Properties

Label 483.4.a.c.1.5
Level $483$
Weight $4$
Character 483.1
Self dual yes
Analytic conductor $28.498$
Analytic rank $1$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [483,4,Mod(1,483)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(483, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("483.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 483 = 3 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 483.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(28.4979225328\)
Analytic rank: \(1\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - x^{6} - 34x^{5} + 7x^{4} + 295x^{3} + 84x^{2} - 524x - 288 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(1.60339\) of defining polynomial
Character \(\chi\) \(=\) 483.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.603389 q^{2} +3.00000 q^{3} -7.63592 q^{4} +14.1843 q^{5} +1.81017 q^{6} +7.00000 q^{7} -9.43454 q^{8} +9.00000 q^{9} +8.55866 q^{10} -54.0901 q^{11} -22.9078 q^{12} -81.7481 q^{13} +4.22372 q^{14} +42.5530 q^{15} +55.3947 q^{16} -21.9875 q^{17} +5.43050 q^{18} -124.995 q^{19} -108.310 q^{20} +21.0000 q^{21} -32.6373 q^{22} +23.0000 q^{23} -28.3036 q^{24} +76.1953 q^{25} -49.3259 q^{26} +27.0000 q^{27} -53.4515 q^{28} +69.8203 q^{29} +25.6760 q^{30} +147.223 q^{31} +108.901 q^{32} -162.270 q^{33} -13.2670 q^{34} +99.2903 q^{35} -68.7233 q^{36} -405.261 q^{37} -75.4208 q^{38} -245.244 q^{39} -133.823 q^{40} +378.089 q^{41} +12.6712 q^{42} +69.0245 q^{43} +413.027 q^{44} +127.659 q^{45} +13.8779 q^{46} -587.156 q^{47} +166.184 q^{48} +49.0000 q^{49} +45.9754 q^{50} -65.9625 q^{51} +624.222 q^{52} -380.189 q^{53} +16.2915 q^{54} -767.231 q^{55} -66.0418 q^{56} -374.986 q^{57} +42.1287 q^{58} +244.244 q^{59} -324.931 q^{60} -649.184 q^{61} +88.8327 q^{62} +63.0000 q^{63} -377.448 q^{64} -1159.54 q^{65} -97.9119 q^{66} -629.094 q^{67} +167.895 q^{68} +69.0000 q^{69} +59.9106 q^{70} +483.690 q^{71} -84.9108 q^{72} -682.062 q^{73} -244.530 q^{74} +228.586 q^{75} +954.456 q^{76} -378.630 q^{77} -147.978 q^{78} -691.752 q^{79} +785.737 q^{80} +81.0000 q^{81} +228.135 q^{82} +1194.52 q^{83} -160.354 q^{84} -311.878 q^{85} +41.6486 q^{86} +209.461 q^{87} +510.315 q^{88} +753.402 q^{89} +77.0280 q^{90} -572.237 q^{91} -175.626 q^{92} +441.669 q^{93} -354.283 q^{94} -1772.98 q^{95} +326.702 q^{96} +866.950 q^{97} +29.5660 q^{98} -486.810 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q - 6 q^{2} + 21 q^{3} + 18 q^{4} - 41 q^{5} - 18 q^{6} + 49 q^{7} - 33 q^{8} + 63 q^{9} + q^{10} - 126 q^{11} + 54 q^{12} - 87 q^{13} - 42 q^{14} - 123 q^{15} + 2 q^{16} - 204 q^{17} - 54 q^{18} - 286 q^{19}+ \cdots - 1134 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.603389 0.213330 0.106665 0.994295i \(-0.465983\pi\)
0.106665 + 0.994295i \(0.465983\pi\)
\(3\) 3.00000 0.577350
\(4\) −7.63592 −0.954490
\(5\) 14.1843 1.26869 0.634343 0.773052i \(-0.281271\pi\)
0.634343 + 0.773052i \(0.281271\pi\)
\(6\) 1.81017 0.123166
\(7\) 7.00000 0.377964
\(8\) −9.43454 −0.416952
\(9\) 9.00000 0.333333
\(10\) 8.55866 0.270649
\(11\) −54.0901 −1.48261 −0.741307 0.671166i \(-0.765794\pi\)
−0.741307 + 0.671166i \(0.765794\pi\)
\(12\) −22.9078 −0.551075
\(13\) −81.7481 −1.74407 −0.872033 0.489448i \(-0.837198\pi\)
−0.872033 + 0.489448i \(0.837198\pi\)
\(14\) 4.22372 0.0806312
\(15\) 42.5530 0.732476
\(16\) 55.3947 0.865542
\(17\) −21.9875 −0.313691 −0.156846 0.987623i \(-0.550133\pi\)
−0.156846 + 0.987623i \(0.550133\pi\)
\(18\) 5.43050 0.0711100
\(19\) −124.995 −1.50926 −0.754630 0.656151i \(-0.772183\pi\)
−0.754630 + 0.656151i \(0.772183\pi\)
\(20\) −108.310 −1.21095
\(21\) 21.0000 0.218218
\(22\) −32.6373 −0.316286
\(23\) 23.0000 0.208514
\(24\) −28.3036 −0.240727
\(25\) 76.1953 0.609562
\(26\) −49.3259 −0.372062
\(27\) 27.0000 0.192450
\(28\) −53.4515 −0.360763
\(29\) 69.8203 0.447079 0.223540 0.974695i \(-0.428239\pi\)
0.223540 + 0.974695i \(0.428239\pi\)
\(30\) 25.6760 0.156259
\(31\) 147.223 0.852969 0.426485 0.904495i \(-0.359752\pi\)
0.426485 + 0.904495i \(0.359752\pi\)
\(32\) 108.901 0.601598
\(33\) −162.270 −0.855988
\(34\) −13.2670 −0.0669198
\(35\) 99.2903 0.479518
\(36\) −68.7233 −0.318163
\(37\) −405.261 −1.80066 −0.900330 0.435208i \(-0.856675\pi\)
−0.900330 + 0.435208i \(0.856675\pi\)
\(38\) −75.4208 −0.321970
\(39\) −245.244 −1.00694
\(40\) −133.823 −0.528980
\(41\) 378.089 1.44019 0.720093 0.693877i \(-0.244099\pi\)
0.720093 + 0.693877i \(0.244099\pi\)
\(42\) 12.6712 0.0465524
\(43\) 69.0245 0.244794 0.122397 0.992481i \(-0.460942\pi\)
0.122397 + 0.992481i \(0.460942\pi\)
\(44\) 413.027 1.41514
\(45\) 127.659 0.422895
\(46\) 13.8779 0.0444824
\(47\) −587.156 −1.82225 −0.911123 0.412135i \(-0.864783\pi\)
−0.911123 + 0.412135i \(0.864783\pi\)
\(48\) 166.184 0.499721
\(49\) 49.0000 0.142857
\(50\) 45.9754 0.130038
\(51\) −65.9625 −0.181110
\(52\) 624.222 1.66469
\(53\) −380.189 −0.985340 −0.492670 0.870216i \(-0.663979\pi\)
−0.492670 + 0.870216i \(0.663979\pi\)
\(54\) 16.2915 0.0410554
\(55\) −767.231 −1.88097
\(56\) −66.0418 −0.157593
\(57\) −374.986 −0.871371
\(58\) 42.1287 0.0953754
\(59\) 244.244 0.538946 0.269473 0.963008i \(-0.413150\pi\)
0.269473 + 0.963008i \(0.413150\pi\)
\(60\) −324.931 −0.699141
\(61\) −649.184 −1.36262 −0.681308 0.731997i \(-0.738588\pi\)
−0.681308 + 0.731997i \(0.738588\pi\)
\(62\) 88.8327 0.181964
\(63\) 63.0000 0.125988
\(64\) −377.448 −0.737203
\(65\) −1159.54 −2.21267
\(66\) −97.9119 −0.182608
\(67\) −629.094 −1.14711 −0.573553 0.819168i \(-0.694435\pi\)
−0.573553 + 0.819168i \(0.694435\pi\)
\(68\) 167.895 0.299415
\(69\) 69.0000 0.120386
\(70\) 59.9106 0.102296
\(71\) 483.690 0.808499 0.404249 0.914649i \(-0.367533\pi\)
0.404249 + 0.914649i \(0.367533\pi\)
\(72\) −84.9108 −0.138984
\(73\) −682.062 −1.09355 −0.546776 0.837279i \(-0.684145\pi\)
−0.546776 + 0.837279i \(0.684145\pi\)
\(74\) −244.530 −0.384135
\(75\) 228.586 0.351931
\(76\) 954.456 1.44057
\(77\) −378.630 −0.560376
\(78\) −147.978 −0.214810
\(79\) −691.752 −0.985166 −0.492583 0.870265i \(-0.663947\pi\)
−0.492583 + 0.870265i \(0.663947\pi\)
\(80\) 785.737 1.09810
\(81\) 81.0000 0.111111
\(82\) 228.135 0.307235
\(83\) 1194.52 1.57970 0.789850 0.613300i \(-0.210158\pi\)
0.789850 + 0.613300i \(0.210158\pi\)
\(84\) −160.354 −0.208287
\(85\) −311.878 −0.397976
\(86\) 41.6486 0.0522219
\(87\) 209.461 0.258121
\(88\) 510.315 0.618179
\(89\) 753.402 0.897309 0.448654 0.893705i \(-0.351903\pi\)
0.448654 + 0.893705i \(0.351903\pi\)
\(90\) 77.0280 0.0902162
\(91\) −572.237 −0.659195
\(92\) −175.626 −0.199025
\(93\) 441.669 0.492462
\(94\) −354.283 −0.388740
\(95\) −1772.98 −1.91478
\(96\) 326.702 0.347333
\(97\) 866.950 0.907478 0.453739 0.891135i \(-0.350090\pi\)
0.453739 + 0.891135i \(0.350090\pi\)
\(98\) 29.5660 0.0304757
\(99\) −486.810 −0.494205
\(100\) −581.821 −0.581821
\(101\) −9.31804 −0.00918000 −0.00459000 0.999989i \(-0.501461\pi\)
−0.00459000 + 0.999989i \(0.501461\pi\)
\(102\) −39.8010 −0.0386362
\(103\) 815.806 0.780425 0.390212 0.920725i \(-0.372402\pi\)
0.390212 + 0.920725i \(0.372402\pi\)
\(104\) 771.256 0.727191
\(105\) 297.871 0.276850
\(106\) −229.402 −0.210203
\(107\) −1087.40 −0.982454 −0.491227 0.871031i \(-0.663452\pi\)
−0.491227 + 0.871031i \(0.663452\pi\)
\(108\) −206.170 −0.183692
\(109\) 1939.64 1.70444 0.852218 0.523187i \(-0.175257\pi\)
0.852218 + 0.523187i \(0.175257\pi\)
\(110\) −462.939 −0.401268
\(111\) −1215.78 −1.03961
\(112\) 387.763 0.327144
\(113\) −1381.90 −1.15042 −0.575212 0.818004i \(-0.695080\pi\)
−0.575212 + 0.818004i \(0.695080\pi\)
\(114\) −226.263 −0.185890
\(115\) 326.240 0.264539
\(116\) −533.142 −0.426733
\(117\) −735.733 −0.581355
\(118\) 147.374 0.114973
\(119\) −153.913 −0.118564
\(120\) −401.468 −0.305407
\(121\) 1594.73 1.19815
\(122\) −391.710 −0.290687
\(123\) 1134.27 0.831492
\(124\) −1124.18 −0.814151
\(125\) −692.262 −0.495342
\(126\) 38.0135 0.0268771
\(127\) 1331.57 0.930377 0.465189 0.885212i \(-0.345987\pi\)
0.465189 + 0.885212i \(0.345987\pi\)
\(128\) −1098.95 −0.758865
\(129\) 207.074 0.141332
\(130\) −699.655 −0.472029
\(131\) −551.454 −0.367792 −0.183896 0.982946i \(-0.558871\pi\)
−0.183896 + 0.982946i \(0.558871\pi\)
\(132\) 1239.08 0.817032
\(133\) −874.968 −0.570446
\(134\) −379.588 −0.244712
\(135\) 382.977 0.244159
\(136\) 207.442 0.130794
\(137\) −1760.44 −1.09785 −0.548923 0.835873i \(-0.684962\pi\)
−0.548923 + 0.835873i \(0.684962\pi\)
\(138\) 41.6338 0.0256819
\(139\) −215.134 −0.131277 −0.0656384 0.997843i \(-0.520908\pi\)
−0.0656384 + 0.997843i \(0.520908\pi\)
\(140\) −758.173 −0.457695
\(141\) −1761.47 −1.05207
\(142\) 291.853 0.172477
\(143\) 4421.76 2.58578
\(144\) 498.552 0.288514
\(145\) 990.354 0.567203
\(146\) −411.549 −0.233288
\(147\) 147.000 0.0824786
\(148\) 3094.54 1.71871
\(149\) 453.292 0.249229 0.124614 0.992205i \(-0.460231\pi\)
0.124614 + 0.992205i \(0.460231\pi\)
\(150\) 137.926 0.0750775
\(151\) 3226.97 1.73912 0.869560 0.493827i \(-0.164403\pi\)
0.869560 + 0.493827i \(0.164403\pi\)
\(152\) 1179.27 0.629288
\(153\) −197.888 −0.104564
\(154\) −228.461 −0.119545
\(155\) 2088.26 1.08215
\(156\) 1872.67 0.961111
\(157\) −336.553 −0.171082 −0.0855408 0.996335i \(-0.527262\pi\)
−0.0855408 + 0.996335i \(0.527262\pi\)
\(158\) −417.395 −0.210166
\(159\) −1140.57 −0.568886
\(160\) 1544.69 0.763238
\(161\) 161.000 0.0788110
\(162\) 48.8745 0.0237033
\(163\) −446.286 −0.214453 −0.107226 0.994235i \(-0.534197\pi\)
−0.107226 + 0.994235i \(0.534197\pi\)
\(164\) −2887.06 −1.37464
\(165\) −2301.69 −1.08598
\(166\) 720.757 0.336998
\(167\) −153.063 −0.0709244 −0.0354622 0.999371i \(-0.511290\pi\)
−0.0354622 + 0.999371i \(0.511290\pi\)
\(168\) −198.125 −0.0909863
\(169\) 4485.76 2.04176
\(170\) −188.184 −0.0849002
\(171\) −1124.96 −0.503086
\(172\) −527.066 −0.233654
\(173\) −3130.16 −1.37562 −0.687808 0.725893i \(-0.741427\pi\)
−0.687808 + 0.725893i \(0.741427\pi\)
\(174\) 126.386 0.0550650
\(175\) 533.367 0.230393
\(176\) −2996.30 −1.28327
\(177\) 732.732 0.311161
\(178\) 454.594 0.191423
\(179\) −2316.34 −0.967214 −0.483607 0.875285i \(-0.660674\pi\)
−0.483607 + 0.875285i \(0.660674\pi\)
\(180\) −974.794 −0.403649
\(181\) −2417.71 −0.992855 −0.496428 0.868078i \(-0.665355\pi\)
−0.496428 + 0.868078i \(0.665355\pi\)
\(182\) −345.281 −0.140626
\(183\) −1947.55 −0.786706
\(184\) −216.994 −0.0869404
\(185\) −5748.35 −2.28447
\(186\) 266.498 0.105057
\(187\) 1189.31 0.465084
\(188\) 4483.48 1.73932
\(189\) 189.000 0.0727393
\(190\) −1069.79 −0.408479
\(191\) 1065.57 0.403675 0.201837 0.979419i \(-0.435309\pi\)
0.201837 + 0.979419i \(0.435309\pi\)
\(192\) −1132.34 −0.425624
\(193\) −1004.80 −0.374751 −0.187376 0.982288i \(-0.559998\pi\)
−0.187376 + 0.982288i \(0.559998\pi\)
\(194\) 523.108 0.193592
\(195\) −3478.63 −1.27749
\(196\) −374.160 −0.136356
\(197\) −1587.77 −0.574232 −0.287116 0.957896i \(-0.592697\pi\)
−0.287116 + 0.957896i \(0.592697\pi\)
\(198\) −293.736 −0.105429
\(199\) 2826.24 1.00677 0.503385 0.864062i \(-0.332088\pi\)
0.503385 + 0.864062i \(0.332088\pi\)
\(200\) −718.867 −0.254158
\(201\) −1887.28 −0.662282
\(202\) −5.62240 −0.00195837
\(203\) 488.742 0.168980
\(204\) 503.685 0.172868
\(205\) 5362.95 1.82714
\(206\) 492.248 0.166488
\(207\) 207.000 0.0695048
\(208\) −4528.41 −1.50956
\(209\) 6761.01 2.23765
\(210\) 179.732 0.0590604
\(211\) 986.699 0.321930 0.160965 0.986960i \(-0.448539\pi\)
0.160965 + 0.986960i \(0.448539\pi\)
\(212\) 2903.10 0.940497
\(213\) 1451.07 0.466787
\(214\) −656.123 −0.209587
\(215\) 979.067 0.310567
\(216\) −254.732 −0.0802424
\(217\) 1030.56 0.322392
\(218\) 1170.35 0.363607
\(219\) −2046.19 −0.631363
\(220\) 5858.52 1.79537
\(221\) 1797.44 0.547098
\(222\) −733.589 −0.221780
\(223\) −1976.46 −0.593515 −0.296757 0.954953i \(-0.595905\pi\)
−0.296757 + 0.954953i \(0.595905\pi\)
\(224\) 762.306 0.227383
\(225\) 685.758 0.203187
\(226\) −833.821 −0.245420
\(227\) 2372.50 0.693692 0.346846 0.937922i \(-0.387253\pi\)
0.346846 + 0.937922i \(0.387253\pi\)
\(228\) 2863.37 0.831715
\(229\) 2745.79 0.792343 0.396172 0.918176i \(-0.370339\pi\)
0.396172 + 0.918176i \(0.370339\pi\)
\(230\) 196.849 0.0564342
\(231\) −1135.89 −0.323533
\(232\) −658.722 −0.186410
\(233\) 4522.44 1.27157 0.635783 0.771868i \(-0.280677\pi\)
0.635783 + 0.771868i \(0.280677\pi\)
\(234\) −443.933 −0.124021
\(235\) −8328.42 −2.31186
\(236\) −1865.03 −0.514419
\(237\) −2075.25 −0.568786
\(238\) −92.8691 −0.0252933
\(239\) 1247.82 0.337718 0.168859 0.985640i \(-0.445992\pi\)
0.168859 + 0.985640i \(0.445992\pi\)
\(240\) 2357.21 0.633989
\(241\) 3896.15 1.04138 0.520691 0.853745i \(-0.325674\pi\)
0.520691 + 0.853745i \(0.325674\pi\)
\(242\) 962.244 0.255601
\(243\) 243.000 0.0641500
\(244\) 4957.12 1.30060
\(245\) 695.032 0.181241
\(246\) 684.404 0.177382
\(247\) 10218.1 2.63225
\(248\) −1388.98 −0.355647
\(249\) 3583.55 0.912040
\(250\) −417.703 −0.105671
\(251\) −3633.08 −0.913618 −0.456809 0.889565i \(-0.651008\pi\)
−0.456809 + 0.889565i \(0.651008\pi\)
\(252\) −481.063 −0.120254
\(253\) −1244.07 −0.309147
\(254\) 803.455 0.198477
\(255\) −935.635 −0.229771
\(256\) 2356.49 0.575314
\(257\) −4699.97 −1.14076 −0.570382 0.821380i \(-0.693205\pi\)
−0.570382 + 0.821380i \(0.693205\pi\)
\(258\) 124.946 0.0301503
\(259\) −2836.82 −0.680586
\(260\) 8854.18 2.11197
\(261\) 628.382 0.149026
\(262\) −332.741 −0.0784610
\(263\) 3367.46 0.789531 0.394766 0.918782i \(-0.370826\pi\)
0.394766 + 0.918782i \(0.370826\pi\)
\(264\) 1530.94 0.356906
\(265\) −5392.73 −1.25009
\(266\) −527.946 −0.121693
\(267\) 2260.21 0.518061
\(268\) 4803.72 1.09490
\(269\) 4885.24 1.10728 0.553640 0.832756i \(-0.313238\pi\)
0.553640 + 0.832756i \(0.313238\pi\)
\(270\) 231.084 0.0520864
\(271\) 6245.54 1.39996 0.699981 0.714161i \(-0.253192\pi\)
0.699981 + 0.714161i \(0.253192\pi\)
\(272\) −1217.99 −0.271513
\(273\) −1716.71 −0.380586
\(274\) −1062.23 −0.234203
\(275\) −4121.41 −0.903746
\(276\) −526.879 −0.114907
\(277\) −5682.81 −1.23266 −0.616331 0.787488i \(-0.711381\pi\)
−0.616331 + 0.787488i \(0.711381\pi\)
\(278\) −129.810 −0.0280053
\(279\) 1325.01 0.284323
\(280\) −936.758 −0.199936
\(281\) −4631.83 −0.983317 −0.491658 0.870788i \(-0.663609\pi\)
−0.491658 + 0.870788i \(0.663609\pi\)
\(282\) −1062.85 −0.224439
\(283\) −6153.43 −1.29252 −0.646261 0.763117i \(-0.723668\pi\)
−0.646261 + 0.763117i \(0.723668\pi\)
\(284\) −3693.42 −0.771704
\(285\) −5318.93 −1.10550
\(286\) 2668.04 0.551624
\(287\) 2646.63 0.544339
\(288\) 980.107 0.200533
\(289\) −4429.55 −0.901598
\(290\) 597.568 0.121001
\(291\) 2600.85 0.523933
\(292\) 5208.17 1.04379
\(293\) 3086.91 0.615492 0.307746 0.951468i \(-0.400425\pi\)
0.307746 + 0.951468i \(0.400425\pi\)
\(294\) 88.6981 0.0175952
\(295\) 3464.44 0.683753
\(296\) 3823.45 0.750788
\(297\) −1460.43 −0.285329
\(298\) 273.511 0.0531680
\(299\) −1880.21 −0.363663
\(300\) −1745.46 −0.335915
\(301\) 483.172 0.0925235
\(302\) 1947.12 0.371007
\(303\) −27.9541 −0.00530007
\(304\) −6924.09 −1.30633
\(305\) −9208.25 −1.72873
\(306\) −119.403 −0.0223066
\(307\) 6372.69 1.18472 0.592360 0.805674i \(-0.298196\pi\)
0.592360 + 0.805674i \(0.298196\pi\)
\(308\) 2891.19 0.534873
\(309\) 2447.42 0.450578
\(310\) 1260.03 0.230855
\(311\) 7391.72 1.34774 0.673868 0.738852i \(-0.264632\pi\)
0.673868 + 0.738852i \(0.264632\pi\)
\(312\) 2313.77 0.419844
\(313\) 4519.92 0.816233 0.408116 0.912930i \(-0.366186\pi\)
0.408116 + 0.912930i \(0.366186\pi\)
\(314\) −203.072 −0.0364969
\(315\) 893.613 0.159839
\(316\) 5282.16 0.940332
\(317\) 451.006 0.0799086 0.0399543 0.999202i \(-0.487279\pi\)
0.0399543 + 0.999202i \(0.487279\pi\)
\(318\) −688.205 −0.121361
\(319\) −3776.58 −0.662846
\(320\) −5353.85 −0.935279
\(321\) −3262.19 −0.567220
\(322\) 97.1455 0.0168128
\(323\) 2748.34 0.473442
\(324\) −618.510 −0.106054
\(325\) −6228.82 −1.06312
\(326\) −269.284 −0.0457492
\(327\) 5818.91 0.984056
\(328\) −3567.10 −0.600488
\(329\) −4110.09 −0.688744
\(330\) −1388.82 −0.231672
\(331\) −1670.05 −0.277324 −0.138662 0.990340i \(-0.544280\pi\)
−0.138662 + 0.990340i \(0.544280\pi\)
\(332\) −9121.23 −1.50781
\(333\) −3647.35 −0.600220
\(334\) −92.3565 −0.0151303
\(335\) −8923.28 −1.45532
\(336\) 1163.29 0.188877
\(337\) −2666.41 −0.431005 −0.215502 0.976503i \(-0.569139\pi\)
−0.215502 + 0.976503i \(0.569139\pi\)
\(338\) 2706.65 0.435570
\(339\) −4145.69 −0.664198
\(340\) 2381.48 0.379864
\(341\) −7963.30 −1.26463
\(342\) −678.788 −0.107323
\(343\) 343.000 0.0539949
\(344\) −651.215 −0.102067
\(345\) 978.719 0.152732
\(346\) −1888.70 −0.293460
\(347\) 1266.30 0.195904 0.0979521 0.995191i \(-0.468771\pi\)
0.0979521 + 0.995191i \(0.468771\pi\)
\(348\) −1599.43 −0.246374
\(349\) −3024.43 −0.463879 −0.231940 0.972730i \(-0.574507\pi\)
−0.231940 + 0.972730i \(0.574507\pi\)
\(350\) 321.828 0.0491497
\(351\) −2207.20 −0.335646
\(352\) −5890.45 −0.891938
\(353\) 8262.39 1.24579 0.622893 0.782307i \(-0.285957\pi\)
0.622893 + 0.782307i \(0.285957\pi\)
\(354\) 442.122 0.0663800
\(355\) 6860.82 1.02573
\(356\) −5752.92 −0.856472
\(357\) −461.738 −0.0684531
\(358\) −1397.65 −0.206336
\(359\) −2905.91 −0.427209 −0.213604 0.976920i \(-0.568520\pi\)
−0.213604 + 0.976920i \(0.568520\pi\)
\(360\) −1204.40 −0.176327
\(361\) 8764.87 1.27786
\(362\) −1458.82 −0.211806
\(363\) 4784.20 0.691751
\(364\) 4369.56 0.629195
\(365\) −9674.60 −1.38737
\(366\) −1175.13 −0.167828
\(367\) −3694.32 −0.525454 −0.262727 0.964870i \(-0.584622\pi\)
−0.262727 + 0.964870i \(0.584622\pi\)
\(368\) 1274.08 0.180478
\(369\) 3402.80 0.480062
\(370\) −3468.49 −0.487346
\(371\) −2661.32 −0.372423
\(372\) −3372.55 −0.470050
\(373\) 6549.73 0.909202 0.454601 0.890695i \(-0.349782\pi\)
0.454601 + 0.890695i \(0.349782\pi\)
\(374\) 717.613 0.0992163
\(375\) −2076.79 −0.285986
\(376\) 5539.55 0.759788
\(377\) −5707.68 −0.779735
\(378\) 114.040 0.0155175
\(379\) −11360.6 −1.53972 −0.769859 0.638214i \(-0.779674\pi\)
−0.769859 + 0.638214i \(0.779674\pi\)
\(380\) 13538.3 1.82763
\(381\) 3994.72 0.537154
\(382\) 642.952 0.0861160
\(383\) −4375.72 −0.583784 −0.291892 0.956451i \(-0.594285\pi\)
−0.291892 + 0.956451i \(0.594285\pi\)
\(384\) −3296.86 −0.438131
\(385\) −5370.62 −0.710941
\(386\) −606.284 −0.0799457
\(387\) 621.221 0.0815980
\(388\) −6619.96 −0.866179
\(389\) −5896.58 −0.768556 −0.384278 0.923217i \(-0.625550\pi\)
−0.384278 + 0.923217i \(0.625550\pi\)
\(390\) −2098.96 −0.272526
\(391\) −505.713 −0.0654092
\(392\) −462.292 −0.0595645
\(393\) −1654.36 −0.212345
\(394\) −958.041 −0.122501
\(395\) −9812.04 −1.24987
\(396\) 3717.25 0.471714
\(397\) −3746.72 −0.473659 −0.236829 0.971551i \(-0.576108\pi\)
−0.236829 + 0.971551i \(0.576108\pi\)
\(398\) 1705.32 0.214774
\(399\) −2624.91 −0.329347
\(400\) 4220.81 0.527602
\(401\) −10558.0 −1.31482 −0.657408 0.753535i \(-0.728347\pi\)
−0.657408 + 0.753535i \(0.728347\pi\)
\(402\) −1138.76 −0.141285
\(403\) −12035.2 −1.48763
\(404\) 71.1518 0.00876222
\(405\) 1148.93 0.140965
\(406\) 294.901 0.0360485
\(407\) 21920.6 2.66969
\(408\) 622.326 0.0755140
\(409\) −8252.08 −0.997651 −0.498825 0.866702i \(-0.666235\pi\)
−0.498825 + 0.866702i \(0.666235\pi\)
\(410\) 3235.94 0.389785
\(411\) −5281.33 −0.633841
\(412\) −6229.43 −0.744908
\(413\) 1709.71 0.203703
\(414\) 124.901 0.0148275
\(415\) 16943.4 2.00414
\(416\) −8902.44 −1.04923
\(417\) −645.403 −0.0757927
\(418\) 4079.52 0.477358
\(419\) 5243.24 0.611334 0.305667 0.952138i \(-0.401121\pi\)
0.305667 + 0.952138i \(0.401121\pi\)
\(420\) −2274.52 −0.264250
\(421\) 3110.23 0.360055 0.180028 0.983662i \(-0.442381\pi\)
0.180028 + 0.983662i \(0.442381\pi\)
\(422\) 595.363 0.0686773
\(423\) −5284.41 −0.607415
\(424\) 3586.91 0.410839
\(425\) −1675.35 −0.191215
\(426\) 875.559 0.0995797
\(427\) −4544.29 −0.515020
\(428\) 8303.28 0.937743
\(429\) 13265.3 1.49290
\(430\) 590.758 0.0662532
\(431\) 4385.42 0.490111 0.245056 0.969509i \(-0.421194\pi\)
0.245056 + 0.969509i \(0.421194\pi\)
\(432\) 1495.66 0.166574
\(433\) 92.3908 0.0102541 0.00512704 0.999987i \(-0.498368\pi\)
0.00512704 + 0.999987i \(0.498368\pi\)
\(434\) 621.829 0.0687759
\(435\) 2971.06 0.327475
\(436\) −14810.9 −1.62687
\(437\) −2874.90 −0.314702
\(438\) −1234.65 −0.134689
\(439\) −14579.3 −1.58504 −0.792521 0.609845i \(-0.791232\pi\)
−0.792521 + 0.609845i \(0.791232\pi\)
\(440\) 7238.47 0.784274
\(441\) 441.000 0.0476190
\(442\) 1084.55 0.116713
\(443\) −7912.94 −0.848657 −0.424328 0.905508i \(-0.639490\pi\)
−0.424328 + 0.905508i \(0.639490\pi\)
\(444\) 9283.62 0.992299
\(445\) 10686.5 1.13840
\(446\) −1192.58 −0.126615
\(447\) 1359.87 0.143892
\(448\) −2642.14 −0.278637
\(449\) −13924.9 −1.46360 −0.731801 0.681518i \(-0.761320\pi\)
−0.731801 + 0.681518i \(0.761320\pi\)
\(450\) 413.778 0.0433460
\(451\) −20450.9 −2.13524
\(452\) 10552.1 1.09807
\(453\) 9680.91 1.00408
\(454\) 1431.54 0.147985
\(455\) −8116.80 −0.836311
\(456\) 3537.82 0.363320
\(457\) 19101.0 1.95516 0.977580 0.210563i \(-0.0675297\pi\)
0.977580 + 0.210563i \(0.0675297\pi\)
\(458\) 1656.78 0.169031
\(459\) −593.663 −0.0603699
\(460\) −2491.14 −0.252500
\(461\) −11891.0 −1.20134 −0.600671 0.799496i \(-0.705100\pi\)
−0.600671 + 0.799496i \(0.705100\pi\)
\(462\) −685.384 −0.0690193
\(463\) 16951.8 1.70154 0.850772 0.525534i \(-0.176135\pi\)
0.850772 + 0.525534i \(0.176135\pi\)
\(464\) 3867.67 0.386966
\(465\) 6264.78 0.624779
\(466\) 2728.79 0.271263
\(467\) −15664.2 −1.55215 −0.776074 0.630642i \(-0.782791\pi\)
−0.776074 + 0.630642i \(0.782791\pi\)
\(468\) 5618.00 0.554898
\(469\) −4403.66 −0.433565
\(470\) −5025.27 −0.493188
\(471\) −1009.66 −0.0987741
\(472\) −2304.33 −0.224715
\(473\) −3733.54 −0.362935
\(474\) −1252.18 −0.121339
\(475\) −9524.07 −0.919988
\(476\) 1175.26 0.113168
\(477\) −3421.70 −0.328447
\(478\) 752.919 0.0720454
\(479\) −19766.2 −1.88547 −0.942737 0.333536i \(-0.891758\pi\)
−0.942737 + 0.333536i \(0.891758\pi\)
\(480\) 4634.06 0.440656
\(481\) 33129.3 3.14047
\(482\) 2350.89 0.222158
\(483\) 483.000 0.0455016
\(484\) −12177.3 −1.14362
\(485\) 12297.1 1.15130
\(486\) 146.623 0.0136851
\(487\) −4451.57 −0.414209 −0.207105 0.978319i \(-0.566404\pi\)
−0.207105 + 0.978319i \(0.566404\pi\)
\(488\) 6124.75 0.568145
\(489\) −1338.86 −0.123814
\(490\) 419.375 0.0386641
\(491\) 15243.7 1.40110 0.700550 0.713603i \(-0.252938\pi\)
0.700550 + 0.713603i \(0.252938\pi\)
\(492\) −8661.18 −0.793651
\(493\) −1535.17 −0.140245
\(494\) 6165.51 0.561537
\(495\) −6905.08 −0.626991
\(496\) 8155.38 0.738281
\(497\) 3385.83 0.305584
\(498\) 2162.27 0.194566
\(499\) −15477.3 −1.38850 −0.694249 0.719734i \(-0.744264\pi\)
−0.694249 + 0.719734i \(0.744264\pi\)
\(500\) 5286.06 0.472800
\(501\) −459.189 −0.0409482
\(502\) −2192.16 −0.194902
\(503\) 17141.3 1.51947 0.759736 0.650231i \(-0.225328\pi\)
0.759736 + 0.650231i \(0.225328\pi\)
\(504\) −594.376 −0.0525310
\(505\) −132.170 −0.0116465
\(506\) −750.658 −0.0659503
\(507\) 13457.3 1.17881
\(508\) −10167.8 −0.888036
\(509\) −20411.7 −1.77747 −0.888735 0.458422i \(-0.848415\pi\)
−0.888735 + 0.458422i \(0.848415\pi\)
\(510\) −564.551 −0.0490171
\(511\) −4774.44 −0.413324
\(512\) 10213.5 0.881597
\(513\) −3374.88 −0.290457
\(514\) −2835.91 −0.243359
\(515\) 11571.7 0.990113
\(516\) −1581.20 −0.134900
\(517\) 31759.3 2.70169
\(518\) −1711.71 −0.145189
\(519\) −9390.48 −0.794212
\(520\) 10939.7 0.922576
\(521\) −12356.9 −1.03909 −0.519545 0.854443i \(-0.673899\pi\)
−0.519545 + 0.854443i \(0.673899\pi\)
\(522\) 379.159 0.0317918
\(523\) 2699.59 0.225707 0.112853 0.993612i \(-0.464001\pi\)
0.112853 + 0.993612i \(0.464001\pi\)
\(524\) 4210.86 0.351054
\(525\) 1600.10 0.133017
\(526\) 2031.89 0.168431
\(527\) −3237.07 −0.267569
\(528\) −8988.90 −0.740894
\(529\) 529.000 0.0434783
\(530\) −3253.91 −0.266681
\(531\) 2198.19 0.179649
\(532\) 6681.19 0.544486
\(533\) −30908.1 −2.51178
\(534\) 1363.78 0.110518
\(535\) −15424.0 −1.24643
\(536\) 5935.21 0.478288
\(537\) −6949.02 −0.558421
\(538\) 2947.70 0.236216
\(539\) −2650.41 −0.211802
\(540\) −2924.38 −0.233047
\(541\) 18420.4 1.46387 0.731937 0.681372i \(-0.238616\pi\)
0.731937 + 0.681372i \(0.238616\pi\)
\(542\) 3768.49 0.298654
\(543\) −7253.12 −0.573225
\(544\) −2394.46 −0.188716
\(545\) 27512.4 2.16239
\(546\) −1035.84 −0.0811905
\(547\) 7118.81 0.556451 0.278225 0.960516i \(-0.410254\pi\)
0.278225 + 0.960516i \(0.410254\pi\)
\(548\) 13442.6 1.04788
\(549\) −5842.66 −0.454205
\(550\) −2486.81 −0.192796
\(551\) −8727.22 −0.674759
\(552\) −650.983 −0.0501951
\(553\) −4842.26 −0.372358
\(554\) −3428.94 −0.262964
\(555\) −17245.1 −1.31894
\(556\) 1642.75 0.125302
\(557\) −7298.25 −0.555183 −0.277591 0.960699i \(-0.589536\pi\)
−0.277591 + 0.960699i \(0.589536\pi\)
\(558\) 799.495 0.0606547
\(559\) −5642.63 −0.426937
\(560\) 5500.16 0.415043
\(561\) 3567.92 0.268516
\(562\) −2794.80 −0.209771
\(563\) 7198.40 0.538857 0.269429 0.963020i \(-0.413165\pi\)
0.269429 + 0.963020i \(0.413165\pi\)
\(564\) 13450.4 1.00419
\(565\) −19601.3 −1.45953
\(566\) −3712.91 −0.275734
\(567\) 567.000 0.0419961
\(568\) −4563.39 −0.337105
\(569\) −16000.9 −1.17890 −0.589448 0.807807i \(-0.700655\pi\)
−0.589448 + 0.807807i \(0.700655\pi\)
\(570\) −3209.38 −0.235836
\(571\) 13286.1 0.973738 0.486869 0.873475i \(-0.338139\pi\)
0.486869 + 0.873475i \(0.338139\pi\)
\(572\) −33764.2 −2.46810
\(573\) 3196.71 0.233062
\(574\) 1596.94 0.116124
\(575\) 1752.49 0.127103
\(576\) −3397.03 −0.245734
\(577\) 1482.52 0.106964 0.0534820 0.998569i \(-0.482968\pi\)
0.0534820 + 0.998569i \(0.482968\pi\)
\(578\) −2672.74 −0.192338
\(579\) −3014.40 −0.216363
\(580\) −7562.27 −0.541390
\(581\) 8361.61 0.597071
\(582\) 1569.32 0.111771
\(583\) 20564.5 1.46088
\(584\) 6434.94 0.455958
\(585\) −10435.9 −0.737557
\(586\) 1862.61 0.131303
\(587\) 13872.4 0.975428 0.487714 0.873003i \(-0.337831\pi\)
0.487714 + 0.873003i \(0.337831\pi\)
\(588\) −1122.48 −0.0787250
\(589\) −18402.2 −1.28735
\(590\) 2090.40 0.145865
\(591\) −4763.30 −0.331533
\(592\) −22449.3 −1.55855
\(593\) 19467.7 1.34813 0.674066 0.738671i \(-0.264546\pi\)
0.674066 + 0.738671i \(0.264546\pi\)
\(594\) −881.208 −0.0608693
\(595\) −2183.15 −0.150421
\(596\) −3461.30 −0.237887
\(597\) 8478.73 0.581259
\(598\) −1134.50 −0.0775802
\(599\) −11829.3 −0.806899 −0.403449 0.915002i \(-0.632189\pi\)
−0.403449 + 0.915002i \(0.632189\pi\)
\(600\) −2156.60 −0.146738
\(601\) 4207.26 0.285554 0.142777 0.989755i \(-0.454397\pi\)
0.142777 + 0.989755i \(0.454397\pi\)
\(602\) 291.540 0.0197380
\(603\) −5661.85 −0.382369
\(604\) −24640.9 −1.65997
\(605\) 22620.2 1.52007
\(606\) −16.8672 −0.00113067
\(607\) −28961.6 −1.93659 −0.968297 0.249800i \(-0.919635\pi\)
−0.968297 + 0.249800i \(0.919635\pi\)
\(608\) −13612.1 −0.907967
\(609\) 1466.23 0.0975607
\(610\) −5556.15 −0.368790
\(611\) 47998.9 3.17812
\(612\) 1511.05 0.0998052
\(613\) −1784.35 −0.117568 −0.0587842 0.998271i \(-0.518722\pi\)
−0.0587842 + 0.998271i \(0.518722\pi\)
\(614\) 3845.21 0.252736
\(615\) 16088.8 1.05490
\(616\) 3572.20 0.233650
\(617\) −14302.8 −0.933240 −0.466620 0.884458i \(-0.654528\pi\)
−0.466620 + 0.884458i \(0.654528\pi\)
\(618\) 1476.74 0.0961219
\(619\) −15576.2 −1.01141 −0.505704 0.862707i \(-0.668767\pi\)
−0.505704 + 0.862707i \(0.668767\pi\)
\(620\) −15945.8 −1.03290
\(621\) 621.000 0.0401286
\(622\) 4460.08 0.287513
\(623\) 5273.81 0.339151
\(624\) −13585.2 −0.871546
\(625\) −19343.7 −1.23800
\(626\) 2727.27 0.174127
\(627\) 20283.0 1.29191
\(628\) 2569.89 0.163296
\(629\) 8910.67 0.564852
\(630\) 539.196 0.0340985
\(631\) 18453.7 1.16423 0.582115 0.813107i \(-0.302225\pi\)
0.582115 + 0.813107i \(0.302225\pi\)
\(632\) 6526.36 0.410767
\(633\) 2960.10 0.185866
\(634\) 272.132 0.0170469
\(635\) 18887.5 1.18036
\(636\) 8709.29 0.542996
\(637\) −4005.66 −0.249152
\(638\) −2278.75 −0.141405
\(639\) 4353.21 0.269500
\(640\) −15587.9 −0.962761
\(641\) 6450.82 0.397492 0.198746 0.980051i \(-0.436313\pi\)
0.198746 + 0.980051i \(0.436313\pi\)
\(642\) −1968.37 −0.121005
\(643\) −27521.3 −1.68793 −0.843963 0.536402i \(-0.819783\pi\)
−0.843963 + 0.536402i \(0.819783\pi\)
\(644\) −1229.38 −0.0752244
\(645\) 2937.20 0.179306
\(646\) 1658.32 0.100999
\(647\) −22240.1 −1.35139 −0.675695 0.737181i \(-0.736156\pi\)
−0.675695 + 0.737181i \(0.736156\pi\)
\(648\) −764.197 −0.0463279
\(649\) −13211.2 −0.799050
\(650\) −3758.40 −0.226795
\(651\) 3091.68 0.186133
\(652\) 3407.80 0.204693
\(653\) −4904.89 −0.293940 −0.146970 0.989141i \(-0.546952\pi\)
−0.146970 + 0.989141i \(0.546952\pi\)
\(654\) 3511.06 0.209929
\(655\) −7822.00 −0.466612
\(656\) 20944.1 1.24654
\(657\) −6138.56 −0.364518
\(658\) −2479.98 −0.146930
\(659\) 25697.5 1.51902 0.759509 0.650496i \(-0.225439\pi\)
0.759509 + 0.650496i \(0.225439\pi\)
\(660\) 17575.6 1.03656
\(661\) 13531.0 0.796208 0.398104 0.917340i \(-0.369668\pi\)
0.398104 + 0.917340i \(0.369668\pi\)
\(662\) −1007.69 −0.0591616
\(663\) 5392.31 0.315867
\(664\) −11269.7 −0.658658
\(665\) −12410.8 −0.723717
\(666\) −2200.77 −0.128045
\(667\) 1605.87 0.0932225
\(668\) 1168.78 0.0676967
\(669\) −5929.39 −0.342666
\(670\) −5384.21 −0.310463
\(671\) 35114.4 2.02023
\(672\) 2286.92 0.131279
\(673\) 21523.8 1.23281 0.616405 0.787430i \(-0.288589\pi\)
0.616405 + 0.787430i \(0.288589\pi\)
\(674\) −1608.88 −0.0919463
\(675\) 2057.27 0.117310
\(676\) −34252.9 −1.94884
\(677\) −1412.30 −0.0801761 −0.0400880 0.999196i \(-0.512764\pi\)
−0.0400880 + 0.999196i \(0.512764\pi\)
\(678\) −2501.46 −0.141693
\(679\) 6068.65 0.342995
\(680\) 2942.43 0.165937
\(681\) 7117.49 0.400503
\(682\) −4804.97 −0.269783
\(683\) −10486.2 −0.587473 −0.293736 0.955886i \(-0.594899\pi\)
−0.293736 + 0.955886i \(0.594899\pi\)
\(684\) 8590.10 0.480191
\(685\) −24970.7 −1.39282
\(686\) 206.962 0.0115187
\(687\) 8237.36 0.457460
\(688\) 3823.59 0.211880
\(689\) 31079.8 1.71850
\(690\) 590.548 0.0325823
\(691\) 13193.9 0.726364 0.363182 0.931718i \(-0.381690\pi\)
0.363182 + 0.931718i \(0.381690\pi\)
\(692\) 23901.6 1.31301
\(693\) −3407.67 −0.186792
\(694\) 764.073 0.0417923
\(695\) −3051.54 −0.166549
\(696\) −1976.17 −0.107624
\(697\) −8313.25 −0.451774
\(698\) −1824.90 −0.0989594
\(699\) 13567.3 0.734139
\(700\) −4072.75 −0.219908
\(701\) 20492.7 1.10414 0.552069 0.833799i \(-0.313839\pi\)
0.552069 + 0.833799i \(0.313839\pi\)
\(702\) −1331.80 −0.0716033
\(703\) 50655.7 2.71766
\(704\) 20416.2 1.09299
\(705\) −24985.3 −1.33475
\(706\) 4985.43 0.265764
\(707\) −65.2263 −0.00346971
\(708\) −5595.08 −0.297000
\(709\) −2523.08 −0.133648 −0.0668238 0.997765i \(-0.521287\pi\)
−0.0668238 + 0.997765i \(0.521287\pi\)
\(710\) 4139.74 0.218819
\(711\) −6225.76 −0.328389
\(712\) −7108.00 −0.374134
\(713\) 3386.13 0.177856
\(714\) −278.607 −0.0146031
\(715\) 62719.7 3.28054
\(716\) 17687.4 0.923197
\(717\) 3743.45 0.194982
\(718\) −1753.39 −0.0911365
\(719\) −3712.53 −0.192565 −0.0962824 0.995354i \(-0.530695\pi\)
−0.0962824 + 0.995354i \(0.530695\pi\)
\(720\) 7071.63 0.366033
\(721\) 5710.64 0.294973
\(722\) 5288.62 0.272607
\(723\) 11688.4 0.601242
\(724\) 18461.4 0.947671
\(725\) 5319.98 0.272523
\(726\) 2886.73 0.147571
\(727\) 33483.3 1.70815 0.854077 0.520147i \(-0.174123\pi\)
0.854077 + 0.520147i \(0.174123\pi\)
\(728\) 5398.79 0.274852
\(729\) 729.000 0.0370370
\(730\) −5837.54 −0.295969
\(731\) −1517.68 −0.0767898
\(732\) 14871.4 0.750904
\(733\) −31775.3 −1.60116 −0.800578 0.599228i \(-0.795474\pi\)
−0.800578 + 0.599228i \(0.795474\pi\)
\(734\) −2229.11 −0.112095
\(735\) 2085.10 0.104639
\(736\) 2504.72 0.125442
\(737\) 34027.7 1.70072
\(738\) 2053.21 0.102412
\(739\) 542.031 0.0269810 0.0134905 0.999909i \(-0.495706\pi\)
0.0134905 + 0.999909i \(0.495706\pi\)
\(740\) 43894.0 2.18051
\(741\) 30654.4 1.51973
\(742\) −1605.81 −0.0794491
\(743\) −3638.58 −0.179659 −0.0898294 0.995957i \(-0.528632\pi\)
−0.0898294 + 0.995957i \(0.528632\pi\)
\(744\) −4166.94 −0.205333
\(745\) 6429.64 0.316193
\(746\) 3952.03 0.193960
\(747\) 10750.6 0.526567
\(748\) −9081.45 −0.443918
\(749\) −7611.78 −0.371333
\(750\) −1253.11 −0.0610094
\(751\) −37163.6 −1.80575 −0.902875 0.429904i \(-0.858548\pi\)
−0.902875 + 0.429904i \(0.858548\pi\)
\(752\) −32525.3 −1.57723
\(753\) −10899.3 −0.527478
\(754\) −3443.95 −0.166341
\(755\) 45772.4 2.20640
\(756\) −1443.19 −0.0694290
\(757\) −83.9416 −0.00403027 −0.00201513 0.999998i \(-0.500641\pi\)
−0.00201513 + 0.999998i \(0.500641\pi\)
\(758\) −6854.84 −0.328468
\(759\) −3732.21 −0.178486
\(760\) 16727.2 0.798368
\(761\) −8416.02 −0.400894 −0.200447 0.979705i \(-0.564239\pi\)
−0.200447 + 0.979705i \(0.564239\pi\)
\(762\) 2410.37 0.114591
\(763\) 13577.5 0.644216
\(764\) −8136.60 −0.385304
\(765\) −2806.90 −0.132659
\(766\) −2640.26 −0.124539
\(767\) −19966.5 −0.939958
\(768\) 7069.46 0.332158
\(769\) 12701.8 0.595629 0.297815 0.954624i \(-0.403742\pi\)
0.297815 + 0.954624i \(0.403742\pi\)
\(770\) −3240.57 −0.151665
\(771\) −14099.9 −0.658620
\(772\) 7672.57 0.357697
\(773\) −37101.5 −1.72632 −0.863162 0.504926i \(-0.831520\pi\)
−0.863162 + 0.504926i \(0.831520\pi\)
\(774\) 374.838 0.0174073
\(775\) 11217.7 0.519938
\(776\) −8179.27 −0.378375
\(777\) −8510.47 −0.392936
\(778\) −3557.93 −0.163956
\(779\) −47259.5 −2.17362
\(780\) 26562.5 1.21935
\(781\) −26162.8 −1.19869
\(782\) −305.141 −0.0139537
\(783\) 1885.15 0.0860404
\(784\) 2714.34 0.123649
\(785\) −4773.77 −0.217049
\(786\) −998.222 −0.0452995
\(787\) −17097.2 −0.774397 −0.387198 0.921996i \(-0.626557\pi\)
−0.387198 + 0.921996i \(0.626557\pi\)
\(788\) 12124.1 0.548099
\(789\) 10102.4 0.455836
\(790\) −5920.47 −0.266634
\(791\) −9673.28 −0.434819
\(792\) 4592.83 0.206060
\(793\) 53069.6 2.37649
\(794\) −2260.73 −0.101046
\(795\) −16178.2 −0.721738
\(796\) −21581.0 −0.960952
\(797\) −26134.9 −1.16154 −0.580769 0.814068i \(-0.697248\pi\)
−0.580769 + 0.814068i \(0.697248\pi\)
\(798\) −1583.84 −0.0702597
\(799\) 12910.1 0.571623
\(800\) 8297.73 0.366711
\(801\) 6780.62 0.299103
\(802\) −6370.57 −0.280490
\(803\) 36892.8 1.62132
\(804\) 14411.1 0.632142
\(805\) 2283.68 0.0999864
\(806\) −7261.91 −0.317357
\(807\) 14655.7 0.639289
\(808\) 87.9114 0.00382761
\(809\) 8968.52 0.389761 0.194880 0.980827i \(-0.437568\pi\)
0.194880 + 0.980827i \(0.437568\pi\)
\(810\) 693.252 0.0300721
\(811\) 7565.97 0.327592 0.163796 0.986494i \(-0.447626\pi\)
0.163796 + 0.986494i \(0.447626\pi\)
\(812\) −3732.00 −0.161290
\(813\) 18736.6 0.808268
\(814\) 13226.6 0.569524
\(815\) −6330.26 −0.272073
\(816\) −3653.97 −0.156758
\(817\) −8627.76 −0.369458
\(818\) −4979.21 −0.212829
\(819\) −5150.13 −0.219732
\(820\) −40951.0 −1.74399
\(821\) −31947.2 −1.35806 −0.679029 0.734112i \(-0.737599\pi\)
−0.679029 + 0.734112i \(0.737599\pi\)
\(822\) −3186.69 −0.135217
\(823\) −19163.4 −0.811660 −0.405830 0.913949i \(-0.633017\pi\)
−0.405830 + 0.913949i \(0.633017\pi\)
\(824\) −7696.75 −0.325399
\(825\) −12364.2 −0.521778
\(826\) 1031.62 0.0434559
\(827\) −27083.7 −1.13880 −0.569402 0.822059i \(-0.692825\pi\)
−0.569402 + 0.822059i \(0.692825\pi\)
\(828\) −1580.64 −0.0663417
\(829\) 11972.2 0.501583 0.250792 0.968041i \(-0.419309\pi\)
0.250792 + 0.968041i \(0.419309\pi\)
\(830\) 10223.5 0.427544
\(831\) −17048.4 −0.711677
\(832\) 30855.7 1.28573
\(833\) −1077.39 −0.0448131
\(834\) −389.429 −0.0161689
\(835\) −2171.10 −0.0899808
\(836\) −51626.6 −2.13582
\(837\) 3975.02 0.164154
\(838\) 3163.71 0.130416
\(839\) −23637.9 −0.972672 −0.486336 0.873772i \(-0.661667\pi\)
−0.486336 + 0.873772i \(0.661667\pi\)
\(840\) −2810.27 −0.115433
\(841\) −19514.1 −0.800120
\(842\) 1876.68 0.0768106
\(843\) −13895.5 −0.567718
\(844\) −7534.36 −0.307279
\(845\) 63627.5 2.59036
\(846\) −3188.55 −0.129580
\(847\) 11163.1 0.452857
\(848\) −21060.5 −0.852853
\(849\) −18460.3 −0.746238
\(850\) −1010.88 −0.0407918
\(851\) −9320.99 −0.375464
\(852\) −11080.3 −0.445544
\(853\) −36296.6 −1.45694 −0.728472 0.685076i \(-0.759769\pi\)
−0.728472 + 0.685076i \(0.759769\pi\)
\(854\) −2741.97 −0.109869
\(855\) −15956.8 −0.638258
\(856\) 10259.1 0.409636
\(857\) −6915.23 −0.275636 −0.137818 0.990458i \(-0.544009\pi\)
−0.137818 + 0.990458i \(0.544009\pi\)
\(858\) 8004.12 0.318480
\(859\) 34428.1 1.36749 0.683744 0.729722i \(-0.260350\pi\)
0.683744 + 0.729722i \(0.260350\pi\)
\(860\) −7476.08 −0.296433
\(861\) 7939.88 0.314274
\(862\) 2646.11 0.104556
\(863\) −5921.26 −0.233560 −0.116780 0.993158i \(-0.537257\pi\)
−0.116780 + 0.993158i \(0.537257\pi\)
\(864\) 2940.32 0.115778
\(865\) −44399.2 −1.74522
\(866\) 55.7476 0.00218750
\(867\) −13288.6 −0.520538
\(868\) −7869.29 −0.307720
\(869\) 37416.9 1.46062
\(870\) 1792.70 0.0698602
\(871\) 51427.3 2.00063
\(872\) −18299.6 −0.710667
\(873\) 7802.55 0.302493
\(874\) −1734.68 −0.0671355
\(875\) −4845.83 −0.187222
\(876\) 15624.5 0.602630
\(877\) −10273.2 −0.395553 −0.197777 0.980247i \(-0.563372\pi\)
−0.197777 + 0.980247i \(0.563372\pi\)
\(878\) −8797.00 −0.338137
\(879\) 9260.73 0.355355
\(880\) −42500.5 −1.62806
\(881\) −12323.5 −0.471272 −0.235636 0.971841i \(-0.575717\pi\)
−0.235636 + 0.971841i \(0.575717\pi\)
\(882\) 266.094 0.0101586
\(883\) 47000.6 1.79128 0.895638 0.444785i \(-0.146720\pi\)
0.895638 + 0.444785i \(0.146720\pi\)
\(884\) −13725.1 −0.522200
\(885\) 10393.3 0.394765
\(886\) −4774.57 −0.181044
\(887\) −6934.21 −0.262489 −0.131245 0.991350i \(-0.541897\pi\)
−0.131245 + 0.991350i \(0.541897\pi\)
\(888\) 11470.3 0.433468
\(889\) 9321.00 0.351650
\(890\) 6448.11 0.242855
\(891\) −4381.29 −0.164735
\(892\) 15092.1 0.566504
\(893\) 73391.9 2.75024
\(894\) 820.533 0.0306966
\(895\) −32855.7 −1.22709
\(896\) −7692.68 −0.286824
\(897\) −5640.62 −0.209961
\(898\) −8402.13 −0.312230
\(899\) 10279.2 0.381345
\(900\) −5236.39 −0.193940
\(901\) 8359.42 0.309093
\(902\) −12339.8 −0.455511
\(903\) 1449.52 0.0534184
\(904\) 13037.6 0.479671
\(905\) −34293.6 −1.25962
\(906\) 5841.35 0.214201
\(907\) −8064.65 −0.295240 −0.147620 0.989044i \(-0.547161\pi\)
−0.147620 + 0.989044i \(0.547161\pi\)
\(908\) −18116.2 −0.662122
\(909\) −83.8624 −0.00306000
\(910\) −4897.58 −0.178410
\(911\) 22965.8 0.835224 0.417612 0.908625i \(-0.362867\pi\)
0.417612 + 0.908625i \(0.362867\pi\)
\(912\) −20772.3 −0.754208
\(913\) −64611.4 −2.34209
\(914\) 11525.3 0.417095
\(915\) −27624.7 −0.998083
\(916\) −20966.6 −0.756284
\(917\) −3860.17 −0.139012
\(918\) −358.209 −0.0128787
\(919\) 37634.5 1.35087 0.675434 0.737420i \(-0.263956\pi\)
0.675434 + 0.737420i \(0.263956\pi\)
\(920\) −3077.92 −0.110300
\(921\) 19118.1 0.683998
\(922\) −7174.89 −0.256282
\(923\) −39540.7 −1.41007
\(924\) 8673.58 0.308809
\(925\) −30879.0 −1.09761
\(926\) 10228.5 0.362991
\(927\) 7342.25 0.260142
\(928\) 7603.48 0.268962
\(929\) −31422.4 −1.10972 −0.554862 0.831942i \(-0.687229\pi\)
−0.554862 + 0.831942i \(0.687229\pi\)
\(930\) 3780.10 0.133284
\(931\) −6124.78 −0.215608
\(932\) −34533.0 −1.21370
\(933\) 22175.2 0.778116
\(934\) −9451.60 −0.331120
\(935\) 16869.5 0.590045
\(936\) 6941.30 0.242397
\(937\) −40978.8 −1.42873 −0.714365 0.699773i \(-0.753284\pi\)
−0.714365 + 0.699773i \(0.753284\pi\)
\(938\) −2657.12 −0.0924925
\(939\) 13559.8 0.471252
\(940\) 63595.2 2.20664
\(941\) −4219.91 −0.146190 −0.0730952 0.997325i \(-0.523288\pi\)
−0.0730952 + 0.997325i \(0.523288\pi\)
\(942\) −609.216 −0.0210715
\(943\) 8696.06 0.300300
\(944\) 13529.8 0.466481
\(945\) 2680.84 0.0922833
\(946\) −2252.78 −0.0774250
\(947\) 48823.7 1.67535 0.837676 0.546168i \(-0.183914\pi\)
0.837676 + 0.546168i \(0.183914\pi\)
\(948\) 15846.5 0.542901
\(949\) 55757.3 1.90723
\(950\) −5746.71 −0.196261
\(951\) 1353.02 0.0461352
\(952\) 1452.09 0.0494355
\(953\) −28119.5 −0.955802 −0.477901 0.878414i \(-0.658602\pi\)
−0.477901 + 0.878414i \(0.658602\pi\)
\(954\) −2064.62 −0.0700675
\(955\) 15114.4 0.512136
\(956\) −9528.24 −0.322349
\(957\) −11329.7 −0.382695
\(958\) −11926.7 −0.402228
\(959\) −12323.1 −0.414947
\(960\) −16061.5 −0.539983
\(961\) −8116.36 −0.272443
\(962\) 19989.8 0.669956
\(963\) −9786.57 −0.327485
\(964\) −29750.7 −0.993989
\(965\) −14252.4 −0.475442
\(966\) 291.437 0.00970685
\(967\) −31001.4 −1.03096 −0.515481 0.856901i \(-0.672387\pi\)
−0.515481 + 0.856901i \(0.672387\pi\)
\(968\) −15045.6 −0.499569
\(969\) 8245.02 0.273342
\(970\) 7419.93 0.245608
\(971\) −18525.0 −0.612252 −0.306126 0.951991i \(-0.599033\pi\)
−0.306126 + 0.951991i \(0.599033\pi\)
\(972\) −1855.53 −0.0612306
\(973\) −1505.94 −0.0496179
\(974\) −2686.03 −0.0883633
\(975\) −18686.5 −0.613791
\(976\) −35961.4 −1.17940
\(977\) −17405.9 −0.569972 −0.284986 0.958532i \(-0.591989\pi\)
−0.284986 + 0.958532i \(0.591989\pi\)
\(978\) −807.851 −0.0264133
\(979\) −40751.6 −1.33036
\(980\) −5307.21 −0.172993
\(981\) 17456.7 0.568145
\(982\) 9197.90 0.298897
\(983\) 24936.0 0.809089 0.404545 0.914518i \(-0.367430\pi\)
0.404545 + 0.914518i \(0.367430\pi\)
\(984\) −10701.3 −0.346692
\(985\) −22521.4 −0.728520
\(986\) −926.306 −0.0299185
\(987\) −12330.3 −0.397647
\(988\) −78025.0 −2.51245
\(989\) 1587.56 0.0510431
\(990\) −4166.45 −0.133756
\(991\) −11576.2 −0.371070 −0.185535 0.982638i \(-0.559402\pi\)
−0.185535 + 0.982638i \(0.559402\pi\)
\(992\) 16032.7 0.513144
\(993\) −5010.16 −0.160113
\(994\) 2042.97 0.0651902
\(995\) 40088.4 1.27727
\(996\) −27363.7 −0.870534
\(997\) 8899.71 0.282705 0.141352 0.989959i \(-0.454855\pi\)
0.141352 + 0.989959i \(0.454855\pi\)
\(998\) −9338.85 −0.296209
\(999\) −10942.0 −0.346537
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 483.4.a.c.1.5 7
3.2 odd 2 1449.4.a.h.1.3 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
483.4.a.c.1.5 7 1.1 even 1 trivial
1449.4.a.h.1.3 7 3.2 odd 2