Properties

Label 480.4.h.a.191.9
Level $480$
Weight $4$
Character 480.191
Analytic conductor $28.321$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [480,4,Mod(191,480)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(480, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("480.191");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 480 = 2^{5} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 480.h (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(28.3209168028\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 191.9
Character \(\chi\) \(=\) 480.191
Dual form 480.4.h.a.191.10

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.28458 - 4.66698i) q^{3} -5.00000i q^{5} -8.51421i q^{7} +(-16.5614 + 21.3242i) q^{9} +38.7469 q^{11} +81.0585 q^{13} +(-23.3349 + 11.4229i) q^{15} +1.42775i q^{17} -70.0862i q^{19} +(-39.7356 + 19.4514i) q^{21} +190.718 q^{23} -25.0000 q^{25} +(137.355 + 28.5752i) q^{27} +96.7846i q^{29} -235.759i q^{31} +(-88.5202 - 180.831i) q^{33} -42.5710 q^{35} -342.821 q^{37} +(-185.184 - 378.299i) q^{39} -158.352i q^{41} +161.739i q^{43} +(106.621 + 82.8071i) q^{45} -241.292 q^{47} +270.508 q^{49} +(6.66328 - 3.26180i) q^{51} +240.675i q^{53} -193.734i q^{55} +(-327.091 + 160.117i) q^{57} +579.434 q^{59} -687.344 q^{61} +(181.558 + 141.007i) q^{63} -405.293i q^{65} -607.711i q^{67} +(-435.710 - 890.077i) q^{69} -175.195 q^{71} -776.670 q^{73} +(57.1144 + 116.675i) q^{75} -329.899i q^{77} -372.245i q^{79} +(-180.439 - 706.316i) q^{81} +191.879 q^{83} +7.13875 q^{85} +(451.692 - 221.112i) q^{87} -1571.97i q^{89} -690.149i q^{91} +(-1100.28 + 538.609i) q^{93} -350.431 q^{95} +759.448 q^{97} +(-641.703 + 826.245i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 20 q^{9} - 72 q^{11} - 72 q^{13} - 20 q^{15} - 68 q^{21} - 96 q^{23} - 600 q^{25} - 168 q^{27} - 80 q^{33} - 504 q^{37} + 456 q^{39} - 220 q^{45} - 432 q^{47} - 816 q^{49} - 1240 q^{51} + 40 q^{57}+ \cdots - 3160 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/480\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(97\) \(161\) \(421\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.28458 4.66698i −0.439667 0.898161i
\(4\) 0 0
\(5\) 5.00000i 0.447214i
\(6\) 0 0
\(7\) 8.51421i 0.459724i −0.973223 0.229862i \(-0.926173\pi\)
0.973223 0.229862i \(-0.0738275\pi\)
\(8\) 0 0
\(9\) −16.5614 + 21.3242i −0.613386 + 0.789783i
\(10\) 0 0
\(11\) 38.7469 1.06206 0.531029 0.847354i \(-0.321806\pi\)
0.531029 + 0.847354i \(0.321806\pi\)
\(12\) 0 0
\(13\) 81.0585 1.72935 0.864677 0.502329i \(-0.167523\pi\)
0.864677 + 0.502329i \(0.167523\pi\)
\(14\) 0 0
\(15\) −23.3349 + 11.4229i −0.401670 + 0.196625i
\(16\) 0 0
\(17\) 1.42775i 0.0203694i 0.999948 + 0.0101847i \(0.00324195\pi\)
−0.999948 + 0.0101847i \(0.996758\pi\)
\(18\) 0 0
\(19\) 70.0862i 0.846257i −0.906070 0.423128i \(-0.860932\pi\)
0.906070 0.423128i \(-0.139068\pi\)
\(20\) 0 0
\(21\) −39.7356 + 19.4514i −0.412906 + 0.202125i
\(22\) 0 0
\(23\) 190.718 1.72902 0.864509 0.502617i \(-0.167629\pi\)
0.864509 + 0.502617i \(0.167629\pi\)
\(24\) 0 0
\(25\) −25.0000 −0.200000
\(26\) 0 0
\(27\) 137.355 + 28.5752i 0.979038 + 0.203678i
\(28\) 0 0
\(29\) 96.7846i 0.619740i 0.950779 + 0.309870i \(0.100285\pi\)
−0.950779 + 0.309870i \(0.899715\pi\)
\(30\) 0 0
\(31\) 235.759i 1.36592i −0.730456 0.682960i \(-0.760692\pi\)
0.730456 0.682960i \(-0.239308\pi\)
\(32\) 0 0
\(33\) −88.5202 180.831i −0.466951 0.953898i
\(34\) 0 0
\(35\) −42.5710 −0.205595
\(36\) 0 0
\(37\) −342.821 −1.52323 −0.761613 0.648032i \(-0.775592\pi\)
−0.761613 + 0.648032i \(0.775592\pi\)
\(38\) 0 0
\(39\) −185.184 378.299i −0.760340 1.55324i
\(40\) 0 0
\(41\) 158.352i 0.603181i −0.953438 0.301591i \(-0.902482\pi\)
0.953438 0.301591i \(-0.0975175\pi\)
\(42\) 0 0
\(43\) 161.739i 0.573604i 0.957990 + 0.286802i \(0.0925922\pi\)
−0.957990 + 0.286802i \(0.907408\pi\)
\(44\) 0 0
\(45\) 106.621 + 82.8071i 0.353202 + 0.274315i
\(46\) 0 0
\(47\) −241.292 −0.748851 −0.374426 0.927257i \(-0.622160\pi\)
−0.374426 + 0.927257i \(0.622160\pi\)
\(48\) 0 0
\(49\) 270.508 0.788654
\(50\) 0 0
\(51\) 6.66328 3.26180i 0.0182950 0.00895576i
\(52\) 0 0
\(53\) 240.675i 0.623760i 0.950122 + 0.311880i \(0.100959\pi\)
−0.950122 + 0.311880i \(0.899041\pi\)
\(54\) 0 0
\(55\) 193.734i 0.474966i
\(56\) 0 0
\(57\) −327.091 + 160.117i −0.760075 + 0.372071i
\(58\) 0 0
\(59\) 579.434 1.27857 0.639287 0.768968i \(-0.279230\pi\)
0.639287 + 0.768968i \(0.279230\pi\)
\(60\) 0 0
\(61\) −687.344 −1.44271 −0.721356 0.692565i \(-0.756481\pi\)
−0.721356 + 0.692565i \(0.756481\pi\)
\(62\) 0 0
\(63\) 181.558 + 141.007i 0.363082 + 0.281988i
\(64\) 0 0
\(65\) 405.293i 0.773390i
\(66\) 0 0
\(67\) 607.711i 1.10811i −0.832479 0.554057i \(-0.813079\pi\)
0.832479 0.554057i \(-0.186921\pi\)
\(68\) 0 0
\(69\) −435.710 890.077i −0.760192 1.55294i
\(70\) 0 0
\(71\) −175.195 −0.292843 −0.146421 0.989222i \(-0.546776\pi\)
−0.146421 + 0.989222i \(0.546776\pi\)
\(72\) 0 0
\(73\) −776.670 −1.24524 −0.622619 0.782525i \(-0.713931\pi\)
−0.622619 + 0.782525i \(0.713931\pi\)
\(74\) 0 0
\(75\) 57.1144 + 116.675i 0.0879334 + 0.179632i
\(76\) 0 0
\(77\) 329.899i 0.488253i
\(78\) 0 0
\(79\) 372.245i 0.530137i −0.964230 0.265069i \(-0.914605\pi\)
0.964230 0.265069i \(-0.0853946\pi\)
\(80\) 0 0
\(81\) −180.439 706.316i −0.247516 0.968884i
\(82\) 0 0
\(83\) 191.879 0.253752 0.126876 0.991919i \(-0.459505\pi\)
0.126876 + 0.991919i \(0.459505\pi\)
\(84\) 0 0
\(85\) 7.13875 0.00910948
\(86\) 0 0
\(87\) 451.692 221.112i 0.556626 0.272479i
\(88\) 0 0
\(89\) 1571.97i 1.87223i −0.351697 0.936114i \(-0.614395\pi\)
0.351697 0.936114i \(-0.385605\pi\)
\(90\) 0 0
\(91\) 690.149i 0.795025i
\(92\) 0 0
\(93\) −1100.28 + 538.609i −1.22682 + 0.600550i
\(94\) 0 0
\(95\) −350.431 −0.378458
\(96\) 0 0
\(97\) 759.448 0.794952 0.397476 0.917613i \(-0.369886\pi\)
0.397476 + 0.917613i \(0.369886\pi\)
\(98\) 0 0
\(99\) −641.703 + 826.245i −0.651451 + 0.838795i
\(100\) 0 0
\(101\) 1179.56i 1.16209i 0.813873 + 0.581043i \(0.197355\pi\)
−0.813873 + 0.581043i \(0.802645\pi\)
\(102\) 0 0
\(103\) 980.381i 0.937862i −0.883235 0.468931i \(-0.844639\pi\)
0.883235 0.468931i \(-0.155361\pi\)
\(104\) 0 0
\(105\) 97.2568 + 198.678i 0.0903933 + 0.184657i
\(106\) 0 0
\(107\) −194.242 −0.175496 −0.0877482 0.996143i \(-0.527967\pi\)
−0.0877482 + 0.996143i \(0.527967\pi\)
\(108\) 0 0
\(109\) 791.809 0.695794 0.347897 0.937533i \(-0.386896\pi\)
0.347897 + 0.937533i \(0.386896\pi\)
\(110\) 0 0
\(111\) 783.200 + 1599.94i 0.669713 + 1.36810i
\(112\) 0 0
\(113\) 474.323i 0.394872i −0.980316 0.197436i \(-0.936739\pi\)
0.980316 0.197436i \(-0.0632615\pi\)
\(114\) 0 0
\(115\) 953.589i 0.773241i
\(116\) 0 0
\(117\) −1342.44 + 1728.50i −1.06076 + 1.36581i
\(118\) 0 0
\(119\) 12.1562 0.00936431
\(120\) 0 0
\(121\) 170.322 0.127965
\(122\) 0 0
\(123\) −739.026 + 361.767i −0.541754 + 0.265199i
\(124\) 0 0
\(125\) 125.000i 0.0894427i
\(126\) 0 0
\(127\) 302.167i 0.211126i 0.994413 + 0.105563i \(0.0336644\pi\)
−0.994413 + 0.105563i \(0.966336\pi\)
\(128\) 0 0
\(129\) 754.833 369.505i 0.515189 0.252195i
\(130\) 0 0
\(131\) 1361.01 0.907724 0.453862 0.891072i \(-0.350046\pi\)
0.453862 + 0.891072i \(0.350046\pi\)
\(132\) 0 0
\(133\) −596.729 −0.389045
\(134\) 0 0
\(135\) 142.876 686.776i 0.0910873 0.437839i
\(136\) 0 0
\(137\) 786.617i 0.490549i 0.969454 + 0.245275i \(0.0788781\pi\)
−0.969454 + 0.245275i \(0.921122\pi\)
\(138\) 0 0
\(139\) 3076.96i 1.87758i −0.344483 0.938792i \(-0.611946\pi\)
0.344483 0.938792i \(-0.388054\pi\)
\(140\) 0 0
\(141\) 551.249 + 1126.10i 0.329245 + 0.672589i
\(142\) 0 0
\(143\) 3140.77 1.83667
\(144\) 0 0
\(145\) 483.923 0.277156
\(146\) 0 0
\(147\) −617.997 1262.46i −0.346745 0.708338i
\(148\) 0 0
\(149\) 969.009i 0.532780i 0.963865 + 0.266390i \(0.0858310\pi\)
−0.963865 + 0.266390i \(0.914169\pi\)
\(150\) 0 0
\(151\) 639.744i 0.344779i 0.985029 + 0.172390i \(0.0551488\pi\)
−0.985029 + 0.172390i \(0.944851\pi\)
\(152\) 0 0
\(153\) −30.4455 23.6456i −0.0160874 0.0124943i
\(154\) 0 0
\(155\) −1178.79 −0.610858
\(156\) 0 0
\(157\) 1615.91 0.821426 0.410713 0.911765i \(-0.365280\pi\)
0.410713 + 0.911765i \(0.365280\pi\)
\(158\) 0 0
\(159\) 1123.23 549.841i 0.560237 0.274247i
\(160\) 0 0
\(161\) 1623.81i 0.794871i
\(162\) 0 0
\(163\) 2778.73i 1.33526i 0.744495 + 0.667628i \(0.232690\pi\)
−0.744495 + 0.667628i \(0.767310\pi\)
\(164\) 0 0
\(165\) −904.155 + 442.601i −0.426596 + 0.208827i
\(166\) 0 0
\(167\) −3626.17 −1.68025 −0.840124 0.542394i \(-0.817518\pi\)
−0.840124 + 0.542394i \(0.817518\pi\)
\(168\) 0 0
\(169\) 4373.49 1.99066
\(170\) 0 0
\(171\) 1494.53 + 1160.73i 0.668359 + 0.519082i
\(172\) 0 0
\(173\) 592.810i 0.260523i 0.991480 + 0.130262i \(0.0415817\pi\)
−0.991480 + 0.130262i \(0.958418\pi\)
\(174\) 0 0
\(175\) 212.855i 0.0919448i
\(176\) 0 0
\(177\) −1323.76 2704.21i −0.562147 1.14836i
\(178\) 0 0
\(179\) −1622.69 −0.677575 −0.338787 0.940863i \(-0.610017\pi\)
−0.338787 + 0.940863i \(0.610017\pi\)
\(180\) 0 0
\(181\) 1693.90 0.695615 0.347808 0.937566i \(-0.386926\pi\)
0.347808 + 0.937566i \(0.386926\pi\)
\(182\) 0 0
\(183\) 1570.29 + 3207.82i 0.634313 + 1.29579i
\(184\) 0 0
\(185\) 1714.10i 0.681208i
\(186\) 0 0
\(187\) 55.3208i 0.0216335i
\(188\) 0 0
\(189\) 243.295 1169.47i 0.0936354 0.450087i
\(190\) 0 0
\(191\) −2963.96 −1.12285 −0.561427 0.827527i \(-0.689747\pi\)
−0.561427 + 0.827527i \(0.689747\pi\)
\(192\) 0 0
\(193\) 4166.05 1.55378 0.776888 0.629638i \(-0.216797\pi\)
0.776888 + 0.629638i \(0.216797\pi\)
\(194\) 0 0
\(195\) −1891.49 + 925.922i −0.694629 + 0.340034i
\(196\) 0 0
\(197\) 5220.61i 1.88809i 0.329820 + 0.944044i \(0.393012\pi\)
−0.329820 + 0.944044i \(0.606988\pi\)
\(198\) 0 0
\(199\) 3043.91i 1.08431i 0.840280 + 0.542153i \(0.182391\pi\)
−0.840280 + 0.542153i \(0.817609\pi\)
\(200\) 0 0
\(201\) −2836.17 + 1388.36i −0.995265 + 0.487201i
\(202\) 0 0
\(203\) 824.044 0.284909
\(204\) 0 0
\(205\) −791.760 −0.269751
\(206\) 0 0
\(207\) −3158.56 + 4066.90i −1.06056 + 1.36555i
\(208\) 0 0
\(209\) 2715.62i 0.898773i
\(210\) 0 0
\(211\) 274.774i 0.0896503i −0.998995 0.0448251i \(-0.985727\pi\)
0.998995 0.0448251i \(-0.0142731\pi\)
\(212\) 0 0
\(213\) 400.247 + 817.633i 0.128753 + 0.263020i
\(214\) 0 0
\(215\) 808.695 0.256524
\(216\) 0 0
\(217\) −2007.30 −0.627946
\(218\) 0 0
\(219\) 1774.36 + 3624.70i 0.547490 + 1.11842i
\(220\) 0 0
\(221\) 115.731i 0.0352259i
\(222\) 0 0
\(223\) 2914.20i 0.875109i −0.899192 0.437554i \(-0.855845\pi\)
0.899192 0.437554i \(-0.144155\pi\)
\(224\) 0 0
\(225\) 414.035 533.104i 0.122677 0.157957i
\(226\) 0 0
\(227\) −237.573 −0.0694638 −0.0347319 0.999397i \(-0.511058\pi\)
−0.0347319 + 0.999397i \(0.511058\pi\)
\(228\) 0 0
\(229\) 614.568 0.177344 0.0886720 0.996061i \(-0.471738\pi\)
0.0886720 + 0.996061i \(0.471738\pi\)
\(230\) 0 0
\(231\) −1539.63 + 753.680i −0.438530 + 0.214669i
\(232\) 0 0
\(233\) 4953.20i 1.39268i −0.717711 0.696341i \(-0.754810\pi\)
0.717711 0.696341i \(-0.245190\pi\)
\(234\) 0 0
\(235\) 1206.46i 0.334896i
\(236\) 0 0
\(237\) −1737.26 + 850.423i −0.476149 + 0.233084i
\(238\) 0 0
\(239\) 862.873 0.233534 0.116767 0.993159i \(-0.462747\pi\)
0.116767 + 0.993159i \(0.462747\pi\)
\(240\) 0 0
\(241\) 4330.52 1.15748 0.578741 0.815511i \(-0.303544\pi\)
0.578741 + 0.815511i \(0.303544\pi\)
\(242\) 0 0
\(243\) −2884.14 + 2455.74i −0.761389 + 0.648295i
\(244\) 0 0
\(245\) 1352.54i 0.352697i
\(246\) 0 0
\(247\) 5681.08i 1.46348i
\(248\) 0 0
\(249\) −438.361 895.494i −0.111566 0.227910i
\(250\) 0 0
\(251\) 1921.40 0.483178 0.241589 0.970379i \(-0.422331\pi\)
0.241589 + 0.970379i \(0.422331\pi\)
\(252\) 0 0
\(253\) 7389.72 1.83632
\(254\) 0 0
\(255\) −16.3090 33.3164i −0.00400514 0.00818178i
\(256\) 0 0
\(257\) 7373.22i 1.78961i 0.446460 + 0.894803i \(0.352684\pi\)
−0.446460 + 0.894803i \(0.647316\pi\)
\(258\) 0 0
\(259\) 2918.85i 0.700264i
\(260\) 0 0
\(261\) −2063.85 1602.89i −0.489460 0.380140i
\(262\) 0 0
\(263\) −5671.84 −1.32981 −0.664906 0.746927i \(-0.731528\pi\)
−0.664906 + 0.746927i \(0.731528\pi\)
\(264\) 0 0
\(265\) 1203.38 0.278954
\(266\) 0 0
\(267\) −7336.34 + 3591.28i −1.68156 + 0.823157i
\(268\) 0 0
\(269\) 6899.13i 1.56374i −0.623439 0.781872i \(-0.714265\pi\)
0.623439 0.781872i \(-0.285735\pi\)
\(270\) 0 0
\(271\) 186.576i 0.0418217i 0.999781 + 0.0209108i \(0.00665661\pi\)
−0.999781 + 0.0209108i \(0.993343\pi\)
\(272\) 0 0
\(273\) −3220.91 + 1576.70i −0.714061 + 0.349546i
\(274\) 0 0
\(275\) −968.672 −0.212411
\(276\) 0 0
\(277\) −1906.70 −0.413583 −0.206791 0.978385i \(-0.566302\pi\)
−0.206791 + 0.978385i \(0.566302\pi\)
\(278\) 0 0
\(279\) 5027.36 + 3904.50i 1.07878 + 0.837836i
\(280\) 0 0
\(281\) 1893.13i 0.401902i 0.979601 + 0.200951i \(0.0644032\pi\)
−0.979601 + 0.200951i \(0.935597\pi\)
\(282\) 0 0
\(283\) 4397.28i 0.923643i 0.886973 + 0.461821i \(0.152804\pi\)
−0.886973 + 0.461821i \(0.847196\pi\)
\(284\) 0 0
\(285\) 800.587 + 1635.45i 0.166395 + 0.339916i
\(286\) 0 0
\(287\) −1348.24 −0.277297
\(288\) 0 0
\(289\) 4910.96 0.999585
\(290\) 0 0
\(291\) −1735.02 3544.33i −0.349514 0.713994i
\(292\) 0 0
\(293\) 1766.06i 0.352131i 0.984378 + 0.176066i \(0.0563371\pi\)
−0.984378 + 0.176066i \(0.943663\pi\)
\(294\) 0 0
\(295\) 2897.17i 0.571795i
\(296\) 0 0
\(297\) 5322.09 + 1107.20i 1.03979 + 0.216317i
\(298\) 0 0
\(299\) 15459.3 2.99008
\(300\) 0 0
\(301\) 1377.08 0.263700
\(302\) 0 0
\(303\) 5504.99 2694.80i 1.04374 0.510931i
\(304\) 0 0
\(305\) 3436.72i 0.645200i
\(306\) 0 0
\(307\) 8818.17i 1.63935i −0.572831 0.819674i \(-0.694155\pi\)
0.572831 0.819674i \(-0.305845\pi\)
\(308\) 0 0
\(309\) −4575.42 + 2239.76i −0.842351 + 0.412347i
\(310\) 0 0
\(311\) −7900.58 −1.44052 −0.720258 0.693706i \(-0.755977\pi\)
−0.720258 + 0.693706i \(0.755977\pi\)
\(312\) 0 0
\(313\) −5815.07 −1.05012 −0.525059 0.851066i \(-0.675957\pi\)
−0.525059 + 0.851066i \(0.675957\pi\)
\(314\) 0 0
\(315\) 705.037 907.791i 0.126109 0.162375i
\(316\) 0 0
\(317\) 7734.93i 1.37046i 0.728325 + 0.685231i \(0.240299\pi\)
−0.728325 + 0.685231i \(0.759701\pi\)
\(318\) 0 0
\(319\) 3750.10i 0.658199i
\(320\) 0 0
\(321\) 443.762 + 906.526i 0.0771600 + 0.157624i
\(322\) 0 0
\(323\) 100.066 0.0172378
\(324\) 0 0
\(325\) −2026.46 −0.345871
\(326\) 0 0
\(327\) −1808.95 3695.36i −0.305917 0.624935i
\(328\) 0 0
\(329\) 2054.41i 0.344265i
\(330\) 0 0
\(331\) 1555.42i 0.258290i −0.991626 0.129145i \(-0.958777\pi\)
0.991626 0.129145i \(-0.0412232\pi\)
\(332\) 0 0
\(333\) 5677.60 7310.36i 0.934326 1.20302i
\(334\) 0 0
\(335\) −3038.55 −0.495564
\(336\) 0 0
\(337\) −5346.56 −0.864231 −0.432115 0.901818i \(-0.642233\pi\)
−0.432115 + 0.901818i \(0.642233\pi\)
\(338\) 0 0
\(339\) −2213.66 + 1083.63i −0.354659 + 0.173612i
\(340\) 0 0
\(341\) 9134.92i 1.45069i
\(342\) 0 0
\(343\) 5223.54i 0.822287i
\(344\) 0 0
\(345\) −4450.38 + 2178.55i −0.694494 + 0.339968i
\(346\) 0 0
\(347\) 4367.18 0.675627 0.337813 0.941213i \(-0.390313\pi\)
0.337813 + 0.941213i \(0.390313\pi\)
\(348\) 0 0
\(349\) −5911.78 −0.906735 −0.453368 0.891324i \(-0.649777\pi\)
−0.453368 + 0.891324i \(0.649777\pi\)
\(350\) 0 0
\(351\) 11133.8 + 2316.26i 1.69310 + 0.352230i
\(352\) 0 0
\(353\) 5678.01i 0.856119i −0.903751 0.428059i \(-0.859197\pi\)
0.903751 0.428059i \(-0.140803\pi\)
\(354\) 0 0
\(355\) 875.976i 0.130963i
\(356\) 0 0
\(357\) −27.7717 56.7325i −0.00411718 0.00841066i
\(358\) 0 0
\(359\) 938.826 0.138020 0.0690102 0.997616i \(-0.478016\pi\)
0.0690102 + 0.997616i \(0.478016\pi\)
\(360\) 0 0
\(361\) 1946.92 0.283850
\(362\) 0 0
\(363\) −389.113 794.888i −0.0562620 0.114933i
\(364\) 0 0
\(365\) 3883.35i 0.556887i
\(366\) 0 0
\(367\) 5229.58i 0.743820i −0.928269 0.371910i \(-0.878703\pi\)
0.928269 0.371910i \(-0.121297\pi\)
\(368\) 0 0
\(369\) 3376.72 + 2622.53i 0.476382 + 0.369983i
\(370\) 0 0
\(371\) 2049.16 0.286757
\(372\) 0 0
\(373\) 7484.25 1.03893 0.519464 0.854492i \(-0.326132\pi\)
0.519464 + 0.854492i \(0.326132\pi\)
\(374\) 0 0
\(375\) 583.373 285.572i 0.0803339 0.0393250i
\(376\) 0 0
\(377\) 7845.22i 1.07175i
\(378\) 0 0
\(379\) 2886.60i 0.391226i 0.980681 + 0.195613i \(0.0626697\pi\)
−0.980681 + 0.195613i \(0.937330\pi\)
\(380\) 0 0
\(381\) 1410.21 690.323i 0.189625 0.0928250i
\(382\) 0 0
\(383\) 12453.0 1.66141 0.830705 0.556712i \(-0.187937\pi\)
0.830705 + 0.556712i \(0.187937\pi\)
\(384\) 0 0
\(385\) −1649.50 −0.218353
\(386\) 0 0
\(387\) −3448.95 2678.63i −0.453023 0.351841i
\(388\) 0 0
\(389\) 7099.46i 0.925339i −0.886531 0.462669i \(-0.846892\pi\)
0.886531 0.462669i \(-0.153108\pi\)
\(390\) 0 0
\(391\) 272.297i 0.0352191i
\(392\) 0 0
\(393\) −3109.33 6351.80i −0.399096 0.815282i
\(394\) 0 0
\(395\) −1861.23 −0.237085
\(396\) 0 0
\(397\) 1161.29 0.146809 0.0734047 0.997302i \(-0.476614\pi\)
0.0734047 + 0.997302i \(0.476614\pi\)
\(398\) 0 0
\(399\) 1363.27 + 2784.92i 0.171050 + 0.349425i
\(400\) 0 0
\(401\) 10688.1i 1.33101i −0.746392 0.665507i \(-0.768216\pi\)
0.746392 0.665507i \(-0.231784\pi\)
\(402\) 0 0
\(403\) 19110.3i 2.36216i
\(404\) 0 0
\(405\) −3531.58 + 902.194i −0.433298 + 0.110692i
\(406\) 0 0
\(407\) −13283.2 −1.61775
\(408\) 0 0
\(409\) −9323.79 −1.12722 −0.563609 0.826042i \(-0.690587\pi\)
−0.563609 + 0.826042i \(0.690587\pi\)
\(410\) 0 0
\(411\) 3671.13 1797.09i 0.440592 0.215678i
\(412\) 0 0
\(413\) 4933.42i 0.587791i
\(414\) 0 0
\(415\) 959.393i 0.113481i
\(416\) 0 0
\(417\) −14360.1 + 7029.55i −1.68637 + 0.825512i
\(418\) 0 0
\(419\) 8539.90 0.995707 0.497854 0.867261i \(-0.334122\pi\)
0.497854 + 0.867261i \(0.334122\pi\)
\(420\) 0 0
\(421\) 12344.1 1.42901 0.714505 0.699630i \(-0.246652\pi\)
0.714505 + 0.699630i \(0.246652\pi\)
\(422\) 0 0
\(423\) 3996.13 5145.34i 0.459335 0.591430i
\(424\) 0 0
\(425\) 35.6937i 0.00407388i
\(426\) 0 0
\(427\) 5852.19i 0.663249i
\(428\) 0 0
\(429\) −7175.32 14657.9i −0.807524 1.64963i
\(430\) 0 0
\(431\) −1591.26 −0.177839 −0.0889194 0.996039i \(-0.528341\pi\)
−0.0889194 + 0.996039i \(0.528341\pi\)
\(432\) 0 0
\(433\) −7757.86 −0.861014 −0.430507 0.902587i \(-0.641665\pi\)
−0.430507 + 0.902587i \(0.641665\pi\)
\(434\) 0 0
\(435\) −1105.56 2258.46i −0.121856 0.248931i
\(436\) 0 0
\(437\) 13366.7i 1.46319i
\(438\) 0 0
\(439\) 6967.38i 0.757483i −0.925503 0.378741i \(-0.876357\pi\)
0.925503 0.378741i \(-0.123643\pi\)
\(440\) 0 0
\(441\) −4480.00 + 5768.36i −0.483749 + 0.622866i
\(442\) 0 0
\(443\) −3077.88 −0.330100 −0.165050 0.986285i \(-0.552779\pi\)
−0.165050 + 0.986285i \(0.552779\pi\)
\(444\) 0 0
\(445\) −7859.84 −0.837286
\(446\) 0 0
\(447\) 4522.35 2213.77i 0.478523 0.234246i
\(448\) 0 0
\(449\) 14495.6i 1.52359i 0.647819 + 0.761795i \(0.275681\pi\)
−0.647819 + 0.761795i \(0.724319\pi\)
\(450\) 0 0
\(451\) 6135.65i 0.640613i
\(452\) 0 0
\(453\) 2985.67 1461.54i 0.309667 0.151588i
\(454\) 0 0
\(455\) −3450.75 −0.355546
\(456\) 0 0
\(457\) −4262.66 −0.436321 −0.218161 0.975913i \(-0.570006\pi\)
−0.218161 + 0.975913i \(0.570006\pi\)
\(458\) 0 0
\(459\) −40.7982 + 196.109i −0.00414879 + 0.0199424i
\(460\) 0 0
\(461\) 140.153i 0.0141596i 0.999975 + 0.00707982i \(0.00225359\pi\)
−0.999975 + 0.00707982i \(0.997746\pi\)
\(462\) 0 0
\(463\) 16063.2i 1.61235i 0.591675 + 0.806177i \(0.298467\pi\)
−0.591675 + 0.806177i \(0.701533\pi\)
\(464\) 0 0
\(465\) 2693.05 + 5501.41i 0.268574 + 0.548649i
\(466\) 0 0
\(467\) −16355.3 −1.62063 −0.810314 0.585996i \(-0.800703\pi\)
−0.810314 + 0.585996i \(0.800703\pi\)
\(468\) 0 0
\(469\) −5174.18 −0.509427
\(470\) 0 0
\(471\) −3691.68 7541.44i −0.361154 0.737773i
\(472\) 0 0
\(473\) 6266.88i 0.609200i
\(474\) 0 0
\(475\) 1752.16i 0.169251i
\(476\) 0 0
\(477\) −5132.19 3985.92i −0.492635 0.382605i
\(478\) 0 0
\(479\) 15067.8 1.43730 0.718649 0.695373i \(-0.244761\pi\)
0.718649 + 0.695373i \(0.244761\pi\)
\(480\) 0 0
\(481\) −27788.6 −2.63420
\(482\) 0 0
\(483\) −7578.30 + 3709.72i −0.713922 + 0.349479i
\(484\) 0 0
\(485\) 3797.24i 0.355513i
\(486\) 0 0
\(487\) 7052.41i 0.656212i 0.944641 + 0.328106i \(0.106410\pi\)
−0.944641 + 0.328106i \(0.893590\pi\)
\(488\) 0 0
\(489\) 12968.3 6348.22i 1.19927 0.587068i
\(490\) 0 0
\(491\) 4162.07 0.382549 0.191274 0.981537i \(-0.438738\pi\)
0.191274 + 0.981537i \(0.438738\pi\)
\(492\) 0 0
\(493\) −138.184 −0.0126237
\(494\) 0 0
\(495\) 4131.22 + 3208.52i 0.375121 + 0.291338i
\(496\) 0 0
\(497\) 1491.65i 0.134627i
\(498\) 0 0
\(499\) 2429.78i 0.217980i 0.994043 + 0.108990i \(0.0347616\pi\)
−0.994043 + 0.108990i \(0.965238\pi\)
\(500\) 0 0
\(501\) 8284.26 + 16923.3i 0.738750 + 1.50913i
\(502\) 0 0
\(503\) −11530.6 −1.02212 −0.511058 0.859546i \(-0.670746\pi\)
−0.511058 + 0.859546i \(0.670746\pi\)
\(504\) 0 0
\(505\) 5897.81 0.519701
\(506\) 0 0
\(507\) −9991.56 20411.0i −0.875229 1.78794i
\(508\) 0 0
\(509\) 10714.8i 0.933054i −0.884507 0.466527i \(-0.845505\pi\)
0.884507 0.466527i \(-0.154495\pi\)
\(510\) 0 0
\(511\) 6612.73i 0.572466i
\(512\) 0 0
\(513\) 2002.72 9626.71i 0.172363 0.828517i
\(514\) 0 0
\(515\) −4901.90 −0.419425
\(516\) 0 0
\(517\) −9349.30 −0.795323
\(518\) 0 0
\(519\) 2766.63 1354.32i 0.233992 0.114543i
\(520\) 0 0
\(521\) 12048.5i 1.01316i −0.862193 0.506580i \(-0.830909\pi\)
0.862193 0.506580i \(-0.169091\pi\)
\(522\) 0 0
\(523\) 1324.33i 0.110724i 0.998466 + 0.0553621i \(0.0176313\pi\)
−0.998466 + 0.0553621i \(0.982369\pi\)
\(524\) 0 0
\(525\) 993.391 486.284i 0.0825812 0.0404251i
\(526\) 0 0
\(527\) 336.604 0.0278230
\(528\) 0 0
\(529\) 24206.3 1.98950
\(530\) 0 0
\(531\) −9596.24 + 12355.9i −0.784259 + 1.00980i
\(532\) 0 0
\(533\) 12835.8i 1.04311i
\(534\) 0 0
\(535\) 971.212i 0.0784844i
\(536\) 0 0
\(537\) 3707.17 + 7573.08i 0.297907 + 0.608571i
\(538\) 0 0
\(539\) 10481.4 0.837595
\(540\) 0 0
\(541\) −17585.0 −1.39748 −0.698742 0.715374i \(-0.746256\pi\)
−0.698742 + 0.715374i \(0.746256\pi\)
\(542\) 0 0
\(543\) −3869.84 7905.38i −0.305839 0.624774i
\(544\) 0 0
\(545\) 3959.04i 0.311168i
\(546\) 0 0
\(547\) 2713.12i 0.212074i −0.994362 0.106037i \(-0.966184\pi\)
0.994362 0.106037i \(-0.0338162\pi\)
\(548\) 0 0
\(549\) 11383.4 14657.0i 0.884939 1.13943i
\(550\) 0 0
\(551\) 6783.27 0.524459
\(552\) 0 0
\(553\) −3169.37 −0.243717
\(554\) 0 0
\(555\) 7999.69 3916.00i 0.611834 0.299505i
\(556\) 0 0
\(557\) 24100.1i 1.83331i 0.399681 + 0.916654i \(0.369121\pi\)
−0.399681 + 0.916654i \(0.630879\pi\)
\(558\) 0 0
\(559\) 13110.3i 0.991964i
\(560\) 0 0
\(561\) 258.181 126.385i 0.0194303 0.00951153i
\(562\) 0 0
\(563\) 24652.3 1.84542 0.922710 0.385495i \(-0.125969\pi\)
0.922710 + 0.385495i \(0.125969\pi\)
\(564\) 0 0
\(565\) −2371.61 −0.176592
\(566\) 0 0
\(567\) −6013.72 + 1536.29i −0.445419 + 0.113789i
\(568\) 0 0
\(569\) 3448.99i 0.254111i −0.991896 0.127056i \(-0.959447\pi\)
0.991896 0.127056i \(-0.0405527\pi\)
\(570\) 0 0
\(571\) 754.536i 0.0553001i −0.999618 0.0276501i \(-0.991198\pi\)
0.999618 0.0276501i \(-0.00880241\pi\)
\(572\) 0 0
\(573\) 6771.41 + 13832.8i 0.493682 + 1.00850i
\(574\) 0 0
\(575\) −4767.95 −0.345804
\(576\) 0 0
\(577\) −7469.10 −0.538896 −0.269448 0.963015i \(-0.586841\pi\)
−0.269448 + 0.963015i \(0.586841\pi\)
\(578\) 0 0
\(579\) −9517.66 19442.9i −0.683144 1.39554i
\(580\) 0 0
\(581\) 1633.69i 0.116656i
\(582\) 0 0
\(583\) 9325.41i 0.662468i
\(584\) 0 0
\(585\) 8642.52 + 6712.22i 0.610811 + 0.474387i
\(586\) 0 0
\(587\) 24744.1 1.73986 0.869929 0.493176i \(-0.164164\pi\)
0.869929 + 0.493176i \(0.164164\pi\)
\(588\) 0 0
\(589\) −16523.4 −1.15592
\(590\) 0 0
\(591\) 24364.5 11926.9i 1.69581 0.830130i
\(592\) 0 0
\(593\) 21917.9i 1.51781i 0.651204 + 0.758903i \(0.274264\pi\)
−0.651204 + 0.758903i \(0.725736\pi\)
\(594\) 0 0
\(595\) 60.7808i 0.00418785i
\(596\) 0 0
\(597\) 14205.9 6954.04i 0.973882 0.476734i
\(598\) 0 0
\(599\) −6639.97 −0.452925 −0.226462 0.974020i \(-0.572716\pi\)
−0.226462 + 0.974020i \(0.572716\pi\)
\(600\) 0 0
\(601\) 6968.78 0.472982 0.236491 0.971634i \(-0.424003\pi\)
0.236491 + 0.971634i \(0.424003\pi\)
\(602\) 0 0
\(603\) 12958.9 + 10064.6i 0.875171 + 0.679702i
\(604\) 0 0
\(605\) 851.608i 0.0572277i
\(606\) 0 0
\(607\) 10741.4i 0.718252i −0.933289 0.359126i \(-0.883075\pi\)
0.933289 0.359126i \(-0.116925\pi\)
\(608\) 0 0
\(609\) −1882.59 3845.80i −0.125265 0.255894i
\(610\) 0 0
\(611\) −19558.7 −1.29503
\(612\) 0 0
\(613\) 12625.9 0.831898 0.415949 0.909388i \(-0.363450\pi\)
0.415949 + 0.909388i \(0.363450\pi\)
\(614\) 0 0
\(615\) 1808.84 + 3695.13i 0.118601 + 0.242280i
\(616\) 0 0
\(617\) 12503.3i 0.815822i 0.913022 + 0.407911i \(0.133743\pi\)
−0.913022 + 0.407911i \(0.866257\pi\)
\(618\) 0 0
\(619\) 20479.8i 1.32981i 0.746928 + 0.664905i \(0.231528\pi\)
−0.746928 + 0.664905i \(0.768472\pi\)
\(620\) 0 0
\(621\) 26196.1 + 5449.79i 1.69277 + 0.352162i
\(622\) 0 0
\(623\) −13384.1 −0.860708
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 0 0
\(627\) −12673.8 + 6204.05i −0.807243 + 0.395161i
\(628\) 0 0
\(629\) 489.462i 0.0310272i
\(630\) 0 0
\(631\) 12485.1i 0.787679i −0.919179 0.393840i \(-0.871146\pi\)
0.919179 0.393840i \(-0.128854\pi\)
\(632\) 0 0
\(633\) −1282.36 + 627.742i −0.0805204 + 0.0394163i
\(634\) 0 0
\(635\) 1510.83 0.0944183
\(636\) 0 0
\(637\) 21927.0 1.36386
\(638\) 0 0
\(639\) 2901.48 3735.89i 0.179626 0.231282i
\(640\) 0 0
\(641\) 21790.7i 1.34272i 0.741134 + 0.671358i \(0.234288\pi\)
−0.741134 + 0.671358i \(0.765712\pi\)
\(642\) 0 0
\(643\) 26174.8i 1.60534i 0.596422 + 0.802671i \(0.296588\pi\)
−0.596422 + 0.802671i \(0.703412\pi\)
\(644\) 0 0
\(645\) −1847.53 3774.16i −0.112785 0.230399i
\(646\) 0 0
\(647\) −1314.54 −0.0798762 −0.0399381 0.999202i \(-0.512716\pi\)
−0.0399381 + 0.999202i \(0.512716\pi\)
\(648\) 0 0
\(649\) 22451.3 1.35792
\(650\) 0 0
\(651\) 4585.83 + 9368.03i 0.276087 + 0.563997i
\(652\) 0 0
\(653\) 22950.8i 1.37539i 0.725998 + 0.687697i \(0.241378\pi\)
−0.725998 + 0.687697i \(0.758622\pi\)
\(654\) 0 0
\(655\) 6805.04i 0.405946i
\(656\) 0 0
\(657\) 12862.8 16561.8i 0.763811 0.983468i
\(658\) 0 0
\(659\) −21378.6 −1.26372 −0.631859 0.775083i \(-0.717708\pi\)
−0.631859 + 0.775083i \(0.717708\pi\)
\(660\) 0 0
\(661\) 13757.4 0.809531 0.404765 0.914421i \(-0.367353\pi\)
0.404765 + 0.914421i \(0.367353\pi\)
\(662\) 0 0
\(663\) 540.116 264.397i 0.0316385 0.0154877i
\(664\) 0 0
\(665\) 2983.64i 0.173986i
\(666\) 0 0
\(667\) 18458.6i 1.07154i
\(668\) 0 0
\(669\) −13600.5 + 6657.71i −0.785989 + 0.384756i
\(670\) 0 0
\(671\) −26632.4 −1.53224
\(672\) 0 0
\(673\) −19681.5 −1.12729 −0.563645 0.826017i \(-0.690602\pi\)
−0.563645 + 0.826017i \(0.690602\pi\)
\(674\) 0 0
\(675\) −3433.88 714.379i −0.195808 0.0407355i
\(676\) 0 0
\(677\) 19113.4i 1.08506i 0.840035 + 0.542532i \(0.182534\pi\)
−0.840035 + 0.542532i \(0.817466\pi\)
\(678\) 0 0
\(679\) 6466.10i 0.365458i
\(680\) 0 0
\(681\) 542.754 + 1108.75i 0.0305409 + 0.0623897i
\(682\) 0 0
\(683\) 31199.4 1.74789 0.873947 0.486022i \(-0.161552\pi\)
0.873947 + 0.486022i \(0.161552\pi\)
\(684\) 0 0
\(685\) 3933.09 0.219380
\(686\) 0 0
\(687\) −1404.03 2868.18i −0.0779723 0.159283i
\(688\) 0 0
\(689\) 19508.8i 1.07870i
\(690\) 0 0
\(691\) 23853.3i 1.31320i 0.754238 + 0.656602i \(0.228007\pi\)
−0.754238 + 0.656602i \(0.771993\pi\)
\(692\) 0 0
\(693\) 7034.82 + 5463.60i 0.385614 + 0.299488i
\(694\) 0 0
\(695\) −15384.8 −0.839681
\(696\) 0 0
\(697\) 226.087 0.0122864
\(698\) 0 0
\(699\) −23116.5 + 11316.0i −1.25085 + 0.612316i
\(700\) 0 0
\(701\) 19255.9i 1.03750i −0.854927 0.518748i \(-0.826398\pi\)
0.854927 0.518748i \(-0.173602\pi\)
\(702\) 0 0
\(703\) 24027.0i 1.28904i
\(704\) 0 0
\(705\) 5630.52 2756.25i 0.300791 0.147243i
\(706\) 0 0
\(707\) 10043.0 0.534239
\(708\) 0 0
\(709\) −7359.10 −0.389812 −0.194906 0.980822i \(-0.562440\pi\)
−0.194906 + 0.980822i \(0.562440\pi\)
\(710\) 0 0
\(711\) 7937.81 + 6164.91i 0.418694 + 0.325179i
\(712\) 0 0
\(713\) 44963.4i 2.36170i
\(714\) 0 0
\(715\) 15703.8i 0.821385i
\(716\) 0 0
\(717\) −1971.30 4027.01i −0.102677 0.209751i
\(718\) 0 0
\(719\) −10261.2 −0.532239 −0.266120 0.963940i \(-0.585742\pi\)
−0.266120 + 0.963940i \(0.585742\pi\)
\(720\) 0 0
\(721\) −8347.17 −0.431158
\(722\) 0 0
\(723\) −9893.40 20210.4i −0.508907 1.03961i
\(724\) 0 0
\(725\) 2419.62i 0.123948i
\(726\) 0 0
\(727\) 10965.3i 0.559395i 0.960088 + 0.279698i \(0.0902342\pi\)
−0.960088 + 0.279698i \(0.909766\pi\)
\(728\) 0 0
\(729\) 18049.9 + 7849.90i 0.917031 + 0.398816i
\(730\) 0 0
\(731\) −230.923 −0.0116840
\(732\) 0 0
\(733\) 7910.63 0.398616 0.199308 0.979937i \(-0.436131\pi\)
0.199308 + 0.979937i \(0.436131\pi\)
\(734\) 0 0
\(735\) −6312.28 + 3089.98i −0.316778 + 0.155069i
\(736\) 0 0
\(737\) 23546.9i 1.17688i
\(738\) 0 0
\(739\) 16479.4i 0.820304i −0.912017 0.410152i \(-0.865476\pi\)
0.912017 0.410152i \(-0.134524\pi\)
\(740\) 0 0
\(741\) −26513.5 + 12978.9i −1.31444 + 0.643442i
\(742\) 0 0
\(743\) −15889.8 −0.784575 −0.392287 0.919843i \(-0.628316\pi\)
−0.392287 + 0.919843i \(0.628316\pi\)
\(744\) 0 0
\(745\) 4845.04 0.238267
\(746\) 0 0
\(747\) −3177.78 + 4091.65i −0.155648 + 0.200409i
\(748\) 0 0
\(749\) 1653.82i 0.0806799i
\(750\) 0 0
\(751\) 34574.7i 1.67996i 0.542618 + 0.839979i \(0.317433\pi\)
−0.542618 + 0.839979i \(0.682567\pi\)
\(752\) 0 0
\(753\) −4389.58 8967.13i −0.212437 0.433971i
\(754\) 0 0
\(755\) 3198.72 0.154190
\(756\) 0 0
\(757\) −25472.9 −1.22302 −0.611511 0.791236i \(-0.709438\pi\)
−0.611511 + 0.791236i \(0.709438\pi\)
\(758\) 0 0
\(759\) −16882.4 34487.7i −0.807368 1.64931i
\(760\) 0 0
\(761\) 38864.3i 1.85129i −0.378398 0.925643i \(-0.623525\pi\)
0.378398 0.925643i \(-0.376475\pi\)
\(762\) 0 0
\(763\) 6741.62i 0.319873i
\(764\) 0 0
\(765\) −118.228 + 152.228i −0.00558763 + 0.00719452i
\(766\) 0 0
\(767\) 46968.0 2.21111
\(768\) 0 0
\(769\) 26642.5 1.24935 0.624677 0.780883i \(-0.285230\pi\)
0.624677 + 0.780883i \(0.285230\pi\)
\(770\) 0 0
\(771\) 34410.7 16844.7i 1.60735 0.786831i
\(772\) 0 0
\(773\) 38743.6i 1.80273i 0.433062 + 0.901364i \(0.357433\pi\)
−0.433062 + 0.901364i \(0.642567\pi\)
\(774\) 0 0
\(775\) 5893.97i 0.273184i
\(776\) 0 0
\(777\) 13622.2 6668.33i 0.628950 0.307883i
\(778\) 0 0
\(779\) −11098.3 −0.510446
\(780\) 0 0
\(781\) −6788.27 −0.311016
\(782\) 0 0
\(783\) −2765.64 + 13293.9i −0.126227 + 0.606749i
\(784\) 0 0
\(785\) 8079.57i 0.367353i
\(786\) 0 0
\(787\) 41561.1i 1.88246i 0.337772 + 0.941228i \(0.390327\pi\)
−0.337772 + 0.941228i \(0.609673\pi\)
\(788\) 0 0
\(789\) 12957.8 + 26470.4i 0.584674 + 1.19439i
\(790\) 0 0
\(791\) −4038.48 −0.181532
\(792\) 0 0
\(793\) −55715.1 −2.49496
\(794\) 0 0
\(795\) −2749.20 5616.13i −0.122647 0.250545i
\(796\) 0 0
\(797\) 25762.2i 1.14497i 0.819914 + 0.572486i \(0.194021\pi\)
−0.819914 + 0.572486i \(0.805979\pi\)
\(798\) 0 0
\(799\) 344.504i 0.0152537i
\(800\) 0 0
\(801\) 33520.9 + 26034.0i 1.47865 + 1.14840i
\(802\) 0 0
\(803\) −30093.5 −1.32251
\(804\) 0 0
\(805\) −8119.06 −0.355477
\(806\) 0 0
\(807\) −32198.1 + 15761.6i −1.40449 + 0.687527i
\(808\) 0 0
\(809\) 21955.0i 0.954139i −0.878866 0.477069i \(-0.841699\pi\)
0.878866 0.477069i \(-0.158301\pi\)
\(810\) 0 0
\(811\) 37665.1i 1.63083i 0.578880 + 0.815413i \(0.303490\pi\)
−0.578880 + 0.815413i \(0.696510\pi\)
\(812\) 0 0
\(813\) 870.746 426.247i 0.0375626 0.0183876i
\(814\) 0 0
\(815\) 13893.6 0.597145
\(816\) 0 0
\(817\) 11335.7 0.485416
\(818\) 0 0
\(819\) 14716.8 + 11429.8i 0.627898 + 0.487657i
\(820\) 0 0
\(821\) 4457.24i 0.189475i 0.995502 + 0.0947373i \(0.0302011\pi\)
−0.995502 + 0.0947373i \(0.969799\pi\)
\(822\) 0 0
\(823\) 6620.35i 0.280402i 0.990123 + 0.140201i \(0.0447749\pi\)
−0.990123 + 0.140201i \(0.955225\pi\)
\(824\) 0 0
\(825\) 2213.01 + 4520.77i 0.0933903 + 0.190780i
\(826\) 0 0
\(827\) 4052.32 0.170390 0.0851952 0.996364i \(-0.472849\pi\)
0.0851952 + 0.996364i \(0.472849\pi\)
\(828\) 0 0
\(829\) −22750.2 −0.953132 −0.476566 0.879139i \(-0.658119\pi\)
−0.476566 + 0.879139i \(0.658119\pi\)
\(830\) 0 0
\(831\) 4356.00 + 8898.52i 0.181839 + 0.371464i
\(832\) 0 0
\(833\) 386.218i 0.0160644i
\(834\) 0 0
\(835\) 18130.9i 0.751430i
\(836\) 0 0
\(837\) 6736.85 32382.7i 0.278207 1.33729i
\(838\) 0 0
\(839\) −15461.9 −0.636238 −0.318119 0.948051i \(-0.603051\pi\)
−0.318119 + 0.948051i \(0.603051\pi\)
\(840\) 0 0
\(841\) 15021.7 0.615923
\(842\) 0 0
\(843\) 8835.18 4324.99i 0.360973 0.176703i
\(844\) 0 0
\(845\) 21867.4i 0.890251i
\(846\) 0 0
\(847\) 1450.15i 0.0588286i
\(848\) 0 0
\(849\) 20522.0 10045.9i 0.829580 0.406095i
\(850\) 0 0
\(851\) −65382.1 −2.63369
\(852\) 0 0
\(853\) 17947.8 0.720424 0.360212 0.932870i \(-0.382704\pi\)
0.360212 + 0.932870i \(0.382704\pi\)
\(854\) 0 0
\(855\) 5803.63 7472.64i 0.232140 0.298899i
\(856\) 0 0
\(857\) 12603.9i 0.502380i 0.967938 + 0.251190i \(0.0808220\pi\)
−0.967938 + 0.251190i \(0.919178\pi\)
\(858\) 0 0
\(859\) 35217.8i 1.39886i −0.714703 0.699428i \(-0.753438\pi\)
0.714703 0.699428i \(-0.246562\pi\)
\(860\) 0 0
\(861\) 3080.16 + 6292.22i 0.121918 + 0.249057i
\(862\) 0 0
\(863\) 17265.3 0.681016 0.340508 0.940242i \(-0.389401\pi\)
0.340508 + 0.940242i \(0.389401\pi\)
\(864\) 0 0
\(865\) 2964.05 0.116510
\(866\) 0 0
\(867\) −11219.5 22919.4i −0.439485 0.897788i
\(868\) 0 0
\(869\) 14423.3i 0.563036i
\(870\) 0 0
\(871\) 49260.1i 1.91632i
\(872\) 0 0
\(873\) −12577.5 + 16194.6i −0.487612 + 0.627839i
\(874\) 0 0
\(875\) 1064.28 0.0411190
\(876\) 0 0
\(877\) −2608.17 −0.100424 −0.0502120 0.998739i \(-0.515990\pi\)
−0.0502120 + 0.998739i \(0.515990\pi\)
\(878\) 0 0
\(879\) 8242.18 4034.71i 0.316271 0.154821i
\(880\) 0 0
\(881\) 17510.1i 0.669613i −0.942287 0.334806i \(-0.891329\pi\)
0.942287 0.334806i \(-0.108671\pi\)
\(882\) 0 0
\(883\) 44103.9i 1.68088i −0.541907 0.840439i \(-0.682297\pi\)
0.541907 0.840439i \(-0.317703\pi\)
\(884\) 0 0
\(885\) −13521.0 + 6618.80i −0.513564 + 0.251400i
\(886\) 0 0
\(887\) 33475.0 1.26717 0.633586 0.773672i \(-0.281582\pi\)
0.633586 + 0.773672i \(0.281582\pi\)
\(888\) 0 0
\(889\) 2572.71 0.0970595
\(890\) 0 0
\(891\) −6991.44 27367.6i −0.262876 1.02901i
\(892\) 0 0
\(893\) 16911.2i 0.633720i
\(894\) 0 0
\(895\) 8113.47i 0.303021i
\(896\) 0 0
\(897\) −35318.0 72148.3i −1.31464 2.68558i
\(898\) 0 0
\(899\) 22817.8 0.846515
\(900\) 0 0
\(901\) −343.624 −0.0127056
\(902\) 0 0
\(903\) −3146.04 6426.80i −0.115940 0.236845i
\(904\) 0 0
\(905\) 8469.48i 0.311089i
\(906\) 0 0
\(907\) 1136.49i 0.0416057i −0.999784 0.0208029i \(-0.993378\pi\)
0.999784 0.0208029i \(-0.00662223\pi\)
\(908\) 0 0
\(909\) −25153.2 19535.2i −0.917797 0.712808i
\(910\) 0 0
\(911\) 21643.4 0.787133 0.393567 0.919296i \(-0.371241\pi\)
0.393567 + 0.919296i \(0.371241\pi\)
\(912\) 0 0
\(913\) 7434.70 0.269499
\(914\) 0 0
\(915\) 16039.1 7851.45i 0.579494 0.283673i
\(916\) 0 0
\(917\) 11587.9i 0.417302i
\(918\) 0 0
\(919\) 41646.5i 1.49488i 0.664331 + 0.747439i \(0.268717\pi\)
−0.664331 + 0.747439i \(0.731283\pi\)
\(920\) 0 0
\(921\) −41154.2 + 20145.8i −1.47240 + 0.720767i
\(922\) 0 0
\(923\) −14201.1 −0.506429
\(924\) 0 0
\(925\) 8570.52 0.304645
\(926\) 0 0
\(927\) 20905.8 + 16236.5i 0.740708 + 0.575271i
\(928\) 0 0
\(929\) 46474.2i 1.64130i 0.571430 + 0.820651i \(0.306389\pi\)
−0.571430 + 0.820651i \(0.693611\pi\)
\(930\) 0 0
\(931\) 18958.9i 0.667404i
\(932\) 0 0
\(933\) 18049.5 + 36871.8i 0.633348 + 1.29382i
\(934\) 0 0
\(935\) 276.604 0.00967479
\(936\) 0 0
\(937\) 20056.0 0.699253 0.349626 0.936889i \(-0.386309\pi\)
0.349626 + 0.936889i \(0.386309\pi\)
\(938\) 0 0
\(939\) 13285.0 + 27138.8i 0.461702 + 0.943175i
\(940\) 0 0
\(941\) 23411.9i 0.811057i 0.914082 + 0.405529i \(0.132913\pi\)
−0.914082 + 0.405529i \(0.867087\pi\)
\(942\) 0 0
\(943\) 30200.5i 1.04291i
\(944\) 0 0
\(945\) −5847.36 1216.47i −0.201285 0.0418750i
\(946\) 0 0
\(947\) 23063.9 0.791423 0.395711 0.918375i \(-0.370498\pi\)
0.395711 + 0.918375i \(0.370498\pi\)
\(948\) 0 0
\(949\) −62955.7 −2.15346
\(950\) 0 0
\(951\) 36098.8 17671.0i 1.23090 0.602547i
\(952\) 0 0
\(953\) 9943.82i 0.337998i −0.985616 0.168999i \(-0.945947\pi\)
0.985616 0.168999i \(-0.0540534\pi\)
\(954\) 0 0
\(955\) 14819.8i 0.502155i
\(956\) 0 0
\(957\) 17501.7 8567.40i 0.591168 0.289388i
\(958\) 0 0
\(959\) 6697.42 0.225517
\(960\) 0 0
\(961\) −25791.2 −0.865738
\(962\) 0 0
\(963\) 3216.93 4142.05i 0.107647 0.138604i
\(964\) 0 0
\(965\) 20830.3i 0.694870i
\(966\) 0 0
\(967\) 31385.5i 1.04373i −0.853028 0.521866i \(-0.825236\pi\)
0.853028 0.521866i \(-0.174764\pi\)
\(968\) 0 0
\(969\) −228.607 467.004i −0.00757887 0.0154823i
\(970\) 0 0
\(971\) 9898.13 0.327133 0.163566 0.986532i \(-0.447700\pi\)
0.163566 + 0.986532i \(0.447700\pi\)
\(972\) 0 0
\(973\) −26197.9 −0.863171
\(974\) 0 0
\(975\) 4629.61 + 9457.47i 0.152068 + 0.310647i
\(976\) 0 0
\(977\) 20061.2i 0.656924i −0.944517 0.328462i \(-0.893470\pi\)
0.944517 0.328462i \(-0.106530\pi\)
\(978\) 0 0
\(979\) 60908.9i 1.98841i
\(980\) 0 0
\(981\) −13113.5 + 16884.6i −0.426790 + 0.549526i
\(982\) 0 0
\(983\) 5560.50 0.180419 0.0902097 0.995923i \(-0.471246\pi\)
0.0902097 + 0.995923i \(0.471246\pi\)
\(984\) 0 0
\(985\) 26103.1 0.844379
\(986\) 0 0
\(987\) 9587.88 4693.45i 0.309205 0.151362i
\(988\) 0 0
\(989\) 30846.5i 0.991772i
\(990\) 0 0
\(991\) 8795.87i 0.281948i −0.990013 0.140974i \(-0.954977\pi\)
0.990013 0.140974i \(-0.0450233\pi\)
\(992\) 0 0
\(993\) −7259.14 + 3553.49i −0.231986 + 0.113561i
\(994\) 0 0
\(995\) 15219.5 0.484917
\(996\) 0 0
\(997\) 3763.22 0.119541 0.0597704 0.998212i \(-0.480963\pi\)
0.0597704 + 0.998212i \(0.480963\pi\)
\(998\) 0 0
\(999\) −47088.2 9796.16i −1.49130 0.310247i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 480.4.h.a.191.9 24
3.2 odd 2 480.4.h.b.191.15 yes 24
4.3 odd 2 480.4.h.b.191.16 yes 24
8.3 odd 2 960.4.h.c.191.9 24
8.5 even 2 960.4.h.e.191.16 24
12.11 even 2 inner 480.4.h.a.191.10 yes 24
24.5 odd 2 960.4.h.c.191.10 24
24.11 even 2 960.4.h.e.191.15 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
480.4.h.a.191.9 24 1.1 even 1 trivial
480.4.h.a.191.10 yes 24 12.11 even 2 inner
480.4.h.b.191.15 yes 24 3.2 odd 2
480.4.h.b.191.16 yes 24 4.3 odd 2
960.4.h.c.191.9 24 8.3 odd 2
960.4.h.c.191.10 24 24.5 odd 2
960.4.h.e.191.15 24 24.11 even 2
960.4.h.e.191.16 24 8.5 even 2