574083i \(-0.194641\pi\)
\(884\) 0 0
\(885\) −6573.31 5306.82i −0.249672 0.201567i
\(886\) 0 0
\(887\) −16362.4 −0.619386 −0.309693 0.950837i \(-0.600226\pi\)
−0.309693 + 0.950837i \(0.600226\pi\)
\(888\) 0 0
\(889\) 4911.57 0.185297
\(890\) 0 0
\(891\) −29800.4 + 13480.7i −1.12048 + 0.506868i
\(892\) 0 0
\(893\) 19371.0i 0.725898i
\(894\) 0 0
\(895\) 15517.1i 0.579529i
\(896\) 0 0
\(897\) −13525.0 + 16752.8i −0.503441 + 0.623590i
\(898\) 0 0
\(899\) −40119.0 −1.48837
\(900\) 0 0
\(901\) −8673.37 −0.320701
\(902\) 0 0
\(903\) 16256.9 20136.6i 0.599109 0.742088i
\(904\) 0 0
\(905\) 10679.1i 0.392247i
\(906\) 0 0
\(907\) 29712.8i 1.08776i 0.839163 + 0.543880i \(0.183045\pi\)
−0.839163 + 0.543880i \(0.816955\pi\)
\(908\) 0 0
\(909\) 8405.60 1812.78i 0.306706 0.0661452i
\(910\) 0 0
\(911\) 25605.9 0.931243 0.465622 0.884984i \(-0.345831\pi\)
0.465622 + 0.884984i \(0.345831\pi\)
\(912\) 0 0
\(913\) 12508.8 0.453430
\(914\) 0 0
\(915\) −16853.8 13606.5i −0.608928 0.491605i
\(916\) 0 0
\(917\) 17686.9i 0.636940i
\(918\) 0 0
\(919\) 382.697i 0.0137367i 0.999976 + 0.00686835i \(0.00218628\pi\)
−0.999976 + 0.00686835i \(0.997814\pi\)
\(920\) 0 0
\(921\) 19488.4 + 15733.5i 0.697246 + 0.562906i
\(922\) 0 0
\(923\) 19849.3 0.707852
\(924\) 0 0
\(925\) 8226.71 0.292424
\(926\) 0 0
\(927\) 28614.0 6170.97i 1.01381 0.218642i
\(928\) 0 0
\(929\) 22876.2i 0.807906i 0.914780 + 0.403953i \(0.132364\pi\)
−0.914780 + 0.403953i \(0.867636\pi\)
\(930\) 0 0
\(931\) 19007.7i 0.669122i
\(932\) 0 0
\(933\) −11318.3 + 14019.5i −0.397155 + 0.491937i
\(934\) 0 0
\(935\) 30011.0 1.04970
\(936\) 0 0
\(937\) 12304.9 0.429010 0.214505 0.976723i \(-0.431186\pi\)
0.214505 + 0.976723i \(0.431186\pi\)
\(938\) 0 0
\(939\) −26172.3 + 32418.4i −0.909586 + 1.12666i
\(940\) 0 0
\(941\) 18897.2i 0.654656i 0.944911 + 0.327328i \(0.106148\pi\)
−0.944911 + 0.327328i \(0.893852\pi\)
\(942\) 0 0
\(943\) 24548.9i 0.847744i
\(944\) 0 0
\(945\) −9034.56 4552.75i −0.310999 0.156721i
\(946\) 0 0
\(947\) 822.925 0.0282381 0.0141191 0.999900i \(-0.495506\pi\)
0.0141191 + 0.999900i \(0.495506\pi\)
\(948\) 0 0
\(949\) 24939.7 0.853084
\(950\) 0 0
\(951\) −30162.8 24351.3i −1.02849 0.830330i
\(952\) 0 0
\(953\) 42672.2i 1.45046i 0.688506 + 0.725230i \(0.258267\pi\)
−0.688506 + 0.725230i \(0.741733\pi\)
\(954\) 0 0
\(955\) 17600.9i 0.596388i
\(956\) 0 0
\(957\) −24664.1 19912.0i −0.833100 0.672585i
\(958\) 0 0
\(959\) 29627.3 0.997619
\(960\) 0 0
\(961\) −57270.2 −1.92240
\(962\) 0 0
\(963\) 7813.11 + 36228.3i 0.261448 + 1.21230i
\(964\) 0 0
\(965\) 10330.3i 0.344605i
\(966\) 0 0
\(967\) 29990.1i 0.997327i −0.866796 0.498663i \(-0.833824\pi\)
0.866796 0.498663i \(-0.166176\pi\)
\(968\) 0 0
\(969\) −61480.2 + 76152.7i −2.03821 + 2.52464i
\(970\) 0 0
\(971\) −3401.57 −0.112422 −0.0562109 0.998419i \(-0.517902\pi\)
−0.0562109 + 0.998419i \(0.517902\pi\)
\(972\) 0 0
\(973\) −19199.6 −0.632591
\(974\) 0 0
\(975\) −3433.22 + 4252.57i −0.112770 + 0.139683i
\(976\) 0 0
\(977\) 36808.1i 1.20532i 0.797999 + 0.602659i \(0.205892\pi\)
−0.797999 + 0.602659i \(0.794108\pi\)
\(978\) 0 0
\(979\) 51035.3i 1.66608i
\(980\) 0 0
\(981\) 6359.39 + 29487.6i 0.206972 + 0.959702i
\(982\) 0 0
\(983\) 7068.84 0.229360 0.114680 0.993402i \(-0.463416\pi\)
0.114680 + 0.993402i \(0.463416\pi\)
\(984\) 0 0
\(985\) −6705.70 −0.216915
\(986\) 0 0
\(987\) −8022.29 6476.62i −0.258715 0.208868i
\(988\) 0 0
\(989\) 34011.6i 1.09354i
\(990\) 0 0
\(991\) 636.665i 0.0204080i −0.999948 0.0102040i \(-0.996752\pi\)
0.999948 0.0102040i \(-0.00324809\pi\)
\(992\) 0 0
\(993\) −13935.5 11250.5i −0.445347 0.359541i
\(994\) 0 0
\(995\) −5748.03 −0.183141
\(996\) 0 0
\(997\) 1275.41 0.0405143 0.0202571 0.999795i \(-0.493552\pi\)
0.0202571 + 0.999795i \(0.493552\pi\)
\(998\) 0 0
\(999\) −41228.1 20775.9i −1.30570 0.657979i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 480.4.h.a.191.8 yes 24
3.2 odd 2 480.4.h.b.191.18 yes 24
4.3 odd 2 480.4.h.b.191.17 yes 24
8.3 odd 2 960.4.h.c.191.8 24
8.5 even 2 960.4.h.e.191.17 24
12.11 even 2 inner 480.4.h.a.191.7 24
24.5 odd 2 960.4.h.c.191.7 24
24.11 even 2 960.4.h.e.191.18 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
480.4.h.a.191.7 24 12.11 even 2 inner
480.4.h.a.191.8 yes 24 1.1 even 1 trivial
480.4.h.b.191.17 yes 24 4.3 odd 2
480.4.h.b.191.18 yes 24 3.2 odd 2
960.4.h.c.191.7 24 24.5 odd 2
960.4.h.c.191.8 24 8.3 odd 2
960.4.h.e.191.17 24 8.5 even 2
960.4.h.e.191.18 24 24.11 even 2