Properties

Label 483.2.e.a.344.17
Level $483$
Weight $2$
Character 483.344
Analytic conductor $3.857$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [483,2,Mod(344,483)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(483, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("483.344");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 483 = 3 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 483.e (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.85677441763\)
Analytic rank: \(0\)
Dimension: \(48\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 344.17
Character \(\chi\) \(=\) 483.344
Dual form 483.2.e.a.344.31

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.800018i q^{2} +(-1.73165 - 0.0370806i) q^{3} +1.35997 q^{4} -1.73737 q^{5} +(-0.0296651 + 1.38535i) q^{6} -1.00000i q^{7} -2.68804i q^{8} +(2.99725 + 0.128422i) q^{9} +1.38993i q^{10} +1.58963 q^{11} +(-2.35500 - 0.0504285i) q^{12} +0.447448 q^{13} -0.800018 q^{14} +(3.00853 + 0.0644228i) q^{15} +0.569463 q^{16} -6.24604 q^{17} +(0.102740 - 2.39785i) q^{18} -6.45008i q^{19} -2.36277 q^{20} +(-0.0370806 + 1.73165i) q^{21} -1.27173i q^{22} +(-3.35397 - 3.42796i) q^{23} +(-0.0996740 + 4.65475i) q^{24} -1.98154 q^{25} -0.357966i q^{26} +(-5.18544 - 0.333521i) q^{27} -1.35997i q^{28} -5.04699i q^{29} +(0.0515394 - 2.40687i) q^{30} +4.59689 q^{31} -5.83166i q^{32} +(-2.75269 - 0.0589444i) q^{33} +4.99695i q^{34} +1.73737i q^{35} +(4.07617 + 0.174650i) q^{36} +4.25359i q^{37} -5.16018 q^{38} +(-0.774825 - 0.0165916i) q^{39} +4.67012i q^{40} -10.5884i q^{41} +(1.38535 + 0.0296651i) q^{42} -1.24408i q^{43} +2.16185 q^{44} +(-5.20734 - 0.223116i) q^{45} +(-2.74243 + 2.68324i) q^{46} +1.56297i q^{47} +(-0.986114 - 0.0211160i) q^{48} -1.00000 q^{49} +1.58527i q^{50} +(10.8160 + 0.231607i) q^{51} +0.608516 q^{52} -1.95315 q^{53} +(-0.266823 + 4.14844i) q^{54} -2.76178 q^{55} -2.68804 q^{56} +(-0.239173 + 11.1693i) q^{57} -4.03769 q^{58} +13.0779i q^{59} +(4.09151 + 0.0876131i) q^{60} -8.71889i q^{61} -3.67759i q^{62} +(0.128422 - 2.99725i) q^{63} -3.52650 q^{64} -0.777383 q^{65} +(-0.0471566 + 2.20220i) q^{66} +9.90204i q^{67} -8.49444 q^{68} +(5.68081 + 6.06040i) q^{69} +1.38993 q^{70} +4.83016i q^{71} +(0.345202 - 8.05672i) q^{72} +2.41684 q^{73} +3.40295 q^{74} +(3.43134 + 0.0734767i) q^{75} -8.77192i q^{76} -1.58963i q^{77} +(-0.0132736 + 0.619874i) q^{78} -12.8212i q^{79} -0.989369 q^{80} +(8.96702 + 0.769823i) q^{81} -8.47095 q^{82} +17.4287 q^{83} +(-0.0504285 + 2.35500i) q^{84} +10.8517 q^{85} -0.995284 q^{86} +(-0.187146 + 8.73965i) q^{87} -4.27298i q^{88} +9.75988 q^{89} +(-0.178497 + 4.16596i) q^{90} -0.447448i q^{91} +(-4.56130 - 4.66192i) q^{92} +(-7.96021 - 0.170455i) q^{93} +1.25041 q^{94} +11.2062i q^{95} +(-0.216241 + 10.0984i) q^{96} -10.5386i q^{97} +0.800018i q^{98} +(4.76452 + 0.204143i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 4 q^{3} - 40 q^{4} + 6 q^{6} + 4 q^{9} + 22 q^{12} - 8 q^{13} + 24 q^{16} - 14 q^{18} - 12 q^{24} + 88 q^{25} - 16 q^{27} - 8 q^{31} - 10 q^{36} + 8 q^{46} - 98 q^{48} - 48 q^{49} + 28 q^{52} - 28 q^{54}+ \cdots - 6 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/483\mathbb{Z}\right)^\times\).

\(n\) \(323\) \(346\) \(442\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.800018i 0.565698i −0.959164 0.282849i \(-0.908720\pi\)
0.959164 0.282849i \(-0.0912796\pi\)
\(3\) −1.73165 0.0370806i −0.999771 0.0214085i
\(4\) 1.35997 0.679986
\(5\) −1.73737 −0.776976 −0.388488 0.921454i \(-0.627003\pi\)
−0.388488 + 0.921454i \(0.627003\pi\)
\(6\) −0.0296651 + 1.38535i −0.0121107 + 0.565569i
\(7\) 1.00000i 0.377964i
\(8\) 2.68804i 0.950365i
\(9\) 2.99725 + 0.128422i 0.999083 + 0.0428072i
\(10\) 1.38993i 0.439534i
\(11\) 1.58963 0.479291 0.239646 0.970860i \(-0.422969\pi\)
0.239646 + 0.970860i \(0.422969\pi\)
\(12\) −2.35500 0.0504285i −0.679830 0.0145575i
\(13\) 0.447448 0.124100 0.0620498 0.998073i \(-0.480236\pi\)
0.0620498 + 0.998073i \(0.480236\pi\)
\(14\) −0.800018 −0.213814
\(15\) 3.00853 + 0.0644228i 0.776798 + 0.0166339i
\(16\) 0.569463 0.142366
\(17\) −6.24604 −1.51489 −0.757444 0.652900i \(-0.773552\pi\)
−0.757444 + 0.652900i \(0.773552\pi\)
\(18\) 0.102740 2.39785i 0.0242159 0.565180i
\(19\) 6.45008i 1.47975i −0.672745 0.739875i \(-0.734885\pi\)
0.672745 0.739875i \(-0.265115\pi\)
\(20\) −2.36277 −0.528332
\(21\) −0.0370806 + 1.73165i −0.00809165 + 0.377878i
\(22\) 1.27173i 0.271134i
\(23\) −3.35397 3.42796i −0.699351 0.714778i
\(24\) −0.0996740 + 4.65475i −0.0203459 + 0.950147i
\(25\) −1.98154 −0.396308
\(26\) 0.357966i 0.0702030i
\(27\) −5.18544 0.333521i −0.997938 0.0641862i
\(28\) 1.35997i 0.257010i
\(29\) 5.04699i 0.937203i −0.883410 0.468602i \(-0.844758\pi\)
0.883410 0.468602i \(-0.155242\pi\)
\(30\) 0.0515394 2.40687i 0.00940976 0.439433i
\(31\) 4.59689 0.825625 0.412812 0.910816i \(-0.364546\pi\)
0.412812 + 0.910816i \(0.364546\pi\)
\(32\) 5.83166i 1.03090i
\(33\) −2.75269 0.0589444i −0.479181 0.0102609i
\(34\) 4.99695i 0.856969i
\(35\) 1.73737i 0.293669i
\(36\) 4.07617 + 0.174650i 0.679362 + 0.0291083i
\(37\) 4.25359i 0.699286i 0.936883 + 0.349643i \(0.113697\pi\)
−0.936883 + 0.349643i \(0.886303\pi\)
\(38\) −5.16018 −0.837092
\(39\) −0.774825 0.0165916i −0.124071 0.00265679i
\(40\) 4.67012i 0.738411i
\(41\) 10.5884i 1.65364i −0.562468 0.826819i \(-0.690148\pi\)
0.562468 0.826819i \(-0.309852\pi\)
\(42\) 1.38535 + 0.0296651i 0.213765 + 0.00457743i
\(43\) 1.24408i 0.189720i −0.995491 0.0948600i \(-0.969760\pi\)
0.995491 0.0948600i \(-0.0302403\pi\)
\(44\) 2.16185 0.325911
\(45\) −5.20734 0.223116i −0.776264 0.0332601i
\(46\) −2.74243 + 2.68324i −0.404349 + 0.395622i
\(47\) 1.56297i 0.227983i 0.993482 + 0.113992i \(0.0363637\pi\)
−0.993482 + 0.113992i \(0.963636\pi\)
\(48\) −0.986114 0.0211160i −0.142333 0.00304784i
\(49\) −1.00000 −0.142857
\(50\) 1.58527i 0.224191i
\(51\) 10.8160 + 0.231607i 1.51454 + 0.0324315i
\(52\) 0.608516 0.0843860
\(53\) −1.95315 −0.268286 −0.134143 0.990962i \(-0.542828\pi\)
−0.134143 + 0.990962i \(0.542828\pi\)
\(54\) −0.266823 + 4.14844i −0.0363100 + 0.564532i
\(55\) −2.76178 −0.372398
\(56\) −2.68804 −0.359204
\(57\) −0.239173 + 11.1693i −0.0316792 + 1.47941i
\(58\) −4.03769 −0.530174
\(59\) 13.0779i 1.70259i 0.524683 + 0.851297i \(0.324184\pi\)
−0.524683 + 0.851297i \(0.675816\pi\)
\(60\) 4.09151 + 0.0876131i 0.528211 + 0.0113108i
\(61\) 8.71889i 1.11634i −0.829727 0.558170i \(-0.811504\pi\)
0.829727 0.558170i \(-0.188496\pi\)
\(62\) 3.67759i 0.467055i
\(63\) 0.128422 2.99725i 0.0161796 0.377618i
\(64\) −3.52650 −0.440813
\(65\) −0.777383 −0.0964225
\(66\) −0.0471566 + 2.20220i −0.00580457 + 0.271072i
\(67\) 9.90204i 1.20973i 0.796329 + 0.604863i \(0.206772\pi\)
−0.796329 + 0.604863i \(0.793228\pi\)
\(68\) −8.49444 −1.03010
\(69\) 5.68081 + 6.06040i 0.683889 + 0.729586i
\(70\) 1.38993 0.166128
\(71\) 4.83016i 0.573235i 0.958045 + 0.286617i \(0.0925308\pi\)
−0.958045 + 0.286617i \(0.907469\pi\)
\(72\) 0.345202 8.05672i 0.0406824 0.949494i
\(73\) 2.41684 0.282870 0.141435 0.989948i \(-0.454828\pi\)
0.141435 + 0.989948i \(0.454828\pi\)
\(74\) 3.40295 0.395585
\(75\) 3.43134 + 0.0734767i 0.396217 + 0.00848436i
\(76\) 8.77192i 1.00621i
\(77\) 1.58963i 0.181155i
\(78\) −0.0132736 + 0.619874i −0.00150294 + 0.0701869i
\(79\) 12.8212i 1.44250i −0.692676 0.721249i \(-0.743568\pi\)
0.692676 0.721249i \(-0.256432\pi\)
\(80\) −0.989369 −0.110615
\(81\) 8.96702 + 0.769823i 0.996335 + 0.0855359i
\(82\) −8.47095 −0.935460
\(83\) 17.4287 1.91305 0.956527 0.291645i \(-0.0942025\pi\)
0.956527 + 0.291645i \(0.0942025\pi\)
\(84\) −0.0504285 + 2.35500i −0.00550220 + 0.256951i
\(85\) 10.8517 1.17703
\(86\) −0.995284 −0.107324
\(87\) −0.187146 + 8.73965i −0.0200641 + 0.936989i
\(88\) 4.27298i 0.455502i
\(89\) 9.75988 1.03454 0.517272 0.855821i \(-0.326947\pi\)
0.517272 + 0.855821i \(0.326947\pi\)
\(90\) −0.178497 + 4.16596i −0.0188152 + 0.439131i
\(91\) 0.447448i 0.0469053i
\(92\) −4.56130 4.66192i −0.475549 0.486039i
\(93\) −7.96021 0.170455i −0.825436 0.0176754i
\(94\) 1.25041 0.128970
\(95\) 11.2062i 1.14973i
\(96\) −0.216241 + 10.0984i −0.0220700 + 1.03066i
\(97\) 10.5386i 1.07004i −0.844840 0.535019i \(-0.820305\pi\)
0.844840 0.535019i \(-0.179695\pi\)
\(98\) 0.800018i 0.0808140i
\(99\) 4.76452 + 0.204143i 0.478852 + 0.0205171i
\(100\) −2.69484 −0.269484
\(101\) 11.4907i 1.14337i 0.820474 + 0.571684i \(0.193710\pi\)
−0.820474 + 0.571684i \(0.806290\pi\)
\(102\) 0.185290 8.65298i 0.0183464 0.856773i
\(103\) 18.3126i 1.80439i 0.431325 + 0.902196i \(0.358046\pi\)
−0.431325 + 0.902196i \(0.641954\pi\)
\(104\) 1.20276i 0.117940i
\(105\) 0.0644228 3.00853i 0.00628702 0.293602i
\(106\) 1.56256i 0.151769i
\(107\) 12.1271 1.17237 0.586184 0.810178i \(-0.300630\pi\)
0.586184 + 0.810178i \(0.300630\pi\)
\(108\) −7.05205 0.453580i −0.678583 0.0436457i
\(109\) 3.09320i 0.296275i −0.988967 0.148137i \(-0.952672\pi\)
0.988967 0.148137i \(-0.0473278\pi\)
\(110\) 2.20947i 0.210665i
\(111\) 0.157726 7.36575i 0.0149707 0.699126i
\(112\) 0.569463i 0.0538092i
\(113\) 10.6123 0.998325 0.499162 0.866508i \(-0.333641\pi\)
0.499162 + 0.866508i \(0.333641\pi\)
\(114\) 8.93564 + 0.191343i 0.836900 + 0.0179209i
\(115\) 5.82709 + 5.95563i 0.543379 + 0.555365i
\(116\) 6.86377i 0.637285i
\(117\) 1.34111 + 0.0574619i 0.123986 + 0.00531236i
\(118\) 10.4625 0.963155
\(119\) 6.24604i 0.572574i
\(120\) 0.173171 8.08703i 0.0158083 0.738241i
\(121\) −8.47308 −0.770280
\(122\) −6.97527 −0.631511
\(123\) −0.392626 + 18.3355i −0.0354019 + 1.65326i
\(124\) 6.25163 0.561413
\(125\) 12.1295 1.08490
\(126\) −2.39785 0.102740i −0.213618 0.00915277i
\(127\) 1.03652 0.0919767 0.0459883 0.998942i \(-0.485356\pi\)
0.0459883 + 0.998942i \(0.485356\pi\)
\(128\) 8.84205i 0.781534i
\(129\) −0.0461311 + 2.15431i −0.00406162 + 0.189676i
\(130\) 0.621920i 0.0545460i
\(131\) 0.318166i 0.0277983i −0.999903 0.0138991i \(-0.995576\pi\)
0.999903 0.0138991i \(-0.00442438\pi\)
\(132\) −3.74358 0.0801627i −0.325836 0.00697727i
\(133\) −6.45008 −0.559293
\(134\) 7.92181 0.684340
\(135\) 9.00903 + 0.579451i 0.775374 + 0.0498712i
\(136\) 16.7896i 1.43970i
\(137\) −15.9516 −1.36284 −0.681418 0.731895i \(-0.738636\pi\)
−0.681418 + 0.731895i \(0.738636\pi\)
\(138\) 4.84843 4.54475i 0.412726 0.386875i
\(139\) −4.18495 −0.354963 −0.177481 0.984124i \(-0.556795\pi\)
−0.177481 + 0.984124i \(0.556795\pi\)
\(140\) 2.36277i 0.199691i
\(141\) 0.0579560 2.70653i 0.00488077 0.227931i
\(142\) 3.86422 0.324278
\(143\) 0.711276 0.0594799
\(144\) 1.70682 + 0.0731314i 0.142235 + 0.00609428i
\(145\) 8.76850i 0.728185i
\(146\) 1.93352i 0.160019i
\(147\) 1.73165 + 0.0370806i 0.142824 + 0.00305836i
\(148\) 5.78476i 0.475505i
\(149\) −3.21691 −0.263539 −0.131770 0.991280i \(-0.542066\pi\)
−0.131770 + 0.991280i \(0.542066\pi\)
\(150\) 0.0587827 2.74514i 0.00479959 0.224140i
\(151\) −0.0680818 −0.00554042 −0.00277021 0.999996i \(-0.500882\pi\)
−0.00277021 + 0.999996i \(0.500882\pi\)
\(152\) −17.3381 −1.40630
\(153\) −18.7210 0.802126i −1.51350 0.0648481i
\(154\) −1.27173 −0.102479
\(155\) −7.98650 −0.641491
\(156\) −1.05374 0.0225641i −0.0843666 0.00180658i
\(157\) 15.6769i 1.25115i −0.780163 0.625576i \(-0.784864\pi\)
0.780163 0.625576i \(-0.215136\pi\)
\(158\) −10.2572 −0.816019
\(159\) 3.38218 + 0.0724241i 0.268225 + 0.00574360i
\(160\) 10.1318i 0.800985i
\(161\) −3.42796 + 3.35397i −0.270161 + 0.264330i
\(162\) 0.615872 7.17377i 0.0483875 0.563625i
\(163\) 19.1168 1.49735 0.748673 0.662940i \(-0.230691\pi\)
0.748673 + 0.662940i \(0.230691\pi\)
\(164\) 14.4000i 1.12445i
\(165\) 4.78244 + 0.102408i 0.372312 + 0.00797248i
\(166\) 13.9433i 1.08221i
\(167\) 14.6050i 1.13017i −0.825034 0.565083i \(-0.808844\pi\)
0.825034 0.565083i \(-0.191156\pi\)
\(168\) 4.65475 + 0.0996740i 0.359122 + 0.00769002i
\(169\) −12.7998 −0.984599
\(170\) 8.68155i 0.665845i
\(171\) 0.828329 19.3325i 0.0633439 1.47839i
\(172\) 1.69191i 0.129007i
\(173\) 10.8876i 0.827769i 0.910329 + 0.413884i \(0.135828\pi\)
−0.910329 + 0.413884i \(0.864172\pi\)
\(174\) 6.99188 + 0.149720i 0.530053 + 0.0113502i
\(175\) 1.98154i 0.149790i
\(176\) 0.905236 0.0682347
\(177\) 0.484936 22.6464i 0.0364500 1.70220i
\(178\) 7.80808i 0.585240i
\(179\) 8.94817i 0.668817i 0.942428 + 0.334409i \(0.108537\pi\)
−0.942428 + 0.334409i \(0.891463\pi\)
\(180\) −7.08183 0.303431i −0.527848 0.0226164i
\(181\) 0.810903i 0.0602739i −0.999546 0.0301370i \(-0.990406\pi\)
0.999546 0.0301370i \(-0.00959435\pi\)
\(182\) −0.357966 −0.0265342
\(183\) −0.323302 + 15.0981i −0.0238992 + 1.11608i
\(184\) −9.21447 + 9.01560i −0.679300 + 0.664639i
\(185\) 7.39007i 0.543329i
\(186\) −0.136367 + 6.36831i −0.00999893 + 0.466948i
\(187\) −9.92889 −0.726073
\(188\) 2.12560i 0.155025i
\(189\) −0.333521 + 5.18544i −0.0242601 + 0.377185i
\(190\) 8.96515 0.650400
\(191\) 15.4002 1.11432 0.557160 0.830405i \(-0.311891\pi\)
0.557160 + 0.830405i \(0.311891\pi\)
\(192\) 6.10668 + 0.130765i 0.440712 + 0.00943714i
\(193\) −11.9449 −0.859815 −0.429908 0.902873i \(-0.641454\pi\)
−0.429908 + 0.902873i \(0.641454\pi\)
\(194\) −8.43111 −0.605318
\(195\) 1.34616 + 0.0288258i 0.0964004 + 0.00206426i
\(196\) −1.35997 −0.0971408
\(197\) 3.47782i 0.247784i 0.992296 + 0.123892i \(0.0395377\pi\)
−0.992296 + 0.123892i \(0.960462\pi\)
\(198\) 0.163318 3.81170i 0.0116065 0.270886i
\(199\) 1.99160i 0.141180i 0.997505 + 0.0705902i \(0.0224883\pi\)
−0.997505 + 0.0705902i \(0.977512\pi\)
\(200\) 5.32646i 0.376637i
\(201\) 0.367173 17.1469i 0.0258984 1.20945i
\(202\) 9.19277 0.646801
\(203\) −5.04699 −0.354230
\(204\) 14.7094 + 0.314979i 1.02987 + 0.0220529i
\(205\) 18.3961i 1.28484i
\(206\) 14.6504 1.02074
\(207\) −9.61247 10.7052i −0.668113 0.744060i
\(208\) 0.254805 0.0176676
\(209\) 10.2532i 0.709231i
\(210\) −2.40687 0.0515394i −0.166090 0.00355655i
\(211\) −3.96041 −0.272646 −0.136323 0.990664i \(-0.543528\pi\)
−0.136323 + 0.990664i \(0.543528\pi\)
\(212\) −2.65623 −0.182431
\(213\) 0.179105 8.36417i 0.0122721 0.573103i
\(214\) 9.70187i 0.663206i
\(215\) 2.16142i 0.147408i
\(216\) −0.896518 + 13.9387i −0.0610003 + 0.948405i
\(217\) 4.59689i 0.312057i
\(218\) −2.47462 −0.167602
\(219\) −4.18514 0.0896180i −0.282805 0.00605582i
\(220\) −3.75594 −0.253225
\(221\) −2.79478 −0.187997
\(222\) −5.89273 0.126183i −0.395494 0.00846888i
\(223\) −16.0123 −1.07226 −0.536131 0.844135i \(-0.680115\pi\)
−0.536131 + 0.844135i \(0.680115\pi\)
\(224\) −5.83166 −0.389644
\(225\) −5.93918 0.254473i −0.395945 0.0169648i
\(226\) 8.49006i 0.564751i
\(227\) −7.93156 −0.526436 −0.263218 0.964736i \(-0.584784\pi\)
−0.263218 + 0.964736i \(0.584784\pi\)
\(228\) −0.325268 + 15.1899i −0.0215414 + 1.00598i
\(229\) 21.0010i 1.38779i 0.720078 + 0.693893i \(0.244106\pi\)
−0.720078 + 0.693893i \(0.755894\pi\)
\(230\) 4.76461 4.66178i 0.314169 0.307389i
\(231\) −0.0589444 + 2.75269i −0.00387826 + 0.181114i
\(232\) −13.5665 −0.890685
\(233\) 8.53274i 0.558998i 0.960146 + 0.279499i \(0.0901684\pi\)
−0.960146 + 0.279499i \(0.909832\pi\)
\(234\) 0.0459706 1.07291i 0.00300519 0.0701386i
\(235\) 2.71546i 0.177137i
\(236\) 17.7855i 1.15774i
\(237\) −0.475418 + 22.2019i −0.0308817 + 1.44217i
\(238\) 4.99695 0.323904
\(239\) 3.59163i 0.232323i −0.993230 0.116161i \(-0.962941\pi\)
0.993230 0.116161i \(-0.0370590\pi\)
\(240\) 1.71325 + 0.0366864i 0.110590 + 0.00236810i
\(241\) 9.99712i 0.643971i 0.946745 + 0.321986i \(0.104350\pi\)
−0.946745 + 0.321986i \(0.895650\pi\)
\(242\) 6.77862i 0.435746i
\(243\) −15.4992 1.66557i −0.994276 0.106846i
\(244\) 11.8574i 0.759095i
\(245\) 1.73737 0.110997
\(246\) 14.6688 + 0.314108i 0.935245 + 0.0200268i
\(247\) 2.88607i 0.183636i
\(248\) 12.3566i 0.784645i
\(249\) −30.1806 0.646268i −1.91261 0.0409556i
\(250\) 9.70384i 0.613725i
\(251\) 16.2825 1.02774 0.513870 0.857868i \(-0.328211\pi\)
0.513870 + 0.857868i \(0.328211\pi\)
\(252\) 0.174650 4.07617i 0.0110019 0.256775i
\(253\) −5.33157 5.44918i −0.335193 0.342587i
\(254\) 0.829238i 0.0520310i
\(255\) −18.7914 0.402387i −1.17676 0.0251985i
\(256\) −14.1268 −0.882925
\(257\) 13.6562i 0.851849i −0.904759 0.425925i \(-0.859949\pi\)
0.904759 0.425925i \(-0.140051\pi\)
\(258\) 1.72349 + 0.0369057i 0.107300 + 0.00229765i
\(259\) 4.25359 0.264305
\(260\) −1.05722 −0.0655659
\(261\) 0.648143 15.1271i 0.0401190 0.936344i
\(262\) −0.254538 −0.0157254
\(263\) 23.7305 1.46329 0.731644 0.681687i \(-0.238754\pi\)
0.731644 + 0.681687i \(0.238754\pi\)
\(264\) −0.158445 + 7.39933i −0.00975160 + 0.455397i
\(265\) 3.39335 0.208452
\(266\) 5.16018i 0.316391i
\(267\) −16.9007 0.361902i −1.03431 0.0221480i
\(268\) 13.4665i 0.822596i
\(269\) 6.16232i 0.375723i 0.982196 + 0.187862i \(0.0601556\pi\)
−0.982196 + 0.187862i \(0.939844\pi\)
\(270\) 0.463571 7.20739i 0.0282120 0.438628i
\(271\) 15.8139 0.960625 0.480312 0.877097i \(-0.340523\pi\)
0.480312 + 0.877097i \(0.340523\pi\)
\(272\) −3.55689 −0.215668
\(273\) −0.0165916 + 0.774825i −0.00100417 + 0.0468945i
\(274\) 12.7616i 0.770954i
\(275\) −3.14992 −0.189947
\(276\) 7.72573 + 8.24197i 0.465034 + 0.496108i
\(277\) 24.0550 1.44533 0.722663 0.691201i \(-0.242918\pi\)
0.722663 + 0.691201i \(0.242918\pi\)
\(278\) 3.34803i 0.200802i
\(279\) 13.7780 + 0.590339i 0.824868 + 0.0353427i
\(280\) 4.67012 0.279093
\(281\) −26.1999 −1.56295 −0.781477 0.623933i \(-0.785534\pi\)
−0.781477 + 0.623933i \(0.785534\pi\)
\(282\) −2.16527 0.0463658i −0.128940 0.00276104i
\(283\) 6.12280i 0.363962i 0.983302 + 0.181981i \(0.0582510\pi\)
−0.983302 + 0.181981i \(0.941749\pi\)
\(284\) 6.56888i 0.389791i
\(285\) 0.415532 19.4052i 0.0246140 1.14947i
\(286\) 0.569034i 0.0336477i
\(287\) −10.5884 −0.625016
\(288\) 0.748910 17.4789i 0.0441300 1.02996i
\(289\) 22.0131 1.29489
\(290\) 7.01496 0.411933
\(291\) −0.390779 + 18.2493i −0.0229079 + 1.06979i
\(292\) 3.28684 0.192348
\(293\) 14.1199 0.824895 0.412447 0.910981i \(-0.364674\pi\)
0.412447 + 0.910981i \(0.364674\pi\)
\(294\) 0.0296651 1.38535i 0.00173011 0.0807955i
\(295\) 22.7211i 1.32288i
\(296\) 11.4338 0.664577
\(297\) −8.24292 0.530175i −0.478303 0.0307639i
\(298\) 2.57358i 0.149084i
\(299\) −1.50073 1.53383i −0.0867893 0.0887037i
\(300\) 4.66653 + 0.0999262i 0.269422 + 0.00576924i
\(301\) −1.24408 −0.0717074
\(302\) 0.0544667i 0.00313421i
\(303\) 0.426082 19.8979i 0.0244778 1.14311i
\(304\) 3.67308i 0.210666i
\(305\) 15.1480i 0.867369i
\(306\) −0.641716 + 14.9771i −0.0366844 + 0.856184i
\(307\) −2.65580 −0.151574 −0.0757872 0.997124i \(-0.524147\pi\)
−0.0757872 + 0.997124i \(0.524147\pi\)
\(308\) 2.16185i 0.123183i
\(309\) 0.679042 31.7111i 0.0386293 1.80398i
\(310\) 6.38934i 0.362890i
\(311\) 6.62662i 0.375761i 0.982192 + 0.187881i \(0.0601618\pi\)
−0.982192 + 0.187881i \(0.939838\pi\)
\(312\) −0.0445989 + 2.08276i −0.00252492 + 0.117913i
\(313\) 12.2477i 0.692281i −0.938183 0.346141i \(-0.887492\pi\)
0.938183 0.346141i \(-0.112508\pi\)
\(314\) −12.5418 −0.707774
\(315\) −0.223116 + 5.20734i −0.0125712 + 0.293400i
\(316\) 17.4365i 0.980878i
\(317\) 11.4393i 0.642496i −0.946995 0.321248i \(-0.895898\pi\)
0.946995 0.321248i \(-0.104102\pi\)
\(318\) 0.0579406 2.70581i 0.00324915 0.151734i
\(319\) 8.02285i 0.449193i
\(320\) 6.12685 0.342501
\(321\) −20.9999 0.449679i −1.17210 0.0250986i
\(322\) 2.68324 + 2.74243i 0.149531 + 0.152829i
\(323\) 40.2875i 2.24165i
\(324\) 12.1949 + 1.04694i 0.677493 + 0.0581632i
\(325\) −0.886636 −0.0491817
\(326\) 15.2938i 0.847046i
\(327\) −0.114698 + 5.35635i −0.00634280 + 0.296207i
\(328\) −28.4621 −1.57156
\(329\) 1.56297 0.0861695
\(330\) 0.0819285 3.82604i 0.00451002 0.210616i
\(331\) 10.4770 0.575868 0.287934 0.957650i \(-0.407032\pi\)
0.287934 + 0.957650i \(0.407032\pi\)
\(332\) 23.7026 1.30085
\(333\) −0.546253 + 12.7491i −0.0299345 + 0.698645i
\(334\) −11.6842 −0.639333
\(335\) 17.2035i 0.939928i
\(336\) −0.0211160 + 0.986114i −0.00115197 + 0.0537969i
\(337\) 12.3274i 0.671517i −0.941948 0.335759i \(-0.891007\pi\)
0.941948 0.335759i \(-0.108993\pi\)
\(338\) 10.2401i 0.556986i
\(339\) −18.3769 0.393512i −0.998096 0.0213726i
\(340\) 14.7580 0.800365
\(341\) 7.30734 0.395715
\(342\) −15.4663 0.662678i −0.836324 0.0358335i
\(343\) 1.00000i 0.0539949i
\(344\) −3.34412 −0.180303
\(345\) −9.86967 10.5292i −0.531365 0.566871i
\(346\) 8.71027 0.468267
\(347\) 25.8602i 1.38825i −0.719854 0.694125i \(-0.755791\pi\)
0.719854 0.694125i \(-0.244209\pi\)
\(348\) −0.254513 + 11.8857i −0.0136433 + 0.637139i
\(349\) −8.00268 −0.428374 −0.214187 0.976793i \(-0.568710\pi\)
−0.214187 + 0.976793i \(0.568710\pi\)
\(350\) 1.58527 0.0847362
\(351\) −2.32021 0.149233i −0.123844 0.00796549i
\(352\) 9.27017i 0.494102i
\(353\) 29.7862i 1.58536i −0.609637 0.792681i \(-0.708685\pi\)
0.609637 0.792681i \(-0.291315\pi\)
\(354\) −18.1175 0.387957i −0.962934 0.0206197i
\(355\) 8.39178i 0.445390i
\(356\) 13.2731 0.703475
\(357\) 0.231607 10.8160i 0.0122579 0.572443i
\(358\) 7.15869 0.378349
\(359\) −12.5838 −0.664149 −0.332074 0.943253i \(-0.607748\pi\)
−0.332074 + 0.943253i \(0.607748\pi\)
\(360\) −0.599744 + 13.9975i −0.0316093 + 0.737734i
\(361\) −22.6035 −1.18966
\(362\) −0.648737 −0.0340969
\(363\) 14.6724 + 0.314187i 0.770103 + 0.0164905i
\(364\) 0.608516i 0.0318949i
\(365\) −4.19895 −0.219783
\(366\) 12.0788 + 0.258647i 0.631367 + 0.0135197i
\(367\) 6.76209i 0.352978i 0.984303 + 0.176489i \(0.0564740\pi\)
−0.984303 + 0.176489i \(0.943526\pi\)
\(368\) −1.90996 1.95210i −0.0995638 0.101760i
\(369\) 1.35978 31.7362i 0.0707876 1.65212i
\(370\) −5.91219 −0.307360
\(371\) 1.95315i 0.101403i
\(372\) −10.8257 0.231814i −0.561284 0.0120190i
\(373\) 3.15247i 0.163229i 0.996664 + 0.0816143i \(0.0260076\pi\)
−0.996664 + 0.0816143i \(0.973992\pi\)
\(374\) 7.94329i 0.410738i
\(375\) −21.0041 0.449770i −1.08465 0.0232260i
\(376\) 4.20133 0.216667
\(377\) 2.25827i 0.116307i
\(378\) 4.14844 + 0.266823i 0.213373 + 0.0137239i
\(379\) 12.2153i 0.627460i 0.949512 + 0.313730i \(0.101579\pi\)
−0.949512 + 0.313730i \(0.898421\pi\)
\(380\) 15.2401i 0.781800i
\(381\) −1.79490 0.0384349i −0.0919556 0.00196908i
\(382\) 12.3204i 0.630368i
\(383\) −6.35005 −0.324473 −0.162236 0.986752i \(-0.551871\pi\)
−0.162236 + 0.986752i \(0.551871\pi\)
\(384\) −0.327868 + 15.3114i −0.0167315 + 0.781355i
\(385\) 2.76178i 0.140753i
\(386\) 9.55616i 0.486396i
\(387\) 0.159766 3.72881i 0.00812137 0.189546i
\(388\) 14.3323i 0.727610i
\(389\) −1.99498 −0.101150 −0.0505748 0.998720i \(-0.516105\pi\)
−0.0505748 + 0.998720i \(0.516105\pi\)
\(390\) 0.0230612 1.07695i 0.00116775 0.0545335i
\(391\) 20.9490 + 21.4112i 1.05944 + 1.08281i
\(392\) 2.68804i 0.135766i
\(393\) −0.0117978 + 0.550953i −0.000595119 + 0.0277919i
\(394\) 2.78232 0.140171
\(395\) 22.2752i 1.12079i
\(396\) 6.47960 + 0.277628i 0.325612 + 0.0139513i
\(397\) 37.3364 1.87386 0.936930 0.349517i \(-0.113654\pi\)
0.936930 + 0.349517i \(0.113654\pi\)
\(398\) 1.59331 0.0798655
\(399\) 11.1693 + 0.239173i 0.559165 + 0.0119736i
\(400\) −1.12842 −0.0564208
\(401\) 7.50144 0.374604 0.187302 0.982302i \(-0.440026\pi\)
0.187302 + 0.982302i \(0.440026\pi\)
\(402\) −13.7178 0.293745i −0.684183 0.0146507i
\(403\) 2.05687 0.102460
\(404\) 15.6270i 0.777473i
\(405\) −15.5790 1.33747i −0.774128 0.0664593i
\(406\) 4.03769i 0.200387i
\(407\) 6.76163i 0.335162i
\(408\) 0.622568 29.0738i 0.0308217 1.43937i
\(409\) −12.2996 −0.608174 −0.304087 0.952644i \(-0.598351\pi\)
−0.304087 + 0.952644i \(0.598351\pi\)
\(410\) 14.7172 0.726830
\(411\) 27.6226 + 0.591494i 1.36252 + 0.0291763i
\(412\) 24.9046i 1.22696i
\(413\) 13.0779 0.643520
\(414\) −8.56432 + 7.69015i −0.420913 + 0.377950i
\(415\) −30.2802 −1.48640
\(416\) 2.60936i 0.127934i
\(417\) 7.24688 + 0.155180i 0.354881 + 0.00759921i
\(418\) −8.20277 −0.401211
\(419\) −0.919388 −0.0449150 −0.0224575 0.999748i \(-0.507149\pi\)
−0.0224575 + 0.999748i \(0.507149\pi\)
\(420\) 0.0876131 4.09151i 0.00427508 0.199645i
\(421\) 28.2530i 1.37697i 0.725253 + 0.688483i \(0.241723\pi\)
−0.725253 + 0.688483i \(0.758277\pi\)
\(422\) 3.16840i 0.154235i
\(423\) −0.200719 + 4.68462i −0.00975931 + 0.227774i
\(424\) 5.25015i 0.254970i
\(425\) 12.3768 0.600363
\(426\) −6.69148 0.143287i −0.324203 0.00694230i
\(427\) −8.71889 −0.421937
\(428\) 16.4925 0.797193
\(429\) −1.23168 0.0263745i −0.0594663 0.00127337i
\(430\) 1.72918 0.0833883
\(431\) 17.4264 0.839400 0.419700 0.907663i \(-0.362135\pi\)
0.419700 + 0.907663i \(0.362135\pi\)
\(432\) −2.95292 0.189928i −0.142072 0.00913793i
\(433\) 32.6994i 1.57143i −0.618586 0.785717i \(-0.712294\pi\)
0.618586 0.785717i \(-0.287706\pi\)
\(434\) −3.67759 −0.176530
\(435\) 0.325141 15.1840i 0.0155893 0.728018i
\(436\) 4.20666i 0.201463i
\(437\) −22.1106 + 21.6334i −1.05769 + 1.03486i
\(438\) −0.0716960 + 3.34818i −0.00342577 + 0.159982i
\(439\) 15.1628 0.723683 0.361842 0.932240i \(-0.382148\pi\)
0.361842 + 0.932240i \(0.382148\pi\)
\(440\) 7.42376i 0.353914i
\(441\) −2.99725 0.128422i −0.142726 0.00611531i
\(442\) 2.23587i 0.106350i
\(443\) 17.7728i 0.844410i 0.906500 + 0.422205i \(0.138744\pi\)
−0.906500 + 0.422205i \(0.861256\pi\)
\(444\) 0.214502 10.0172i 0.0101798 0.475396i
\(445\) −16.9565 −0.803816
\(446\) 12.8101i 0.606577i
\(447\) 5.57057 + 0.119285i 0.263479 + 0.00564198i
\(448\) 3.52650i 0.166612i
\(449\) 8.92986i 0.421426i −0.977548 0.210713i \(-0.932421\pi\)
0.977548 0.210713i \(-0.0675786\pi\)
\(450\) −0.203583 + 4.75145i −0.00959698 + 0.223985i
\(451\) 16.8317i 0.792574i
\(452\) 14.4325 0.678846
\(453\) 0.117894 + 0.00252451i 0.00553915 + 0.000118612i
\(454\) 6.34539i 0.297804i
\(455\) 0.777383i 0.0364443i
\(456\) 30.0235 + 0.642905i 1.40598 + 0.0301068i
\(457\) 32.6264i 1.52620i −0.646282 0.763098i \(-0.723677\pi\)
0.646282 0.763098i \(-0.276323\pi\)
\(458\) 16.8012 0.785068
\(459\) 32.3885 + 2.08319i 1.51176 + 0.0972350i
\(460\) 7.92468 + 8.09949i 0.369490 + 0.377640i
\(461\) 29.3081i 1.36501i 0.730880 + 0.682506i \(0.239110\pi\)
−0.730880 + 0.682506i \(0.760890\pi\)
\(462\) 2.20220 + 0.0471566i 0.102456 + 0.00219392i
\(463\) 1.49430 0.0694459 0.0347229 0.999397i \(-0.488945\pi\)
0.0347229 + 0.999397i \(0.488945\pi\)
\(464\) 2.87408i 0.133426i
\(465\) 13.8298 + 0.296144i 0.641344 + 0.0137334i
\(466\) 6.82634 0.316224
\(467\) 25.4953 1.17978 0.589892 0.807482i \(-0.299170\pi\)
0.589892 + 0.807482i \(0.299170\pi\)
\(468\) 1.82387 + 0.0781465i 0.0843086 + 0.00361233i
\(469\) 9.90204 0.457234
\(470\) −2.17242 −0.100206
\(471\) −0.581308 + 27.1469i −0.0267853 + 1.25087i
\(472\) 35.1538 1.61809
\(473\) 1.97762i 0.0909311i
\(474\) 17.7619 + 0.380343i 0.815832 + 0.0174697i
\(475\) 12.7811i 0.586437i
\(476\) 8.49444i 0.389342i
\(477\) −5.85409 0.250827i −0.268040 0.0114846i
\(478\) −2.87337 −0.131425
\(479\) −14.3517 −0.655746 −0.327873 0.944722i \(-0.606332\pi\)
−0.327873 + 0.944722i \(0.606332\pi\)
\(480\) 0.375691 17.5447i 0.0171479 0.800802i
\(481\) 1.90326i 0.0867812i
\(482\) 7.99788 0.364293
\(483\) 6.06040 5.68081i 0.275758 0.258486i
\(484\) −11.5231 −0.523779
\(485\) 18.3095i 0.831393i
\(486\) −1.33249 + 12.3997i −0.0604428 + 0.562460i
\(487\) 28.2471 1.28000 0.639998 0.768376i \(-0.278935\pi\)
0.639998 + 0.768376i \(0.278935\pi\)
\(488\) −23.4367 −1.06093
\(489\) −33.1037 0.708863i −1.49700 0.0320559i
\(490\) 1.38993i 0.0627906i
\(491\) 25.5440i 1.15278i 0.817174 + 0.576392i \(0.195540\pi\)
−0.817174 + 0.576392i \(0.804460\pi\)
\(492\) −0.533960 + 24.9358i −0.0240728 + 1.12419i
\(493\) 31.5237i 1.41976i
\(494\) −2.30891 −0.103883
\(495\) −8.27773 0.354671i −0.372056 0.0159413i
\(496\) 2.61776 0.117541
\(497\) 4.83016 0.216662
\(498\) −0.517026 + 24.1450i −0.0231685 + 1.08196i
\(499\) 22.4299 1.00410 0.502050 0.864839i \(-0.332579\pi\)
0.502050 + 0.864839i \(0.332579\pi\)
\(500\) 16.4958 0.737715
\(501\) −0.541561 + 25.2907i −0.0241952 + 1.12991i
\(502\) 13.0263i 0.581390i
\(503\) 25.6093 1.14186 0.570930 0.820999i \(-0.306583\pi\)
0.570930 + 0.820999i \(0.306583\pi\)
\(504\) −8.05672 0.345202i −0.358875 0.0153765i
\(505\) 19.9636i 0.888369i
\(506\) −4.35944 + 4.26535i −0.193801 + 0.189618i
\(507\) 22.1648 + 0.474624i 0.984374 + 0.0210788i
\(508\) 1.40964 0.0625428
\(509\) 15.4895i 0.686562i −0.939233 0.343281i \(-0.888462\pi\)
0.939233 0.343281i \(-0.111538\pi\)
\(510\) −0.321917 + 15.0334i −0.0142547 + 0.665692i
\(511\) 2.41684i 0.106915i
\(512\) 6.38239i 0.282065i
\(513\) −2.15124 + 33.4465i −0.0949795 + 1.47670i
\(514\) −10.9252 −0.481890
\(515\) 31.8158i 1.40197i
\(516\) −0.0627370 + 2.92980i −0.00276184 + 0.128977i
\(517\) 2.48455i 0.109270i
\(518\) 3.40295i 0.149517i
\(519\) 0.403719 18.8535i 0.0177213 0.827579i
\(520\) 2.08963i 0.0916365i
\(521\) −4.53658 −0.198751 −0.0993755 0.995050i \(-0.531685\pi\)
−0.0993755 + 0.995050i \(0.531685\pi\)
\(522\) −12.1020 0.518526i −0.529688 0.0226953i
\(523\) 13.8468i 0.605480i 0.953073 + 0.302740i \(0.0979014\pi\)
−0.953073 + 0.302740i \(0.902099\pi\)
\(524\) 0.432696i 0.0189024i
\(525\) 0.0734767 3.43134i 0.00320679 0.149756i
\(526\) 18.9849i 0.827779i
\(527\) −28.7123 −1.25073
\(528\) −1.56756 0.0335667i −0.0682191 0.00146080i
\(529\) −0.501756 + 22.9945i −0.0218155 + 0.999762i
\(530\) 2.71474i 0.117921i
\(531\) −1.67948 + 39.1977i −0.0728833 + 1.70103i
\(532\) −8.77192 −0.380311
\(533\) 4.73778i 0.205216i
\(534\) −0.289528 + 13.5209i −0.0125291 + 0.585106i
\(535\) −21.0692 −0.910902
\(536\) 26.6170 1.14968
\(537\) 0.331803 15.4951i 0.0143184 0.668664i
\(538\) 4.92996 0.212546
\(539\) −1.58963 −0.0684702
\(540\) 12.2520 + 0.788036i 0.527243 + 0.0339117i
\(541\) −8.14527 −0.350193 −0.175096 0.984551i \(-0.556024\pi\)
−0.175096 + 0.984551i \(0.556024\pi\)
\(542\) 12.6514i 0.543424i
\(543\) −0.0300688 + 1.40420i −0.00129037 + 0.0602601i
\(544\) 36.4248i 1.56170i
\(545\) 5.37404i 0.230199i
\(546\) 0.619874 + 0.0132736i 0.0265281 + 0.000568058i
\(547\) −40.0618 −1.71292 −0.856460 0.516213i \(-0.827341\pi\)
−0.856460 + 0.516213i \(0.827341\pi\)
\(548\) −21.6937 −0.926709
\(549\) 1.11969 26.1327i 0.0477874 1.11532i
\(550\) 2.51999i 0.107453i
\(551\) −32.5535 −1.38683
\(552\) 16.2906 15.2702i 0.693373 0.649944i
\(553\) −12.8212 −0.545213
\(554\) 19.2444i 0.817618i
\(555\) −0.274028 + 12.7970i −0.0116318 + 0.543204i
\(556\) −5.69141 −0.241369
\(557\) 27.1213 1.14917 0.574584 0.818446i \(-0.305164\pi\)
0.574584 + 0.818446i \(0.305164\pi\)
\(558\) 0.472282 11.0227i 0.0199933 0.466626i
\(559\) 0.556659i 0.0235442i
\(560\) 0.989369i 0.0418085i
\(561\) 17.1934 + 0.368169i 0.725906 + 0.0155441i
\(562\) 20.9604i 0.884161i
\(563\) 9.86141 0.415609 0.207804 0.978170i \(-0.433368\pi\)
0.207804 + 0.978170i \(0.433368\pi\)
\(564\) 0.0788184 3.68080i 0.00331886 0.154990i
\(565\) −18.4376 −0.775674
\(566\) 4.89835 0.205893
\(567\) 0.769823 8.96702i 0.0323295 0.376579i
\(568\) 12.9837 0.544782
\(569\) −21.1351 −0.886032 −0.443016 0.896514i \(-0.646091\pi\)
−0.443016 + 0.896514i \(0.646091\pi\)
\(570\) −15.5245 0.332433i −0.650251 0.0139241i
\(571\) 46.2771i 1.93664i −0.249716 0.968319i \(-0.580337\pi\)
0.249716 0.968319i \(-0.419663\pi\)
\(572\) 0.967315 0.0404455
\(573\) −26.6678 0.571049i −1.11406 0.0238559i
\(574\) 8.47095i 0.353571i
\(575\) 6.64603 + 6.79264i 0.277159 + 0.283273i
\(576\) −10.5698 0.452879i −0.440409 0.0188700i
\(577\) −40.9377 −1.70426 −0.852130 0.523330i \(-0.824689\pi\)
−0.852130 + 0.523330i \(0.824689\pi\)
\(578\) 17.6108i 0.732515i
\(579\) 20.6845 + 0.442925i 0.859618 + 0.0184073i
\(580\) 11.9249i 0.495155i
\(581\) 17.4287i 0.723066i
\(582\) 14.5998 + 0.312631i 0.605180 + 0.0129590i
\(583\) −3.10479 −0.128587
\(584\) 6.49657i 0.268830i
\(585\) −2.33001 0.0998327i −0.0963341 0.00412757i
\(586\) 11.2962i 0.466642i
\(587\) 40.8718i 1.68696i −0.537162 0.843479i \(-0.680504\pi\)
0.537162 0.843479i \(-0.319496\pi\)
\(588\) 2.35500 + 0.0504285i 0.0971185 + 0.00207964i
\(589\) 29.6503i 1.22172i
\(590\) −18.1773 −0.748348
\(591\) 0.128960 6.02238i 0.00530469 0.247727i
\(592\) 2.42227i 0.0995545i
\(593\) 26.1054i 1.07202i 0.844212 + 0.536010i \(0.180069\pi\)
−0.844212 + 0.536010i \(0.819931\pi\)
\(594\) −0.424150 + 6.59449i −0.0174031 + 0.270575i
\(595\) 10.8517i 0.444876i
\(596\) −4.37490 −0.179203
\(597\) 0.0738496 3.44875i 0.00302246 0.141148i
\(598\) −1.22709 + 1.20061i −0.0501795 + 0.0490965i
\(599\) 44.0421i 1.79951i −0.436393 0.899756i \(-0.643744\pi\)
0.436393 0.899756i \(-0.356256\pi\)
\(600\) 0.197508 9.22358i 0.00806324 0.376551i
\(601\) 44.8191 1.82821 0.914104 0.405479i \(-0.132895\pi\)
0.914104 + 0.405479i \(0.132895\pi\)
\(602\) 0.995284i 0.0405647i
\(603\) −1.27163 + 29.6789i −0.0517850 + 1.20862i
\(604\) −0.0925893 −0.00376741
\(605\) 14.7209 0.598489
\(606\) −15.9187 0.340873i −0.646653 0.0138470i
\(607\) −21.1214 −0.857292 −0.428646 0.903473i \(-0.641009\pi\)
−0.428646 + 0.903473i \(0.641009\pi\)
\(608\) −37.6146 −1.52548
\(609\) 8.73965 + 0.187146i 0.354148 + 0.00758352i
\(610\) 12.1186 0.490669
\(611\) 0.699349i 0.0282926i
\(612\) −25.4600 1.09087i −1.02916 0.0440958i
\(613\) 27.7208i 1.11963i −0.828617 0.559816i \(-0.810872\pi\)
0.828617 0.559816i \(-0.189128\pi\)
\(614\) 2.12469i 0.0857454i
\(615\) 0.682137 31.8556i 0.0275064 1.28454i
\(616\) −4.27298 −0.172163
\(617\) −26.4648 −1.06543 −0.532716 0.846294i \(-0.678828\pi\)
−0.532716 + 0.846294i \(0.678828\pi\)
\(618\) −25.3694 0.543246i −1.02051 0.0218525i
\(619\) 5.60773i 0.225394i −0.993629 0.112697i \(-0.964051\pi\)
0.993629 0.112697i \(-0.0359489\pi\)
\(620\) −10.8614 −0.436204
\(621\) 16.2485 + 18.8941i 0.652030 + 0.758193i
\(622\) 5.30141 0.212567
\(623\) 9.75988i 0.391021i
\(624\) −0.441234 0.00944833i −0.0176635 0.000378236i
\(625\) −11.1658 −0.446631
\(626\) −9.79838 −0.391622
\(627\) −0.380196 + 17.7550i −0.0151836 + 0.709068i
\(628\) 21.3201i 0.850765i
\(629\) 26.5681i 1.05934i
\(630\) 4.16596 + 0.178497i 0.165976 + 0.00711148i
\(631\) 39.7908i 1.58405i 0.610491 + 0.792023i \(0.290972\pi\)
−0.610491 + 0.792023i \(0.709028\pi\)
\(632\) −34.4639 −1.37090
\(633\) 6.85806 + 0.146854i 0.272584 + 0.00583694i
\(634\) −9.15166 −0.363459
\(635\) −1.80083 −0.0714636
\(636\) 4.59967 + 0.0984946i 0.182389 + 0.00390557i
\(637\) −0.447448 −0.0177285
\(638\) −6.41843 −0.254108
\(639\) −0.620297 + 14.4772i −0.0245386 + 0.572709i
\(640\) 15.3619i 0.607233i
\(641\) −11.5175 −0.454915 −0.227458 0.973788i \(-0.573041\pi\)
−0.227458 + 0.973788i \(0.573041\pi\)
\(642\) −0.359751 + 16.8003i −0.0141982 + 0.663054i
\(643\) 9.92359i 0.391348i 0.980669 + 0.195674i \(0.0626895\pi\)
−0.980669 + 0.195674i \(0.937311\pi\)
\(644\) −4.66192 + 4.56130i −0.183705 + 0.179741i
\(645\) 0.0801469 3.74284i 0.00315578 0.147374i
\(646\) 32.2307 1.26810
\(647\) 22.6249i 0.889478i −0.895660 0.444739i \(-0.853296\pi\)
0.895660 0.444739i \(-0.146704\pi\)
\(648\) 2.06931 24.1037i 0.0812903 0.946882i
\(649\) 20.7890i 0.816039i
\(650\) 0.709325i 0.0278220i
\(651\) −0.170455 + 7.96021i −0.00668067 + 0.311985i
\(652\) 25.9983 1.01817
\(653\) 44.7493i 1.75117i 0.483060 + 0.875587i \(0.339525\pi\)
−0.483060 + 0.875587i \(0.660475\pi\)
\(654\) 4.28518 + 0.0917603i 0.167564 + 0.00358811i
\(655\) 0.552772i 0.0215986i
\(656\) 6.02973i 0.235422i
\(657\) 7.24388 + 0.310375i 0.282611 + 0.0121089i
\(658\) 1.25041i 0.0487459i
\(659\) −13.4701 −0.524722 −0.262361 0.964970i \(-0.584501\pi\)
−0.262361 + 0.964970i \(0.584501\pi\)
\(660\) 6.50398 + 0.139272i 0.253167 + 0.00542117i
\(661\) 1.07819i 0.0419368i 0.999780 + 0.0209684i \(0.00667494\pi\)
−0.999780 + 0.0209684i \(0.993325\pi\)
\(662\) 8.38179i 0.325767i
\(663\) 4.83959 + 0.103632i 0.187954 + 0.00402474i
\(664\) 46.8491i 1.81810i
\(665\) 11.2062 0.434557
\(666\) 10.1995 + 0.437012i 0.395222 + 0.0169339i
\(667\) −17.3009 + 16.9275i −0.669892 + 0.655434i
\(668\) 19.8623i 0.768497i
\(669\) 27.7278 + 0.593745i 1.07202 + 0.0229555i
\(670\) −13.7631 −0.531716
\(671\) 13.8598i 0.535052i
\(672\) 10.0984 + 0.216241i 0.389555 + 0.00834169i
\(673\) 23.6511 0.911683 0.455842 0.890061i \(-0.349338\pi\)
0.455842 + 0.890061i \(0.349338\pi\)
\(674\) −9.86216 −0.379876
\(675\) 10.2752 + 0.660887i 0.395491 + 0.0254375i
\(676\) −17.4073 −0.669513
\(677\) −32.6373 −1.25435 −0.627177 0.778877i \(-0.715790\pi\)
−0.627177 + 0.778877i \(0.715790\pi\)
\(678\) −0.314817 + 14.7019i −0.0120905 + 0.564621i
\(679\) −10.5386 −0.404436
\(680\) 29.1698i 1.11861i
\(681\) 13.7347 + 0.294107i 0.526315 + 0.0112702i
\(682\) 5.84601i 0.223855i
\(683\) 19.6396i 0.751489i −0.926723 0.375745i \(-0.877387\pi\)
0.926723 0.375745i \(-0.122613\pi\)
\(684\) 1.12650 26.2916i 0.0430729 1.00529i
\(685\) 27.7138 1.05889
\(686\) 0.800018 0.0305448
\(687\) 0.778730 36.3665i 0.0297104 1.38747i
\(688\) 0.708456i 0.0270096i
\(689\) −0.873934 −0.0332942
\(690\) −8.42352 + 7.89591i −0.320678 + 0.300592i
\(691\) −22.0101 −0.837303 −0.418651 0.908147i \(-0.637497\pi\)
−0.418651 + 0.908147i \(0.637497\pi\)
\(692\) 14.8068i 0.562871i
\(693\) 0.204143 4.76452i 0.00775474 0.180989i
\(694\) −20.6887 −0.785331
\(695\) 7.27081 0.275797
\(696\) 23.4925 + 0.503054i 0.890481 + 0.0190682i
\(697\) 66.1359i 2.50508i
\(698\) 6.40229i 0.242330i
\(699\) 0.316399 14.7757i 0.0119673 0.558870i
\(700\) 2.69484i 0.101855i
\(701\) 21.0298 0.794286 0.397143 0.917757i \(-0.370002\pi\)
0.397143 + 0.917757i \(0.370002\pi\)
\(702\) −0.119389 + 1.85621i −0.00450606 + 0.0700582i
\(703\) 27.4360 1.03477
\(704\) −5.60583 −0.211278
\(705\) −0.100691 + 4.70224i −0.00379224 + 0.177097i
\(706\) −23.8295 −0.896836
\(707\) 11.4907 0.432152
\(708\) 0.659498 30.7984i 0.0247855 1.15747i
\(709\) 13.5761i 0.509860i −0.966959 0.254930i \(-0.917948\pi\)
0.966959 0.254930i \(-0.0820525\pi\)
\(710\) −6.71358 −0.251956
\(711\) 1.64652 38.4284i 0.0617493 1.44118i
\(712\) 26.2349i 0.983195i
\(713\) −15.4178 15.7579i −0.577402 0.590139i
\(714\) −8.65298 0.185290i −0.323830 0.00693430i
\(715\) −1.23575 −0.0462144
\(716\) 12.1692i 0.454786i
\(717\) −0.133180 + 6.21945i −0.00497368 + 0.232270i
\(718\) 10.0673i 0.375708i
\(719\) 18.3669i 0.684970i −0.939523 0.342485i \(-0.888731\pi\)
0.939523 0.342485i \(-0.111269\pi\)
\(720\) −2.96539 0.127056i −0.110513 0.00473511i
\(721\) 18.3126 0.681996
\(722\) 18.0832i 0.672988i
\(723\) 0.370699 17.3116i 0.0137865 0.643824i
\(724\) 1.10280i 0.0409854i
\(725\) 10.0008i 0.371421i
\(726\) 0.251355 11.7382i 0.00932866 0.435646i
\(727\) 21.9740i 0.814970i −0.913212 0.407485i \(-0.866406\pi\)
0.913212 0.407485i \(-0.133594\pi\)
\(728\) −1.20276 −0.0445771
\(729\) 26.7775 + 3.45891i 0.991760 + 0.128108i
\(730\) 3.35924i 0.124331i
\(731\) 7.77056i 0.287404i
\(732\) −0.439681 + 20.5330i −0.0162511 + 0.758921i
\(733\) 35.4700i 1.31011i −0.755579 0.655057i \(-0.772644\pi\)
0.755579 0.655057i \(-0.227356\pi\)
\(734\) 5.40979 0.199679
\(735\) −3.00853 0.0644228i −0.110971 0.00237627i
\(736\) −19.9907 + 19.5592i −0.736865 + 0.720962i
\(737\) 15.7406i 0.579811i
\(738\) −25.3896 1.08785i −0.934602 0.0400444i
\(739\) −10.3861 −0.382058 −0.191029 0.981584i \(-0.561182\pi\)
−0.191029 + 0.981584i \(0.561182\pi\)
\(740\) 10.0503i 0.369456i
\(741\) −0.107017 + 4.99768i −0.00393138 + 0.183594i
\(742\) 1.56256 0.0573633
\(743\) −42.3740 −1.55455 −0.777275 0.629161i \(-0.783399\pi\)
−0.777275 + 0.629161i \(0.783399\pi\)
\(744\) −0.458190 + 21.3974i −0.0167981 + 0.784465i
\(745\) 5.58896 0.204764
\(746\) 2.52203 0.0923382
\(747\) 52.2383 + 2.23823i 1.91130 + 0.0818924i
\(748\) −13.5030 −0.493719
\(749\) 12.1271i 0.443113i
\(750\) −0.359824 + 16.8037i −0.0131389 + 0.613584i
\(751\) 15.8737i 0.579240i −0.957142 0.289620i \(-0.906471\pi\)
0.957142 0.289620i \(-0.0935290\pi\)
\(752\) 0.890056i 0.0324570i
\(753\) −28.1956 0.603763i −1.02750 0.0220024i
\(754\) −1.80665 −0.0657945
\(755\) 0.118283 0.00430477
\(756\) −0.453580 + 7.05205i −0.0164965 + 0.256480i
\(757\) 45.8695i 1.66716i 0.552402 + 0.833578i \(0.313711\pi\)
−0.552402 + 0.833578i \(0.686289\pi\)
\(758\) 9.77249 0.354953
\(759\) 9.03038 + 9.63379i 0.327782 + 0.349684i
\(760\) 30.1226 1.09266
\(761\) 34.1727i 1.23876i −0.785092 0.619380i \(-0.787384\pi\)
0.785092 0.619380i \(-0.212616\pi\)
\(762\) −0.0307486 + 1.43595i −0.00111391 + 0.0520191i
\(763\) −3.09320 −0.111981
\(764\) 20.9438 0.757721
\(765\) 32.5252 + 1.39359i 1.17595 + 0.0503854i
\(766\) 5.08016i 0.183554i
\(767\) 5.85167i 0.211291i
\(768\) 24.4627 + 0.523830i 0.882723 + 0.0189021i
\(769\) 22.2925i 0.803888i 0.915664 + 0.401944i \(0.131665\pi\)
−0.915664 + 0.401944i \(0.868335\pi\)
\(770\) 2.20947 0.0796238
\(771\) −0.506380 + 23.6478i −0.0182368 + 0.851654i
\(772\) −16.2448 −0.584662
\(773\) 40.9644 1.47339 0.736694 0.676226i \(-0.236386\pi\)
0.736694 + 0.676226i \(0.236386\pi\)
\(774\) −2.98311 0.127816i −0.107226 0.00459425i
\(775\) −9.10892 −0.327202
\(776\) −28.3283 −1.01693
\(777\) −7.36575 0.157726i −0.264245 0.00565838i
\(778\) 1.59602i 0.0572202i
\(779\) −68.2963 −2.44697
\(780\) 1.83074 + 0.0392023i 0.0655509 + 0.00140367i
\(781\) 7.67816i 0.274746i
\(782\) 17.1293 16.7596i 0.612543 0.599323i
\(783\) −1.68328 + 26.1709i −0.0601556 + 0.935271i
\(784\) −0.569463 −0.0203380
\(785\) 27.2366i 0.972115i
\(786\) 0.440773 + 0.00943844i 0.0157218 + 0.000336658i
\(787\) 16.2762i 0.580184i −0.956999 0.290092i \(-0.906314\pi\)
0.956999 0.290092i \(-0.0936860\pi\)
\(788\) 4.72973i 0.168490i
\(789\) −41.0931 0.879942i −1.46295 0.0313268i
\(790\) 17.8206 0.634027
\(791\) 10.6123i 0.377331i
\(792\) 0.548743 12.8072i 0.0194987 0.455084i
\(793\) 3.90125i 0.138537i
\(794\) 29.8698i 1.06004i
\(795\) −5.87611 0.125827i −0.208404 0.00446264i
\(796\) 2.70851i 0.0960007i
\(797\) 49.5458 1.75500 0.877501 0.479575i \(-0.159209\pi\)
0.877501 + 0.479575i \(0.159209\pi\)
\(798\) 0.191343 8.93564i 0.00677345 0.316318i
\(799\) 9.76240i 0.345369i
\(800\) 11.5557i 0.408555i
\(801\) 29.2528 + 1.25338i 1.03360 + 0.0442859i
\(802\) 6.00129i 0.211913i
\(803\) 3.84189 0.135577
\(804\) 0.499345 23.3193i 0.0176105 0.822408i
\(805\) 5.95563 5.82709i 0.209908 0.205378i
\(806\) 1.64553i 0.0579613i
\(807\) 0.228502 10.6710i 0.00804366 0.375637i
\(808\) 30.8874 1.08662
\(809\) 31.6824i 1.11389i 0.830548 + 0.556947i \(0.188027\pi\)
−0.830548 + 0.556947i \(0.811973\pi\)
\(810\) −1.07000 + 12.4635i −0.0375959 + 0.437923i
\(811\) −38.0713 −1.33686 −0.668431 0.743774i \(-0.733034\pi\)
−0.668431 + 0.743774i \(0.733034\pi\)
\(812\) −6.86377 −0.240871
\(813\) −27.3842 0.586388i −0.960405 0.0205655i
\(814\) 5.40943 0.189600
\(815\) −33.2130 −1.16340
\(816\) 6.15931 + 0.131892i 0.215619 + 0.00461713i
\(817\) −8.02439 −0.280738
\(818\) 9.83987i 0.344043i
\(819\) 0.0574619 1.34111i 0.00200788 0.0468623i
\(820\) 25.0181i 0.873670i
\(821\) 30.0819i 1.04986i −0.851144 0.524932i \(-0.824091\pi\)
0.851144 0.524932i \(-0.175909\pi\)
\(822\) 0.473206 22.0986i 0.0165050 0.770777i
\(823\) 41.1787 1.43540 0.717700 0.696352i \(-0.245195\pi\)
0.717700 + 0.696352i \(0.245195\pi\)
\(824\) 49.2249 1.71483
\(825\) 5.45456 + 0.116801i 0.189904 + 0.00406648i
\(826\) 10.4625i 0.364038i
\(827\) −48.1417 −1.67405 −0.837025 0.547165i \(-0.815707\pi\)
−0.837025 + 0.547165i \(0.815707\pi\)
\(828\) −13.0727 14.5587i −0.454307 0.505950i
\(829\) 16.8742 0.586065 0.293032 0.956103i \(-0.405336\pi\)
0.293032 + 0.956103i \(0.405336\pi\)
\(830\) 24.2247i 0.840852i
\(831\) −41.6549 0.891974i −1.44499 0.0309422i
\(832\) −1.57793 −0.0547047
\(833\) 6.24604 0.216413
\(834\) 0.124147 5.79763i 0.00429886 0.200756i
\(835\) 25.3742i 0.878112i
\(836\) 13.9441i 0.482267i
\(837\) −23.8369 1.53316i −0.823922 0.0529938i
\(838\) 0.735527i 0.0254084i
\(839\) −33.0244 −1.14013 −0.570064 0.821600i \(-0.693082\pi\)
−0.570064 + 0.821600i \(0.693082\pi\)
\(840\) −8.08703 0.173171i −0.279029 0.00597496i
\(841\) 3.52785 0.121650
\(842\) 22.6029 0.778947
\(843\) 45.3692 + 0.971508i 1.56260 + 0.0334605i
\(844\) −5.38605 −0.185395
\(845\) 22.2380 0.765010
\(846\) 3.74778 + 0.160579i 0.128851 + 0.00552082i
\(847\) 8.47308i 0.291138i
\(848\) −1.11225 −0.0381948
\(849\) 0.227037 10.6026i 0.00779189 0.363879i
\(850\) 9.90166i 0.339624i
\(851\) 14.5811 14.2664i 0.499834 0.489047i
\(852\) 0.243578 11.3750i 0.00834484 0.389702i
\(853\) −39.6890 −1.35892 −0.679462 0.733710i \(-0.737787\pi\)
−0.679462 + 0.733710i \(0.737787\pi\)
\(854\) 6.97527i 0.238689i
\(855\) −1.43911 + 33.5877i −0.0492167 + 1.14868i
\(856\) 32.5980i 1.11418i
\(857\) 6.38424i 0.218081i −0.994037 0.109041i \(-0.965222\pi\)
0.994037 0.109041i \(-0.0347779\pi\)
\(858\) −0.0211001 + 0.985369i −0.000720346 + 0.0336400i
\(859\) 26.0799 0.889834 0.444917 0.895572i \(-0.353233\pi\)
0.444917 + 0.895572i \(0.353233\pi\)
\(860\) 2.93947i 0.100235i
\(861\) 18.3355 + 0.392626i 0.624873 + 0.0133807i
\(862\) 13.9414i 0.474847i
\(863\) 43.9186i 1.49501i 0.664259 + 0.747503i \(0.268747\pi\)
−0.664259 + 0.747503i \(0.731253\pi\)
\(864\) −1.94498 + 30.2397i −0.0661696 + 1.02878i
\(865\) 18.9158i 0.643156i
\(866\) −26.1601 −0.888957
\(867\) −38.1190 0.816257i −1.29459 0.0277216i
\(868\) 6.25163i 0.212194i
\(869\) 20.3810i 0.691377i
\(870\) −12.1475 0.260119i −0.411838 0.00881886i
\(871\) 4.43064i 0.150127i
\(872\) −8.31464 −0.281569
\(873\) 1.35339 31.5870i 0.0458053 1.06906i
\(874\) 17.3071 + 17.6889i 0.585421 + 0.598335i
\(875\) 12.1295i 0.410053i
\(876\) −5.69166 0.121878i −0.192304 0.00411787i
\(877\) −46.2340 −1.56121 −0.780606 0.625024i \(-0.785089\pi\)
−0.780606 + 0.625024i \(0.785089\pi\)
\(878\) 12.1306i 0.409386i
\(879\) −24.4508 0.523575i −0.824706 0.0176598i
\(880\) −1.57273 −0.0530167
\(881\) 15.3363 0.516693 0.258346 0.966052i \(-0.416822\pi\)
0.258346 + 0.966052i \(0.416822\pi\)
\(882\) −0.102740 + 2.39785i −0.00345942 + 0.0807400i
\(883\) 31.8019 1.07022 0.535110 0.844783i \(-0.320270\pi\)
0.535110 + 0.844783i \(0.320270\pi\)
\(884\) −3.80082 −0.127835
\(885\) −0.842513 + 39.3451i −0.0283208 + 1.32257i
\(886\) 14.2185 0.477681
\(887\) 38.9351i 1.30731i 0.756792 + 0.653656i \(0.226766\pi\)
−0.756792 + 0.653656i \(0.773234\pi\)
\(888\) −19.7994 0.423973i −0.664425 0.0142276i
\(889\) 1.03652i 0.0347639i
\(890\) 13.5655i 0.454718i
\(891\) 14.2542 + 1.22373i 0.477535 + 0.0409966i
\(892\) −21.7763 −0.729123
\(893\) 10.0813 0.337358
\(894\) 0.0954300 4.45656i 0.00319166 0.149050i
\(895\) 15.5463i 0.519655i
\(896\) −8.84205 −0.295392
\(897\) 2.54186 + 2.71171i 0.0848704 + 0.0905414i
\(898\) −7.14405 −0.238400
\(899\) 23.2005i 0.773778i
\(900\) −8.07711 0.346075i −0.269237 0.0115358i
\(901\) 12.1995 0.406423
\(902\) −13.4657 −0.448358
\(903\) 2.15431 + 0.0461311i 0.0716910 + 0.00153515i
\(904\) 28.5264i 0.948773i
\(905\) 1.40884i 0.0468314i
\(906\) 0.00201966 0.0943174i 6.70986e−5 0.00313349i
\(907\) 19.9526i 0.662514i 0.943541 + 0.331257i \(0.107473\pi\)
−0.943541 + 0.331257i \(0.892527\pi\)
\(908\) −10.7867 −0.357969
\(909\) −1.47565 + 34.4405i −0.0489443 + 1.14232i
\(910\) 0.621920 0.0206165
\(911\) −1.37139 −0.0454363 −0.0227182 0.999742i \(-0.507232\pi\)
−0.0227182 + 0.999742i \(0.507232\pi\)
\(912\) −0.136200 + 6.36051i −0.00451004 + 0.210618i
\(913\) 27.7052 0.916910
\(914\) −26.1017 −0.863367
\(915\) 0.561695 26.2310i 0.0185691 0.867170i
\(916\) 28.5608i 0.943674i
\(917\) −0.318166 −0.0105068
\(918\) 1.66659 25.9114i 0.0550056 0.855202i
\(919\) 44.0475i 1.45299i 0.687171 + 0.726496i \(0.258852\pi\)
−0.687171 + 0.726496i \(0.741148\pi\)
\(920\) 16.0090 15.6634i 0.527800 0.516408i
\(921\) 4.59892 + 0.0984786i 0.151540 + 0.00324498i
\(922\) 23.4470 0.772185
\(923\) 2.16124i 0.0711382i
\(924\) −0.0801627 + 3.74358i −0.00263716 + 0.123155i
\(925\) 8.42867i 0.277133i
\(926\) 1.19546i 0.0392854i
\(927\) −2.35173 + 54.8874i −0.0772410 + 1.80274i
\(928\) −29.4323 −0.966164
\(929\) 13.5330i 0.444005i −0.975046 0.222002i \(-0.928741\pi\)
0.975046 0.222002i \(-0.0712592\pi\)
\(930\) 0.236921 11.0641i 0.00776893 0.362807i
\(931\) 6.45008i 0.211393i
\(932\) 11.6043i 0.380111i
\(933\) 0.245719 11.4750i 0.00804448 0.375675i
\(934\) 20.3967i 0.667402i
\(935\) 17.2502 0.564141
\(936\) 0.154460 3.60496i 0.00504868 0.117832i
\(937\) 15.0325i 0.491089i 0.969385 + 0.245545i \(0.0789668\pi\)
−0.969385 + 0.245545i \(0.921033\pi\)
\(938\) 7.92181i 0.258656i
\(939\) −0.454152 + 21.2088i −0.0148207 + 0.692123i
\(940\) 3.69295i 0.120451i
\(941\) −19.3237 −0.629933 −0.314967 0.949103i \(-0.601993\pi\)
−0.314967 + 0.949103i \(0.601993\pi\)
\(942\) 21.7180 + 0.465057i 0.707612 + 0.0151524i
\(943\) −36.2967 + 35.5133i −1.18198 + 1.15647i
\(944\) 7.44737i 0.242391i
\(945\) 0.579451 9.00903i 0.0188495 0.293064i
\(946\) −1.58213 −0.0514396
\(947\) 42.8111i 1.39117i −0.718442 0.695586i \(-0.755145\pi\)
0.718442 0.695586i \(-0.244855\pi\)
\(948\) −0.646555 + 30.1939i −0.0209991 + 0.980653i
\(949\) 1.08141 0.0351041
\(950\) 10.2251 0.331746
\(951\) −0.424177 + 19.8089i −0.0137549 + 0.642349i
\(952\) 16.7896 0.544154
\(953\) −3.57067 −0.115665 −0.0578327 0.998326i \(-0.518419\pi\)
−0.0578327 + 0.998326i \(0.518419\pi\)
\(954\) −0.200666 + 4.68337i −0.00649680 + 0.151630i
\(955\) −26.7559 −0.865799
\(956\) 4.88451i 0.157976i
\(957\) −0.297492 + 13.8928i −0.00961655 + 0.449090i
\(958\) 11.4816i 0.370954i
\(959\) 15.9516i 0.515104i
\(960\) −10.6096 0.227187i −0.342423 0.00733243i
\(961\) −9.86865 −0.318343
\(962\) 1.52264 0.0490920
\(963\) 36.3479 + 1.55738i 1.17129 + 0.0501858i
\(964\) 13.5958i 0.437891i
\(965\) 20.7528 0.668056
\(966\) −4.54475 4.84843i −0.146225 0.155996i
\(967\) 18.0987 0.582015 0.291008 0.956721i \(-0.406009\pi\)
0.291008 + 0.956721i \(0.406009\pi\)
\(968\) 22.7760i 0.732047i
\(969\) 1.49388 69.7640i 0.0479905 2.24114i
\(970\) 14.6480 0.470318
\(971\) −6.99033 −0.224330 −0.112165 0.993690i \(-0.535779\pi\)
−0.112165 + 0.993690i \(0.535779\pi\)
\(972\) −21.0785 2.26513i −0.676093 0.0726539i
\(973\) 4.18495i 0.134163i
\(974\) 22.5982i 0.724092i
\(975\) 1.53535 + 0.0328770i 0.0491705 + 0.00105291i
\(976\) 4.96509i 0.158929i
\(977\) −59.1602 −1.89270 −0.946351 0.323141i \(-0.895261\pi\)
−0.946351 + 0.323141i \(0.895261\pi\)
\(978\) −0.567104 + 26.4836i −0.0181340 + 0.846852i
\(979\) 15.5146 0.495848
\(980\) 2.36277 0.0754761
\(981\) 0.397234 9.27110i 0.0126827 0.296003i
\(982\) 20.4356 0.652128
\(983\) 39.6193 1.26366 0.631830 0.775107i \(-0.282304\pi\)
0.631830 + 0.775107i \(0.282304\pi\)
\(984\) 49.2866 + 1.05539i 1.57120 + 0.0336447i
\(985\) 6.04226i 0.192522i
\(986\) 25.2196 0.803155
\(987\) −2.70653 0.0579560i −0.0861497 0.00184476i
\(988\) 3.92498i 0.124870i
\(989\) −4.26464 + 4.17260i −0.135608 + 0.132681i
\(990\) −0.283744 + 6.62234i −0.00901796 + 0.210472i
\(991\) 13.1506 0.417743 0.208872 0.977943i \(-0.433021\pi\)
0.208872 + 0.977943i \(0.433021\pi\)
\(992\) 26.8075i 0.851138i
\(993\) −18.1425 0.388493i −0.575736 0.0123285i
\(994\) 3.86422i 0.122565i
\(995\) 3.46014i 0.109694i
\(996\) −41.0447 0.878906i −1.30055 0.0278492i
\(997\) 2.70829 0.0857723 0.0428862 0.999080i \(-0.486345\pi\)
0.0428862 + 0.999080i \(0.486345\pi\)
\(998\) 17.9443i 0.568017i
\(999\) 1.41866 22.0567i 0.0448845 0.697844i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 483.2.e.a.344.17 48
3.2 odd 2 inner 483.2.e.a.344.32 yes 48
23.22 odd 2 inner 483.2.e.a.344.18 yes 48
69.68 even 2 inner 483.2.e.a.344.31 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
483.2.e.a.344.17 48 1.1 even 1 trivial
483.2.e.a.344.18 yes 48 23.22 odd 2 inner
483.2.e.a.344.31 yes 48 69.68 even 2 inner
483.2.e.a.344.32 yes 48 3.2 odd 2 inner