Properties

Label 484.2.i.a.221.3
Level $484$
Weight $2$
Character 484.221
Analytic conductor $3.865$
Analytic rank $0$
Dimension $110$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [484,2,Mod(45,484)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(484, base_ring=CyclotomicField(22))
 
chi = DirichletCharacter(H, H._module([0, 6]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("484.45");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 484 = 2^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 484.i (of order \(11\), degree \(10\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.86475945783\)
Analytic rank: \(0\)
Dimension: \(110\)
Relative dimension: \(11\) over \(\Q(\zeta_{11})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

Embedding invariants

Embedding label 221.3
Character \(\chi\) \(=\) 484.221
Dual form 484.2.i.a.265.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.94110 q^{3} +(-1.34270 + 0.394253i) q^{5} +(0.322293 - 2.24160i) q^{7} +0.767885 q^{9} +(2.67636 + 1.95885i) q^{11} +(0.525392 - 0.606334i) q^{13} +(2.60632 - 0.765286i) q^{15} +(-4.15823 + 2.67233i) q^{17} +(3.69032 + 2.37163i) q^{19} +(-0.625604 + 4.35117i) q^{21} +(1.01927 + 7.08917i) q^{23} +(-2.55886 + 1.64448i) q^{25} +4.33277 q^{27} +(4.12817 + 2.65301i) q^{29} +(4.22508 + 4.87600i) q^{31} +(-5.19509 - 3.80233i) q^{33} +(0.451012 + 3.13686i) q^{35} +(-0.881378 - 1.01716i) q^{37} +(-1.01984 + 1.17696i) q^{39} +(-1.27440 - 2.79054i) q^{41} +(-2.44916 - 0.719138i) q^{43} +(-1.03104 + 0.302741i) q^{45} +(-1.56156 + 3.41934i) q^{47} +(1.79556 + 0.527225i) q^{49} +(8.07156 - 5.18727i) q^{51} +(-1.58008 + 10.9897i) q^{53} +(-4.36583 - 1.57499i) q^{55} +(-7.16330 - 4.60357i) q^{57} +(4.69769 - 10.2865i) q^{59} +(2.44950 - 5.36366i) q^{61} +(0.247484 - 1.72129i) q^{63} +(-0.466395 + 1.02126i) q^{65} +(2.49248 + 5.45778i) q^{67} +(-1.97851 - 13.7608i) q^{69} +(8.30838 + 5.33947i) q^{71} +(-1.01447 - 7.05578i) q^{73} +(4.96701 - 3.19210i) q^{75} +(5.25353 - 5.36800i) q^{77} +(-12.4996 + 3.67021i) q^{79} -10.7140 q^{81} +(-0.180094 + 1.25258i) q^{83} +(4.52969 - 5.22754i) q^{85} +(-8.01321 - 5.14978i) q^{87} +(-2.79587 + 1.79680i) q^{89} +(-1.18983 - 1.37313i) q^{91} +(-8.20132 - 9.46483i) q^{93} +(-5.89002 - 1.72947i) q^{95} +(0.636620 + 0.186928i) q^{97} +(2.05514 + 1.50417i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 110 q - 2 q^{3} + 2 q^{5} - 2 q^{7} + 112 q^{9} - 10 q^{11} - 29 q^{13} - 18 q^{15} - 6 q^{17} - 8 q^{19} - 2 q^{21} + 4 q^{23} - 17 q^{25} + 4 q^{27} - 28 q^{31} + q^{33} + 6 q^{35} - 31 q^{37} + 4 q^{39}+ \cdots - 57 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/484\mathbb{Z}\right)^\times\).

\(n\) \(243\) \(365\)
\(\chi(n)\) \(1\) \(e\left(\frac{4}{11}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.94110 −1.12070 −0.560349 0.828257i \(-0.689333\pi\)
−0.560349 + 0.828257i \(0.689333\pi\)
\(4\) 0 0
\(5\) −1.34270 + 0.394253i −0.600474 + 0.176315i −0.567822 0.823152i \(-0.692214\pi\)
−0.0326526 + 0.999467i \(0.510396\pi\)
\(6\) 0 0
\(7\) 0.322293 2.24160i 0.121815 0.847244i −0.833682 0.552245i \(-0.813771\pi\)
0.955497 0.295000i \(-0.0953195\pi\)
\(8\) 0 0
\(9\) 0.767885 0.255962
\(10\) 0 0
\(11\) 2.67636 + 1.95885i 0.806953 + 0.590616i
\(12\) 0 0
\(13\) 0.525392 0.606334i 0.145717 0.168167i −0.678199 0.734878i \(-0.737239\pi\)
0.823916 + 0.566712i \(0.191785\pi\)
\(14\) 0 0
\(15\) 2.60632 0.765286i 0.672950 0.197596i
\(16\) 0 0
\(17\) −4.15823 + 2.67233i −1.00852 + 0.648136i −0.937009 0.349304i \(-0.886418\pi\)
−0.0715095 + 0.997440i \(0.522782\pi\)
\(18\) 0 0
\(19\) 3.69032 + 2.37163i 0.846618 + 0.544088i 0.890518 0.454948i \(-0.150342\pi\)
−0.0439002 + 0.999036i \(0.513978\pi\)
\(20\) 0 0
\(21\) −0.625604 + 4.35117i −0.136518 + 0.949504i
\(22\) 0 0
\(23\) 1.01927 + 7.08917i 0.212532 + 1.47820i 0.764659 + 0.644435i \(0.222907\pi\)
−0.552127 + 0.833760i \(0.686184\pi\)
\(24\) 0 0
\(25\) −2.55886 + 1.64448i −0.511771 + 0.328895i
\(26\) 0 0
\(27\) 4.33277 0.833841
\(28\) 0 0
\(29\) 4.12817 + 2.65301i 0.766582 + 0.492652i 0.864556 0.502537i \(-0.167600\pi\)
−0.0979739 + 0.995189i \(0.531236\pi\)
\(30\) 0 0
\(31\) 4.22508 + 4.87600i 0.758847 + 0.875756i 0.995394 0.0958641i \(-0.0305614\pi\)
−0.236548 + 0.971620i \(0.576016\pi\)
\(32\) 0 0
\(33\) −5.19509 3.80233i −0.904350 0.661902i
\(34\) 0 0
\(35\) 0.451012 + 3.13686i 0.0762350 + 0.530226i
\(36\) 0 0
\(37\) −0.881378 1.01716i −0.144898 0.167221i 0.678662 0.734451i \(-0.262560\pi\)
−0.823559 + 0.567230i \(0.808015\pi\)
\(38\) 0 0
\(39\) −1.01984 + 1.17696i −0.163305 + 0.188464i
\(40\) 0 0
\(41\) −1.27440 2.79054i −0.199027 0.435809i 0.783633 0.621224i \(-0.213364\pi\)
−0.982660 + 0.185415i \(0.940637\pi\)
\(42\) 0 0
\(43\) −2.44916 0.719138i −0.373493 0.109667i 0.0895983 0.995978i \(-0.471442\pi\)
−0.463091 + 0.886311i \(0.653260\pi\)
\(44\) 0 0
\(45\) −1.03104 + 0.302741i −0.153698 + 0.0451299i
\(46\) 0 0
\(47\) −1.56156 + 3.41934i −0.227777 + 0.498762i −0.988668 0.150117i \(-0.952035\pi\)
0.760891 + 0.648880i \(0.224762\pi\)
\(48\) 0 0
\(49\) 1.79556 + 0.527225i 0.256509 + 0.0753179i
\(50\) 0 0
\(51\) 8.07156 5.18727i 1.13024 0.726364i
\(52\) 0 0
\(53\) −1.58008 + 10.9897i −0.217041 + 1.50955i 0.531837 + 0.846847i \(0.321502\pi\)
−0.748878 + 0.662708i \(0.769407\pi\)
\(54\) 0 0
\(55\) −4.36583 1.57499i −0.588689 0.212372i
\(56\) 0 0
\(57\) −7.16330 4.60357i −0.948802 0.609758i
\(58\) 0 0
\(59\) 4.69769 10.2865i 0.611587 1.33919i −0.309895 0.950771i \(-0.600294\pi\)
0.921483 0.388419i \(-0.126979\pi\)
\(60\) 0 0
\(61\) 2.44950 5.36366i 0.313627 0.686747i −0.685520 0.728054i \(-0.740425\pi\)
0.999146 + 0.0413072i \(0.0131522\pi\)
\(62\) 0 0
\(63\) 0.247484 1.72129i 0.0311801 0.216862i
\(64\) 0 0
\(65\) −0.466395 + 1.02126i −0.0578492 + 0.126672i
\(66\) 0 0
\(67\) 2.49248 + 5.45778i 0.304505 + 0.666773i 0.998588 0.0531217i \(-0.0169171\pi\)
−0.694083 + 0.719895i \(0.744190\pi\)
\(68\) 0 0
\(69\) −1.97851 13.7608i −0.238184 1.65661i
\(70\) 0 0
\(71\) 8.30838 + 5.33947i 0.986023 + 0.633679i 0.931082 0.364811i \(-0.118866\pi\)
0.0549414 + 0.998490i \(0.482503\pi\)
\(72\) 0 0
\(73\) −1.01447 7.05578i −0.118734 0.825817i −0.958952 0.283567i \(-0.908482\pi\)
0.840218 0.542249i \(-0.182427\pi\)
\(74\) 0 0
\(75\) 4.96701 3.19210i 0.573540 0.368592i
\(76\) 0 0
\(77\) 5.25353 5.36800i 0.598695 0.611740i
\(78\) 0 0
\(79\) −12.4996 + 3.67021i −1.40631 + 0.412931i −0.894847 0.446373i \(-0.852716\pi\)
−0.511466 + 0.859304i \(0.670897\pi\)
\(80\) 0 0
\(81\) −10.7140 −1.19045
\(82\) 0 0
\(83\) −0.180094 + 1.25258i −0.0197679 + 0.137489i −0.997315 0.0732267i \(-0.976670\pi\)
0.977547 + 0.210716i \(0.0675794\pi\)
\(84\) 0 0
\(85\) 4.52969 5.22754i 0.491314 0.567006i
\(86\) 0 0
\(87\) −8.01321 5.14978i −0.859106 0.552114i
\(88\) 0 0
\(89\) −2.79587 + 1.79680i −0.296362 + 0.190460i −0.680368 0.732870i \(-0.738180\pi\)
0.384007 + 0.923330i \(0.374544\pi\)
\(90\) 0 0
\(91\) −1.18983 1.37313i −0.124728 0.143944i
\(92\) 0 0
\(93\) −8.20132 9.46483i −0.850437 0.981457i
\(94\) 0 0
\(95\) −5.89002 1.72947i −0.604303 0.177439i
\(96\) 0 0
\(97\) 0.636620 + 0.186928i 0.0646390 + 0.0189797i 0.313892 0.949459i \(-0.398367\pi\)
−0.249253 + 0.968438i \(0.580185\pi\)
\(98\) 0 0
\(99\) 2.05514 + 1.50417i 0.206549 + 0.151175i
\(100\) 0 0
\(101\) −3.09923 + 6.78636i −0.308385 + 0.675268i −0.998842 0.0481045i \(-0.984682\pi\)
0.690458 + 0.723373i \(0.257409\pi\)
\(102\) 0 0
\(103\) −4.44554 9.73438i −0.438032 0.959157i −0.991955 0.126589i \(-0.959597\pi\)
0.553923 0.832568i \(-0.313130\pi\)
\(104\) 0 0
\(105\) −0.875462 6.08897i −0.0854364 0.594223i
\(106\) 0 0
\(107\) 13.2811 3.89970i 1.28394 0.376998i 0.432585 0.901593i \(-0.357602\pi\)
0.851352 + 0.524595i \(0.175783\pi\)
\(108\) 0 0
\(109\) −3.79803 + 4.38316i −0.363786 + 0.419831i −0.907904 0.419177i \(-0.862319\pi\)
0.544119 + 0.839008i \(0.316864\pi\)
\(110\) 0 0
\(111\) 1.71085 + 1.97442i 0.162386 + 0.187404i
\(112\) 0 0
\(113\) −15.5490 4.56559i −1.46273 0.429495i −0.548999 0.835823i \(-0.684991\pi\)
−0.913727 + 0.406328i \(0.866809\pi\)
\(114\) 0 0
\(115\) −4.16350 9.11679i −0.388248 0.850145i
\(116\) 0 0
\(117\) 0.403441 0.465595i 0.0372981 0.0430443i
\(118\) 0 0
\(119\) 4.65012 + 10.1824i 0.426276 + 0.933415i
\(120\) 0 0
\(121\) 3.32580 + 10.4852i 0.302346 + 0.953198i
\(122\) 0 0
\(123\) 2.47374 + 5.41672i 0.223049 + 0.488410i
\(124\) 0 0
\(125\) 7.36946 8.50481i 0.659144 0.760693i
\(126\) 0 0
\(127\) −6.44789 14.1189i −0.572158 1.25285i −0.945641 0.325214i \(-0.894564\pi\)
0.373483 0.927637i \(-0.378164\pi\)
\(128\) 0 0
\(129\) 4.75407 + 1.39592i 0.418573 + 0.122904i
\(130\) 0 0
\(131\) 11.6661 + 13.4634i 1.01928 + 1.17631i 0.984225 + 0.176921i \(0.0566137\pi\)
0.0350505 + 0.999386i \(0.488841\pi\)
\(132\) 0 0
\(133\) 6.50560 7.50786i 0.564107 0.651014i
\(134\) 0 0
\(135\) −5.81761 + 1.70821i −0.500700 + 0.147019i
\(136\) 0 0
\(137\) 1.82404 + 12.6865i 0.155838 + 1.08388i 0.906200 + 0.422850i \(0.138970\pi\)
−0.750362 + 0.661028i \(0.770121\pi\)
\(138\) 0 0
\(139\) −7.61916 16.6836i −0.646249 1.41509i −0.894800 0.446468i \(-0.852682\pi\)
0.248551 0.968619i \(-0.420046\pi\)
\(140\) 0 0
\(141\) 3.03115 6.63730i 0.255269 0.558961i
\(142\) 0 0
\(143\) 2.59386 0.593604i 0.216909 0.0496397i
\(144\) 0 0
\(145\) −6.58886 1.93466i −0.547175 0.160665i
\(146\) 0 0
\(147\) −3.48538 1.02340i −0.287469 0.0844085i
\(148\) 0 0
\(149\) −2.47934 2.86131i −0.203116 0.234408i 0.645048 0.764142i \(-0.276837\pi\)
−0.848164 + 0.529734i \(0.822292\pi\)
\(150\) 0 0
\(151\) 13.4226 + 15.4905i 1.09231 + 1.26060i 0.963147 + 0.268976i \(0.0866852\pi\)
0.129168 + 0.991623i \(0.458769\pi\)
\(152\) 0 0
\(153\) −3.19304 + 2.05204i −0.258142 + 0.165898i
\(154\) 0 0
\(155\) −7.59540 4.88127i −0.610077 0.392073i
\(156\) 0 0
\(157\) −1.20817 + 1.39430i −0.0964222 + 0.111277i −0.801910 0.597445i \(-0.796183\pi\)
0.705488 + 0.708722i \(0.250728\pi\)
\(158\) 0 0
\(159\) 3.06711 21.3322i 0.243237 1.69175i
\(160\) 0 0
\(161\) 16.2196 1.27828
\(162\) 0 0
\(163\) 3.16808 0.930232i 0.248143 0.0728614i −0.155296 0.987868i \(-0.549633\pi\)
0.403439 + 0.915007i \(0.367815\pi\)
\(164\) 0 0
\(165\) 8.47454 + 3.05722i 0.659742 + 0.238004i
\(166\) 0 0
\(167\) −8.59562 + 5.52407i −0.665149 + 0.427465i −0.829174 0.558991i \(-0.811189\pi\)
0.164025 + 0.986456i \(0.447552\pi\)
\(168\) 0 0
\(169\) 1.75849 + 12.2306i 0.135268 + 0.940812i
\(170\) 0 0
\(171\) 2.83374 + 1.82114i 0.216702 + 0.139266i
\(172\) 0 0
\(173\) 1.83708 + 12.7772i 0.139671 + 0.971431i 0.932289 + 0.361713i \(0.117808\pi\)
−0.792619 + 0.609718i \(0.791283\pi\)
\(174\) 0 0
\(175\) 2.86155 + 6.26593i 0.216313 + 0.473660i
\(176\) 0 0
\(177\) −9.11871 + 19.9672i −0.685404 + 1.50083i
\(178\) 0 0
\(179\) 0.308660 2.14677i 0.0230703 0.160457i −0.975030 0.222075i \(-0.928717\pi\)
0.998100 + 0.0616178i \(0.0196260\pi\)
\(180\) 0 0
\(181\) −2.58817 + 5.66730i −0.192377 + 0.421247i −0.981100 0.193502i \(-0.938015\pi\)
0.788723 + 0.614749i \(0.210743\pi\)
\(182\) 0 0
\(183\) −4.75474 + 10.4114i −0.351481 + 0.769635i
\(184\) 0 0
\(185\) 1.58445 + 1.01826i 0.116491 + 0.0748641i
\(186\) 0 0
\(187\) −16.3636 0.993233i −1.19663 0.0726324i
\(188\) 0 0
\(189\) 1.39642 9.71232i 0.101575 0.706467i
\(190\) 0 0
\(191\) 6.59287 4.23698i 0.477043 0.306577i −0.279933 0.960020i \(-0.590312\pi\)
0.756976 + 0.653442i \(0.226676\pi\)
\(192\) 0 0
\(193\) 14.2804 + 4.19312i 1.02793 + 0.301827i 0.751868 0.659313i \(-0.229153\pi\)
0.276060 + 0.961140i \(0.410971\pi\)
\(194\) 0 0
\(195\) 0.905322 1.98238i 0.0648314 0.141961i
\(196\) 0 0
\(197\) −4.03281 + 1.18414i −0.287326 + 0.0843666i −0.422220 0.906494i \(-0.638749\pi\)
0.134894 + 0.990860i \(0.456931\pi\)
\(198\) 0 0
\(199\) −26.0167 7.63918i −1.84427 0.541527i −0.999984 0.00563676i \(-0.998206\pi\)
−0.844288 0.535890i \(-0.819976\pi\)
\(200\) 0 0
\(201\) −4.83817 10.5941i −0.341258 0.747251i
\(202\) 0 0
\(203\) 7.27747 8.39865i 0.510778 0.589470i
\(204\) 0 0
\(205\) 2.81131 + 3.24442i 0.196350 + 0.226600i
\(206\) 0 0
\(207\) 0.782682 + 5.44367i 0.0544002 + 0.378361i
\(208\) 0 0
\(209\) 5.23097 + 13.5761i 0.361834 + 0.939080i
\(210\) 0 0
\(211\) 15.9706 + 18.4310i 1.09946 + 1.26884i 0.960419 + 0.278558i \(0.0898566\pi\)
0.139041 + 0.990287i \(0.455598\pi\)
\(212\) 0 0
\(213\) −16.1274 10.3645i −1.10503 0.710162i
\(214\) 0 0
\(215\) 3.57201 0.243609
\(216\) 0 0
\(217\) 12.2917 7.89943i 0.834418 0.536248i
\(218\) 0 0
\(219\) 1.96919 + 13.6960i 0.133065 + 0.925490i
\(220\) 0 0
\(221\) −0.564373 + 3.92530i −0.0379638 + 0.264044i
\(222\) 0 0
\(223\) 1.50919 + 0.969895i 0.101063 + 0.0649489i 0.590196 0.807260i \(-0.299051\pi\)
−0.489133 + 0.872209i \(0.662687\pi\)
\(224\) 0 0
\(225\) −1.96491 + 1.26277i −0.130994 + 0.0841846i
\(226\) 0 0
\(227\) 4.61608 1.35540i 0.306380 0.0899614i −0.124929 0.992166i \(-0.539870\pi\)
0.431309 + 0.902204i \(0.358052\pi\)
\(228\) 0 0
\(229\) 1.63334 1.88498i 0.107934 0.124563i −0.699212 0.714915i \(-0.746465\pi\)
0.807146 + 0.590352i \(0.201011\pi\)
\(230\) 0 0
\(231\) −10.1976 + 10.4198i −0.670956 + 0.685575i
\(232\) 0 0
\(233\) −14.0926 −0.923236 −0.461618 0.887079i \(-0.652731\pi\)
−0.461618 + 0.887079i \(0.652731\pi\)
\(234\) 0 0
\(235\) 0.748625 5.20680i 0.0488349 0.339654i
\(236\) 0 0
\(237\) 24.2630 7.12426i 1.57605 0.462770i
\(238\) 0 0
\(239\) −2.60603 −0.168570 −0.0842852 0.996442i \(-0.526861\pi\)
−0.0842852 + 0.996442i \(0.526861\pi\)
\(240\) 0 0
\(241\) 13.9475 0.898438 0.449219 0.893422i \(-0.351702\pi\)
0.449219 + 0.893422i \(0.351702\pi\)
\(242\) 0 0
\(243\) 7.79870 0.500287
\(244\) 0 0
\(245\) −2.61877 −0.167307
\(246\) 0 0
\(247\) 3.37686 0.991537i 0.214865 0.0630900i
\(248\) 0 0
\(249\) 0.349582 2.43140i 0.0221539 0.154084i
\(250\) 0 0
\(251\) −2.85978 −0.180508 −0.0902540 0.995919i \(-0.528768\pi\)
−0.0902540 + 0.995919i \(0.528768\pi\)
\(252\) 0 0
\(253\) −11.1587 + 20.9698i −0.701542 + 1.31836i
\(254\) 0 0
\(255\) −8.79259 + 10.1472i −0.550614 + 0.635442i
\(256\) 0 0
\(257\) −12.1968 + 3.58131i −0.760817 + 0.223396i −0.639053 0.769163i \(-0.720673\pi\)
−0.121764 + 0.992559i \(0.538855\pi\)
\(258\) 0 0
\(259\) −2.56414 + 1.64787i −0.159328 + 0.102394i
\(260\) 0 0
\(261\) 3.16996 + 2.03721i 0.196216 + 0.126100i
\(262\) 0 0
\(263\) −0.587027 + 4.08286i −0.0361976 + 0.251760i −0.999883 0.0152793i \(-0.995136\pi\)
0.963686 + 0.267039i \(0.0860453\pi\)
\(264\) 0 0
\(265\) −2.21115 15.3789i −0.135830 0.944716i
\(266\) 0 0
\(267\) 5.42707 3.48777i 0.332132 0.213448i
\(268\) 0 0
\(269\) −6.55668 −0.399768 −0.199884 0.979820i \(-0.564056\pi\)
−0.199884 + 0.979820i \(0.564056\pi\)
\(270\) 0 0
\(271\) 10.8102 + 6.94729i 0.656673 + 0.422018i 0.826099 0.563525i \(-0.190555\pi\)
−0.169426 + 0.985543i \(0.554192\pi\)
\(272\) 0 0
\(273\) 2.30958 + 2.66540i 0.139782 + 0.161317i
\(274\) 0 0
\(275\) −10.0697 0.611207i −0.607226 0.0368572i
\(276\) 0 0
\(277\) −2.71453 18.8800i −0.163100 1.13439i −0.892745 0.450562i \(-0.851224\pi\)
0.729645 0.683826i \(-0.239685\pi\)
\(278\) 0 0
\(279\) 3.24438 + 3.74421i 0.194236 + 0.224160i
\(280\) 0 0
\(281\) 14.0767 16.2453i 0.839743 0.969115i −0.160095 0.987102i \(-0.551180\pi\)
0.999838 + 0.0179864i \(0.00572557\pi\)
\(282\) 0 0
\(283\) −5.82158 12.7475i −0.346057 0.757759i −0.999999 0.00121452i \(-0.999613\pi\)
0.653942 0.756544i \(-0.273114\pi\)
\(284\) 0 0
\(285\) 11.4331 + 3.35707i 0.677241 + 0.198856i
\(286\) 0 0
\(287\) −6.66599 + 1.95731i −0.393481 + 0.115536i
\(288\) 0 0
\(289\) 3.08746 6.76060i 0.181615 0.397682i
\(290\) 0 0
\(291\) −1.23575 0.362848i −0.0724407 0.0212705i
\(292\) 0 0
\(293\) 19.8579 12.7619i 1.16011 0.745558i 0.188484 0.982076i \(-0.439643\pi\)
0.971627 + 0.236518i \(0.0760063\pi\)
\(294\) 0 0
\(295\) −2.25211 + 15.6638i −0.131123 + 0.911981i
\(296\) 0 0
\(297\) 11.5960 + 8.48725i 0.672871 + 0.492480i
\(298\) 0 0
\(299\) 4.83393 + 3.10658i 0.279553 + 0.179658i
\(300\) 0 0
\(301\) −2.40136 + 5.25825i −0.138412 + 0.303081i
\(302\) 0 0
\(303\) 6.01593 13.1730i 0.345606 0.756771i
\(304\) 0 0
\(305\) −1.17431 + 8.16752i −0.0672409 + 0.467671i
\(306\) 0 0
\(307\) 6.89971 15.1082i 0.393787 0.862273i −0.604076 0.796927i \(-0.706458\pi\)
0.997863 0.0653463i \(-0.0208152\pi\)
\(308\) 0 0
\(309\) 8.62926 + 18.8954i 0.490901 + 1.07492i
\(310\) 0 0
\(311\) 3.12474 + 21.7331i 0.177188 + 1.23237i 0.863232 + 0.504808i \(0.168437\pi\)
−0.686044 + 0.727560i \(0.740654\pi\)
\(312\) 0 0
\(313\) −19.6678 12.6397i −1.11169 0.714438i −0.150027 0.988682i \(-0.547936\pi\)
−0.961660 + 0.274244i \(0.911572\pi\)
\(314\) 0 0
\(315\) 0.346326 + 2.40875i 0.0195133 + 0.135718i
\(316\) 0 0
\(317\) −9.28818 + 5.96915i −0.521676 + 0.335261i −0.774835 0.632164i \(-0.782167\pi\)
0.253158 + 0.967425i \(0.418531\pi\)
\(318\) 0 0
\(319\) 5.85161 + 15.1869i 0.327627 + 0.850303i
\(320\) 0 0
\(321\) −25.7801 + 7.56971i −1.43890 + 0.422500i
\(322\) 0 0
\(323\) −21.6830 −1.20647
\(324\) 0 0
\(325\) −0.347299 + 2.41552i −0.0192647 + 0.133989i
\(326\) 0 0
\(327\) 7.37238 8.50818i 0.407693 0.470503i
\(328\) 0 0
\(329\) 7.16151 + 4.60242i 0.394827 + 0.253740i
\(330\) 0 0
\(331\) −2.38293 + 1.53142i −0.130978 + 0.0841743i −0.604489 0.796613i \(-0.706623\pi\)
0.473511 + 0.880788i \(0.342986\pi\)
\(332\) 0 0
\(333\) −0.676797 0.781066i −0.0370883 0.0428021i
\(334\) 0 0
\(335\) −5.49840 6.34550i −0.300410 0.346691i
\(336\) 0 0
\(337\) −2.03363 0.597127i −0.110779 0.0325276i 0.225873 0.974157i \(-0.427476\pi\)
−0.336652 + 0.941629i \(0.609295\pi\)
\(338\) 0 0
\(339\) 30.1822 + 8.86230i 1.63927 + 0.481334i
\(340\) 0 0
\(341\) 1.75647 + 21.3262i 0.0951181 + 1.15488i
\(342\) 0 0
\(343\) 8.34591 18.2750i 0.450637 0.986757i
\(344\) 0 0
\(345\) 8.08179 + 17.6966i 0.435109 + 0.952755i
\(346\) 0 0
\(347\) 3.88660 + 27.0319i 0.208644 + 1.45115i 0.777589 + 0.628773i \(0.216442\pi\)
−0.568945 + 0.822375i \(0.692648\pi\)
\(348\) 0 0
\(349\) −10.2262 + 3.00269i −0.547398 + 0.160731i −0.543726 0.839263i \(-0.682987\pi\)
−0.00367189 + 0.999993i \(0.501169\pi\)
\(350\) 0 0
\(351\) 2.27640 2.62711i 0.121505 0.140225i
\(352\) 0 0
\(353\) 11.1276 + 12.8419i 0.592260 + 0.683504i 0.970194 0.242328i \(-0.0779110\pi\)
−0.377935 + 0.925832i \(0.623366\pi\)
\(354\) 0 0
\(355\) −13.2608 3.89371i −0.703809 0.206657i
\(356\) 0 0
\(357\) −9.02638 19.7650i −0.477726 1.04608i
\(358\) 0 0
\(359\) −13.0852 + 15.1011i −0.690611 + 0.797007i −0.987452 0.157920i \(-0.949521\pi\)
0.296841 + 0.954927i \(0.404067\pi\)
\(360\) 0 0
\(361\) 0.100983 + 0.221123i 0.00531492 + 0.0116381i
\(362\) 0 0
\(363\) −6.45573 20.3528i −0.338838 1.06825i
\(364\) 0 0
\(365\) 4.14389 + 9.07385i 0.216901 + 0.474947i
\(366\) 0 0
\(367\) 1.20429 1.38983i 0.0628635 0.0725484i −0.723447 0.690380i \(-0.757443\pi\)
0.786310 + 0.617832i \(0.211989\pi\)
\(368\) 0 0
\(369\) −0.978590 2.14281i −0.0509434 0.111550i
\(370\) 0 0
\(371\) 24.1253 + 7.08382i 1.25252 + 0.367774i
\(372\) 0 0
\(373\) 4.02649 + 4.64681i 0.208484 + 0.240603i 0.850355 0.526209i \(-0.176387\pi\)
−0.641871 + 0.766812i \(0.721842\pi\)
\(374\) 0 0
\(375\) −14.3049 + 16.5087i −0.738701 + 0.852506i
\(376\) 0 0
\(377\) 3.77752 1.10918i 0.194552 0.0571257i
\(378\) 0 0
\(379\) −2.14290 14.9042i −0.110073 0.765577i −0.967845 0.251546i \(-0.919061\pi\)
0.857772 0.514030i \(-0.171848\pi\)
\(380\) 0 0
\(381\) 12.5160 + 27.4063i 0.641216 + 1.40407i
\(382\) 0 0
\(383\) 7.41155 16.2290i 0.378713 0.829265i −0.620280 0.784381i \(-0.712981\pi\)
0.998992 0.0448841i \(-0.0142919\pi\)
\(384\) 0 0
\(385\) −4.93757 + 9.27883i −0.251642 + 0.472893i
\(386\) 0 0
\(387\) −1.88067 0.552215i −0.0956000 0.0280707i
\(388\) 0 0
\(389\) −8.01821 2.35436i −0.406540 0.119371i 0.0720680 0.997400i \(-0.477040\pi\)
−0.478608 + 0.878029i \(0.658858\pi\)
\(390\) 0 0
\(391\) −23.1830 26.7546i −1.17241 1.35304i
\(392\) 0 0
\(393\) −22.6452 26.1339i −1.14230 1.31828i
\(394\) 0 0
\(395\) 15.3362 9.85599i 0.771649 0.495909i
\(396\) 0 0
\(397\) −22.6533 14.5584i −1.13694 0.730665i −0.169940 0.985454i \(-0.554357\pi\)
−0.966996 + 0.254790i \(0.917994\pi\)
\(398\) 0 0
\(399\) −12.6280 + 14.5735i −0.632193 + 0.729589i
\(400\) 0 0
\(401\) 3.58247 24.9166i 0.178900 1.24428i −0.680414 0.732828i \(-0.738200\pi\)
0.859314 0.511448i \(-0.170891\pi\)
\(402\) 0 0
\(403\) 5.17631 0.257850
\(404\) 0 0
\(405\) 14.3857 4.22403i 0.714832 0.209894i
\(406\) 0 0
\(407\) −0.366410 4.44879i −0.0181623 0.220518i
\(408\) 0 0
\(409\) 31.2224 20.0654i 1.54385 0.992170i 0.556999 0.830513i \(-0.311953\pi\)
0.986847 0.161657i \(-0.0516838\pi\)
\(410\) 0 0
\(411\) −3.54065 24.6257i −0.174647 1.21470i
\(412\) 0 0
\(413\) −21.5442 13.8456i −1.06012 0.681298i
\(414\) 0 0
\(415\) −0.252022 1.75285i −0.0123713 0.0860440i
\(416\) 0 0
\(417\) 14.7896 + 32.3847i 0.724249 + 1.58588i
\(418\) 0 0
\(419\) −7.29573 + 15.9754i −0.356420 + 0.780451i 0.643468 + 0.765473i \(0.277495\pi\)
−0.999888 + 0.0149777i \(0.995232\pi\)
\(420\) 0 0
\(421\) 1.03951 7.22997i 0.0506627 0.352367i −0.948684 0.316226i \(-0.897584\pi\)
0.999347 0.0361413i \(-0.0115066\pi\)
\(422\) 0 0
\(423\) −1.19910 + 2.62566i −0.0583022 + 0.127664i
\(424\) 0 0
\(425\) 6.24572 13.6762i 0.302962 0.663394i
\(426\) 0 0
\(427\) −11.2337 7.21947i −0.543638 0.349375i
\(428\) 0 0
\(429\) −5.03494 + 1.15225i −0.243089 + 0.0556311i
\(430\) 0 0
\(431\) 1.73749 12.0845i 0.0836919 0.582090i −0.904219 0.427069i \(-0.859546\pi\)
0.987911 0.155021i \(-0.0495447\pi\)
\(432\) 0 0
\(433\) −4.75648 + 3.05681i −0.228582 + 0.146901i −0.649919 0.760003i \(-0.725197\pi\)
0.421337 + 0.906904i \(0.361561\pi\)
\(434\) 0 0
\(435\) 12.7897 + 3.75538i 0.613217 + 0.180057i
\(436\) 0 0
\(437\) −13.0514 + 28.5787i −0.624335 + 1.36710i
\(438\) 0 0
\(439\) −2.88593 + 0.847384i −0.137738 + 0.0404434i −0.349875 0.936796i \(-0.613776\pi\)
0.212137 + 0.977240i \(0.431958\pi\)
\(440\) 0 0
\(441\) 1.37879 + 0.404849i 0.0656566 + 0.0192785i
\(442\) 0 0
\(443\) −1.33152 2.91562i −0.0632624 0.138525i 0.875360 0.483472i \(-0.160624\pi\)
−0.938622 + 0.344946i \(0.887897\pi\)
\(444\) 0 0
\(445\) 3.04563 3.51484i 0.144377 0.166619i
\(446\) 0 0
\(447\) 4.81266 + 5.55411i 0.227631 + 0.262700i
\(448\) 0 0
\(449\) −5.99693 41.7095i −0.283012 1.96840i −0.246871 0.969048i \(-0.579402\pi\)
−0.0361418 0.999347i \(-0.511507\pi\)
\(450\) 0 0
\(451\) 2.05551 9.96484i 0.0967901 0.469226i
\(452\) 0 0
\(453\) −26.0546 30.0687i −1.22415 1.41275i
\(454\) 0 0
\(455\) 2.13894 + 1.37462i 0.100275 + 0.0644430i
\(456\) 0 0
\(457\) 41.1562 1.92521 0.962603 0.270917i \(-0.0873269\pi\)
0.962603 + 0.270917i \(0.0873269\pi\)
\(458\) 0 0
\(459\) −18.0166 + 11.5786i −0.840945 + 0.540442i
\(460\) 0 0
\(461\) −0.116553 0.810645i −0.00542842 0.0377555i 0.986927 0.161167i \(-0.0515257\pi\)
−0.992356 + 0.123411i \(0.960617\pi\)
\(462\) 0 0
\(463\) 4.59317 31.9462i 0.213463 1.48466i −0.548012 0.836470i \(-0.684615\pi\)
0.761475 0.648195i \(-0.224476\pi\)
\(464\) 0 0
\(465\) 14.7435 + 9.47504i 0.683711 + 0.439395i
\(466\) 0 0
\(467\) 21.6749 13.9296i 1.00300 0.644587i 0.0674251 0.997724i \(-0.478522\pi\)
0.935571 + 0.353138i \(0.114885\pi\)
\(468\) 0 0
\(469\) 13.0374 3.82814i 0.602013 0.176767i
\(470\) 0 0
\(471\) 2.34518 2.70648i 0.108060 0.124708i
\(472\) 0 0
\(473\) −5.14614 6.72221i −0.236620 0.309087i
\(474\) 0 0
\(475\) −13.3431 −0.612223
\(476\) 0 0
\(477\) −1.21332 + 8.43885i −0.0555542 + 0.386388i
\(478\) 0 0
\(479\) −25.0269 + 7.34857i −1.14351 + 0.335765i −0.798004 0.602652i \(-0.794111\pi\)
−0.345506 + 0.938417i \(0.612293\pi\)
\(480\) 0 0
\(481\) −1.07981 −0.0492351
\(482\) 0 0
\(483\) −31.4839 −1.43257
\(484\) 0 0
\(485\) −0.928488 −0.0421604
\(486\) 0 0
\(487\) −34.0054 −1.54093 −0.770465 0.637482i \(-0.779976\pi\)
−0.770465 + 0.637482i \(0.779976\pi\)
\(488\) 0 0
\(489\) −6.14957 + 1.80568i −0.278093 + 0.0816556i
\(490\) 0 0
\(491\) 5.04518 35.0900i 0.227686 1.58359i −0.480133 0.877196i \(-0.659412\pi\)
0.707819 0.706394i \(-0.249679\pi\)
\(492\) 0 0
\(493\) −24.2556 −1.09242
\(494\) 0 0
\(495\) −3.35246 1.20941i −0.150682 0.0543590i
\(496\) 0 0
\(497\) 14.6467 16.9032i 0.656993 0.758211i
\(498\) 0 0
\(499\) 10.1274 2.97368i 0.453366 0.133120i −0.0470740 0.998891i \(-0.514990\pi\)
0.500440 + 0.865771i \(0.333171\pi\)
\(500\) 0 0
\(501\) 16.6850 10.7228i 0.745430 0.479059i
\(502\) 0 0
\(503\) −14.4978 9.31716i −0.646424 0.415432i 0.175934 0.984402i \(-0.443706\pi\)
−0.822358 + 0.568970i \(0.807342\pi\)
\(504\) 0 0
\(505\) 1.48580 10.3339i 0.0661171 0.459854i
\(506\) 0 0
\(507\) −3.41341 23.7408i −0.151595 1.05436i
\(508\) 0 0
\(509\) 2.22262 1.42839i 0.0985160 0.0633124i −0.490455 0.871466i \(-0.663169\pi\)
0.588971 + 0.808154i \(0.299533\pi\)
\(510\) 0 0
\(511\) −16.1432 −0.714132
\(512\) 0 0
\(513\) 15.9893 + 10.2757i 0.705945 + 0.453683i
\(514\) 0 0
\(515\) 9.80684 + 11.3177i 0.432141 + 0.498717i
\(516\) 0 0
\(517\) −10.8773 + 6.09252i −0.478382 + 0.267949i
\(518\) 0 0
\(519\) −3.56597 24.8018i −0.156529 1.08868i
\(520\) 0 0
\(521\) −8.56034 9.87916i −0.375035 0.432814i 0.536586 0.843846i \(-0.319714\pi\)
−0.911621 + 0.411032i \(0.865168\pi\)
\(522\) 0 0
\(523\) 7.07618 8.16635i 0.309420 0.357089i −0.579646 0.814868i \(-0.696809\pi\)
0.889066 + 0.457779i \(0.151355\pi\)
\(524\) 0 0
\(525\) −5.55457 12.1628i −0.242421 0.530829i
\(526\) 0 0
\(527\) −30.5991 8.98472i −1.33292 0.391381i
\(528\) 0 0
\(529\) −27.1491 + 7.97171i −1.18040 + 0.346596i
\(530\) 0 0
\(531\) 3.60729 7.89886i 0.156543 0.342781i
\(532\) 0 0
\(533\) −2.36156 0.693415i −0.102290 0.0300352i
\(534\) 0 0
\(535\) −16.2951 + 10.4723i −0.704500 + 0.452755i
\(536\) 0 0
\(537\) −0.599141 + 4.16711i −0.0258548 + 0.179824i
\(538\) 0 0
\(539\) 3.77282 + 4.92829i 0.162507 + 0.212276i
\(540\) 0 0
\(541\) 32.9466 + 21.1735i 1.41649 + 0.910321i 0.999999 + 0.00117887i \(0.000375245\pi\)
0.416487 + 0.909142i \(0.363261\pi\)
\(542\) 0 0
\(543\) 5.02391 11.0008i 0.215597 0.472091i
\(544\) 0 0
\(545\) 3.37155 7.38266i 0.144421 0.316239i
\(546\) 0 0
\(547\) −0.993787 + 6.91194i −0.0424913 + 0.295533i 0.957484 + 0.288487i \(0.0931521\pi\)
−0.999975 + 0.00704651i \(0.997757\pi\)
\(548\) 0 0
\(549\) 1.88094 4.11868i 0.0802765 0.175781i
\(550\) 0 0
\(551\) 8.94232 + 19.5810i 0.380956 + 0.834177i
\(552\) 0 0
\(553\) 4.19860 + 29.2019i 0.178543 + 1.24179i
\(554\) 0 0
\(555\) −3.07558 1.97655i −0.130551 0.0839000i
\(556\) 0 0
\(557\) 0.402600 + 2.80014i 0.0170587 + 0.118646i 0.996571 0.0827361i \(-0.0263658\pi\)
−0.979513 + 0.201382i \(0.935457\pi\)
\(558\) 0 0
\(559\) −1.72281 + 1.10718i −0.0728669 + 0.0468287i
\(560\) 0 0
\(561\) 31.7635 + 1.92797i 1.34106 + 0.0813989i
\(562\) 0 0
\(563\) −30.6530 + 9.00053i −1.29187 + 0.379327i −0.854264 0.519840i \(-0.825992\pi\)
−0.437606 + 0.899167i \(0.644173\pi\)
\(564\) 0 0
\(565\) 22.6776 0.954056
\(566\) 0 0
\(567\) −3.45305 + 24.0165i −0.145014 + 1.00860i
\(568\) 0 0
\(569\) −0.240924 + 0.278041i −0.0101001 + 0.0116561i −0.760777 0.649013i \(-0.775182\pi\)
0.750677 + 0.660669i \(0.229727\pi\)
\(570\) 0 0
\(571\) 37.5728 + 24.1466i 1.57237 + 1.01050i 0.978575 + 0.205891i \(0.0660092\pi\)
0.593800 + 0.804613i \(0.297627\pi\)
\(572\) 0 0
\(573\) −12.7974 + 8.22442i −0.534621 + 0.343580i
\(574\) 0 0
\(575\) −14.2661 16.4640i −0.594939 0.686597i
\(576\) 0 0
\(577\) 17.6123 + 20.3256i 0.733209 + 0.846168i 0.992829 0.119543i \(-0.0381429\pi\)
−0.259621 + 0.965711i \(0.583597\pi\)
\(578\) 0 0
\(579\) −27.7198 8.13927i −1.15200 0.338257i
\(580\) 0 0
\(581\) 2.74975 + 0.807399i 0.114079 + 0.0334965i
\(582\) 0 0
\(583\) −25.7561 + 26.3173i −1.06671 + 1.08995i
\(584\) 0 0
\(585\) −0.358138 + 0.784213i −0.0148072 + 0.0324232i
\(586\) 0 0
\(587\) −1.87122 4.09741i −0.0772336 0.169118i 0.867076 0.498175i \(-0.165996\pi\)
−0.944310 + 0.329057i \(0.893269\pi\)
\(588\) 0 0
\(589\) 4.02785 + 28.0143i 0.165965 + 1.15431i
\(590\) 0 0
\(591\) 7.82811 2.29854i 0.322006 0.0945493i
\(592\) 0 0
\(593\) 8.91760 10.2915i 0.366202 0.422619i −0.542506 0.840052i \(-0.682524\pi\)
0.908708 + 0.417432i \(0.137070\pi\)
\(594\) 0 0
\(595\) −10.2581 11.8385i −0.420543 0.485333i
\(596\) 0 0
\(597\) 50.5010 + 14.8284i 2.06687 + 0.606888i
\(598\) 0 0
\(599\) 16.7682 + 36.7171i 0.685128 + 1.50022i 0.857117 + 0.515123i \(0.172254\pi\)
−0.171988 + 0.985099i \(0.555019\pi\)
\(600\) 0 0
\(601\) 18.6967 21.5772i 0.762656 0.880152i −0.233075 0.972459i \(-0.574879\pi\)
0.995731 + 0.0923070i \(0.0294241\pi\)
\(602\) 0 0
\(603\) 1.91394 + 4.19095i 0.0779417 + 0.170669i
\(604\) 0 0
\(605\) −8.59937 12.7673i −0.349614 0.519063i
\(606\) 0 0
\(607\) 19.6201 + 42.9620i 0.796356 + 1.74378i 0.657489 + 0.753465i \(0.271619\pi\)
0.138867 + 0.990311i \(0.455654\pi\)
\(608\) 0 0
\(609\) −14.1263 + 16.3027i −0.572428 + 0.660617i
\(610\) 0 0
\(611\) 1.25283 + 2.74332i 0.0506842 + 0.110983i
\(612\) 0 0
\(613\) 19.4437 + 5.70917i 0.785322 + 0.230591i 0.649721 0.760172i \(-0.274886\pi\)
0.135600 + 0.990764i \(0.456704\pi\)
\(614\) 0 0
\(615\) −5.45705 6.29777i −0.220049 0.253950i
\(616\) 0 0
\(617\) 19.3152 22.2909i 0.777599 0.897397i −0.219335 0.975650i \(-0.570389\pi\)
0.996934 + 0.0782526i \(0.0249341\pi\)
\(618\) 0 0
\(619\) 37.7818 11.0937i 1.51858 0.445895i 0.587046 0.809554i \(-0.300291\pi\)
0.931532 + 0.363659i \(0.118473\pi\)
\(620\) 0 0
\(621\) 4.41626 + 30.7157i 0.177218 + 1.23258i
\(622\) 0 0
\(623\) 3.12660 + 6.84631i 0.125265 + 0.274292i
\(624\) 0 0
\(625\) −0.224059 + 0.490621i −0.00896237 + 0.0196249i
\(626\) 0 0
\(627\) −10.1539 26.3527i −0.405506 1.05242i
\(628\) 0 0
\(629\) 6.38317 + 1.87427i 0.254514 + 0.0747320i
\(630\) 0 0
\(631\) −23.3870 6.86704i −0.931021 0.273372i −0.219157 0.975690i \(-0.570331\pi\)
−0.711864 + 0.702317i \(0.752149\pi\)
\(632\) 0 0
\(633\) −31.0006 35.7766i −1.23216 1.42199i
\(634\) 0 0
\(635\) 14.2240 + 16.4154i 0.564463 + 0.651425i
\(636\) 0 0
\(637\) 1.26305 0.811713i 0.0500438 0.0321612i
\(638\) 0 0
\(639\) 6.37988 + 4.10010i 0.252384 + 0.162197i
\(640\) 0 0
\(641\) −19.9396 + 23.0115i −0.787566 + 0.908899i −0.997631 0.0687880i \(-0.978087\pi\)
0.210066 + 0.977687i \(0.432632\pi\)
\(642\) 0 0
\(643\) 0.440400 3.06305i 0.0173677 0.120795i −0.979293 0.202447i \(-0.935111\pi\)
0.996661 + 0.0816523i \(0.0260197\pi\)
\(644\) 0 0
\(645\) −6.93364 −0.273012
\(646\) 0 0
\(647\) 36.4746 10.7099i 1.43396 0.421050i 0.529759 0.848148i \(-0.322282\pi\)
0.904205 + 0.427098i \(0.140464\pi\)
\(648\) 0 0
\(649\) 32.7225 18.3283i 1.28447 0.719450i
\(650\) 0 0
\(651\) −23.8596 + 15.3336i −0.935130 + 0.600972i
\(652\) 0 0
\(653\) 2.59857 + 18.0735i 0.101690 + 0.707270i 0.975339 + 0.220713i \(0.0708383\pi\)
−0.873649 + 0.486557i \(0.838253\pi\)
\(654\) 0 0
\(655\) −20.9721 13.4780i −0.819449 0.526628i
\(656\) 0 0
\(657\) −0.778995 5.41803i −0.0303915 0.211377i
\(658\) 0 0
\(659\) 0.661943 + 1.44945i 0.0257856 + 0.0564627i 0.922087 0.386984i \(-0.126483\pi\)
−0.896301 + 0.443446i \(0.853756\pi\)
\(660\) 0 0
\(661\) −15.4975 + 33.9348i −0.602782 + 1.31991i 0.324620 + 0.945845i \(0.394764\pi\)
−0.927402 + 0.374065i \(0.877964\pi\)
\(662\) 0 0
\(663\) 1.09551 7.61941i 0.0425459 0.295914i
\(664\) 0 0
\(665\) −5.77508 + 12.6457i −0.223948 + 0.490378i
\(666\) 0 0
\(667\) −14.6000 + 31.9695i −0.565313 + 1.23786i
\(668\) 0 0
\(669\) −2.92949 1.88267i −0.113260 0.0727881i
\(670\) 0 0
\(671\) 17.0624 9.55688i 0.658686 0.368939i
\(672\) 0 0
\(673\) −1.12071 + 7.79469i −0.0432001 + 0.300463i 0.956754 + 0.290898i \(0.0939539\pi\)
−0.999954 + 0.00956555i \(0.996955\pi\)
\(674\) 0 0
\(675\) −11.0869 + 7.12514i −0.426736 + 0.274247i
\(676\) 0 0
\(677\) −13.2080 3.87821i −0.507624 0.149052i 0.0178849 0.999840i \(-0.494307\pi\)
−0.525509 + 0.850788i \(0.676125\pi\)
\(678\) 0 0
\(679\) 0.624197 1.36680i 0.0239545 0.0524530i
\(680\) 0 0
\(681\) −8.96030 + 2.63098i −0.343359 + 0.100819i
\(682\) 0 0
\(683\) 30.1375 + 8.84918i 1.15318 + 0.338605i 0.801779 0.597620i \(-0.203887\pi\)
0.351402 + 0.936225i \(0.385705\pi\)
\(684\) 0 0
\(685\) −7.45081 16.3150i −0.284681 0.623364i
\(686\) 0 0
\(687\) −3.17049 + 3.65894i −0.120962 + 0.139597i
\(688\) 0 0
\(689\) 5.83328 + 6.73197i 0.222230 + 0.256468i
\(690\) 0 0
\(691\) 2.93603 + 20.4205i 0.111692 + 0.776833i 0.966274 + 0.257517i \(0.0829042\pi\)
−0.854582 + 0.519316i \(0.826187\pi\)
\(692\) 0 0
\(693\) 4.03411 4.12201i 0.153243 0.156582i
\(694\) 0 0
\(695\) 16.8078 + 19.3973i 0.637557 + 0.735780i
\(696\) 0 0
\(697\) 12.7565 + 8.19809i 0.483186 + 0.310525i
\(698\) 0 0
\(699\) 27.3552 1.03467
\(700\) 0 0
\(701\) −5.03625 + 3.23660i −0.190216 + 0.122245i −0.632283 0.774738i \(-0.717882\pi\)
0.442066 + 0.896982i \(0.354246\pi\)
\(702\) 0 0
\(703\) −0.840235 5.84396i −0.0316901 0.220409i
\(704\) 0 0
\(705\) −1.45316 + 10.1069i −0.0547292 + 0.380650i
\(706\) 0 0
\(707\) 14.2134 + 9.13442i 0.534551 + 0.343535i
\(708\) 0 0
\(709\) −6.33775 + 4.07303i −0.238019 + 0.152966i −0.654213 0.756310i \(-0.727000\pi\)
0.416194 + 0.909276i \(0.363364\pi\)
\(710\) 0 0
\(711\) −9.59825 + 2.81830i −0.359962 + 0.105695i
\(712\) 0 0
\(713\) −30.2603 + 34.9223i −1.13326 + 1.30785i
\(714\) 0 0
\(715\) −3.24874 + 1.81967i −0.121496 + 0.0680517i
\(716\) 0 0
\(717\) 5.05858 0.188916
\(718\) 0 0
\(719\) 3.99442 27.7818i 0.148967 1.03609i −0.768949 0.639310i \(-0.779220\pi\)
0.917916 0.396776i \(-0.129871\pi\)
\(720\) 0 0
\(721\) −23.2533 + 6.82779i −0.865999 + 0.254280i
\(722\) 0 0
\(723\) −27.0736 −1.00688
\(724\) 0 0
\(725\) −14.9262 −0.554346
\(726\) 0 0
\(727\) 45.9212 1.70312 0.851562 0.524254i \(-0.175656\pi\)
0.851562 + 0.524254i \(0.175656\pi\)
\(728\) 0 0
\(729\) 17.0039 0.629775
\(730\) 0 0
\(731\) 12.1059 3.55462i 0.447754 0.131473i
\(732\) 0 0
\(733\) −3.20224 + 22.2721i −0.118277 + 0.822638i 0.841174 + 0.540764i \(0.181865\pi\)
−0.959452 + 0.281874i \(0.909044\pi\)
\(734\) 0 0
\(735\) 5.08330 0.187500
\(736\) 0 0
\(737\) −4.02019 + 19.4894i −0.148086 + 0.717900i
\(738\) 0 0
\(739\) −11.6042 + 13.3920i −0.426868 + 0.492632i −0.927917 0.372787i \(-0.878402\pi\)
0.501049 + 0.865419i \(0.332948\pi\)
\(740\) 0 0
\(741\) −6.55484 + 1.92468i −0.240798 + 0.0707047i
\(742\) 0 0
\(743\) −2.09490 + 1.34631i −0.0768545 + 0.0493914i −0.578504 0.815680i \(-0.696363\pi\)
0.501649 + 0.865071i \(0.332727\pi\)
\(744\) 0 0
\(745\) 4.45710 + 2.86440i 0.163295 + 0.104944i
\(746\) 0 0
\(747\) −0.138292 + 0.961841i −0.00505984 + 0.0351919i
\(748\) 0 0
\(749\) −4.46113 31.0278i −0.163006 1.13373i
\(750\) 0 0
\(751\) −29.5275 + 18.9762i −1.07748 + 0.692451i −0.953973 0.299893i \(-0.903049\pi\)
−0.123502 + 0.992344i \(0.539413\pi\)
\(752\) 0 0
\(753\) 5.55114 0.202295
\(754\) 0 0
\(755\) −24.1297 15.5072i −0.878170 0.564365i
\(756\) 0 0
\(757\) −23.5993 27.2351i −0.857731 0.989875i −1.00000 4.67994e-5i \(-0.999985\pi\)
0.142269 0.989828i \(-0.454560\pi\)
\(758\) 0 0
\(759\) 21.6602 40.7045i 0.786216 1.47748i
\(760\) 0 0
\(761\) −6.98020 48.5484i −0.253032 1.75988i −0.579788 0.814768i \(-0.696864\pi\)
0.326756 0.945109i \(-0.394045\pi\)
\(762\) 0 0
\(763\) 8.60121 + 9.92632i 0.311385 + 0.359357i
\(764\) 0 0
\(765\) 3.47828 4.01415i 0.125757 0.145132i
\(766\) 0 0
\(767\) −3.76894 8.25282i −0.136088 0.297992i
\(768\) 0 0
\(769\) 1.73675 + 0.509956i 0.0626288 + 0.0183895i 0.312897 0.949787i \(-0.398701\pi\)
−0.250268 + 0.968177i \(0.580519\pi\)
\(770\) 0 0
\(771\) 23.6753 6.95170i 0.852645 0.250359i
\(772\) 0 0
\(773\) 19.4210 42.5261i 0.698526 1.52956i −0.143223 0.989690i \(-0.545747\pi\)
0.841749 0.539868i \(-0.181526\pi\)
\(774\) 0 0
\(775\) −18.8298 5.52894i −0.676388 0.198605i
\(776\) 0 0
\(777\) 4.97725 3.19869i 0.178558 0.114752i
\(778\) 0 0
\(779\) 1.91518 13.3204i 0.0686185 0.477252i
\(780\) 0 0
\(781\) 11.7770 + 30.5652i 0.421413 + 1.09371i
\(782\) 0 0
\(783\) 17.8864 + 11.4949i 0.639208 + 0.410794i
\(784\) 0 0
\(785\) 1.07250 2.34845i 0.0382792 0.0838198i
\(786\) 0 0
\(787\) −19.0790 + 41.7772i −0.680093 + 1.48920i 0.182451 + 0.983215i \(0.441597\pi\)
−0.862544 + 0.505982i \(0.831130\pi\)
\(788\) 0 0
\(789\) 1.13948 7.92526i 0.0405666 0.282147i
\(790\) 0 0
\(791\) −15.2456 + 33.3831i −0.542070 + 1.18697i
\(792\) 0 0
\(793\) −1.96523 4.30324i −0.0697872 0.152813i
\(794\) 0 0
\(795\) 4.29207 + 29.8520i 0.152224 + 1.05874i
\(796\) 0 0
\(797\) 41.3654 + 26.5839i 1.46524 + 0.941651i 0.998355 + 0.0573320i \(0.0182594\pi\)
0.466883 + 0.884319i \(0.345377\pi\)
\(798\) 0 0
\(799\) −2.64429 18.3914i −0.0935481 0.650642i
\(800\) 0 0
\(801\) −2.14691 + 1.37973i −0.0758572 + 0.0487505i
\(802\) 0 0
\(803\) 11.1061 20.8710i 0.391927 0.736521i
\(804\) 0 0
\(805\) −21.7780 + 6.39461i −0.767575 + 0.225380i
\(806\) 0 0
\(807\) 12.7272 0.448019
\(808\) 0 0
\(809\) −2.50368 + 17.4135i −0.0880247 + 0.612225i 0.897285 + 0.441451i \(0.145536\pi\)
−0.985310 + 0.170774i \(0.945373\pi\)
\(810\) 0 0
\(811\) 35.1683 40.5864i 1.23493 1.42518i 0.365726 0.930722i \(-0.380821\pi\)
0.869201 0.494459i \(-0.164634\pi\)
\(812\) 0 0
\(813\) −20.9837 13.4854i −0.735931 0.472954i
\(814\) 0 0
\(815\) −3.88704 + 2.49805i −0.136157 + 0.0875028i
\(816\) 0 0
\(817\) −7.33266 8.46234i −0.256537 0.296060i
\(818\) 0 0
\(819\) −0.913651 1.05441i −0.0319256 0.0368441i
\(820\) 0 0
\(821\) −29.8965 8.77840i −1.04339 0.306368i −0.285249 0.958453i \(-0.592076\pi\)
−0.758146 + 0.652085i \(0.773895\pi\)
\(822\) 0 0
\(823\) 27.7646 + 8.15243i 0.967813 + 0.284176i 0.727185 0.686442i \(-0.240828\pi\)
0.240629 + 0.970617i \(0.422646\pi\)
\(824\) 0 0
\(825\) 19.5463 + 1.18642i 0.680516 + 0.0413057i
\(826\) 0 0
\(827\) 14.9880 32.8191i 0.521183 1.14123i −0.447807 0.894130i \(-0.647795\pi\)
0.968990 0.247101i \(-0.0794778\pi\)
\(828\) 0 0
\(829\) 10.9742 + 24.0301i 0.381149 + 0.834600i 0.998839 + 0.0481782i \(0.0153416\pi\)
−0.617690 + 0.786422i \(0.711931\pi\)
\(830\) 0 0
\(831\) 5.26919 + 36.6480i 0.182786 + 1.27130i
\(832\) 0 0
\(833\) −8.87529 + 2.60602i −0.307511 + 0.0902933i
\(834\) 0 0
\(835\) 9.36347 10.8060i 0.324036 0.373958i
\(836\) 0 0
\(837\) 18.3063 + 21.1266i 0.632758 + 0.730241i
\(838\) 0 0
\(839\) −26.3392 7.73389i −0.909330 0.267003i −0.206571 0.978432i \(-0.566231\pi\)
−0.702759 + 0.711428i \(0.748049\pi\)
\(840\) 0 0
\(841\) −2.04373 4.47514i −0.0704733 0.154315i
\(842\) 0 0
\(843\) −27.3243 + 31.5339i −0.941098 + 1.08608i
\(844\) 0 0
\(845\) −7.18305 15.7287i −0.247105 0.541083i
\(846\) 0 0
\(847\) 24.5754 4.07581i 0.844422 0.140046i
\(848\) 0 0
\(849\) 11.3003 + 24.7442i 0.387825 + 0.849218i
\(850\) 0 0
\(851\) 6.31249 7.28501i 0.216390 0.249727i
\(852\) 0 0
\(853\) 5.31865 + 11.6462i 0.182107 + 0.398759i 0.978566 0.205934i \(-0.0660231\pi\)
−0.796459 + 0.604693i \(0.793296\pi\)
\(854\) 0 0
\(855\) −4.52286 1.32803i −0.154679 0.0454177i
\(856\) 0 0
\(857\) −30.5661 35.2752i −1.04412 1.20498i −0.978310 0.207146i \(-0.933583\pi\)
−0.0658091 0.997832i \(-0.520963\pi\)
\(858\) 0 0
\(859\) 28.4127 32.7900i 0.969429 1.11878i −0.0234587 0.999725i \(-0.507468\pi\)
0.992888 0.119056i \(-0.0379867\pi\)
\(860\) 0 0
\(861\) 12.9394 3.79935i 0.440973 0.129481i
\(862\) 0 0
\(863\) 6.53824 + 45.4744i 0.222564 + 1.54797i 0.728287 + 0.685272i \(0.240317\pi\)
−0.505723 + 0.862696i \(0.668774\pi\)
\(864\) 0 0
\(865\) −7.50409 16.4317i −0.255147 0.558693i
\(866\) 0 0
\(867\) −5.99309 + 13.1230i −0.203536 + 0.445681i
\(868\) 0 0
\(869\) −40.6428 14.6620i −1.37871 0.497375i
\(870\) 0 0
\(871\) 4.61877 + 1.35619i 0.156501 + 0.0459528i
\(872\) 0 0
\(873\) 0.488851 + 0.143540i 0.0165451 + 0.00485808i
\(874\) 0 0
\(875\) −16.6892 19.2604i −0.564199 0.651120i
\(876\) 0 0
\(877\) 23.1882 + 26.7606i 0.783008 + 0.903640i 0.997323 0.0731249i \(-0.0232972\pi\)
−0.214314 + 0.976765i \(0.568752\pi\)
\(878\) 0 0
\(879\) −38.5462 + 24.7722i −1.30013 + 0.835545i
\(880\) 0 0
\(881\) −16.2548 10.4463i −0.547639 0.351946i 0.237381 0.971417i \(-0.423711\pi\)
−0.785020 + 0.619470i \(0.787347\pi\)
\(882\) 0 0
\(883\) 17.6081 20.3208i 0.592559 0.683850i −0.377697 0.925929i \(-0.623284\pi\)
0.970256 + 0.242079i \(0.0778294\pi\)
\(884\) 0 0
\(885\) 4.37159 30.4050i 0.146949 1.02205i
\(886\) 0 0
\(887\) 9.45310 0.317404 0.158702 0.987327i \(-0.449269\pi\)
0.158702 + 0.987327i \(0.449269\pi\)
\(888\) 0 0
\(889\) −33.7270 + 9.90315i −1.13117 + 0.332141i
\(890\) 0 0
\(891\) −28.6745 20.9872i −0.960633 0.703096i
\(892\) 0 0
\(893\) −13.8721 + 8.91503i −0.464211 + 0.298330i
\(894\) 0 0
\(895\) 0.431934 + 3.00417i 0.0144380 + 0.100418i
\(896\) 0 0
\(897\) −9.38315 6.03019i −0.313294 0.201342i
\(898\) 0 0
\(899\) 4.50575 + 31.3382i 0.150275 + 1.04519i
\(900\) 0 0
\(901\) −22.7978 49.9203i −0.759506 1.66309i
\(902\) 0 0
\(903\) 4.66130 10.2068i 0.155118 0.339662i
\(904\) 0 0
\(905\) 1.24079 8.62989i 0.0412453 0.286867i
\(906\) 0 0
\(907\) −17.5475 + 38.4236i −0.582654 + 1.27583i 0.357126 + 0.934056i \(0.383757\pi\)
−0.939781 + 0.341778i \(0.888971\pi\)
\(908\) 0 0
\(909\) −2.37985 + 5.21115i −0.0789347 + 0.172843i
\(910\) 0 0
\(911\) −13.8801 8.92020i −0.459868 0.295539i 0.290120 0.956990i \(-0.406305\pi\)
−0.749988 + 0.661451i \(0.769941\pi\)
\(912\) 0 0
\(913\) −2.93562 + 2.99959i −0.0971550 + 0.0992719i
\(914\) 0 0
\(915\) 2.27946 15.8540i 0.0753567 0.524117i
\(916\) 0 0
\(917\) 33.9395 21.8116i 1.12078 0.720283i
\(918\) 0 0
\(919\) 55.4253 + 16.2743i 1.82831 + 0.536841i 0.999735 0.0230340i \(-0.00733259\pi\)
0.828577 + 0.559875i \(0.189151\pi\)
\(920\) 0 0
\(921\) −13.3930 + 29.3267i −0.441316 + 0.966347i
\(922\) 0 0
\(923\) 7.60266 2.23234i 0.250245 0.0734784i
\(924\) 0 0
\(925\) 3.92802 + 1.15337i 0.129153 + 0.0379226i
\(926\) 0 0
\(927\) −3.41367 7.47488i −0.112119 0.245507i
\(928\) 0 0
\(929\) −16.0335 + 18.5036i −0.526040 + 0.607083i −0.955133 0.296178i \(-0.904288\pi\)
0.429092 + 0.903261i \(0.358833\pi\)
\(930\) 0 0
\(931\) 5.37583 + 6.20404i 0.176186 + 0.203329i
\(932\) 0 0
\(933\) −6.06545 42.1861i −0.198574 1.38111i
\(934\) 0 0
\(935\) 22.3630 5.11779i 0.731350 0.167369i
\(936\) 0 0
\(937\) 19.1319 + 22.0793i 0.625010 + 0.721300i 0.976650 0.214835i \(-0.0689213\pi\)
−0.351640 + 0.936135i \(0.614376\pi\)
\(938\) 0 0
\(939\) 38.1772 + 24.5350i 1.24586 + 0.800669i
\(940\) 0 0
\(941\) −21.2853 −0.693882 −0.346941 0.937887i \(-0.612780\pi\)
−0.346941 + 0.937887i \(0.612780\pi\)
\(942\) 0 0
\(943\) 18.4837 11.8787i 0.601911 0.386824i
\(944\) 0 0
\(945\) 1.95413 + 13.5913i 0.0635679 + 0.442125i
\(946\) 0 0
\(947\) 1.47258 10.2420i 0.0478525 0.332822i −0.951806 0.306700i \(-0.900775\pi\)
0.999659 0.0261217i \(-0.00831575\pi\)
\(948\) 0 0
\(949\) −4.81115 3.09194i −0.156177 0.100369i
\(950\) 0 0
\(951\) 18.0293 11.5867i 0.584641 0.375726i
\(952\) 0 0
\(953\) −17.2732 + 5.07187i −0.559534 + 0.164294i −0.549257 0.835653i \(-0.685089\pi\)
−0.0102763 + 0.999947i \(0.503271\pi\)
\(954\) 0 0
\(955\) −7.18181 + 8.28826i −0.232398 + 0.268202i
\(956\) 0 0
\(957\) −11.3586 29.4793i −0.367171 0.952932i
\(958\) 0 0
\(959\) 29.0258 0.937293
\(960\) 0 0
\(961\) −1.51234 + 10.5185i −0.0487850 + 0.339307i
\(962\) 0 0
\(963\) 10.1984 2.99452i 0.328639 0.0964970i
\(964\) 0 0
\(965\) −20.8275 −0.670461
\(966\) 0 0
\(967\) −10.1076 −0.325037 −0.162519 0.986705i \(-0.551962\pi\)
−0.162519 + 0.986705i \(0.551962\pi\)
\(968\) 0 0
\(969\) 42.0889 1.35209
\(970\) 0 0
\(971\) −13.7583 −0.441524 −0.220762 0.975328i \(-0.570854\pi\)
−0.220762 + 0.975328i \(0.570854\pi\)
\(972\) 0 0
\(973\) −39.8536 + 11.7021i −1.27765 + 0.375151i
\(974\) 0 0
\(975\) 0.674143 4.68877i 0.0215899 0.150161i
\(976\) 0 0
\(977\) −49.7309 −1.59103 −0.795516 0.605932i \(-0.792800\pi\)
−0.795516 + 0.605932i \(0.792800\pi\)
\(978\) 0 0
\(979\) −11.0024 0.667820i −0.351639 0.0213436i
\(980\) 0 0
\(981\) −2.91645 + 3.36577i −0.0931152 + 0.107461i
\(982\) 0 0
\(983\) 17.0156 4.99623i 0.542713 0.159355i 0.00112562 0.999999i \(-0.499642\pi\)
0.541587 + 0.840644i \(0.317824\pi\)
\(984\) 0 0
\(985\) 4.94801 3.17990i 0.157657 0.101320i
\(986\) 0 0
\(987\) −13.9012 8.93378i −0.442481 0.284365i
\(988\) 0 0
\(989\) 2.60174 18.0955i 0.0827305 0.575404i
\(990\) 0 0
\(991\) −2.96362 20.6124i −0.0941425 0.654775i −0.981182 0.193083i \(-0.938151\pi\)
0.887040 0.461693i \(-0.152758\pi\)
\(992\) 0 0
\(993\) 4.62552 2.97264i 0.146786 0.0943339i
\(994\) 0 0
\(995\) 37.9444 1.20292
\(996\) 0 0
\(997\) −21.4326 13.7739i −0.678777 0.436224i 0.155303 0.987867i \(-0.450365\pi\)
−0.834080 + 0.551643i \(0.814001\pi\)
\(998\) 0 0
\(999\) −3.81881 4.40714i −0.120822 0.139436i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 484.2.i.a.221.3 110
121.23 even 11 inner 484.2.i.a.265.3 yes 110
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
484.2.i.a.221.3 110 1.1 even 1 trivial
484.2.i.a.265.3 yes 110 121.23 even 11 inner