Properties

Label 484.2.i.a.89.8
Level $484$
Weight $2$
Character 484.89
Analytic conductor $3.865$
Analytic rank $0$
Dimension $110$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [484,2,Mod(45,484)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(484, base_ring=CyclotomicField(22))
 
chi = DirichletCharacter(H, H._module([0, 6]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("484.45");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 484 = 2^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 484.i (of order \(11\), degree \(10\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.86475945783\)
Analytic rank: \(0\)
Dimension: \(110\)
Relative dimension: \(11\) over \(\Q(\zeta_{11})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

Embedding invariants

Embedding label 89.8
Character \(\chi\) \(=\) 484.89
Dual form 484.2.i.a.397.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.38825 q^{3} +(0.974029 + 2.13282i) q^{5} +(-1.64826 + 1.05927i) q^{7} -1.07277 q^{9} +(1.39726 + 3.00793i) q^{11} +(2.25948 + 0.663443i) q^{13} +(1.35219 + 2.96089i) q^{15} +(-0.722940 + 0.834317i) q^{17} +(1.82848 + 2.11018i) q^{19} +(-2.28819 + 1.47053i) q^{21} +(1.88355 + 1.21048i) q^{23} +(-0.325907 + 0.376117i) q^{25} -5.65401 q^{27} +(-6.49221 - 7.49241i) q^{29} +(8.08103 - 2.37280i) q^{31} +(1.93974 + 4.17576i) q^{33} +(-3.86469 - 2.48369i) q^{35} +(1.98865 - 0.583919i) q^{37} +(3.13672 + 0.921024i) q^{39} +(-0.281637 + 1.95883i) q^{41} +(1.69094 - 3.70265i) q^{43} +(-1.04490 - 2.28802i) q^{45} +(0.335781 + 2.33541i) q^{47} +(-1.31320 + 2.87551i) q^{49} +(-1.00362 + 1.15824i) q^{51} +(9.49972 - 6.10510i) q^{53} +(-5.05443 + 5.90992i) q^{55} +(2.53838 + 2.92945i) q^{57} +(0.257354 + 1.78994i) q^{59} +(-1.26332 - 8.78655i) q^{61} +(1.76820 - 1.13635i) q^{63} +(0.785790 + 5.46529i) q^{65} +(0.359515 - 2.50048i) q^{67} +(2.61483 + 1.68045i) q^{69} +(8.82298 + 10.1823i) q^{71} +(-5.47129 - 3.51619i) q^{73} +(-0.452440 + 0.522143i) q^{75} +(-5.48927 - 3.47778i) q^{77} +(-5.37517 - 11.7700i) q^{79} -4.63087 q^{81} +(-8.65111 + 5.55973i) q^{83} +(-2.48362 - 0.729255i) q^{85} +(-9.01280 - 10.4013i) q^{87} +(-0.0361963 + 0.0417727i) q^{89} +(-4.42698 + 1.29988i) q^{91} +(11.2185 - 3.29404i) q^{93} +(-2.71965 + 5.95520i) q^{95} +(3.93249 - 8.61096i) q^{97} +(-1.49893 - 3.22681i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 110 q - 2 q^{3} + 2 q^{5} - 2 q^{7} + 112 q^{9} - 10 q^{11} - 29 q^{13} - 18 q^{15} - 6 q^{17} - 8 q^{19} - 2 q^{21} + 4 q^{23} - 17 q^{25} + 4 q^{27} - 28 q^{31} + q^{33} + 6 q^{35} - 31 q^{37} + 4 q^{39}+ \cdots - 57 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/484\mathbb{Z}\right)^\times\).

\(n\) \(243\) \(365\)
\(\chi(n)\) \(1\) \(e\left(\frac{6}{11}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.38825 0.801506 0.400753 0.916186i \(-0.368749\pi\)
0.400753 + 0.916186i \(0.368749\pi\)
\(4\) 0 0
\(5\) 0.974029 + 2.13282i 0.435599 + 0.953828i 0.992385 + 0.123173i \(0.0393069\pi\)
−0.556786 + 0.830656i \(0.687966\pi\)
\(6\) 0 0
\(7\) −1.64826 + 1.05927i −0.622984 + 0.400367i −0.813706 0.581277i \(-0.802553\pi\)
0.190722 + 0.981644i \(0.438917\pi\)
\(8\) 0 0
\(9\) −1.07277 −0.357589
\(10\) 0 0
\(11\) 1.39726 + 3.00793i 0.421290 + 0.906926i
\(12\) 0 0
\(13\) 2.25948 + 0.663443i 0.626667 + 0.184006i 0.579620 0.814887i \(-0.303201\pi\)
0.0470468 + 0.998893i \(0.485019\pi\)
\(14\) 0 0
\(15\) 1.35219 + 2.96089i 0.349135 + 0.764499i
\(16\) 0 0
\(17\) −0.722940 + 0.834317i −0.175339 + 0.202352i −0.836616 0.547790i \(-0.815469\pi\)
0.661277 + 0.750142i \(0.270015\pi\)
\(18\) 0 0
\(19\) 1.82848 + 2.11018i 0.419482 + 0.484108i 0.925679 0.378310i \(-0.123495\pi\)
−0.506197 + 0.862418i \(0.668949\pi\)
\(20\) 0 0
\(21\) −2.28819 + 1.47053i −0.499325 + 0.320897i
\(22\) 0 0
\(23\) 1.88355 + 1.21048i 0.392747 + 0.252403i 0.722078 0.691811i \(-0.243187\pi\)
−0.329332 + 0.944214i \(0.606823\pi\)
\(24\) 0 0
\(25\) −0.325907 + 0.376117i −0.0651814 + 0.0752233i
\(26\) 0 0
\(27\) −5.65401 −1.08812
\(28\) 0 0
\(29\) −6.49221 7.49241i −1.20557 1.39131i −0.898125 0.439740i \(-0.855071\pi\)
−0.307448 0.951565i \(-0.599475\pi\)
\(30\) 0 0
\(31\) 8.08103 2.37280i 1.45139 0.426168i 0.541392 0.840770i \(-0.317897\pi\)
0.910003 + 0.414602i \(0.136079\pi\)
\(32\) 0 0
\(33\) 1.93974 + 4.17576i 0.337666 + 0.726906i
\(34\) 0 0
\(35\) −3.86469 2.48369i −0.653253 0.419820i
\(36\) 0 0
\(37\) 1.98865 0.583919i 0.326931 0.0959957i −0.114148 0.993464i \(-0.536414\pi\)
0.441079 + 0.897468i \(0.354596\pi\)
\(38\) 0 0
\(39\) 3.13672 + 0.921024i 0.502277 + 0.147482i
\(40\) 0 0
\(41\) −0.281637 + 1.95883i −0.0439843 + 0.305917i 0.955939 + 0.293564i \(0.0948414\pi\)
−0.999924 + 0.0123533i \(0.996068\pi\)
\(42\) 0 0
\(43\) 1.69094 3.70265i 0.257866 0.564648i −0.735777 0.677224i \(-0.763183\pi\)
0.993643 + 0.112576i \(0.0359101\pi\)
\(44\) 0 0
\(45\) −1.04490 2.28802i −0.155765 0.341078i
\(46\) 0 0
\(47\) 0.335781 + 2.33541i 0.0489787 + 0.340654i 0.999546 + 0.0301351i \(0.00959374\pi\)
−0.950567 + 0.310519i \(0.899497\pi\)
\(48\) 0 0
\(49\) −1.31320 + 2.87551i −0.187600 + 0.410787i
\(50\) 0 0
\(51\) −1.00362 + 1.15824i −0.140535 + 0.162186i
\(52\) 0 0
\(53\) 9.49972 6.10510i 1.30489 0.838600i 0.311151 0.950360i \(-0.399285\pi\)
0.993735 + 0.111761i \(0.0356490\pi\)
\(54\) 0 0
\(55\) −5.05443 + 5.90992i −0.681539 + 0.796894i
\(56\) 0 0
\(57\) 2.53838 + 2.92945i 0.336217 + 0.388015i
\(58\) 0 0
\(59\) 0.257354 + 1.78994i 0.0335046 + 0.233030i 0.999692 0.0248105i \(-0.00789822\pi\)
−0.966188 + 0.257840i \(0.916989\pi\)
\(60\) 0 0
\(61\) −1.26332 8.78655i −0.161751 1.12500i −0.895332 0.445400i \(-0.853061\pi\)
0.733581 0.679602i \(-0.237848\pi\)
\(62\) 0 0
\(63\) 1.76820 1.13635i 0.222772 0.143167i
\(64\) 0 0
\(65\) 0.785790 + 5.46529i 0.0974653 + 0.677886i
\(66\) 0 0
\(67\) 0.359515 2.50048i 0.0439217 0.305482i −0.956005 0.293351i \(-0.905229\pi\)
0.999926 0.0121310i \(-0.00386150\pi\)
\(68\) 0 0
\(69\) 2.61483 + 1.68045i 0.314789 + 0.202302i
\(70\) 0 0
\(71\) 8.82298 + 10.1823i 1.04710 + 1.20841i 0.977521 + 0.210836i \(0.0676186\pi\)
0.0695742 + 0.997577i \(0.477836\pi\)
\(72\) 0 0
\(73\) −5.47129 3.51619i −0.640367 0.411539i 0.179768 0.983709i \(-0.442465\pi\)
−0.820135 + 0.572170i \(0.806102\pi\)
\(74\) 0 0
\(75\) −0.452440 + 0.522143i −0.0522433 + 0.0602919i
\(76\) 0 0
\(77\) −5.48927 3.47778i −0.625560 0.396330i
\(78\) 0 0
\(79\) −5.37517 11.7700i −0.604754 1.32423i −0.926105 0.377267i \(-0.876864\pi\)
0.321350 0.946960i \(-0.395863\pi\)
\(80\) 0 0
\(81\) −4.63087 −0.514542
\(82\) 0 0
\(83\) −8.65111 + 5.55973i −0.949582 + 0.610259i −0.921096 0.389335i \(-0.872705\pi\)
−0.0284859 + 0.999594i \(0.509069\pi\)
\(84\) 0 0
\(85\) −2.48362 0.729255i −0.269386 0.0790989i
\(86\) 0 0
\(87\) −9.01280 10.4013i −0.966273 1.11514i
\(88\) 0 0
\(89\) −0.0361963 + 0.0417727i −0.00383680 + 0.00442790i −0.757665 0.652644i \(-0.773660\pi\)
0.753828 + 0.657072i \(0.228205\pi\)
\(90\) 0 0
\(91\) −4.42698 + 1.29988i −0.464074 + 0.136264i
\(92\) 0 0
\(93\) 11.2185 3.29404i 1.16330 0.341576i
\(94\) 0 0
\(95\) −2.71965 + 5.95520i −0.279030 + 0.610990i
\(96\) 0 0
\(97\) 3.93249 8.61096i 0.399284 0.874310i −0.598058 0.801453i \(-0.704061\pi\)
0.997342 0.0728578i \(-0.0232119\pi\)
\(98\) 0 0
\(99\) −1.49893 3.22681i −0.150648 0.324307i
\(100\) 0 0
\(101\) −1.67285 11.6349i −0.166455 1.15772i −0.886139 0.463419i \(-0.846623\pi\)
0.719684 0.694301i \(-0.244287\pi\)
\(102\) 0 0
\(103\) −1.09595 + 7.62249i −0.107987 + 0.751066i 0.861824 + 0.507208i \(0.169322\pi\)
−0.969811 + 0.243858i \(0.921587\pi\)
\(104\) 0 0
\(105\) −5.36516 3.44798i −0.523586 0.336488i
\(106\) 0 0
\(107\) 4.07494 + 8.92287i 0.393939 + 0.862607i 0.997849 + 0.0655539i \(0.0208814\pi\)
−0.603910 + 0.797053i \(0.706391\pi\)
\(108\) 0 0
\(109\) −6.29697 1.84896i −0.603140 0.177098i −0.0341148 0.999418i \(-0.510861\pi\)
−0.569025 + 0.822320i \(0.692679\pi\)
\(110\) 0 0
\(111\) 2.76073 0.810625i 0.262037 0.0769411i
\(112\) 0 0
\(113\) 5.90907 12.9391i 0.555879 1.21720i −0.398103 0.917341i \(-0.630331\pi\)
0.953982 0.299864i \(-0.0969413\pi\)
\(114\) 0 0
\(115\) −0.747118 + 5.19632i −0.0696691 + 0.484559i
\(116\) 0 0
\(117\) −2.42389 0.711720i −0.224089 0.0657985i
\(118\) 0 0
\(119\) 0.307824 2.14096i 0.0282182 0.196262i
\(120\) 0 0
\(121\) −7.09533 + 8.40573i −0.645030 + 0.764157i
\(122\) 0 0
\(123\) −0.390982 + 2.71934i −0.0352536 + 0.245194i
\(124\) 0 0
\(125\) 10.1290 + 2.97415i 0.905969 + 0.266016i
\(126\) 0 0
\(127\) 2.85145 19.8322i 0.253025 1.75983i −0.326808 0.945091i \(-0.605973\pi\)
0.579832 0.814736i \(-0.303118\pi\)
\(128\) 0 0
\(129\) 2.34745 5.14019i 0.206681 0.452569i
\(130\) 0 0
\(131\) −0.866647 + 0.254470i −0.0757193 + 0.0222332i −0.319373 0.947629i \(-0.603472\pi\)
0.243654 + 0.969862i \(0.421654\pi\)
\(132\) 0 0
\(133\) −5.24906 1.54126i −0.455151 0.133644i
\(134\) 0 0
\(135\) −5.50717 12.0590i −0.473982 1.03787i
\(136\) 0 0
\(137\) −4.33057 2.78309i −0.369985 0.237775i 0.342415 0.939549i \(-0.388755\pi\)
−0.712400 + 0.701774i \(0.752392\pi\)
\(138\) 0 0
\(139\) −0.763727 + 5.31184i −0.0647785 + 0.450544i 0.931457 + 0.363852i \(0.118539\pi\)
−0.996235 + 0.0866920i \(0.972370\pi\)
\(140\) 0 0
\(141\) 0.466147 + 3.24212i 0.0392567 + 0.273036i
\(142\) 0 0
\(143\) 1.16149 + 7.72337i 0.0971285 + 0.645861i
\(144\) 0 0
\(145\) 9.65640 21.1446i 0.801920 1.75596i
\(146\) 0 0
\(147\) −1.82305 + 3.99192i −0.150363 + 0.329248i
\(148\) 0 0
\(149\) 1.17394 0.344700i 0.0961729 0.0282389i −0.233292 0.972407i \(-0.574950\pi\)
0.329465 + 0.944168i \(0.393132\pi\)
\(150\) 0 0
\(151\) 9.13152 2.68126i 0.743112 0.218197i 0.111805 0.993730i \(-0.464337\pi\)
0.631307 + 0.775533i \(0.282519\pi\)
\(152\) 0 0
\(153\) 0.775545 0.895027i 0.0626991 0.0723586i
\(154\) 0 0
\(155\) 12.9319 + 14.9242i 1.03872 + 1.19874i
\(156\) 0 0
\(157\) −18.5108 5.43526i −1.47732 0.433781i −0.558851 0.829268i \(-0.688758\pi\)
−0.918472 + 0.395487i \(0.870576\pi\)
\(158\) 0 0
\(159\) 13.1880 8.47539i 1.04587 0.672142i
\(160\) 0 0
\(161\) −4.38681 −0.345729
\(162\) 0 0
\(163\) 3.57101 + 7.81943i 0.279703 + 0.612465i 0.996387 0.0849339i \(-0.0270679\pi\)
−0.716683 + 0.697399i \(0.754341\pi\)
\(164\) 0 0
\(165\) −7.01680 + 8.20444i −0.546257 + 0.638715i
\(166\) 0 0
\(167\) −7.26289 + 8.38182i −0.562019 + 0.648605i −0.963641 0.267201i \(-0.913901\pi\)
0.401622 + 0.915806i \(0.368447\pi\)
\(168\) 0 0
\(169\) −6.27120 4.03025i −0.482400 0.310020i
\(170\) 0 0
\(171\) −1.96153 2.26373i −0.150002 0.173111i
\(172\) 0 0
\(173\) 4.13951 + 2.66030i 0.314721 + 0.202259i 0.688459 0.725275i \(-0.258288\pi\)
−0.373738 + 0.927534i \(0.621924\pi\)
\(174\) 0 0
\(175\) 0.138769 0.965162i 0.0104900 0.0729594i
\(176\) 0 0
\(177\) 0.357271 + 2.48488i 0.0268542 + 0.186775i
\(178\) 0 0
\(179\) −11.8303 + 7.60285i −0.884235 + 0.568263i −0.902076 0.431577i \(-0.857957\pi\)
0.0178407 + 0.999841i \(0.494321\pi\)
\(180\) 0 0
\(181\) −2.93599 20.4203i −0.218230 1.51783i −0.744566 0.667549i \(-0.767344\pi\)
0.526336 0.850277i \(-0.323565\pi\)
\(182\) 0 0
\(183\) −1.75380 12.1979i −0.129644 0.901696i
\(184\) 0 0
\(185\) 3.18239 + 3.67268i 0.233974 + 0.270021i
\(186\) 0 0
\(187\) −3.51970 1.00880i −0.257386 0.0737706i
\(188\) 0 0
\(189\) 9.31928 5.98914i 0.677878 0.435646i
\(190\) 0 0
\(191\) −2.76577 + 3.19187i −0.200124 + 0.230956i −0.846937 0.531693i \(-0.821556\pi\)
0.646813 + 0.762649i \(0.276101\pi\)
\(192\) 0 0
\(193\) −3.65725 + 8.00825i −0.263254 + 0.576447i −0.994389 0.105787i \(-0.966264\pi\)
0.731134 + 0.682233i \(0.238991\pi\)
\(194\) 0 0
\(195\) 1.09087 + 7.58718i 0.0781190 + 0.543329i
\(196\) 0 0
\(197\) 4.04027 + 8.84696i 0.287858 + 0.630320i 0.997219 0.0745246i \(-0.0237439\pi\)
−0.709362 + 0.704845i \(0.751017\pi\)
\(198\) 0 0
\(199\) −3.43044 + 7.51162i −0.243178 + 0.532485i −0.991385 0.130980i \(-0.958188\pi\)
0.748207 + 0.663465i \(0.230915\pi\)
\(200\) 0 0
\(201\) 0.499096 3.47129i 0.0352035 0.244846i
\(202\) 0 0
\(203\) 18.6373 + 5.47242i 1.30809 + 0.384088i
\(204\) 0 0
\(205\) −4.45216 + 1.30727i −0.310952 + 0.0913038i
\(206\) 0 0
\(207\) −2.02061 1.29856i −0.140442 0.0902565i
\(208\) 0 0
\(209\) −3.79241 + 8.44841i −0.262327 + 0.584389i
\(210\) 0 0
\(211\) 7.24713 2.12795i 0.498913 0.146494i −0.0225876 0.999745i \(-0.507190\pi\)
0.521501 + 0.853251i \(0.325372\pi\)
\(212\) 0 0
\(213\) 12.2485 + 14.1355i 0.839253 + 0.968550i
\(214\) 0 0
\(215\) 9.54412 0.650904
\(216\) 0 0
\(217\) −10.8062 + 12.4710i −0.733572 + 0.846587i
\(218\) 0 0
\(219\) −7.59552 4.88134i −0.513257 0.329851i
\(220\) 0 0
\(221\) −2.18699 + 1.40549i −0.147113 + 0.0945437i
\(222\) 0 0
\(223\) 1.69332 + 1.95419i 0.113393 + 0.130862i 0.809608 0.586971i \(-0.199680\pi\)
−0.696215 + 0.717833i \(0.745134\pi\)
\(224\) 0 0
\(225\) 0.349622 0.403485i 0.0233081 0.0268990i
\(226\) 0 0
\(227\) 10.1824 + 22.2964i 0.675833 + 1.47987i 0.866999 + 0.498310i \(0.166046\pi\)
−0.191166 + 0.981558i \(0.561227\pi\)
\(228\) 0 0
\(229\) 9.23563 + 2.71182i 0.610307 + 0.179202i 0.572258 0.820073i \(-0.306067\pi\)
0.0380491 + 0.999276i \(0.487886\pi\)
\(230\) 0 0
\(231\) −7.62047 4.82802i −0.501390 0.317660i
\(232\) 0 0
\(233\) 13.8455 0.907049 0.453524 0.891244i \(-0.350166\pi\)
0.453524 + 0.891244i \(0.350166\pi\)
\(234\) 0 0
\(235\) −4.65395 + 2.99091i −0.303590 + 0.195106i
\(236\) 0 0
\(237\) −7.46208 16.3397i −0.484714 1.06138i
\(238\) 0 0
\(239\) 3.25776 0.210727 0.105363 0.994434i \(-0.466399\pi\)
0.105363 + 0.994434i \(0.466399\pi\)
\(240\) 0 0
\(241\) −5.12234 −0.329959 −0.164980 0.986297i \(-0.552756\pi\)
−0.164980 + 0.986297i \(0.552756\pi\)
\(242\) 0 0
\(243\) 10.5332 0.675707
\(244\) 0 0
\(245\) −7.41206 −0.473539
\(246\) 0 0
\(247\) 2.73143 + 5.98100i 0.173797 + 0.380562i
\(248\) 0 0
\(249\) −12.0099 + 7.71828i −0.761095 + 0.489126i
\(250\) 0 0
\(251\) −9.97508 −0.629621 −0.314811 0.949155i \(-0.601941\pi\)
−0.314811 + 0.949155i \(0.601941\pi\)
\(252\) 0 0
\(253\) −1.00925 + 7.35694i −0.0634507 + 0.462527i
\(254\) 0 0
\(255\) −3.44788 1.01239i −0.215914 0.0633982i
\(256\) 0 0
\(257\) 10.4228 + 22.8227i 0.650154 + 1.42364i 0.891420 + 0.453179i \(0.149710\pi\)
−0.241266 + 0.970459i \(0.577563\pi\)
\(258\) 0 0
\(259\) −2.65927 + 3.06897i −0.165239 + 0.190696i
\(260\) 0 0
\(261\) 6.96462 + 8.03760i 0.431099 + 0.497515i
\(262\) 0 0
\(263\) 21.9428 14.1018i 1.35305 0.869553i 0.355182 0.934797i \(-0.384419\pi\)
0.997869 + 0.0652437i \(0.0207825\pi\)
\(264\) 0 0
\(265\) 22.2741 + 14.3147i 1.36829 + 0.879345i
\(266\) 0 0
\(267\) −0.0502494 + 0.0579909i −0.00307521 + 0.00354899i
\(268\) 0 0
\(269\) 12.9994 0.792590 0.396295 0.918123i \(-0.370296\pi\)
0.396295 + 0.918123i \(0.370296\pi\)
\(270\) 0 0
\(271\) 12.8550 + 14.8355i 0.780888 + 0.901193i 0.997173 0.0751375i \(-0.0239396\pi\)
−0.216285 + 0.976330i \(0.569394\pi\)
\(272\) 0 0
\(273\) −6.14575 + 1.80455i −0.371958 + 0.109217i
\(274\) 0 0
\(275\) −1.58671 0.454774i −0.0956823 0.0274239i
\(276\) 0 0
\(277\) 7.92555 + 5.09344i 0.476200 + 0.306035i 0.756635 0.653838i \(-0.226842\pi\)
−0.280435 + 0.959873i \(0.590479\pi\)
\(278\) 0 0
\(279\) −8.66905 + 2.54546i −0.519002 + 0.152393i
\(280\) 0 0
\(281\) 2.46090 + 0.722584i 0.146805 + 0.0431057i 0.354309 0.935128i \(-0.384716\pi\)
−0.207505 + 0.978234i \(0.566534\pi\)
\(282\) 0 0
\(283\) −1.01094 + 7.03128i −0.0600944 + 0.417966i 0.937461 + 0.348090i \(0.113170\pi\)
−0.997556 + 0.0698763i \(0.977740\pi\)
\(284\) 0 0
\(285\) −3.77555 + 8.26729i −0.223644 + 0.489712i
\(286\) 0 0
\(287\) −1.61072 3.52699i −0.0950778 0.208191i
\(288\) 0 0
\(289\) 2.24591 + 15.6206i 0.132112 + 0.918861i
\(290\) 0 0
\(291\) 5.45928 11.9542i 0.320029 0.700765i
\(292\) 0 0
\(293\) −21.2594 + 24.5346i −1.24199 + 1.43333i −0.381098 + 0.924535i \(0.624454\pi\)
−0.860889 + 0.508794i \(0.830092\pi\)
\(294\) 0 0
\(295\) −3.56695 + 2.29234i −0.207676 + 0.133465i
\(296\) 0 0
\(297\) −7.90012 17.0069i −0.458412 0.986840i
\(298\) 0 0
\(299\) 3.45275 + 3.98469i 0.199678 + 0.230441i
\(300\) 0 0
\(301\) 1.13500 + 7.89409i 0.0654202 + 0.455008i
\(302\) 0 0
\(303\) −2.32233 16.1522i −0.133415 0.927919i
\(304\) 0 0
\(305\) 17.5097 11.2528i 1.00260 0.644332i
\(306\) 0 0
\(307\) −3.58729 24.9502i −0.204738 1.42398i −0.789985 0.613126i \(-0.789912\pi\)
0.585247 0.810855i \(-0.300997\pi\)
\(308\) 0 0
\(309\) −1.52145 + 10.5819i −0.0865522 + 0.601984i
\(310\) 0 0
\(311\) −26.4341 16.9882i −1.49894 0.963310i −0.995032 0.0995522i \(-0.968259\pi\)
−0.503907 0.863758i \(-0.668105\pi\)
\(312\) 0 0
\(313\) 10.1577 + 11.7226i 0.574145 + 0.662599i 0.966336 0.257285i \(-0.0828279\pi\)
−0.392190 + 0.919884i \(0.628282\pi\)
\(314\) 0 0
\(315\) 4.14591 + 2.66442i 0.233596 + 0.150123i
\(316\) 0 0
\(317\) 7.43991 8.58611i 0.417867 0.482244i −0.507319 0.861758i \(-0.669363\pi\)
0.925186 + 0.379514i \(0.123909\pi\)
\(318\) 0 0
\(319\) 13.4654 29.9970i 0.753916 1.67951i
\(320\) 0 0
\(321\) 5.65703 + 12.3872i 0.315745 + 0.691384i
\(322\) 0 0
\(323\) −3.08244 −0.171511
\(324\) 0 0
\(325\) −0.985913 + 0.633608i −0.0546886 + 0.0351462i
\(326\) 0 0
\(327\) −8.74176 2.56681i −0.483420 0.141945i
\(328\) 0 0
\(329\) −3.02729 3.49367i −0.166900 0.192612i
\(330\) 0 0
\(331\) 8.02554 9.26197i 0.441124 0.509084i −0.491032 0.871142i \(-0.663380\pi\)
0.932156 + 0.362058i \(0.117926\pi\)
\(332\) 0 0
\(333\) −2.13335 + 0.626408i −0.116907 + 0.0343270i
\(334\) 0 0
\(335\) 5.68327 1.66876i 0.310510 0.0911740i
\(336\) 0 0
\(337\) 9.12380 19.9783i 0.497005 1.08829i −0.480426 0.877035i \(-0.659518\pi\)
0.977431 0.211254i \(-0.0677547\pi\)
\(338\) 0 0
\(339\) 8.20326 17.9626i 0.445540 0.975596i
\(340\) 0 0
\(341\) 18.4285 + 20.9918i 0.997961 + 1.13677i
\(342\) 0 0
\(343\) −2.83330 19.7061i −0.152984 1.06403i
\(344\) 0 0
\(345\) −1.03719 + 7.21378i −0.0558402 + 0.388377i
\(346\) 0 0
\(347\) 5.59601 + 3.59634i 0.300410 + 0.193062i 0.682158 0.731205i \(-0.261042\pi\)
−0.381748 + 0.924266i \(0.624678\pi\)
\(348\) 0 0
\(349\) 8.44770 + 18.4979i 0.452195 + 0.990169i 0.989198 + 0.146588i \(0.0468293\pi\)
−0.537003 + 0.843581i \(0.680443\pi\)
\(350\) 0 0
\(351\) −12.7751 3.75112i −0.681886 0.200220i
\(352\) 0 0
\(353\) −10.0479 + 2.95031i −0.534793 + 0.157029i −0.537968 0.842966i \(-0.680808\pi\)
0.00317447 + 0.999995i \(0.498990\pi\)
\(354\) 0 0
\(355\) −13.1232 + 28.7357i −0.696505 + 1.52513i
\(356\) 0 0
\(357\) 0.427336 2.97219i 0.0226170 0.157305i
\(358\) 0 0
\(359\) −22.8014 6.69508i −1.20341 0.353353i −0.382254 0.924057i \(-0.624852\pi\)
−0.821156 + 0.570704i \(0.806670\pi\)
\(360\) 0 0
\(361\) 1.59447 11.0898i 0.0839195 0.583673i
\(362\) 0 0
\(363\) −9.85008 + 11.6692i −0.516995 + 0.612476i
\(364\) 0 0
\(365\) 2.17022 15.0942i 0.113594 0.790066i
\(366\) 0 0
\(367\) −24.1162 7.08114i −1.25885 0.369633i −0.416786 0.909005i \(-0.636843\pi\)
−0.842068 + 0.539372i \(0.818662\pi\)
\(368\) 0 0
\(369\) 0.302130 2.10136i 0.0157283 0.109393i
\(370\) 0 0
\(371\) −9.19104 + 20.1256i −0.477175 + 1.04487i
\(372\) 0 0
\(373\) −30.4413 + 8.93837i −1.57619 + 0.462811i −0.948796 0.315891i \(-0.897697\pi\)
−0.627394 + 0.778702i \(0.715878\pi\)
\(374\) 0 0
\(375\) 14.0616 + 4.12887i 0.726139 + 0.213214i
\(376\) 0 0
\(377\) −9.69823 21.2362i −0.499484 1.09372i
\(378\) 0 0
\(379\) −26.8442 17.2517i −1.37889 0.886162i −0.379654 0.925128i \(-0.623957\pi\)
−0.999241 + 0.0389665i \(0.987593\pi\)
\(380\) 0 0
\(381\) 3.95852 27.5321i 0.202801 1.41051i
\(382\) 0 0
\(383\) −3.02892 21.0666i −0.154771 1.07645i −0.908083 0.418791i \(-0.862454\pi\)
0.753312 0.657663i \(-0.228455\pi\)
\(384\) 0 0
\(385\) 2.07079 15.0951i 0.105537 0.769318i
\(386\) 0 0
\(387\) −1.81398 + 3.97207i −0.0922100 + 0.201912i
\(388\) 0 0
\(389\) −3.73562 + 8.17988i −0.189404 + 0.414736i −0.980382 0.197108i \(-0.936845\pi\)
0.790978 + 0.611845i \(0.209572\pi\)
\(390\) 0 0
\(391\) −2.37162 + 0.696370i −0.119938 + 0.0352169i
\(392\) 0 0
\(393\) −1.20312 + 0.353268i −0.0606894 + 0.0178200i
\(394\) 0 0
\(395\) 19.8678 22.9286i 0.999655 1.15366i
\(396\) 0 0
\(397\) 2.52616 + 2.91534i 0.126784 + 0.146317i 0.815592 0.578627i \(-0.196411\pi\)
−0.688808 + 0.724944i \(0.741866\pi\)
\(398\) 0 0
\(399\) −7.28700 2.13966i −0.364806 0.107117i
\(400\) 0 0
\(401\) −7.25857 + 4.66480i −0.362476 + 0.232949i −0.709183 0.705024i \(-0.750936\pi\)
0.346707 + 0.937973i \(0.387300\pi\)
\(402\) 0 0
\(403\) 19.8331 0.987959
\(404\) 0 0
\(405\) −4.51060 9.87685i −0.224134 0.490784i
\(406\) 0 0
\(407\) 4.53504 + 5.16583i 0.224794 + 0.256061i
\(408\) 0 0
\(409\) −13.1369 + 15.1608i −0.649577 + 0.749652i −0.981038 0.193817i \(-0.937913\pi\)
0.331461 + 0.943469i \(0.392459\pi\)
\(410\) 0 0
\(411\) −6.01190 3.86361i −0.296545 0.190578i
\(412\) 0 0
\(413\) −2.32022 2.67767i −0.114170 0.131760i
\(414\) 0 0
\(415\) −20.2843 13.0360i −0.995720 0.639910i
\(416\) 0 0
\(417\) −1.06024 + 7.37415i −0.0519203 + 0.361114i
\(418\) 0 0
\(419\) 3.48798 + 24.2595i 0.170399 + 1.18515i 0.878043 + 0.478583i \(0.158849\pi\)
−0.707643 + 0.706570i \(0.750242\pi\)
\(420\) 0 0
\(421\) −18.5899 + 11.9470i −0.906015 + 0.582260i −0.908568 0.417736i \(-0.862824\pi\)
0.00255345 + 0.999997i \(0.499187\pi\)
\(422\) 0 0
\(423\) −0.360214 2.50535i −0.0175142 0.121814i
\(424\) 0 0
\(425\) −0.0781894 0.543819i −0.00379274 0.0263791i
\(426\) 0 0
\(427\) 11.3896 + 13.1443i 0.551183 + 0.636099i
\(428\) 0 0
\(429\) 1.61243 + 10.7220i 0.0778490 + 0.517661i
\(430\) 0 0
\(431\) 0.0599547 0.0385305i 0.00288792 0.00185595i −0.539196 0.842180i \(-0.681272\pi\)
0.542084 + 0.840324i \(0.317635\pi\)
\(432\) 0 0
\(433\) 19.4770 22.4776i 0.936003 1.08020i −0.0606259 0.998161i \(-0.519310\pi\)
0.996629 0.0820443i \(-0.0261449\pi\)
\(434\) 0 0
\(435\) 13.4055 29.3539i 0.642744 1.40741i
\(436\) 0 0
\(437\) 0.889694 + 6.18796i 0.0425598 + 0.296010i
\(438\) 0 0
\(439\) −1.65352 3.62071i −0.0789182 0.172807i 0.866060 0.499940i \(-0.166645\pi\)
−0.944978 + 0.327133i \(0.893917\pi\)
\(440\) 0 0
\(441\) 1.40876 3.08475i 0.0670837 0.146893i
\(442\) 0 0
\(443\) −0.901491 + 6.27001i −0.0428311 + 0.297897i 0.957135 + 0.289643i \(0.0935365\pi\)
−0.999966 + 0.00825427i \(0.997373\pi\)
\(444\) 0 0
\(445\) −0.124350 0.0365125i −0.00589476 0.00173086i
\(446\) 0 0
\(447\) 1.62972 0.478529i 0.0770831 0.0226336i
\(448\) 0 0
\(449\) 20.7649 + 13.3448i 0.979954 + 0.629778i 0.929451 0.368946i \(-0.120281\pi\)
0.0505032 + 0.998724i \(0.483917\pi\)
\(450\) 0 0
\(451\) −6.28554 + 1.88984i −0.295975 + 0.0889893i
\(452\) 0 0
\(453\) 12.6768 3.72225i 0.595609 0.174886i
\(454\) 0 0
\(455\) −7.08442 8.17585i −0.332123 0.383290i
\(456\) 0 0
\(457\) −1.62470 −0.0760004 −0.0380002 0.999278i \(-0.512099\pi\)
−0.0380002 + 0.999278i \(0.512099\pi\)
\(458\) 0 0
\(459\) 4.08751 4.71724i 0.190789 0.220182i
\(460\) 0 0
\(461\) −26.8575 17.2603i −1.25088 0.803891i −0.263870 0.964558i \(-0.584999\pi\)
−0.987009 + 0.160667i \(0.948635\pi\)
\(462\) 0 0
\(463\) 29.5488 18.9898i 1.37325 0.882533i 0.374252 0.927327i \(-0.377899\pi\)
0.998996 + 0.0447939i \(0.0142631\pi\)
\(464\) 0 0
\(465\) 17.9527 + 20.7185i 0.832538 + 0.960800i
\(466\) 0 0
\(467\) 4.25581 4.91146i 0.196935 0.227275i −0.648690 0.761053i \(-0.724683\pi\)
0.845625 + 0.533778i \(0.179228\pi\)
\(468\) 0 0
\(469\) 2.05612 + 4.50227i 0.0949426 + 0.207895i
\(470\) 0 0
\(471\) −25.6976 7.54549i −1.18408 0.347678i
\(472\) 0 0
\(473\) 13.5000 0.0873173i 0.620731 0.00401485i
\(474\) 0 0
\(475\) −1.38959 −0.0637586
\(476\) 0 0
\(477\) −10.1910 + 6.54934i −0.466613 + 0.299874i
\(478\) 0 0
\(479\) −0.441518 0.966790i −0.0201735 0.0441738i 0.899277 0.437379i \(-0.144093\pi\)
−0.919451 + 0.393206i \(0.871366\pi\)
\(480\) 0 0
\(481\) 4.88070 0.222541
\(482\) 0 0
\(483\) −6.08998 −0.277104
\(484\) 0 0
\(485\) 22.1960 1.00787
\(486\) 0 0
\(487\) 28.9973 1.31399 0.656996 0.753894i \(-0.271827\pi\)
0.656996 + 0.753894i \(0.271827\pi\)
\(488\) 0 0
\(489\) 4.95745 + 10.8553i 0.224184 + 0.490894i
\(490\) 0 0
\(491\) −17.2433 + 11.0816i −0.778180 + 0.500106i −0.868429 0.495813i \(-0.834870\pi\)
0.0902493 + 0.995919i \(0.471234\pi\)
\(492\) 0 0
\(493\) 10.9445 0.492916
\(494\) 0 0
\(495\) 5.42222 6.33997i 0.243710 0.284960i
\(496\) 0 0
\(497\) −25.3284 7.43708i −1.13613 0.333599i
\(498\) 0 0
\(499\) −4.97648 10.8970i −0.222778 0.487816i 0.764933 0.644110i \(-0.222772\pi\)
−0.987710 + 0.156295i \(0.950045\pi\)
\(500\) 0 0
\(501\) −10.0827 + 11.6360i −0.450461 + 0.519860i
\(502\) 0 0
\(503\) 3.06146 + 3.53312i 0.136504 + 0.157534i 0.819886 0.572527i \(-0.194037\pi\)
−0.683382 + 0.730061i \(0.739491\pi\)
\(504\) 0 0
\(505\) 23.1859 14.9007i 1.03176 0.663071i
\(506\) 0 0
\(507\) −8.70598 5.59500i −0.386646 0.248482i
\(508\) 0 0
\(509\) 23.7745 27.4373i 1.05379 1.21614i 0.0781060 0.996945i \(-0.475113\pi\)
0.975682 0.219191i \(-0.0703418\pi\)
\(510\) 0 0
\(511\) 12.7427 0.563705
\(512\) 0 0
\(513\) −10.3382 11.9310i −0.456444 0.526765i
\(514\) 0 0
\(515\) −17.3249 + 5.08705i −0.763427 + 0.224162i
\(516\) 0 0
\(517\) −6.55558 + 4.27318i −0.288314 + 0.187934i
\(518\) 0 0
\(519\) 5.74667 + 3.69316i 0.252251 + 0.162112i
\(520\) 0 0
\(521\) −35.2852 + 10.3607i −1.54587 + 0.453909i −0.939864 0.341549i \(-0.889049\pi\)
−0.606009 + 0.795458i \(0.707230\pi\)
\(522\) 0 0
\(523\) 14.8783 + 4.36865i 0.650581 + 0.191028i 0.590338 0.807156i \(-0.298994\pi\)
0.0602429 + 0.998184i \(0.480812\pi\)
\(524\) 0 0
\(525\) 0.192646 1.33989i 0.00840778 0.0584774i
\(526\) 0 0
\(527\) −3.86242 + 8.45753i −0.168250 + 0.368416i
\(528\) 0 0
\(529\) −7.47206 16.3615i −0.324872 0.711371i
\(530\) 0 0
\(531\) −0.276081 1.92018i −0.0119809 0.0833289i
\(532\) 0 0
\(533\) −1.93592 + 4.23908i −0.0838542 + 0.183615i
\(534\) 0 0
\(535\) −15.0618 + 17.3823i −0.651179 + 0.751501i
\(536\) 0 0
\(537\) −16.4233 + 10.5546i −0.708720 + 0.455466i
\(538\) 0 0
\(539\) −10.4842 + 0.0678115i −0.451588 + 0.00292085i
\(540\) 0 0
\(541\) −14.0465 16.2106i −0.603908 0.696947i 0.368660 0.929564i \(-0.379817\pi\)
−0.972568 + 0.232617i \(0.925271\pi\)
\(542\) 0 0
\(543\) −4.07588 28.3484i −0.174913 1.21655i
\(544\) 0 0
\(545\) −2.18993 15.2313i −0.0938061 0.652436i
\(546\) 0 0
\(547\) −14.4211 + 9.26786i −0.616601 + 0.396265i −0.811327 0.584592i \(-0.801254\pi\)
0.194727 + 0.980858i \(0.437618\pi\)
\(548\) 0 0
\(549\) 1.35524 + 9.42591i 0.0578403 + 0.402288i
\(550\) 0 0
\(551\) 3.93944 27.3994i 0.167826 1.16725i
\(552\) 0 0
\(553\) 21.3273 + 13.7062i 0.906929 + 0.582848i
\(554\) 0 0
\(555\) 4.41795 + 5.09859i 0.187532 + 0.216423i
\(556\) 0 0
\(557\) −7.72239 4.96288i −0.327208 0.210284i 0.366714 0.930334i \(-0.380483\pi\)
−0.693923 + 0.720050i \(0.744119\pi\)
\(558\) 0 0
\(559\) 6.27715 7.24421i 0.265495 0.306398i
\(560\) 0 0
\(561\) −4.88622 1.40046i −0.206297 0.0591275i
\(562\) 0 0
\(563\) 19.0901 + 41.8015i 0.804553 + 1.76172i 0.629239 + 0.777212i \(0.283367\pi\)
0.175314 + 0.984513i \(0.443906\pi\)
\(564\) 0 0
\(565\) 33.3524 1.40314
\(566\) 0 0
\(567\) 7.63289 4.90536i 0.320551 0.206006i
\(568\) 0 0
\(569\) −32.4878 9.53928i −1.36196 0.399907i −0.482506 0.875893i \(-0.660273\pi\)
−0.879453 + 0.475985i \(0.842092\pi\)
\(570\) 0 0
\(571\) −20.9110 24.1326i −0.875099 1.00992i −0.999843 0.0177294i \(-0.994356\pi\)
0.124744 0.992189i \(-0.460189\pi\)
\(572\) 0 0
\(573\) −3.83958 + 4.43111i −0.160401 + 0.185112i
\(574\) 0 0
\(575\) −1.06914 + 0.313929i −0.0445864 + 0.0130917i
\(576\) 0 0
\(577\) −33.0184 + 9.69507i −1.37457 + 0.403611i −0.883877 0.467719i \(-0.845076\pi\)
−0.490697 + 0.871331i \(0.663258\pi\)
\(578\) 0 0
\(579\) −5.07717 + 11.1174i −0.211000 + 0.462025i
\(580\) 0 0
\(581\) 8.37000 18.3278i 0.347246 0.760363i
\(582\) 0 0
\(583\) 31.6373 + 20.0441i 1.31028 + 0.830142i
\(584\) 0 0
\(585\) −0.842969 5.86298i −0.0348525 0.242404i
\(586\) 0 0
\(587\) 2.80576 19.5145i 0.115806 0.805450i −0.846287 0.532728i \(-0.821167\pi\)
0.962093 0.272722i \(-0.0879240\pi\)
\(588\) 0 0
\(589\) 19.7830 + 12.7138i 0.815145 + 0.523862i
\(590\) 0 0
\(591\) 5.60890 + 12.2818i 0.230719 + 0.505205i
\(592\) 0 0
\(593\) 16.9622 + 4.98056i 0.696556 + 0.204527i 0.610795 0.791789i \(-0.290850\pi\)
0.0857604 + 0.996316i \(0.472668\pi\)
\(594\) 0 0
\(595\) 4.86612 1.42882i 0.199492 0.0585760i
\(596\) 0 0
\(597\) −4.76231 + 10.4280i −0.194908 + 0.426790i
\(598\) 0 0
\(599\) 1.06124 7.38110i 0.0433611 0.301583i −0.956587 0.291445i \(-0.905864\pi\)
0.999949 0.0101380i \(-0.00322708\pi\)
\(600\) 0 0
\(601\) −10.0991 2.96535i −0.411950 0.120959i 0.0691896 0.997604i \(-0.477959\pi\)
−0.481139 + 0.876644i \(0.659777\pi\)
\(602\) 0 0
\(603\) −0.385675 + 2.68243i −0.0157059 + 0.109237i
\(604\) 0 0
\(605\) −24.8390 6.94568i −1.00985 0.282382i
\(606\) 0 0
\(607\) −1.64136 + 11.4159i −0.0666206 + 0.463357i 0.929016 + 0.370040i \(0.120656\pi\)
−0.995636 + 0.0933167i \(0.970253\pi\)
\(608\) 0 0
\(609\) 25.8733 + 7.59708i 1.04844 + 0.307849i
\(610\) 0 0
\(611\) −0.790720 + 5.49958i −0.0319891 + 0.222489i
\(612\) 0 0
\(613\) −7.24501 + 15.8644i −0.292623 + 0.640756i −0.997657 0.0684184i \(-0.978205\pi\)
0.705033 + 0.709174i \(0.250932\pi\)
\(614\) 0 0
\(615\) −6.18070 + 1.81482i −0.249230 + 0.0731805i
\(616\) 0 0
\(617\) −36.3279 10.6668i −1.46250 0.429430i −0.548850 0.835921i \(-0.684934\pi\)
−0.913655 + 0.406491i \(0.866752\pi\)
\(618\) 0 0
\(619\) −13.0672 28.6131i −0.525214 1.15006i −0.967427 0.253149i \(-0.918534\pi\)
0.442213 0.896910i \(-0.354194\pi\)
\(620\) 0 0
\(621\) −10.6496 6.84408i −0.427354 0.274644i
\(622\) 0 0
\(623\) 0.0154122 0.107194i 0.000617476 0.00429464i
\(624\) 0 0
\(625\) 3.87675 + 26.9634i 0.155070 + 1.07854i
\(626\) 0 0
\(627\) −5.26481 + 11.7285i −0.210256 + 0.468391i
\(628\) 0 0
\(629\) −0.950497 + 2.08130i −0.0378988 + 0.0829868i
\(630\) 0 0
\(631\) −7.57110 + 16.5784i −0.301401 + 0.659975i −0.998367 0.0571287i \(-0.981805\pi\)
0.696966 + 0.717104i \(0.254533\pi\)
\(632\) 0 0
\(633\) 10.0608 2.95412i 0.399882 0.117416i
\(634\) 0 0
\(635\) 45.0761 13.2355i 1.78879 0.525236i
\(636\) 0 0
\(637\) −4.87489 + 5.62593i −0.193150 + 0.222907i
\(638\) 0 0
\(639\) −9.46500 10.9232i −0.374430 0.432115i
\(640\) 0 0
\(641\) −19.9380 5.85433i −0.787504 0.231232i −0.136836 0.990594i \(-0.543693\pi\)
−0.650669 + 0.759362i \(0.725511\pi\)
\(642\) 0 0
\(643\) 16.5281 10.6220i 0.651806 0.418891i −0.172519 0.985006i \(-0.555191\pi\)
0.824326 + 0.566116i \(0.191554\pi\)
\(644\) 0 0
\(645\) 13.2496 0.521703
\(646\) 0 0
\(647\) −0.720012 1.57661i −0.0283066 0.0619828i 0.894951 0.446165i \(-0.147211\pi\)
−0.923257 + 0.384182i \(0.874483\pi\)
\(648\) 0 0
\(649\) −5.02442 + 3.27511i −0.197226 + 0.128559i
\(650\) 0 0
\(651\) −15.0017 + 17.3129i −0.587962 + 0.678544i
\(652\) 0 0
\(653\) 0.841825 + 0.541008i 0.0329431 + 0.0211713i 0.557009 0.830507i \(-0.311949\pi\)
−0.524066 + 0.851678i \(0.675585\pi\)
\(654\) 0 0
\(655\) −1.38688 1.60054i −0.0541899 0.0625384i
\(656\) 0 0
\(657\) 5.86942 + 3.77205i 0.228988 + 0.147162i
\(658\) 0 0
\(659\) −4.82000 + 33.5238i −0.187761 + 1.30590i 0.650029 + 0.759910i \(0.274757\pi\)
−0.837789 + 0.545994i \(0.816152\pi\)
\(660\) 0 0
\(661\) 0.352327 + 2.45049i 0.0137039 + 0.0953129i 0.995525 0.0944934i \(-0.0301231\pi\)
−0.981822 + 0.189806i \(0.939214\pi\)
\(662\) 0 0
\(663\) −3.03609 + 1.95117i −0.117912 + 0.0757773i
\(664\) 0 0
\(665\) −1.82549 12.6966i −0.0707895 0.492352i
\(666\) 0 0
\(667\) −3.15895 21.9710i −0.122315 0.850721i
\(668\) 0 0
\(669\) 2.35074 + 2.71290i 0.0908850 + 0.104887i
\(670\) 0 0
\(671\) 24.6642 16.0771i 0.952150 0.620648i
\(672\) 0 0
\(673\) 17.0898 10.9830i 0.658765 0.423362i −0.168095 0.985771i \(-0.553761\pi\)
0.826860 + 0.562408i \(0.190125\pi\)
\(674\) 0 0
\(675\) 1.84268 2.12657i 0.0709249 0.0818516i
\(676\) 0 0
\(677\) −14.0908 + 30.8546i −0.541554 + 1.18584i 0.419062 + 0.907957i \(0.362359\pi\)
−0.960616 + 0.277880i \(0.910368\pi\)
\(678\) 0 0
\(679\) 2.63958 + 18.3587i 0.101298 + 0.704542i
\(680\) 0 0
\(681\) 14.1358 + 30.9530i 0.541684 + 1.18612i
\(682\) 0 0
\(683\) −8.22772 + 18.0162i −0.314825 + 0.689370i −0.999210 0.0397507i \(-0.987344\pi\)
0.684385 + 0.729121i \(0.260071\pi\)
\(684\) 0 0
\(685\) 1.71774 11.9471i 0.0656315 0.456477i
\(686\) 0 0
\(687\) 12.8213 + 3.76469i 0.489165 + 0.143632i
\(688\) 0 0
\(689\) 25.5148 7.49183i 0.972037 0.285416i
\(690\) 0 0
\(691\) 8.12911 + 5.22426i 0.309246 + 0.198740i 0.686053 0.727551i \(-0.259342\pi\)
−0.376807 + 0.926292i \(0.622978\pi\)
\(692\) 0 0
\(693\) 5.88870 + 3.73084i 0.223693 + 0.141723i
\(694\) 0 0
\(695\) −12.0731 + 3.54499i −0.457959 + 0.134469i
\(696\) 0 0
\(697\) −1.43068 1.65109i −0.0541907 0.0625394i
\(698\) 0 0
\(699\) 19.2210 0.727005
\(700\) 0 0
\(701\) 13.8056 15.9325i 0.521431 0.601764i −0.432557 0.901606i \(-0.642389\pi\)
0.953989 + 0.299843i \(0.0969342\pi\)
\(702\) 0 0
\(703\) 4.86837 + 3.12871i 0.183614 + 0.118002i
\(704\) 0 0
\(705\) −6.46084 + 4.15213i −0.243329 + 0.156378i
\(706\) 0 0
\(707\) 15.0819 + 17.4054i 0.567212 + 0.654598i
\(708\) 0 0
\(709\) −23.3337 + 26.9285i −0.876315 + 1.01132i 0.123505 + 0.992344i \(0.460587\pi\)
−0.999820 + 0.0189777i \(0.993959\pi\)
\(710\) 0 0
\(711\) 5.76630 + 12.6264i 0.216253 + 0.473529i
\(712\) 0 0
\(713\) 18.0932 + 5.31265i 0.677597 + 0.198960i
\(714\) 0 0
\(715\) −15.3413 + 10.0000i −0.573731 + 0.373980i
\(716\) 0 0
\(717\) 4.52258 0.168899
\(718\) 0 0
\(719\) 14.2288 9.14429i 0.530644 0.341024i −0.247726 0.968830i \(-0.579683\pi\)
0.778370 + 0.627806i \(0.216047\pi\)
\(720\) 0 0
\(721\) −6.26788 13.7247i −0.233428 0.511136i
\(722\) 0 0
\(723\) −7.11109 −0.264464
\(724\) 0 0
\(725\) 4.93387 0.183240
\(726\) 0 0
\(727\) 7.85553 0.291346 0.145673 0.989333i \(-0.453465\pi\)
0.145673 + 0.989333i \(0.453465\pi\)
\(728\) 0 0
\(729\) 28.5154 1.05612
\(730\) 0 0
\(731\) 1.86673 + 4.08757i 0.0690435 + 0.151184i
\(732\) 0 0
\(733\) 42.5049 27.3163i 1.56996 1.00895i 0.590561 0.806993i \(-0.298907\pi\)
0.979395 0.201956i \(-0.0647298\pi\)
\(734\) 0 0
\(735\) −10.2898 −0.379544
\(736\) 0 0
\(737\) 8.02362 2.41242i 0.295554 0.0888628i
\(738\) 0 0
\(739\) −38.1750 11.2092i −1.40429 0.412337i −0.510135 0.860094i \(-0.670404\pi\)
−0.894155 + 0.447758i \(0.852223\pi\)
\(740\) 0 0
\(741\) 3.79190 + 8.30311i 0.139299 + 0.305022i
\(742\) 0 0
\(743\) 3.63445 4.19438i 0.133335 0.153877i −0.685155 0.728397i \(-0.740266\pi\)
0.818491 + 0.574520i \(0.194811\pi\)
\(744\) 0 0
\(745\) 1.87863 + 2.16806i 0.0688278 + 0.0794316i
\(746\) 0 0
\(747\) 9.28061 5.96429i 0.339560 0.218222i
\(748\) 0 0
\(749\) −16.1683 10.3907i −0.590777 0.379669i
\(750\) 0 0
\(751\) −17.3136 + 19.9810i −0.631783 + 0.729116i −0.977900 0.209075i \(-0.932955\pi\)
0.346117 + 0.938191i \(0.387500\pi\)
\(752\) 0 0
\(753\) −13.8479 −0.504645
\(754\) 0 0
\(755\) 14.6130 + 16.8643i 0.531822 + 0.613755i
\(756\) 0 0
\(757\) 14.1024 4.14084i 0.512561 0.150502i −0.0152163 0.999884i \(-0.504844\pi\)
0.527777 + 0.849383i \(0.323025\pi\)
\(758\) 0 0
\(759\) −1.40108 + 10.2133i −0.0508561 + 0.370718i
\(760\) 0 0
\(761\) −42.8495 27.5377i −1.55329 0.998242i −0.984423 0.175815i \(-0.943744\pi\)
−0.568871 0.822427i \(-0.692620\pi\)
\(762\) 0 0
\(763\) 12.3376 3.62264i 0.446651 0.131148i
\(764\) 0 0
\(765\) 2.66434 + 0.782320i 0.0963294 + 0.0282849i
\(766\) 0 0
\(767\) −0.606035 + 4.21507i −0.0218827 + 0.152197i
\(768\) 0 0
\(769\) 9.85738 21.5847i 0.355466 0.778362i −0.644440 0.764655i \(-0.722909\pi\)
0.999906 0.0137074i \(-0.00436333\pi\)
\(770\) 0 0
\(771\) 14.4694 + 31.6835i 0.521102 + 1.14105i
\(772\) 0 0
\(773\) 0.577778 + 4.01854i 0.0207812 + 0.144537i 0.997570 0.0696666i \(-0.0221936\pi\)
−0.976789 + 0.214203i \(0.931284\pi\)
\(774\) 0 0
\(775\) −1.74121 + 3.81272i −0.0625462 + 0.136957i
\(776\) 0 0
\(777\) −3.69173 + 4.26049i −0.132440 + 0.152844i
\(778\) 0 0
\(779\) −4.64844 + 2.98737i −0.166548 + 0.107034i
\(780\) 0 0
\(781\) −18.2996 + 40.7662i −0.654811 + 1.45873i
\(782\) 0 0
\(783\) 36.7070 + 42.3622i 1.31180 + 1.51390i
\(784\) 0 0
\(785\) −6.43759 44.7744i −0.229767 1.59807i
\(786\) 0 0
\(787\) 5.81566 + 40.4488i 0.207306 + 1.44184i 0.781899 + 0.623405i \(0.214251\pi\)
−0.574593 + 0.818439i \(0.694840\pi\)
\(788\) 0 0
\(789\) 30.4621 19.5768i 1.08448 0.696952i
\(790\) 0 0
\(791\) 3.96630 + 27.5863i 0.141026 + 0.980854i
\(792\) 0 0
\(793\) 2.97494 20.6912i 0.105643 0.734766i
\(794\) 0 0
\(795\) 30.9220 + 19.8724i 1.09669 + 0.704800i
\(796\) 0 0
\(797\) 18.8014 + 21.6980i 0.665981 + 0.768583i 0.983742 0.179588i \(-0.0574765\pi\)
−0.317761 + 0.948171i \(0.602931\pi\)
\(798\) 0 0
\(799\) −2.19122 1.40821i −0.0775197 0.0498189i
\(800\) 0 0
\(801\) 0.0388301 0.0448124i 0.00137199 0.00158337i
\(802\) 0 0
\(803\) 2.93164 21.3703i 0.103455 0.754142i
\(804\) 0 0
\(805\) −4.27287 9.35629i −0.150599 0.329766i
\(806\) 0 0
\(807\) 18.0465 0.635265
\(808\) 0 0
\(809\) −21.7416 + 13.9725i −0.764395 + 0.491247i −0.863822 0.503798i \(-0.831936\pi\)
0.0994262 + 0.995045i \(0.468299\pi\)
\(810\) 0 0
\(811\) −41.1729 12.0895i −1.44578 0.424518i −0.537633 0.843179i \(-0.680681\pi\)
−0.908143 + 0.418661i \(0.862500\pi\)
\(812\) 0 0
\(813\) 17.8460 + 20.5954i 0.625886 + 0.722311i
\(814\) 0 0
\(815\) −13.1992 + 15.2327i −0.462348 + 0.533578i
\(816\) 0 0
\(817\) 10.9051 3.20202i 0.381521 0.112025i
\(818\) 0 0
\(819\) 4.74911 1.39447i 0.165947 0.0487266i
\(820\) 0 0
\(821\) 8.00241 17.5228i 0.279286 0.611551i −0.717055 0.697016i \(-0.754510\pi\)
0.996341 + 0.0854655i \(0.0272377\pi\)
\(822\) 0 0
\(823\) −20.2821 + 44.4116i −0.706990 + 1.54809i 0.124295 + 0.992245i \(0.460333\pi\)
−0.831285 + 0.555846i \(0.812394\pi\)
\(824\) 0 0
\(825\) −2.20275 0.631339i −0.0766899 0.0219804i
\(826\) 0 0
\(827\) −2.33475 16.2385i −0.0811872 0.564670i −0.989295 0.145932i \(-0.953382\pi\)
0.908107 0.418737i \(-0.137527\pi\)
\(828\) 0 0
\(829\) −6.07343 + 42.2416i −0.210939 + 1.46711i 0.559092 + 0.829106i \(0.311150\pi\)
−0.770031 + 0.638007i \(0.779759\pi\)
\(830\) 0 0
\(831\) 11.0026 + 7.07096i 0.381677 + 0.245289i
\(832\) 0 0
\(833\) −1.44972 3.17445i −0.0502299 0.109988i
\(834\) 0 0
\(835\) −24.9512 7.32634i −0.863472 0.253538i
\(836\) 0 0
\(837\) −45.6902 + 13.4159i −1.57928 + 0.463720i
\(838\) 0 0
\(839\) 10.3707 22.7086i 0.358035 0.783987i −0.641819 0.766857i \(-0.721820\pi\)
0.999853 0.0171301i \(-0.00545296\pi\)
\(840\) 0 0
\(841\) −9.86027 + 68.5797i −0.340009 + 2.36482i
\(842\) 0 0
\(843\) 3.41633 + 1.00313i 0.117665 + 0.0345495i
\(844\) 0 0
\(845\) 2.48750 17.3010i 0.0855726 0.595171i
\(846\) 0 0
\(847\) 2.79099 21.3707i 0.0958996 0.734306i
\(848\) 0 0
\(849\) −1.40344 + 9.76116i −0.0481660 + 0.335002i
\(850\) 0 0
\(851\) 4.45253 + 1.30738i 0.152631 + 0.0448164i
\(852\) 0 0
\(853\) −3.82977 + 26.6367i −0.131129 + 0.912022i 0.812957 + 0.582323i \(0.197856\pi\)
−0.944086 + 0.329699i \(0.893053\pi\)
\(854\) 0 0
\(855\) 2.91755 6.38853i 0.0997780 0.218483i
\(856\) 0 0
\(857\) 32.4109 9.51669i 1.10713 0.325084i 0.323452 0.946245i \(-0.395157\pi\)
0.783683 + 0.621161i \(0.213339\pi\)
\(858\) 0 0
\(859\) 1.89850 + 0.557449i 0.0647758 + 0.0190199i 0.313960 0.949436i \(-0.398344\pi\)
−0.249184 + 0.968456i \(0.580162\pi\)
\(860\) 0 0
\(861\) −2.23608 4.89633i −0.0762054 0.166867i
\(862\) 0 0
\(863\) −27.6831 17.7909i −0.942344 0.605608i −0.0232857 0.999729i \(-0.507413\pi\)
−0.919059 + 0.394121i \(0.871049\pi\)
\(864\) 0 0
\(865\) −1.64196 + 11.4201i −0.0558282 + 0.388294i
\(866\) 0 0
\(867\) 3.11788 + 21.6853i 0.105889 + 0.736473i
\(868\) 0 0
\(869\) 27.8928 32.6139i 0.946199 1.10635i
\(870\) 0 0
\(871\) 2.47125 5.41127i 0.0837349 0.183354i
\(872\) 0 0
\(873\) −4.21865 + 9.23755i −0.142780 + 0.312644i
\(874\) 0 0
\(875\) −19.8457 + 5.82723i −0.670908 + 0.196996i
\(876\) 0 0
\(877\) 45.2476 13.2859i 1.52790 0.448633i 0.593495 0.804838i \(-0.297748\pi\)
0.934408 + 0.356205i \(0.115929\pi\)
\(878\) 0 0
\(879\) −29.5133 + 34.0602i −0.995459 + 1.14882i
\(880\) 0 0
\(881\) −37.6292 43.4264i −1.26776 1.46307i −0.823650 0.567098i \(-0.808066\pi\)
−0.444108 0.895973i \(-0.646479\pi\)
\(882\) 0 0
\(883\) −22.8723 6.71591i −0.769714 0.226008i −0.126781 0.991931i \(-0.540465\pi\)
−0.642933 + 0.765922i \(0.722283\pi\)
\(884\) 0 0
\(885\) −4.95182 + 3.18234i −0.166453 + 0.106973i
\(886\) 0 0
\(887\) 20.7675 0.697306 0.348653 0.937252i \(-0.386639\pi\)
0.348653 + 0.937252i \(0.386639\pi\)
\(888\) 0 0
\(889\) 16.3078 + 35.7091i 0.546947 + 1.19765i
\(890\) 0 0
\(891\) −6.47053 13.9294i −0.216771 0.466651i
\(892\) 0 0
\(893\) −4.31415 + 4.97880i −0.144368 + 0.166609i
\(894\) 0 0
\(895\) −27.7386 17.8265i −0.927198 0.595874i
\(896\) 0 0
\(897\) 4.79328 + 5.53174i 0.160043 + 0.184699i
\(898\) 0 0
\(899\) −70.2417 45.1416i −2.34269 1.50556i
\(900\) 0 0
\(901\) −1.77414 + 12.3394i −0.0591051 + 0.411085i
\(902\) 0 0
\(903\) 1.57566 + 10.9590i 0.0524347 + 0.364691i
\(904\) 0 0
\(905\) 40.6931 26.1519i 1.35268 0.869317i
\(906\) 0 0
\(907\) −7.57589 52.6914i −0.251553 1.74959i −0.588896 0.808209i \(-0.700437\pi\)
0.337343 0.941382i \(-0.390472\pi\)
\(908\) 0 0
\(909\) 1.79458 + 12.4816i 0.0595224 + 0.413988i
\(910\) 0 0
\(911\) −26.6981 30.8113i −0.884548 1.02082i −0.999623 0.0274664i \(-0.991256\pi\)
0.115074 0.993357i \(-0.463289\pi\)
\(912\) 0 0
\(913\) −28.8111 18.2536i −0.953509 0.604105i
\(914\) 0 0
\(915\) 24.3078 15.6217i 0.803590 0.516436i
\(916\) 0 0
\(917\) 1.15891 1.33745i 0.0382704 0.0441664i
\(918\) 0 0
\(919\) −3.55320 + 7.78042i −0.117209 + 0.256652i −0.959139 0.282934i \(-0.908692\pi\)
0.841930 + 0.539587i \(0.181419\pi\)
\(920\) 0 0
\(921\) −4.98005 34.6370i −0.164098 1.14133i
\(922\) 0 0
\(923\) 13.1800 + 28.8602i 0.433825 + 0.949945i
\(924\) 0 0
\(925\) −0.428492 + 0.938266i −0.0140887 + 0.0308500i
\(926\) 0 0
\(927\) 1.17570 8.17715i 0.0386149 0.268573i
\(928\) 0 0
\(929\) 17.6090 + 5.17047i 0.577733 + 0.169638i 0.557528 0.830158i \(-0.311750\pi\)
0.0202050 + 0.999796i \(0.493568\pi\)
\(930\) 0 0
\(931\) −8.46900 + 2.48672i −0.277560 + 0.0814990i
\(932\) 0 0
\(933\) −36.6971 23.5838i −1.20141 0.772098i
\(934\) 0 0
\(935\) −1.27670 8.48951i −0.0417527 0.277637i
\(936\) 0 0
\(937\) 28.7266 8.43488i 0.938456 0.275555i 0.223483 0.974708i \(-0.428257\pi\)
0.714973 + 0.699152i \(0.246439\pi\)
\(938\) 0 0
\(939\) 14.1014 + 16.2738i 0.460181 + 0.531077i
\(940\) 0 0
\(941\) −40.3125 −1.31415 −0.657075 0.753826i \(-0.728206\pi\)
−0.657075 + 0.753826i \(0.728206\pi\)
\(942\) 0 0
\(943\) −2.90160 + 3.34863i −0.0944891 + 0.109046i
\(944\) 0 0
\(945\) 21.8510 + 14.0428i 0.710814 + 0.456812i
\(946\) 0 0
\(947\) −2.37554 + 1.52666i −0.0771946 + 0.0496099i −0.578669 0.815563i \(-0.696428\pi\)
0.501474 + 0.865173i \(0.332791\pi\)
\(948\) 0 0
\(949\) −10.0295 11.5747i −0.325571 0.375729i
\(950\) 0 0
\(951\) 10.3284 11.9197i 0.334923 0.386522i
\(952\) 0 0
\(953\) −0.467021 1.02263i −0.0151283 0.0331264i 0.901917 0.431909i \(-0.142160\pi\)
−0.917045 + 0.398783i \(0.869433\pi\)
\(954\) 0 0
\(955\) −9.50165 2.78993i −0.307466 0.0902802i
\(956\) 0 0
\(957\) 18.6933 41.6432i 0.604268 1.34613i
\(958\) 0 0
\(959\) 10.0859 0.325692
\(960\) 0 0
\(961\) 33.5939 21.5895i 1.08367 0.696435i
\(962\) 0 0
\(963\) −4.37146 9.57215i −0.140868 0.308458i
\(964\) 0 0
\(965\) −20.6425 −0.664504
\(966\) 0 0
\(967\) 40.0271 1.28718 0.643592 0.765369i \(-0.277443\pi\)
0.643592 + 0.765369i \(0.277443\pi\)
\(968\) 0 0
\(969\) −4.27919 −0.137467
\(970\) 0 0
\(971\) 16.6439 0.534128 0.267064 0.963679i \(-0.413947\pi\)
0.267064 + 0.963679i \(0.413947\pi\)
\(972\) 0 0
\(973\) −4.36786 9.56428i −0.140027 0.306617i
\(974\) 0 0
\(975\) −1.36869 + 0.879605i −0.0438332 + 0.0281699i
\(976\) 0 0
\(977\) −27.3750 −0.875803 −0.437901 0.899023i \(-0.644278\pi\)
−0.437901 + 0.899023i \(0.644278\pi\)
\(978\) 0 0
\(979\) −0.176225 0.0505086i −0.00563218 0.00161426i
\(980\) 0 0
\(981\) 6.75517 + 1.98350i 0.215676 + 0.0633282i
\(982\) 0 0
\(983\) −1.49320 3.26965i −0.0476257 0.104286i 0.884323 0.466875i \(-0.154620\pi\)
−0.931949 + 0.362589i \(0.881893\pi\)
\(984\) 0 0
\(985\) −14.9337 + 17.2344i −0.475827 + 0.549133i
\(986\) 0 0
\(987\) −4.20262 4.85009i −0.133771 0.154380i
\(988\) 0 0
\(989\) 7.66696 4.92725i 0.243795 0.156678i
\(990\) 0 0
\(991\) −17.8891 11.4966i −0.568266 0.365202i 0.224738 0.974419i \(-0.427847\pi\)
−0.793004 + 0.609217i \(0.791484\pi\)
\(992\) 0 0
\(993\) 11.1414 12.8579i 0.353563 0.408034i
\(994\) 0 0
\(995\) −19.3623 −0.613827
\(996\) 0 0
\(997\) −27.0995 31.2745i −0.858249 0.990472i −1.00000 0.000569640i \(-0.999819\pi\)
0.141751 0.989902i \(-0.454727\pi\)
\(998\) 0 0
\(999\) −11.2438 + 3.30148i −0.355739 + 0.104454i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 484.2.i.a.89.8 110
121.34 even 11 inner 484.2.i.a.397.8 yes 110
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
484.2.i.a.89.8 110 1.1 even 1 trivial
484.2.i.a.397.8 yes 110 121.34 even 11 inner