Properties

Label 483.4.a.c.1.3
Level $483$
Weight $4$
Character 483.1
Self dual yes
Analytic conductor $28.498$
Analytic rank $1$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [483,4,Mod(1,483)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(483, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("483.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 483 = 3 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 483.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(28.4979225328\)
Analytic rank: \(1\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - x^{6} - 34x^{5} + 7x^{4} + 295x^{3} + 84x^{2} - 524x - 288 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-1.37660\) of defining polynomial
Character \(\chi\) \(=\) 483.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.37660 q^{2} +3.00000 q^{3} -2.35176 q^{4} -18.5873 q^{5} -7.12981 q^{6} +7.00000 q^{7} +24.6020 q^{8} +9.00000 q^{9} +44.1746 q^{10} +29.5947 q^{11} -7.05528 q^{12} -64.1277 q^{13} -16.6362 q^{14} -55.7619 q^{15} -39.6551 q^{16} +57.2759 q^{17} -21.3894 q^{18} +93.4996 q^{19} +43.7129 q^{20} +21.0000 q^{21} -70.3349 q^{22} +23.0000 q^{23} +73.8061 q^{24} +220.488 q^{25} +152.406 q^{26} +27.0000 q^{27} -16.4623 q^{28} -286.528 q^{29} +132.524 q^{30} +229.872 q^{31} -102.572 q^{32} +88.7842 q^{33} -136.122 q^{34} -130.111 q^{35} -21.1658 q^{36} +98.5035 q^{37} -222.211 q^{38} -192.383 q^{39} -457.285 q^{40} -76.2059 q^{41} -49.9087 q^{42} +68.2610 q^{43} -69.5997 q^{44} -167.286 q^{45} -54.6619 q^{46} -561.428 q^{47} -118.965 q^{48} +49.0000 q^{49} -524.011 q^{50} +171.828 q^{51} +150.813 q^{52} -481.176 q^{53} -64.1683 q^{54} -550.086 q^{55} +172.214 q^{56} +280.499 q^{57} +680.962 q^{58} -550.017 q^{59} +131.139 q^{60} +105.356 q^{61} -546.315 q^{62} +63.0000 q^{63} +561.013 q^{64} +1191.96 q^{65} -211.005 q^{66} -870.324 q^{67} -134.699 q^{68} +69.0000 q^{69} +309.222 q^{70} +526.774 q^{71} +221.418 q^{72} +79.3015 q^{73} -234.104 q^{74} +661.463 q^{75} -219.889 q^{76} +207.163 q^{77} +457.218 q^{78} +321.443 q^{79} +737.082 q^{80} +81.0000 q^{81} +181.111 q^{82} -284.623 q^{83} -49.3870 q^{84} -1064.60 q^{85} -162.229 q^{86} -859.583 q^{87} +728.090 q^{88} +1.45559 q^{89} +397.572 q^{90} -448.894 q^{91} -54.0905 q^{92} +689.617 q^{93} +1334.29 q^{94} -1737.90 q^{95} -307.715 q^{96} -97.0465 q^{97} -116.454 q^{98} +266.353 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q - 6 q^{2} + 21 q^{3} + 18 q^{4} - 41 q^{5} - 18 q^{6} + 49 q^{7} - 33 q^{8} + 63 q^{9} + q^{10} - 126 q^{11} + 54 q^{12} - 87 q^{13} - 42 q^{14} - 123 q^{15} + 2 q^{16} - 204 q^{17} - 54 q^{18} - 286 q^{19}+ \cdots - 1134 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.37660 −0.840256 −0.420128 0.907465i \(-0.638015\pi\)
−0.420128 + 0.907465i \(0.638015\pi\)
\(3\) 3.00000 0.577350
\(4\) −2.35176 −0.293970
\(5\) −18.5873 −1.66250 −0.831249 0.555900i \(-0.812374\pi\)
−0.831249 + 0.555900i \(0.812374\pi\)
\(6\) −7.12981 −0.485122
\(7\) 7.00000 0.377964
\(8\) 24.6020 1.08727
\(9\) 9.00000 0.333333
\(10\) 44.1746 1.39692
\(11\) 29.5947 0.811195 0.405598 0.914052i \(-0.367063\pi\)
0.405598 + 0.914052i \(0.367063\pi\)
\(12\) −7.05528 −0.169724
\(13\) −64.1277 −1.36814 −0.684070 0.729416i \(-0.739792\pi\)
−0.684070 + 0.729416i \(0.739792\pi\)
\(14\) −16.6362 −0.317587
\(15\) −55.7619 −0.959844
\(16\) −39.6551 −0.619612
\(17\) 57.2759 0.817144 0.408572 0.912726i \(-0.366027\pi\)
0.408572 + 0.912726i \(0.366027\pi\)
\(18\) −21.3894 −0.280085
\(19\) 93.4996 1.12896 0.564481 0.825446i \(-0.309076\pi\)
0.564481 + 0.825446i \(0.309076\pi\)
\(20\) 43.7129 0.488725
\(21\) 21.0000 0.218218
\(22\) −70.3349 −0.681612
\(23\) 23.0000 0.208514
\(24\) 73.8061 0.627733
\(25\) 220.488 1.76390
\(26\) 152.406 1.14959
\(27\) 27.0000 0.192450
\(28\) −16.4623 −0.111110
\(29\) −286.528 −1.83472 −0.917359 0.398060i \(-0.869684\pi\)
−0.917359 + 0.398060i \(0.869684\pi\)
\(30\) 132.524 0.806514
\(31\) 229.872 1.33182 0.665908 0.746034i \(-0.268044\pi\)
0.665908 + 0.746034i \(0.268044\pi\)
\(32\) −102.572 −0.566634
\(33\) 88.7842 0.468344
\(34\) −136.122 −0.686610
\(35\) −130.111 −0.628365
\(36\) −21.1658 −0.0979900
\(37\) 98.5035 0.437672 0.218836 0.975762i \(-0.429774\pi\)
0.218836 + 0.975762i \(0.429774\pi\)
\(38\) −222.211 −0.948617
\(39\) −192.383 −0.789896
\(40\) −457.285 −1.80758
\(41\) −76.2059 −0.290277 −0.145139 0.989411i \(-0.546363\pi\)
−0.145139 + 0.989411i \(0.546363\pi\)
\(42\) −49.9087 −0.183359
\(43\) 68.2610 0.242086 0.121043 0.992647i \(-0.461376\pi\)
0.121043 + 0.992647i \(0.461376\pi\)
\(44\) −69.5997 −0.238467
\(45\) −167.286 −0.554166
\(46\) −54.6619 −0.175205
\(47\) −561.428 −1.74240 −0.871199 0.490930i \(-0.836657\pi\)
−0.871199 + 0.490930i \(0.836657\pi\)
\(48\) −118.965 −0.357733
\(49\) 49.0000 0.142857
\(50\) −524.011 −1.48213
\(51\) 171.828 0.471778
\(52\) 150.813 0.402192
\(53\) −481.176 −1.24707 −0.623534 0.781796i \(-0.714304\pi\)
−0.623534 + 0.781796i \(0.714304\pi\)
\(54\) −64.1683 −0.161707
\(55\) −550.086 −1.34861
\(56\) 172.214 0.410948
\(57\) 280.499 0.651807
\(58\) 680.962 1.54163
\(59\) −550.017 −1.21366 −0.606832 0.794830i \(-0.707560\pi\)
−0.606832 + 0.794830i \(0.707560\pi\)
\(60\) 131.139 0.282165
\(61\) 105.356 0.221138 0.110569 0.993868i \(-0.464733\pi\)
0.110569 + 0.993868i \(0.464733\pi\)
\(62\) −546.315 −1.11907
\(63\) 63.0000 0.125988
\(64\) 561.013 1.09573
\(65\) 1191.96 2.27453
\(66\) −211.005 −0.393529
\(67\) −870.324 −1.58697 −0.793485 0.608590i \(-0.791735\pi\)
−0.793485 + 0.608590i \(0.791735\pi\)
\(68\) −134.699 −0.240216
\(69\) 69.0000 0.120386
\(70\) 309.222 0.527988
\(71\) 526.774 0.880515 0.440257 0.897872i \(-0.354887\pi\)
0.440257 + 0.897872i \(0.354887\pi\)
\(72\) 221.418 0.362422
\(73\) 79.3015 0.127144 0.0635722 0.997977i \(-0.479751\pi\)
0.0635722 + 0.997977i \(0.479751\pi\)
\(74\) −234.104 −0.367757
\(75\) 661.463 1.01839
\(76\) −219.889 −0.331881
\(77\) 207.163 0.306603
\(78\) 457.218 0.663715
\(79\) 321.443 0.457787 0.228894 0.973451i \(-0.426489\pi\)
0.228894 + 0.973451i \(0.426489\pi\)
\(80\) 737.082 1.03010
\(81\) 81.0000 0.111111
\(82\) 181.111 0.243907
\(83\) −284.623 −0.376402 −0.188201 0.982131i \(-0.560266\pi\)
−0.188201 + 0.982131i \(0.560266\pi\)
\(84\) −49.3870 −0.0641495
\(85\) −1064.60 −1.35850
\(86\) −162.229 −0.203414
\(87\) −859.583 −1.05928
\(88\) 728.090 0.881985
\(89\) 1.45559 0.00173362 0.000866812 1.00000i \(-0.499724\pi\)
0.000866812 1.00000i \(0.499724\pi\)
\(90\) 397.572 0.465641
\(91\) −448.894 −0.517108
\(92\) −54.0905 −0.0612970
\(93\) 689.617 0.768924
\(94\) 1334.29 1.46406
\(95\) −1737.90 −1.87690
\(96\) −307.715 −0.327146
\(97\) −97.0465 −0.101583 −0.0507916 0.998709i \(-0.516174\pi\)
−0.0507916 + 0.998709i \(0.516174\pi\)
\(98\) −116.454 −0.120037
\(99\) 266.353 0.270398
\(100\) −518.534 −0.518534
\(101\) −2000.53 −1.97090 −0.985448 0.169975i \(-0.945631\pi\)
−0.985448 + 0.169975i \(0.945631\pi\)
\(102\) −408.366 −0.396414
\(103\) −1594.86 −1.52569 −0.762846 0.646580i \(-0.776199\pi\)
−0.762846 + 0.646580i \(0.776199\pi\)
\(104\) −1577.67 −1.48753
\(105\) −390.333 −0.362787
\(106\) 1143.56 1.04786
\(107\) 496.921 0.448964 0.224482 0.974478i \(-0.427931\pi\)
0.224482 + 0.974478i \(0.427931\pi\)
\(108\) −63.4975 −0.0565746
\(109\) −600.989 −0.528112 −0.264056 0.964507i \(-0.585060\pi\)
−0.264056 + 0.964507i \(0.585060\pi\)
\(110\) 1307.34 1.13318
\(111\) 295.510 0.252690
\(112\) −277.586 −0.234191
\(113\) −1637.25 −1.36300 −0.681501 0.731817i \(-0.738673\pi\)
−0.681501 + 0.731817i \(0.738673\pi\)
\(114\) −666.634 −0.547684
\(115\) −427.508 −0.346655
\(116\) 673.844 0.539352
\(117\) −577.149 −0.456047
\(118\) 1307.17 1.01979
\(119\) 400.931 0.308851
\(120\) −1371.86 −1.04361
\(121\) −455.152 −0.341962
\(122\) −250.389 −0.185813
\(123\) −228.618 −0.167592
\(124\) −540.605 −0.391514
\(125\) −1774.86 −1.26998
\(126\) −149.726 −0.105862
\(127\) 1102.39 0.770248 0.385124 0.922865i \(-0.374159\pi\)
0.385124 + 0.922865i \(0.374159\pi\)
\(128\) −512.732 −0.354059
\(129\) 204.783 0.139769
\(130\) −2832.82 −1.91119
\(131\) −954.978 −0.636922 −0.318461 0.947936i \(-0.603166\pi\)
−0.318461 + 0.947936i \(0.603166\pi\)
\(132\) −208.799 −0.137679
\(133\) 654.497 0.426708
\(134\) 2068.41 1.33346
\(135\) −501.857 −0.319948
\(136\) 1409.10 0.888452
\(137\) 2719.89 1.69617 0.848086 0.529859i \(-0.177755\pi\)
0.848086 + 0.529859i \(0.177755\pi\)
\(138\) −163.986 −0.101155
\(139\) 798.932 0.487515 0.243757 0.969836i \(-0.421620\pi\)
0.243757 + 0.969836i \(0.421620\pi\)
\(140\) 305.990 0.184721
\(141\) −1684.28 −1.00597
\(142\) −1251.93 −0.739858
\(143\) −1897.84 −1.10983
\(144\) −356.896 −0.206537
\(145\) 5325.77 3.05022
\(146\) −188.468 −0.106834
\(147\) 147.000 0.0824786
\(148\) −231.657 −0.128663
\(149\) 2394.79 1.31671 0.658353 0.752710i \(-0.271254\pi\)
0.658353 + 0.752710i \(0.271254\pi\)
\(150\) −1572.03 −0.855707
\(151\) −2080.55 −1.12128 −0.560639 0.828060i \(-0.689445\pi\)
−0.560639 + 0.828060i \(0.689445\pi\)
\(152\) 2300.28 1.22748
\(153\) 515.483 0.272381
\(154\) −492.344 −0.257625
\(155\) −4272.71 −2.21414
\(156\) 452.439 0.232206
\(157\) −819.517 −0.416590 −0.208295 0.978066i \(-0.566791\pi\)
−0.208295 + 0.978066i \(0.566791\pi\)
\(158\) −763.943 −0.384658
\(159\) −1443.53 −0.719995
\(160\) 1906.53 0.942027
\(161\) 161.000 0.0788110
\(162\) −192.505 −0.0933618
\(163\) −243.271 −0.116899 −0.0584493 0.998290i \(-0.518616\pi\)
−0.0584493 + 0.998290i \(0.518616\pi\)
\(164\) 179.218 0.0853327
\(165\) −1650.26 −0.778621
\(166\) 676.435 0.316274
\(167\) −2429.43 −1.12572 −0.562860 0.826552i \(-0.690299\pi\)
−0.562860 + 0.826552i \(0.690299\pi\)
\(168\) 516.642 0.237261
\(169\) 1915.36 0.871808
\(170\) 2530.14 1.14149
\(171\) 841.496 0.376321
\(172\) −160.534 −0.0711661
\(173\) −1244.25 −0.546812 −0.273406 0.961899i \(-0.588150\pi\)
−0.273406 + 0.961899i \(0.588150\pi\)
\(174\) 2042.89 0.890062
\(175\) 1543.41 0.666692
\(176\) −1173.58 −0.502626
\(177\) −1650.05 −0.700709
\(178\) −3.45937 −0.00145669
\(179\) −2564.24 −1.07073 −0.535365 0.844621i \(-0.679826\pi\)
−0.535365 + 0.844621i \(0.679826\pi\)
\(180\) 393.416 0.162908
\(181\) 255.483 0.104917 0.0524583 0.998623i \(-0.483294\pi\)
0.0524583 + 0.998623i \(0.483294\pi\)
\(182\) 1066.84 0.434503
\(183\) 316.067 0.127674
\(184\) 565.846 0.226711
\(185\) −1830.91 −0.727629
\(186\) −1638.95 −0.646093
\(187\) 1695.06 0.662863
\(188\) 1320.34 0.512213
\(189\) 189.000 0.0727393
\(190\) 4130.31 1.57707
\(191\) 3973.57 1.50533 0.752664 0.658405i \(-0.228769\pi\)
0.752664 + 0.658405i \(0.228769\pi\)
\(192\) 1683.04 0.632619
\(193\) 3401.51 1.26863 0.634316 0.773074i \(-0.281282\pi\)
0.634316 + 0.773074i \(0.281282\pi\)
\(194\) 230.641 0.0853560
\(195\) 3575.88 1.31320
\(196\) −115.236 −0.0419957
\(197\) 1320.68 0.477638 0.238819 0.971064i \(-0.423240\pi\)
0.238819 + 0.971064i \(0.423240\pi\)
\(198\) −633.014 −0.227204
\(199\) 1045.34 0.372373 0.186186 0.982514i \(-0.440387\pi\)
0.186186 + 0.982514i \(0.440387\pi\)
\(200\) 5424.44 1.91783
\(201\) −2610.97 −0.916237
\(202\) 4754.47 1.65606
\(203\) −2005.69 −0.693459
\(204\) −404.097 −0.138689
\(205\) 1416.46 0.482585
\(206\) 3790.35 1.28197
\(207\) 207.000 0.0695048
\(208\) 2542.99 0.847716
\(209\) 2767.10 0.915809
\(210\) 927.667 0.304834
\(211\) −1951.62 −0.636755 −0.318377 0.947964i \(-0.603138\pi\)
−0.318377 + 0.947964i \(0.603138\pi\)
\(212\) 1131.61 0.366601
\(213\) 1580.32 0.508365
\(214\) −1180.98 −0.377245
\(215\) −1268.79 −0.402468
\(216\) 664.255 0.209244
\(217\) 1609.11 0.503379
\(218\) 1428.31 0.443750
\(219\) 237.905 0.0734069
\(220\) 1293.67 0.396451
\(221\) −3672.97 −1.11797
\(222\) −702.311 −0.212324
\(223\) −5170.91 −1.55278 −0.776389 0.630254i \(-0.782951\pi\)
−0.776389 + 0.630254i \(0.782951\pi\)
\(224\) −718.001 −0.214167
\(225\) 1984.39 0.587967
\(226\) 3891.09 1.14527
\(227\) −1927.93 −0.563706 −0.281853 0.959458i \(-0.590949\pi\)
−0.281853 + 0.959458i \(0.590949\pi\)
\(228\) −659.666 −0.191612
\(229\) −1299.40 −0.374964 −0.187482 0.982268i \(-0.560033\pi\)
−0.187482 + 0.982268i \(0.560033\pi\)
\(230\) 1016.02 0.291279
\(231\) 621.489 0.177017
\(232\) −7049.16 −1.99483
\(233\) 1791.31 0.503658 0.251829 0.967772i \(-0.418968\pi\)
0.251829 + 0.967772i \(0.418968\pi\)
\(234\) 1371.65 0.383196
\(235\) 10435.4 2.89673
\(236\) 1293.51 0.356781
\(237\) 964.330 0.264304
\(238\) −952.854 −0.259514
\(239\) −6811.27 −1.84345 −0.921725 0.387843i \(-0.873220\pi\)
−0.921725 + 0.387843i \(0.873220\pi\)
\(240\) 2211.25 0.594730
\(241\) 4248.35 1.13552 0.567760 0.823194i \(-0.307810\pi\)
0.567760 + 0.823194i \(0.307810\pi\)
\(242\) 1081.71 0.287336
\(243\) 243.000 0.0641500
\(244\) −247.771 −0.0650080
\(245\) −910.778 −0.237500
\(246\) 543.333 0.140820
\(247\) −5995.91 −1.54458
\(248\) 5655.32 1.44804
\(249\) −853.868 −0.217316
\(250\) 4218.13 1.06711
\(251\) −4474.69 −1.12526 −0.562630 0.826709i \(-0.690210\pi\)
−0.562630 + 0.826709i \(0.690210\pi\)
\(252\) −148.161 −0.0370367
\(253\) 680.679 0.169146
\(254\) −2619.95 −0.647205
\(255\) −3193.81 −0.784330
\(256\) −3269.54 −0.798229
\(257\) 5750.65 1.39578 0.697891 0.716204i \(-0.254122\pi\)
0.697891 + 0.716204i \(0.254122\pi\)
\(258\) −486.688 −0.117441
\(259\) 689.524 0.165425
\(260\) −2803.21 −0.668644
\(261\) −2578.75 −0.611573
\(262\) 2269.60 0.535178
\(263\) 3108.60 0.728837 0.364419 0.931235i \(-0.381268\pi\)
0.364419 + 0.931235i \(0.381268\pi\)
\(264\) 2184.27 0.509214
\(265\) 8943.76 2.07325
\(266\) −1555.48 −0.358544
\(267\) 4.36678 0.00100091
\(268\) 2046.79 0.466522
\(269\) −918.491 −0.208184 −0.104092 0.994568i \(-0.533194\pi\)
−0.104092 + 0.994568i \(0.533194\pi\)
\(270\) 1192.71 0.268838
\(271\) 787.124 0.176437 0.0882184 0.996101i \(-0.471883\pi\)
0.0882184 + 0.996101i \(0.471883\pi\)
\(272\) −2271.28 −0.506312
\(273\) −1346.68 −0.298553
\(274\) −6464.09 −1.42522
\(275\) 6525.27 1.43087
\(276\) −162.271 −0.0353898
\(277\) 4716.12 1.02298 0.511488 0.859290i \(-0.329094\pi\)
0.511488 + 0.859290i \(0.329094\pi\)
\(278\) −1898.74 −0.409637
\(279\) 2068.85 0.443939
\(280\) −3201.00 −0.683200
\(281\) −7779.18 −1.65148 −0.825742 0.564048i \(-0.809243\pi\)
−0.825742 + 0.564048i \(0.809243\pi\)
\(282\) 4002.87 0.845275
\(283\) −5264.48 −1.10580 −0.552899 0.833248i \(-0.686479\pi\)
−0.552899 + 0.833248i \(0.686479\pi\)
\(284\) −1238.85 −0.258845
\(285\) −5213.71 −1.08363
\(286\) 4510.42 0.932540
\(287\) −533.441 −0.109714
\(288\) −923.145 −0.188878
\(289\) −1632.47 −0.332276
\(290\) −12657.2 −2.56296
\(291\) −291.140 −0.0586491
\(292\) −186.498 −0.0373766
\(293\) −4640.73 −0.925305 −0.462652 0.886540i \(-0.653102\pi\)
−0.462652 + 0.886540i \(0.653102\pi\)
\(294\) −349.361 −0.0693031
\(295\) 10223.3 2.01771
\(296\) 2423.38 0.475866
\(297\) 799.058 0.156115
\(298\) −5691.47 −1.10637
\(299\) −1474.94 −0.285277
\(300\) −1555.60 −0.299376
\(301\) 477.827 0.0915000
\(302\) 4944.65 0.942161
\(303\) −6001.60 −1.13790
\(304\) −3707.74 −0.699518
\(305\) −1958.28 −0.367642
\(306\) −1225.10 −0.228870
\(307\) 1594.40 0.296409 0.148204 0.988957i \(-0.452651\pi\)
0.148204 + 0.988957i \(0.452651\pi\)
\(308\) −487.198 −0.0901321
\(309\) −4784.58 −0.880859
\(310\) 10154.5 1.86045
\(311\) −208.917 −0.0380920 −0.0190460 0.999819i \(-0.506063\pi\)
−0.0190460 + 0.999819i \(0.506063\pi\)
\(312\) −4733.01 −0.858827
\(313\) 777.029 0.140320 0.0701602 0.997536i \(-0.477649\pi\)
0.0701602 + 0.997536i \(0.477649\pi\)
\(314\) 1947.67 0.350042
\(315\) −1171.00 −0.209455
\(316\) −755.957 −0.134576
\(317\) 8011.54 1.41947 0.709736 0.704468i \(-0.248814\pi\)
0.709736 + 0.704468i \(0.248814\pi\)
\(318\) 3430.69 0.604980
\(319\) −8479.71 −1.48832
\(320\) −10427.7 −1.82165
\(321\) 1490.76 0.259210
\(322\) −382.633 −0.0662214
\(323\) 5355.27 0.922524
\(324\) −190.493 −0.0326633
\(325\) −14139.4 −2.41326
\(326\) 578.159 0.0982248
\(327\) −1802.97 −0.304906
\(328\) −1874.82 −0.315608
\(329\) −3930.00 −0.658564
\(330\) 3922.01 0.654241
\(331\) 7646.13 1.26970 0.634848 0.772637i \(-0.281063\pi\)
0.634848 + 0.772637i \(0.281063\pi\)
\(332\) 669.364 0.110651
\(333\) 886.531 0.145891
\(334\) 5773.80 0.945893
\(335\) 16177.0 2.63833
\(336\) −832.758 −0.135210
\(337\) −8932.53 −1.44387 −0.721937 0.691958i \(-0.756748\pi\)
−0.721937 + 0.691958i \(0.756748\pi\)
\(338\) −4552.06 −0.732542
\(339\) −4911.74 −0.786930
\(340\) 2503.69 0.399358
\(341\) 6803.01 1.08036
\(342\) −1999.90 −0.316206
\(343\) 343.000 0.0539949
\(344\) 1679.36 0.263212
\(345\) −1282.52 −0.200141
\(346\) 2957.09 0.459462
\(347\) 9425.54 1.45818 0.729092 0.684416i \(-0.239943\pi\)
0.729092 + 0.684416i \(0.239943\pi\)
\(348\) 2021.53 0.311395
\(349\) 3578.33 0.548835 0.274418 0.961611i \(-0.411515\pi\)
0.274418 + 0.961611i \(0.411515\pi\)
\(350\) −3668.08 −0.560192
\(351\) −1731.45 −0.263299
\(352\) −3035.58 −0.459651
\(353\) 2353.40 0.354840 0.177420 0.984135i \(-0.443225\pi\)
0.177420 + 0.984135i \(0.443225\pi\)
\(354\) 3921.52 0.588775
\(355\) −9791.30 −1.46385
\(356\) −3.42321 −0.000509634 0
\(357\) 1202.79 0.178315
\(358\) 6094.19 0.899687
\(359\) −11659.0 −1.71404 −0.857020 0.515282i \(-0.827687\pi\)
−0.857020 + 0.515282i \(0.827687\pi\)
\(360\) −4115.57 −0.602526
\(361\) 1883.18 0.274555
\(362\) −607.182 −0.0881568
\(363\) −1365.45 −0.197432
\(364\) 1055.69 0.152014
\(365\) −1474.00 −0.211377
\(366\) −751.166 −0.107279
\(367\) −5341.21 −0.759697 −0.379848 0.925049i \(-0.624024\pi\)
−0.379848 + 0.925049i \(0.624024\pi\)
\(368\) −912.068 −0.129198
\(369\) −685.853 −0.0967590
\(370\) 4351.35 0.611395
\(371\) −3368.23 −0.471347
\(372\) −1621.81 −0.226041
\(373\) 5390.36 0.748264 0.374132 0.927376i \(-0.377941\pi\)
0.374132 + 0.927376i \(0.377941\pi\)
\(374\) −4028.50 −0.556975
\(375\) −5324.57 −0.733225
\(376\) −13812.3 −1.89445
\(377\) 18374.4 2.51015
\(378\) −449.178 −0.0611196
\(379\) −3452.43 −0.467914 −0.233957 0.972247i \(-0.575168\pi\)
−0.233957 + 0.972247i \(0.575168\pi\)
\(380\) 4087.14 0.551752
\(381\) 3307.18 0.444703
\(382\) −9443.60 −1.26486
\(383\) −1627.75 −0.217165 −0.108583 0.994087i \(-0.534631\pi\)
−0.108583 + 0.994087i \(0.534631\pi\)
\(384\) −1538.20 −0.204416
\(385\) −3850.60 −0.509727
\(386\) −8084.04 −1.06598
\(387\) 614.349 0.0806954
\(388\) 228.230 0.0298624
\(389\) −14813.6 −1.93080 −0.965400 0.260774i \(-0.916022\pi\)
−0.965400 + 0.260774i \(0.916022\pi\)
\(390\) −8498.45 −1.10342
\(391\) 1317.35 0.170386
\(392\) 1205.50 0.155324
\(393\) −2864.93 −0.367727
\(394\) −3138.73 −0.401338
\(395\) −5974.76 −0.761070
\(396\) −626.397 −0.0794890
\(397\) −11703.4 −1.47954 −0.739772 0.672858i \(-0.765067\pi\)
−0.739772 + 0.672858i \(0.765067\pi\)
\(398\) −2484.36 −0.312888
\(399\) 1963.49 0.246360
\(400\) −8743.47 −1.09293
\(401\) 9223.26 1.14860 0.574299 0.818646i \(-0.305275\pi\)
0.574299 + 0.818646i \(0.305275\pi\)
\(402\) 6205.24 0.769874
\(403\) −14741.2 −1.82211
\(404\) 4704.78 0.579385
\(405\) −1505.57 −0.184722
\(406\) 4766.74 0.582683
\(407\) 2915.18 0.355038
\(408\) 4227.31 0.512948
\(409\) −5792.20 −0.700259 −0.350129 0.936701i \(-0.613862\pi\)
−0.350129 + 0.936701i \(0.613862\pi\)
\(410\) −3366.37 −0.405495
\(411\) 8159.66 0.979285
\(412\) 3750.73 0.448508
\(413\) −3850.12 −0.458722
\(414\) −491.957 −0.0584018
\(415\) 5290.36 0.625768
\(416\) 6577.68 0.775234
\(417\) 2396.80 0.281467
\(418\) −6576.29 −0.769514
\(419\) 6695.49 0.780659 0.390330 0.920675i \(-0.372361\pi\)
0.390330 + 0.920675i \(0.372361\pi\)
\(420\) 917.970 0.106648
\(421\) 2517.43 0.291431 0.145715 0.989327i \(-0.453452\pi\)
0.145715 + 0.989327i \(0.453452\pi\)
\(422\) 4638.23 0.535037
\(423\) −5052.85 −0.580799
\(424\) −11837.9 −1.35589
\(425\) 12628.6 1.44136
\(426\) −3755.79 −0.427157
\(427\) 737.490 0.0835823
\(428\) −1168.64 −0.131982
\(429\) −5693.53 −0.640760
\(430\) 3015.41 0.338176
\(431\) 13834.6 1.54615 0.773075 0.634315i \(-0.218718\pi\)
0.773075 + 0.634315i \(0.218718\pi\)
\(432\) −1070.69 −0.119244
\(433\) 2784.73 0.309066 0.154533 0.987988i \(-0.450613\pi\)
0.154533 + 0.987988i \(0.450613\pi\)
\(434\) −3824.21 −0.422967
\(435\) 15977.3 1.76104
\(436\) 1413.38 0.155249
\(437\) 2150.49 0.235405
\(438\) −565.405 −0.0616806
\(439\) −4686.37 −0.509495 −0.254747 0.967008i \(-0.581992\pi\)
−0.254747 + 0.967008i \(0.581992\pi\)
\(440\) −13533.2 −1.46630
\(441\) 441.000 0.0476190
\(442\) 8729.19 0.939379
\(443\) −13064.7 −1.40118 −0.700589 0.713565i \(-0.747079\pi\)
−0.700589 + 0.713565i \(0.747079\pi\)
\(444\) −694.970 −0.0742833
\(445\) −27.0555 −0.00288215
\(446\) 12289.2 1.30473
\(447\) 7184.38 0.760200
\(448\) 3927.09 0.414147
\(449\) 5232.49 0.549970 0.274985 0.961449i \(-0.411327\pi\)
0.274985 + 0.961449i \(0.411327\pi\)
\(450\) −4716.10 −0.494043
\(451\) −2255.29 −0.235471
\(452\) 3850.41 0.400682
\(453\) −6241.66 −0.647371
\(454\) 4581.92 0.473657
\(455\) 8343.72 0.859692
\(456\) 6900.84 0.708687
\(457\) −14800.6 −1.51497 −0.757487 0.652850i \(-0.773573\pi\)
−0.757487 + 0.652850i \(0.773573\pi\)
\(458\) 3088.16 0.315066
\(459\) 1546.45 0.157259
\(460\) 1005.40 0.101906
\(461\) −9727.75 −0.982790 −0.491395 0.870937i \(-0.663513\pi\)
−0.491395 + 0.870937i \(0.663513\pi\)
\(462\) −1477.03 −0.148740
\(463\) −6159.07 −0.618221 −0.309111 0.951026i \(-0.600031\pi\)
−0.309111 + 0.951026i \(0.600031\pi\)
\(464\) 11362.3 1.13681
\(465\) −12818.1 −1.27834
\(466\) −4257.22 −0.423202
\(467\) −10062.4 −0.997069 −0.498534 0.866870i \(-0.666128\pi\)
−0.498534 + 0.866870i \(0.666128\pi\)
\(468\) 1357.32 0.134064
\(469\) −6092.27 −0.599818
\(470\) −24800.9 −2.43400
\(471\) −2458.55 −0.240518
\(472\) −13531.5 −1.31958
\(473\) 2020.17 0.196379
\(474\) −2291.83 −0.222083
\(475\) 20615.5 1.99138
\(476\) −942.894 −0.0907930
\(477\) −4330.58 −0.415689
\(478\) 16187.7 1.54897
\(479\) −10456.7 −0.997447 −0.498724 0.866761i \(-0.666198\pi\)
−0.498724 + 0.866761i \(0.666198\pi\)
\(480\) 5719.59 0.543880
\(481\) −6316.80 −0.598797
\(482\) −10096.6 −0.954128
\(483\) 483.000 0.0455016
\(484\) 1070.41 0.100527
\(485\) 1803.83 0.168882
\(486\) −577.514 −0.0539024
\(487\) 13730.9 1.27763 0.638814 0.769362i \(-0.279426\pi\)
0.638814 + 0.769362i \(0.279426\pi\)
\(488\) 2591.96 0.240436
\(489\) −729.814 −0.0674915
\(490\) 2164.56 0.199561
\(491\) 598.232 0.0549854 0.0274927 0.999622i \(-0.491248\pi\)
0.0274927 + 0.999622i \(0.491248\pi\)
\(492\) 537.654 0.0492669
\(493\) −16411.1 −1.49923
\(494\) 14249.9 1.29784
\(495\) −4950.78 −0.449537
\(496\) −9115.62 −0.825209
\(497\) 3687.42 0.332803
\(498\) 2029.30 0.182601
\(499\) 21351.5 1.91548 0.957740 0.287637i \(-0.0928695\pi\)
0.957740 + 0.287637i \(0.0928695\pi\)
\(500\) 4174.03 0.373337
\(501\) −7288.30 −0.649934
\(502\) 10634.6 0.945506
\(503\) −17641.6 −1.56382 −0.781909 0.623393i \(-0.785754\pi\)
−0.781909 + 0.623393i \(0.785754\pi\)
\(504\) 1549.93 0.136983
\(505\) 37184.5 3.27661
\(506\) −1617.70 −0.142126
\(507\) 5746.09 0.503339
\(508\) −2592.56 −0.226430
\(509\) 17861.4 1.55539 0.777694 0.628643i \(-0.216389\pi\)
0.777694 + 0.628643i \(0.216389\pi\)
\(510\) 7590.42 0.659038
\(511\) 555.111 0.0480561
\(512\) 11872.3 1.02478
\(513\) 2524.49 0.217269
\(514\) −13667.0 −1.17281
\(515\) 29644.2 2.53646
\(516\) −481.601 −0.0410878
\(517\) −16615.3 −1.41342
\(518\) −1638.73 −0.138999
\(519\) −3732.75 −0.315702
\(520\) 29324.6 2.47302
\(521\) −5121.32 −0.430651 −0.215326 0.976542i \(-0.569081\pi\)
−0.215326 + 0.976542i \(0.569081\pi\)
\(522\) 6128.66 0.513878
\(523\) −20247.4 −1.69284 −0.846421 0.532514i \(-0.821247\pi\)
−0.846421 + 0.532514i \(0.821247\pi\)
\(524\) 2245.88 0.187236
\(525\) 4630.24 0.384915
\(526\) −7387.90 −0.612410
\(527\) 13166.1 1.08829
\(528\) −3520.75 −0.290191
\(529\) 529.000 0.0434783
\(530\) −21255.8 −1.74206
\(531\) −4950.16 −0.404555
\(532\) −1539.22 −0.125439
\(533\) 4886.91 0.397140
\(534\) −10.3781 −0.000841019 0
\(535\) −9236.42 −0.746402
\(536\) −21411.7 −1.72546
\(537\) −7692.73 −0.618186
\(538\) 2182.89 0.174928
\(539\) 1450.14 0.115885
\(540\) 1180.25 0.0940551
\(541\) −11955.7 −0.950117 −0.475059 0.879954i \(-0.657573\pi\)
−0.475059 + 0.879954i \(0.657573\pi\)
\(542\) −1870.68 −0.148252
\(543\) 766.449 0.0605736
\(544\) −5874.88 −0.463021
\(545\) 11170.8 0.877986
\(546\) 3200.53 0.250861
\(547\) −687.068 −0.0537055 −0.0268527 0.999639i \(-0.508549\pi\)
−0.0268527 + 0.999639i \(0.508549\pi\)
\(548\) −6396.52 −0.498624
\(549\) 948.202 0.0737127
\(550\) −15508.0 −1.20230
\(551\) −26790.2 −2.07133
\(552\) 1697.54 0.130891
\(553\) 2250.10 0.173027
\(554\) −11208.4 −0.859562
\(555\) −5492.74 −0.420097
\(556\) −1878.90 −0.143315
\(557\) −9513.77 −0.723719 −0.361859 0.932233i \(-0.617858\pi\)
−0.361859 + 0.932233i \(0.617858\pi\)
\(558\) −4916.84 −0.373022
\(559\) −4377.42 −0.331208
\(560\) 5159.57 0.389342
\(561\) 5085.19 0.382704
\(562\) 18488.0 1.38767
\(563\) −962.909 −0.0720813 −0.0360407 0.999350i \(-0.511475\pi\)
−0.0360407 + 0.999350i \(0.511475\pi\)
\(564\) 3961.03 0.295726
\(565\) 30432.0 2.26599
\(566\) 12511.6 0.929154
\(567\) 567.000 0.0419961
\(568\) 12959.7 0.957353
\(569\) −2959.75 −0.218065 −0.109033 0.994038i \(-0.534775\pi\)
−0.109033 + 0.994038i \(0.534775\pi\)
\(570\) 12390.9 0.910524
\(571\) 12950.8 0.949170 0.474585 0.880210i \(-0.342598\pi\)
0.474585 + 0.880210i \(0.342598\pi\)
\(572\) 4463.27 0.326256
\(573\) 11920.7 0.869101
\(574\) 1267.78 0.0921882
\(575\) 5071.21 0.367799
\(576\) 5049.12 0.365243
\(577\) −3672.12 −0.264944 −0.132472 0.991187i \(-0.542291\pi\)
−0.132472 + 0.991187i \(0.542291\pi\)
\(578\) 3879.74 0.279197
\(579\) 10204.5 0.732445
\(580\) −12524.9 −0.896672
\(581\) −1992.36 −0.142267
\(582\) 691.923 0.0492803
\(583\) −14240.3 −1.01162
\(584\) 1950.98 0.138240
\(585\) 10727.6 0.758177
\(586\) 11029.2 0.777493
\(587\) −25387.4 −1.78509 −0.892545 0.450958i \(-0.851082\pi\)
−0.892545 + 0.450958i \(0.851082\pi\)
\(588\) −345.709 −0.0242462
\(589\) 21493.0 1.50357
\(590\) −24296.8 −1.69540
\(591\) 3962.04 0.275764
\(592\) −3906.17 −0.271187
\(593\) −20575.1 −1.42482 −0.712409 0.701764i \(-0.752396\pi\)
−0.712409 + 0.701764i \(0.752396\pi\)
\(594\) −1899.04 −0.131176
\(595\) −7452.23 −0.513465
\(596\) −5631.98 −0.387072
\(597\) 3136.02 0.214990
\(598\) 3505.34 0.239706
\(599\) −8494.19 −0.579404 −0.289702 0.957117i \(-0.593556\pi\)
−0.289702 + 0.957117i \(0.593556\pi\)
\(600\) 16273.3 1.10726
\(601\) −20361.3 −1.38195 −0.690977 0.722877i \(-0.742819\pi\)
−0.690977 + 0.722877i \(0.742819\pi\)
\(602\) −1135.61 −0.0768834
\(603\) −7832.91 −0.528990
\(604\) 4892.96 0.329622
\(605\) 8460.04 0.568511
\(606\) 14263.4 0.956125
\(607\) 15203.9 1.01665 0.508324 0.861166i \(-0.330265\pi\)
0.508324 + 0.861166i \(0.330265\pi\)
\(608\) −9590.41 −0.639708
\(609\) −6017.08 −0.400368
\(610\) 4654.05 0.308913
\(611\) 36003.1 2.38384
\(612\) −1212.29 −0.0800719
\(613\) −8351.51 −0.550268 −0.275134 0.961406i \(-0.588722\pi\)
−0.275134 + 0.961406i \(0.588722\pi\)
\(614\) −3789.27 −0.249059
\(615\) 4249.38 0.278621
\(616\) 5096.63 0.333359
\(617\) −4627.21 −0.301920 −0.150960 0.988540i \(-0.548236\pi\)
−0.150960 + 0.988540i \(0.548236\pi\)
\(618\) 11371.1 0.740147
\(619\) 916.391 0.0595038 0.0297519 0.999557i \(-0.490528\pi\)
0.0297519 + 0.999557i \(0.490528\pi\)
\(620\) 10048.4 0.650891
\(621\) 621.000 0.0401286
\(622\) 496.513 0.0320070
\(623\) 10.1892 0.000655248 0
\(624\) 7628.98 0.489429
\(625\) 5428.82 0.347445
\(626\) −1846.69 −0.117905
\(627\) 8301.29 0.528742
\(628\) 1927.31 0.122465
\(629\) 5641.87 0.357641
\(630\) 2783.00 0.175996
\(631\) 21323.5 1.34528 0.672642 0.739968i \(-0.265159\pi\)
0.672642 + 0.739968i \(0.265159\pi\)
\(632\) 7908.15 0.497736
\(633\) −5854.87 −0.367631
\(634\) −19040.2 −1.19272
\(635\) −20490.5 −1.28054
\(636\) 3394.83 0.211657
\(637\) −3142.26 −0.195449
\(638\) 20152.9 1.25057
\(639\) 4740.96 0.293505
\(640\) 9530.31 0.588623
\(641\) −19671.2 −1.21211 −0.606056 0.795422i \(-0.707249\pi\)
−0.606056 + 0.795422i \(0.707249\pi\)
\(642\) −3542.95 −0.217802
\(643\) −24462.0 −1.50029 −0.750147 0.661271i \(-0.770017\pi\)
−0.750147 + 0.661271i \(0.770017\pi\)
\(644\) −378.633 −0.0231681
\(645\) −3806.36 −0.232365
\(646\) −12727.4 −0.775156
\(647\) −17951.0 −1.09076 −0.545382 0.838187i \(-0.683616\pi\)
−0.545382 + 0.838187i \(0.683616\pi\)
\(648\) 1992.76 0.120807
\(649\) −16277.6 −0.984518
\(650\) 33603.6 2.02776
\(651\) 4827.32 0.290626
\(652\) 572.116 0.0343647
\(653\) 3335.36 0.199882 0.0999408 0.994993i \(-0.468135\pi\)
0.0999408 + 0.994993i \(0.468135\pi\)
\(654\) 4284.93 0.256199
\(655\) 17750.5 1.05888
\(656\) 3021.96 0.179859
\(657\) 713.714 0.0423815
\(658\) 9340.04 0.553363
\(659\) 16147.3 0.954490 0.477245 0.878770i \(-0.341635\pi\)
0.477245 + 0.878770i \(0.341635\pi\)
\(660\) 3881.01 0.228891
\(661\) 13069.7 0.769068 0.384534 0.923111i \(-0.374362\pi\)
0.384534 + 0.923111i \(0.374362\pi\)
\(662\) −18171.8 −1.06687
\(663\) −11018.9 −0.645459
\(664\) −7002.29 −0.409249
\(665\) −12165.3 −0.709401
\(666\) −2106.93 −0.122586
\(667\) −6590.14 −0.382565
\(668\) 5713.44 0.330928
\(669\) −15512.7 −0.896497
\(670\) −38446.2 −2.21688
\(671\) 3117.98 0.179386
\(672\) −2154.00 −0.123650
\(673\) 21038.9 1.20504 0.602518 0.798106i \(-0.294164\pi\)
0.602518 + 0.798106i \(0.294164\pi\)
\(674\) 21229.1 1.21322
\(675\) 5953.16 0.339463
\(676\) −4504.47 −0.256285
\(677\) 24992.0 1.41879 0.709395 0.704811i \(-0.248968\pi\)
0.709395 + 0.704811i \(0.248968\pi\)
\(678\) 11673.3 0.661222
\(679\) −679.326 −0.0383949
\(680\) −26191.4 −1.47705
\(681\) −5783.79 −0.325456
\(682\) −16168.1 −0.907781
\(683\) −9824.16 −0.550382 −0.275191 0.961390i \(-0.588741\pi\)
−0.275191 + 0.961390i \(0.588741\pi\)
\(684\) −1979.00 −0.110627
\(685\) −50555.3 −2.81988
\(686\) −815.175 −0.0453696
\(687\) −3898.20 −0.216486
\(688\) −2706.90 −0.149999
\(689\) 30856.7 1.70616
\(690\) 3048.05 0.168170
\(691\) 30416.5 1.67452 0.837262 0.546801i \(-0.184155\pi\)
0.837262 + 0.546801i \(0.184155\pi\)
\(692\) 2926.18 0.160746
\(693\) 1864.47 0.102201
\(694\) −22400.8 −1.22525
\(695\) −14850.0 −0.810492
\(696\) −21147.5 −1.15171
\(697\) −4364.76 −0.237198
\(698\) −8504.26 −0.461162
\(699\) 5373.92 0.290787
\(700\) −3629.74 −0.195987
\(701\) 6099.82 0.328655 0.164327 0.986406i \(-0.447455\pi\)
0.164327 + 0.986406i \(0.447455\pi\)
\(702\) 4114.96 0.221238
\(703\) 9210.04 0.494115
\(704\) 16603.0 0.888850
\(705\) 31306.3 1.67243
\(706\) −5593.09 −0.298157
\(707\) −14003.7 −0.744929
\(708\) 3880.53 0.205987
\(709\) −19268.1 −1.02063 −0.510317 0.859987i \(-0.670472\pi\)
−0.510317 + 0.859987i \(0.670472\pi\)
\(710\) 23270.0 1.23001
\(711\) 2892.99 0.152596
\(712\) 35.8105 0.00188491
\(713\) 5287.06 0.277703
\(714\) −2858.56 −0.149831
\(715\) 35275.8 1.84509
\(716\) 6030.49 0.314762
\(717\) −20433.8 −1.06432
\(718\) 27708.9 1.44023
\(719\) 3936.73 0.204194 0.102097 0.994774i \(-0.467445\pi\)
0.102097 + 0.994774i \(0.467445\pi\)
\(720\) 6633.74 0.343368
\(721\) −11164.0 −0.576658
\(722\) −4475.56 −0.230697
\(723\) 12745.1 0.655593
\(724\) −600.835 −0.0308423
\(725\) −63175.8 −3.23626
\(726\) 3245.14 0.165893
\(727\) 23397.7 1.19363 0.596817 0.802377i \(-0.296432\pi\)
0.596817 + 0.802377i \(0.296432\pi\)
\(728\) −11043.7 −0.562234
\(729\) 729.000 0.0370370
\(730\) 3503.11 0.177611
\(731\) 3909.71 0.197819
\(732\) −743.314 −0.0375324
\(733\) −14923.0 −0.751970 −0.375985 0.926626i \(-0.622696\pi\)
−0.375985 + 0.926626i \(0.622696\pi\)
\(734\) 12693.9 0.638340
\(735\) −2732.33 −0.137121
\(736\) −2359.15 −0.118151
\(737\) −25757.0 −1.28734
\(738\) 1630.00 0.0813023
\(739\) −5991.46 −0.298240 −0.149120 0.988819i \(-0.547644\pi\)
−0.149120 + 0.988819i \(0.547644\pi\)
\(740\) 4305.87 0.213901
\(741\) −17987.7 −0.891763
\(742\) 8004.95 0.396052
\(743\) −16198.5 −0.799817 −0.399908 0.916555i \(-0.630958\pi\)
−0.399908 + 0.916555i \(0.630958\pi\)
\(744\) 16966.0 0.836025
\(745\) −44512.7 −2.18902
\(746\) −12810.7 −0.628733
\(747\) −2561.60 −0.125467
\(748\) −3986.39 −0.194862
\(749\) 3478.45 0.169693
\(750\) 12654.4 0.616097
\(751\) 23436.0 1.13874 0.569368 0.822082i \(-0.307188\pi\)
0.569368 + 0.822082i \(0.307188\pi\)
\(752\) 22263.5 1.07961
\(753\) −13424.1 −0.649669
\(754\) −43668.5 −2.10917
\(755\) 38671.9 1.86412
\(756\) −444.483 −0.0213832
\(757\) −9638.94 −0.462792 −0.231396 0.972860i \(-0.574329\pi\)
−0.231396 + 0.972860i \(0.574329\pi\)
\(758\) 8205.06 0.393168
\(759\) 2042.04 0.0976564
\(760\) −42756.0 −2.04069
\(761\) 21695.5 1.03346 0.516729 0.856149i \(-0.327150\pi\)
0.516729 + 0.856149i \(0.327150\pi\)
\(762\) −7859.84 −0.373664
\(763\) −4206.92 −0.199608
\(764\) −9344.89 −0.442521
\(765\) −9581.43 −0.452833
\(766\) 3868.52 0.182474
\(767\) 35271.3 1.66046
\(768\) −9808.63 −0.460858
\(769\) −25127.8 −1.17832 −0.589162 0.808015i \(-0.700542\pi\)
−0.589162 + 0.808015i \(0.700542\pi\)
\(770\) 9151.35 0.428301
\(771\) 17252.0 0.805855
\(772\) −7999.54 −0.372940
\(773\) 36061.5 1.67793 0.838967 0.544182i \(-0.183160\pi\)
0.838967 + 0.544182i \(0.183160\pi\)
\(774\) −1460.06 −0.0678048
\(775\) 50684.0 2.34919
\(776\) −2387.54 −0.110448
\(777\) 2068.57 0.0955079
\(778\) 35206.1 1.62237
\(779\) −7125.22 −0.327712
\(780\) −8409.62 −0.386042
\(781\) 15589.7 0.714269
\(782\) −3130.81 −0.143168
\(783\) −7736.25 −0.353092
\(784\) −1943.10 −0.0885159
\(785\) 15232.6 0.692580
\(786\) 6808.81 0.308985
\(787\) 41719.2 1.88962 0.944809 0.327621i \(-0.106247\pi\)
0.944809 + 0.327621i \(0.106247\pi\)
\(788\) −3105.92 −0.140411
\(789\) 9325.79 0.420794
\(790\) 14199.6 0.639494
\(791\) −11460.7 −0.515166
\(792\) 6552.81 0.293995
\(793\) −6756.22 −0.302548
\(794\) 27814.4 1.24320
\(795\) 26831.3 1.19699
\(796\) −2458.39 −0.109466
\(797\) 16934.5 0.752636 0.376318 0.926491i \(-0.377190\pi\)
0.376318 + 0.926491i \(0.377190\pi\)
\(798\) −4666.44 −0.207005
\(799\) −32156.3 −1.42379
\(800\) −22615.8 −0.999485
\(801\) 13.1003 0.000577875 0
\(802\) −21920.0 −0.965115
\(803\) 2346.91 0.103139
\(804\) 6140.38 0.269346
\(805\) −2992.55 −0.131023
\(806\) 35033.9 1.53104
\(807\) −2755.47 −0.120195
\(808\) −49217.2 −2.14289
\(809\) 15655.1 0.680351 0.340175 0.940362i \(-0.389514\pi\)
0.340175 + 0.940362i \(0.389514\pi\)
\(810\) 3578.14 0.155214
\(811\) −4507.36 −0.195160 −0.0975800 0.995228i \(-0.531110\pi\)
−0.0975800 + 0.995228i \(0.531110\pi\)
\(812\) 4716.91 0.203856
\(813\) 2361.37 0.101866
\(814\) −6928.23 −0.298322
\(815\) 4521.76 0.194344
\(816\) −6813.85 −0.292319
\(817\) 6382.38 0.273306
\(818\) 13765.8 0.588396
\(819\) −4040.05 −0.172369
\(820\) −3331.18 −0.141866
\(821\) 26463.0 1.12493 0.562464 0.826822i \(-0.309853\pi\)
0.562464 + 0.826822i \(0.309853\pi\)
\(822\) −19392.3 −0.822850
\(823\) 31394.3 1.32969 0.664846 0.746980i \(-0.268497\pi\)
0.664846 + 0.746980i \(0.268497\pi\)
\(824\) −39236.8 −1.65883
\(825\) 19575.8 0.826112
\(826\) 9150.21 0.385444
\(827\) −42198.0 −1.77433 −0.887164 0.461454i \(-0.847328\pi\)
−0.887164 + 0.461454i \(0.847328\pi\)
\(828\) −486.814 −0.0204323
\(829\) 14110.6 0.591171 0.295586 0.955316i \(-0.404485\pi\)
0.295586 + 0.955316i \(0.404485\pi\)
\(830\) −12573.1 −0.525805
\(831\) 14148.4 0.590616
\(832\) −35976.5 −1.49911
\(833\) 2806.52 0.116735
\(834\) −5696.23 −0.236504
\(835\) 45156.6 1.87151
\(836\) −6507.55 −0.269220
\(837\) 6206.55 0.256308
\(838\) −15912.5 −0.655954
\(839\) 36515.0 1.50255 0.751273 0.659991i \(-0.229440\pi\)
0.751273 + 0.659991i \(0.229440\pi\)
\(840\) −9602.99 −0.394446
\(841\) 57709.1 2.36619
\(842\) −5982.94 −0.244876
\(843\) −23337.5 −0.953485
\(844\) 4589.75 0.187187
\(845\) −35601.4 −1.44938
\(846\) 12008.6 0.488020
\(847\) −3186.06 −0.129250
\(848\) 19081.1 0.772698
\(849\) −15793.4 −0.638433
\(850\) −30013.2 −1.21111
\(851\) 2265.58 0.0912610
\(852\) −3716.54 −0.149444
\(853\) −34620.8 −1.38968 −0.694839 0.719166i \(-0.744524\pi\)
−0.694839 + 0.719166i \(0.744524\pi\)
\(854\) −1752.72 −0.0702306
\(855\) −15641.1 −0.625633
\(856\) 12225.3 0.488144
\(857\) 22011.4 0.877358 0.438679 0.898644i \(-0.355446\pi\)
0.438679 + 0.898644i \(0.355446\pi\)
\(858\) 13531.3 0.538402
\(859\) 23608.0 0.937714 0.468857 0.883274i \(-0.344666\pi\)
0.468857 + 0.883274i \(0.344666\pi\)
\(860\) 2983.89 0.118314
\(861\) −1600.32 −0.0633436
\(862\) −32879.4 −1.29916
\(863\) 50504.8 1.99212 0.996062 0.0886545i \(-0.0282567\pi\)
0.996062 + 0.0886545i \(0.0282567\pi\)
\(864\) −2769.43 −0.109049
\(865\) 23127.2 0.909075
\(866\) −6618.21 −0.259695
\(867\) −4897.42 −0.191840
\(868\) −3784.23 −0.147978
\(869\) 9513.03 0.371355
\(870\) −37971.7 −1.47973
\(871\) 55811.9 2.17120
\(872\) −14785.5 −0.574199
\(873\) −873.419 −0.0338611
\(874\) −5110.86 −0.197800
\(875\) −12424.0 −0.480009
\(876\) −559.495 −0.0215794
\(877\) −17449.5 −0.671866 −0.335933 0.941886i \(-0.609052\pi\)
−0.335933 + 0.941886i \(0.609052\pi\)
\(878\) 11137.6 0.428106
\(879\) −13922.2 −0.534225
\(880\) 21813.7 0.835615
\(881\) 5971.54 0.228361 0.114181 0.993460i \(-0.463576\pi\)
0.114181 + 0.993460i \(0.463576\pi\)
\(882\) −1048.08 −0.0400122
\(883\) −18867.4 −0.719069 −0.359535 0.933132i \(-0.617065\pi\)
−0.359535 + 0.933132i \(0.617065\pi\)
\(884\) 8637.95 0.328649
\(885\) 30670.0 1.16493
\(886\) 31049.6 1.17735
\(887\) 25810.7 0.977043 0.488521 0.872552i \(-0.337536\pi\)
0.488521 + 0.872552i \(0.337536\pi\)
\(888\) 7270.15 0.274741
\(889\) 7716.75 0.291126
\(890\) 64.3003 0.00242174
\(891\) 2397.17 0.0901328
\(892\) 12160.7 0.456470
\(893\) −52493.3 −1.96710
\(894\) −17074.4 −0.638763
\(895\) 47662.4 1.78009
\(896\) −3589.13 −0.133822
\(897\) −4424.81 −0.164705
\(898\) −12435.5 −0.462115
\(899\) −65864.8 −2.44351
\(900\) −4666.80 −0.172845
\(901\) −27559.8 −1.01903
\(902\) 5359.94 0.197856
\(903\) 1433.48 0.0528276
\(904\) −40279.6 −1.48195
\(905\) −4748.74 −0.174424
\(906\) 14834.0 0.543957
\(907\) −14754.3 −0.540140 −0.270070 0.962841i \(-0.587047\pi\)
−0.270070 + 0.962841i \(0.587047\pi\)
\(908\) 4534.03 0.165713
\(909\) −18004.8 −0.656966
\(910\) −19829.7 −0.722361
\(911\) 31500.1 1.14561 0.572803 0.819693i \(-0.305856\pi\)
0.572803 + 0.819693i \(0.305856\pi\)
\(912\) −11123.2 −0.403867
\(913\) −8423.33 −0.305336
\(914\) 35175.2 1.27297
\(915\) −5874.84 −0.212258
\(916\) 3055.88 0.110228
\(917\) −6684.85 −0.240734
\(918\) −3675.29 −0.132138
\(919\) −4521.21 −0.162286 −0.0811431 0.996702i \(-0.525857\pi\)
−0.0811431 + 0.996702i \(0.525857\pi\)
\(920\) −10517.6 −0.376906
\(921\) 4783.21 0.171132
\(922\) 23119.0 0.825795
\(923\) −33780.8 −1.20467
\(924\) −1461.59 −0.0520378
\(925\) 21718.8 0.772010
\(926\) 14637.7 0.519464
\(927\) −14353.8 −0.508564
\(928\) 29389.6 1.03961
\(929\) −33508.2 −1.18339 −0.591695 0.806162i \(-0.701541\pi\)
−0.591695 + 0.806162i \(0.701541\pi\)
\(930\) 30463.6 1.07413
\(931\) 4581.48 0.161280
\(932\) −4212.72 −0.148060
\(933\) −626.751 −0.0219924
\(934\) 23914.3 0.837793
\(935\) −31506.7 −1.10201
\(936\) −14199.0 −0.495844
\(937\) 6766.87 0.235927 0.117964 0.993018i \(-0.462363\pi\)
0.117964 + 0.993018i \(0.462363\pi\)
\(938\) 14478.9 0.504001
\(939\) 2331.09 0.0810140
\(940\) −24541.6 −0.851553
\(941\) 33988.9 1.17748 0.588739 0.808323i \(-0.299625\pi\)
0.588739 + 0.808323i \(0.299625\pi\)
\(942\) 5843.00 0.202097
\(943\) −1752.74 −0.0605269
\(944\) 21811.0 0.752000
\(945\) −3513.00 −0.120929
\(946\) −4801.14 −0.165009
\(947\) 11421.6 0.391923 0.195962 0.980612i \(-0.437217\pi\)
0.195962 + 0.980612i \(0.437217\pi\)
\(948\) −2267.87 −0.0776973
\(949\) −5085.43 −0.173951
\(950\) −48994.9 −1.67327
\(951\) 24034.6 0.819533
\(952\) 9863.72 0.335803
\(953\) 44873.3 1.52528 0.762638 0.646825i \(-0.223904\pi\)
0.762638 + 0.646825i \(0.223904\pi\)
\(954\) 10292.1 0.349285
\(955\) −73858.0 −2.50260
\(956\) 16018.5 0.541919
\(957\) −25439.1 −0.859279
\(958\) 24851.3 0.838111
\(959\) 19039.2 0.641093
\(960\) −31283.2 −1.05173
\(961\) 23050.3 0.773734
\(962\) 15012.5 0.503143
\(963\) 4472.29 0.149655
\(964\) −9991.11 −0.333809
\(965\) −63224.9 −2.10910
\(966\) −1147.90 −0.0382330
\(967\) 17375.3 0.577820 0.288910 0.957356i \(-0.406707\pi\)
0.288910 + 0.957356i \(0.406707\pi\)
\(968\) −11197.6 −0.371804
\(969\) 16065.8 0.532620
\(970\) −4286.99 −0.141904
\(971\) −30059.6 −0.993469 −0.496734 0.867903i \(-0.665468\pi\)
−0.496734 + 0.867903i \(0.665468\pi\)
\(972\) −571.478 −0.0188582
\(973\) 5592.53 0.184263
\(974\) −32632.8 −1.07353
\(975\) −42418.1 −1.39330
\(976\) −4177.90 −0.137020
\(977\) −46546.4 −1.52421 −0.762105 0.647454i \(-0.775834\pi\)
−0.762105 + 0.647454i \(0.775834\pi\)
\(978\) 1734.48 0.0567101
\(979\) 43.0779 0.00140631
\(980\) 2141.93 0.0698178
\(981\) −5408.90 −0.176037
\(982\) −1421.76 −0.0462018
\(983\) 40574.4 1.31650 0.658251 0.752799i \(-0.271297\pi\)
0.658251 + 0.752799i \(0.271297\pi\)
\(984\) −5624.46 −0.182217
\(985\) −24547.9 −0.794072
\(986\) 39002.7 1.25974
\(987\) −11790.0 −0.380222
\(988\) 14101.0 0.454060
\(989\) 1570.00 0.0504785
\(990\) 11766.0 0.377726
\(991\) 26374.9 0.845435 0.422717 0.906262i \(-0.361076\pi\)
0.422717 + 0.906262i \(0.361076\pi\)
\(992\) −23578.4 −0.754652
\(993\) 22938.4 0.733059
\(994\) −8763.52 −0.279640
\(995\) −19430.0 −0.619069
\(996\) 2008.09 0.0638844
\(997\) −20286.4 −0.644411 −0.322205 0.946670i \(-0.604424\pi\)
−0.322205 + 0.946670i \(0.604424\pi\)
\(998\) −50744.0 −1.60949
\(999\) 2659.59 0.0842301
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 483.4.a.c.1.3 7
3.2 odd 2 1449.4.a.h.1.5 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
483.4.a.c.1.3 7 1.1 even 1 trivial
1449.4.a.h.1.5 7 3.2 odd 2