Properties

Label 484.2.i.a.89.9
Level $484$
Weight $2$
Character 484.89
Analytic conductor $3.865$
Analytic rank $0$
Dimension $110$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [484,2,Mod(45,484)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(484, base_ring=CyclotomicField(22))
 
chi = DirichletCharacter(H, H._module([0, 6]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("484.45");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 484 = 2^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 484.i (of order \(11\), degree \(10\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.86475945783\)
Analytic rank: \(0\)
Dimension: \(110\)
Relative dimension: \(11\) over \(\Q(\zeta_{11})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

Embedding invariants

Embedding label 89.9
Character \(\chi\) \(=\) 484.89
Dual form 484.2.i.a.397.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.44940 q^{3} +(1.47314 + 3.22572i) q^{5} +(3.83701 - 2.46590i) q^{7} -0.899249 q^{9} +(-0.184859 - 3.31147i) q^{11} +(1.30309 + 0.382621i) q^{13} +(2.13516 + 4.67535i) q^{15} +(-3.33111 + 3.84431i) q^{17} +(-3.52424 - 4.06719i) q^{19} +(5.56135 - 3.57406i) q^{21} +(4.38409 + 2.81749i) q^{23} +(-4.96085 + 5.72512i) q^{25} -5.65156 q^{27} +(3.62486 + 4.18331i) q^{29} +(-4.07013 + 1.19510i) q^{31} +(-0.267934 - 4.79963i) q^{33} +(13.6067 + 8.74453i) q^{35} +(-4.26569 + 1.25252i) q^{37} +(1.88869 + 0.554570i) q^{39} +(0.690733 - 4.80415i) q^{41} +(3.18409 - 6.97218i) q^{43} +(-1.32472 - 2.90073i) q^{45} +(-0.0505224 - 0.351391i) q^{47} +(5.73410 - 12.5559i) q^{49} +(-4.82810 + 5.57193i) q^{51} +(-3.72070 + 2.39115i) q^{53} +(10.4096 - 5.47455i) q^{55} +(-5.10802 - 5.89497i) q^{57} +(0.0680064 + 0.472995i) q^{59} +(-0.756971 - 5.26485i) q^{61} +(-3.45043 + 2.21746i) q^{63} +(0.685399 + 4.76705i) q^{65} +(-1.89237 + 13.1618i) q^{67} +(6.35429 + 4.08366i) q^{69} +(-8.42091 - 9.71825i) q^{71} +(5.19725 + 3.34007i) q^{73} +(-7.19024 + 8.29797i) q^{75} +(-8.87505 - 12.2503i) q^{77} +(1.66502 + 3.64589i) q^{79} -5.49360 q^{81} +(-13.5870 + 8.73186i) q^{83} +(-17.3079 - 5.08205i) q^{85} +(5.25385 + 6.06327i) q^{87} +(7.25282 - 8.37020i) q^{89} +(5.94347 - 1.74516i) q^{91} +(-5.89924 + 1.73217i) q^{93} +(7.92793 - 17.3597i) q^{95} +(-1.13825 + 2.49242i) q^{97} +(0.166234 + 2.97784i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 110 q - 2 q^{3} + 2 q^{5} - 2 q^{7} + 112 q^{9} - 10 q^{11} - 29 q^{13} - 18 q^{15} - 6 q^{17} - 8 q^{19} - 2 q^{21} + 4 q^{23} - 17 q^{25} + 4 q^{27} - 28 q^{31} + q^{33} + 6 q^{35} - 31 q^{37} + 4 q^{39}+ \cdots - 57 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/484\mathbb{Z}\right)^\times\).

\(n\) \(243\) \(365\)
\(\chi(n)\) \(1\) \(e\left(\frac{6}{11}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.44940 0.836810 0.418405 0.908261i \(-0.362589\pi\)
0.418405 + 0.908261i \(0.362589\pi\)
\(4\) 0 0
\(5\) 1.47314 + 3.22572i 0.658807 + 1.44259i 0.883629 + 0.468187i \(0.155093\pi\)
−0.224822 + 0.974400i \(0.572180\pi\)
\(6\) 0 0
\(7\) 3.83701 2.46590i 1.45025 0.932022i 0.451035 0.892506i \(-0.351055\pi\)
0.999219 0.0395153i \(-0.0125814\pi\)
\(8\) 0 0
\(9\) −0.899249 −0.299750
\(10\) 0 0
\(11\) −0.184859 3.31147i −0.0557370 0.998445i
\(12\) 0 0
\(13\) 1.30309 + 0.382621i 0.361412 + 0.106120i 0.457397 0.889263i \(-0.348782\pi\)
−0.0959852 + 0.995383i \(0.530600\pi\)
\(14\) 0 0
\(15\) 2.13516 + 4.67535i 0.551296 + 1.20717i
\(16\) 0 0
\(17\) −3.33111 + 3.84431i −0.807913 + 0.932382i −0.998787 0.0492330i \(-0.984322\pi\)
0.190874 + 0.981615i \(0.438868\pi\)
\(18\) 0 0
\(19\) −3.52424 4.06719i −0.808516 0.933077i 0.190300 0.981726i \(-0.439054\pi\)
−0.998816 + 0.0486489i \(0.984508\pi\)
\(20\) 0 0
\(21\) 5.56135 3.57406i 1.21359 0.779925i
\(22\) 0 0
\(23\) 4.38409 + 2.81749i 0.914147 + 0.587487i 0.910954 0.412508i \(-0.135347\pi\)
0.00319311 + 0.999995i \(0.498984\pi\)
\(24\) 0 0
\(25\) −4.96085 + 5.72512i −0.992169 + 1.14502i
\(26\) 0 0
\(27\) −5.65156 −1.08764
\(28\) 0 0
\(29\) 3.62486 + 4.18331i 0.673119 + 0.776821i 0.984861 0.173346i \(-0.0554580\pi\)
−0.311742 + 0.950167i \(0.600913\pi\)
\(30\) 0 0
\(31\) −4.07013 + 1.19510i −0.731017 + 0.214646i −0.625999 0.779824i \(-0.715308\pi\)
−0.105019 + 0.994470i \(0.533490\pi\)
\(32\) 0 0
\(33\) −0.267934 4.79963i −0.0466412 0.835509i
\(34\) 0 0
\(35\) 13.6067 + 8.74453i 2.29996 + 1.47809i
\(36\) 0 0
\(37\) −4.26569 + 1.25252i −0.701275 + 0.205913i −0.612884 0.790173i \(-0.709991\pi\)
−0.0883911 + 0.996086i \(0.528173\pi\)
\(38\) 0 0
\(39\) 1.88869 + 0.554570i 0.302433 + 0.0888022i
\(40\) 0 0
\(41\) 0.690733 4.80415i 0.107874 0.750283i −0.862041 0.506839i \(-0.830814\pi\)
0.969915 0.243444i \(-0.0782771\pi\)
\(42\) 0 0
\(43\) 3.18409 6.97218i 0.485569 1.06325i −0.495326 0.868707i \(-0.664951\pi\)
0.980895 0.194540i \(-0.0623213\pi\)
\(44\) 0 0
\(45\) −1.32472 2.90073i −0.197477 0.432415i
\(46\) 0 0
\(47\) −0.0505224 0.351391i −0.00736946 0.0512557i 0.985805 0.167895i \(-0.0536969\pi\)
−0.993174 + 0.116639i \(0.962788\pi\)
\(48\) 0 0
\(49\) 5.73410 12.5559i 0.819157 1.79370i
\(50\) 0 0
\(51\) −4.82810 + 5.57193i −0.676070 + 0.780226i
\(52\) 0 0
\(53\) −3.72070 + 2.39115i −0.511078 + 0.328450i −0.770634 0.637278i \(-0.780060\pi\)
0.259556 + 0.965728i \(0.416424\pi\)
\(54\) 0 0
\(55\) 10.4096 5.47455i 1.40362 0.738189i
\(56\) 0 0
\(57\) −5.10802 5.89497i −0.676574 0.780808i
\(58\) 0 0
\(59\) 0.0680064 + 0.472995i 0.00885368 + 0.0615787i 0.993769 0.111457i \(-0.0355516\pi\)
−0.984916 + 0.173035i \(0.944643\pi\)
\(60\) 0 0
\(61\) −0.756971 5.26485i −0.0969202 0.674095i −0.979129 0.203237i \(-0.934854\pi\)
0.882209 0.470858i \(-0.156055\pi\)
\(62\) 0 0
\(63\) −3.45043 + 2.21746i −0.434713 + 0.279373i
\(64\) 0 0
\(65\) 0.685399 + 4.76705i 0.0850133 + 0.591280i
\(66\) 0 0
\(67\) −1.89237 + 13.1618i −0.231190 + 1.60796i 0.461778 + 0.886996i \(0.347212\pi\)
−0.692968 + 0.720968i \(0.743697\pi\)
\(68\) 0 0
\(69\) 6.35429 + 4.08366i 0.764967 + 0.491614i
\(70\) 0 0
\(71\) −8.42091 9.71825i −0.999378 1.15334i −0.988163 0.153407i \(-0.950976\pi\)
−0.0112149 0.999937i \(-0.503570\pi\)
\(72\) 0 0
\(73\) 5.19725 + 3.34007i 0.608292 + 0.390926i 0.808216 0.588886i \(-0.200433\pi\)
−0.199924 + 0.979811i \(0.564070\pi\)
\(74\) 0 0
\(75\) −7.19024 + 8.29797i −0.830257 + 0.958167i
\(76\) 0 0
\(77\) −8.87505 12.2503i −1.01141 1.39605i
\(78\) 0 0
\(79\) 1.66502 + 3.64589i 0.187330 + 0.410195i 0.979873 0.199620i \(-0.0639709\pi\)
−0.792544 + 0.609815i \(0.791244\pi\)
\(80\) 0 0
\(81\) −5.49360 −0.610400
\(82\) 0 0
\(83\) −13.5870 + 8.73186i −1.49137 + 0.958446i −0.495409 + 0.868660i \(0.664982\pi\)
−0.995961 + 0.0897860i \(0.971382\pi\)
\(84\) 0 0
\(85\) −17.3079 5.08205i −1.87730 0.551225i
\(86\) 0 0
\(87\) 5.25385 + 6.06327i 0.563272 + 0.650051i
\(88\) 0 0
\(89\) 7.25282 8.37020i 0.768797 0.887239i −0.227450 0.973790i \(-0.573039\pi\)
0.996247 + 0.0865506i \(0.0275844\pi\)
\(90\) 0 0
\(91\) 5.94347 1.74516i 0.623045 0.182942i
\(92\) 0 0
\(93\) −5.89924 + 1.73217i −0.611722 + 0.179618i
\(94\) 0 0
\(95\) 7.92793 17.3597i 0.813389 1.78107i
\(96\) 0 0
\(97\) −1.13825 + 2.49242i −0.115572 + 0.253067i −0.958574 0.284843i \(-0.908059\pi\)
0.843002 + 0.537910i \(0.180786\pi\)
\(98\) 0 0
\(99\) 0.166234 + 2.97784i 0.0167071 + 0.299284i
\(100\) 0 0
\(101\) 0.698238 + 4.85635i 0.0694773 + 0.483225i 0.994619 + 0.103603i \(0.0330370\pi\)
−0.925142 + 0.379622i \(0.876054\pi\)
\(102\) 0 0
\(103\) 2.19273 15.2508i 0.216056 1.50270i −0.536346 0.843998i \(-0.680196\pi\)
0.752402 0.658704i \(-0.228895\pi\)
\(104\) 0 0
\(105\) 19.7216 + 12.6743i 1.92463 + 1.23688i
\(106\) 0 0
\(107\) 5.88608 + 12.8887i 0.569029 + 1.24600i 0.947313 + 0.320310i \(0.103787\pi\)
−0.378284 + 0.925690i \(0.623486\pi\)
\(108\) 0 0
\(109\) −9.86896 2.89779i −0.945275 0.277558i −0.227457 0.973788i \(-0.573041\pi\)
−0.717818 + 0.696230i \(0.754859\pi\)
\(110\) 0 0
\(111\) −6.18268 + 1.81540i −0.586834 + 0.172310i
\(112\) 0 0
\(113\) −0.327355 + 0.716807i −0.0307949 + 0.0674315i −0.924404 0.381414i \(-0.875437\pi\)
0.893609 + 0.448845i \(0.148165\pi\)
\(114\) 0 0
\(115\) −2.63005 + 18.2924i −0.245254 + 1.70578i
\(116\) 0 0
\(117\) −1.17180 0.344072i −0.108333 0.0318094i
\(118\) 0 0
\(119\) −3.30184 + 22.9648i −0.302680 + 2.10518i
\(120\) 0 0
\(121\) −10.9317 + 1.22431i −0.993787 + 0.111301i
\(122\) 0 0
\(123\) 1.00115 6.96313i 0.0902703 0.627844i
\(124\) 0 0
\(125\) −8.76298 2.57304i −0.783784 0.230140i
\(126\) 0 0
\(127\) 1.96077 13.6375i 0.173991 1.21013i −0.696358 0.717695i \(-0.745197\pi\)
0.870349 0.492436i \(-0.163893\pi\)
\(128\) 0 0
\(129\) 4.61500 10.1055i 0.406328 0.889735i
\(130\) 0 0
\(131\) 3.18401 0.934910i 0.278188 0.0816834i −0.139662 0.990199i \(-0.544602\pi\)
0.417851 + 0.908516i \(0.362784\pi\)
\(132\) 0 0
\(133\) −23.5518 6.91544i −2.04220 0.599644i
\(134\) 0 0
\(135\) −8.32553 18.2304i −0.716547 1.56902i
\(136\) 0 0
\(137\) −14.1265 9.07852i −1.20690 0.775631i −0.226767 0.973949i \(-0.572816\pi\)
−0.980138 + 0.198318i \(0.936452\pi\)
\(138\) 0 0
\(139\) 0.853423 5.93569i 0.0723864 0.503459i −0.921084 0.389365i \(-0.872695\pi\)
0.993470 0.114094i \(-0.0363964\pi\)
\(140\) 0 0
\(141\) −0.0732271 0.509305i −0.00616683 0.0428913i
\(142\) 0 0
\(143\) 1.02615 4.38587i 0.0858110 0.366765i
\(144\) 0 0
\(145\) −8.15427 + 17.8554i −0.677176 + 1.48281i
\(146\) 0 0
\(147\) 8.31099 18.1985i 0.685479 1.50099i
\(148\) 0 0
\(149\) 20.1697 5.92235i 1.65236 0.485178i 0.682920 0.730493i \(-0.260710\pi\)
0.969443 + 0.245316i \(0.0788916\pi\)
\(150\) 0 0
\(151\) 3.94665 1.15884i 0.321174 0.0943050i −0.117172 0.993112i \(-0.537383\pi\)
0.438345 + 0.898807i \(0.355565\pi\)
\(152\) 0 0
\(153\) 2.99550 3.45699i 0.242172 0.279481i
\(154\) 0 0
\(155\) −9.85092 11.3686i −0.791245 0.913146i
\(156\) 0 0
\(157\) −13.4750 3.95662i −1.07542 0.315772i −0.304376 0.952552i \(-0.598448\pi\)
−0.771046 + 0.636780i \(0.780266\pi\)
\(158\) 0 0
\(159\) −5.39278 + 3.46573i −0.427675 + 0.274850i
\(160\) 0 0
\(161\) 23.7695 1.87330
\(162\) 0 0
\(163\) −4.28267 9.37773i −0.335444 0.734521i 0.664474 0.747312i \(-0.268656\pi\)
−0.999918 + 0.0127908i \(0.995928\pi\)
\(164\) 0 0
\(165\) 15.0876 7.93480i 1.17457 0.617723i
\(166\) 0 0
\(167\) −5.29721 + 6.11330i −0.409910 + 0.473062i −0.922737 0.385431i \(-0.874053\pi\)
0.512827 + 0.858492i \(0.328598\pi\)
\(168\) 0 0
\(169\) −9.38466 6.03115i −0.721897 0.463935i
\(170\) 0 0
\(171\) 3.16917 + 3.65742i 0.242352 + 0.279690i
\(172\) 0 0
\(173\) 7.38772 + 4.74780i 0.561678 + 0.360969i 0.790464 0.612508i \(-0.209839\pi\)
−0.228786 + 0.973477i \(0.573476\pi\)
\(174\) 0 0
\(175\) −4.91726 + 34.2003i −0.371710 + 2.58530i
\(176\) 0 0
\(177\) 0.0985682 + 0.685557i 0.00740884 + 0.0515296i
\(178\) 0 0
\(179\) 13.9729 8.97986i 1.04439 0.671186i 0.0983183 0.995155i \(-0.468654\pi\)
0.946068 + 0.323969i \(0.105017\pi\)
\(180\) 0 0
\(181\) 1.91208 + 13.2988i 0.142124 + 0.988494i 0.928655 + 0.370944i \(0.120966\pi\)
−0.786532 + 0.617550i \(0.788125\pi\)
\(182\) 0 0
\(183\) −1.09715 7.63086i −0.0811038 0.564089i
\(184\) 0 0
\(185\) −10.3242 11.9148i −0.759053 0.875993i
\(186\) 0 0
\(187\) 13.3461 + 10.3202i 0.975963 + 0.754689i
\(188\) 0 0
\(189\) −21.6851 + 13.9362i −1.57736 + 1.01371i
\(190\) 0 0
\(191\) 0.436643 0.503913i 0.0315944 0.0364618i −0.739732 0.672901i \(-0.765048\pi\)
0.771327 + 0.636439i \(0.219593\pi\)
\(192\) 0 0
\(193\) −1.71521 + 3.75578i −0.123463 + 0.270347i −0.961264 0.275629i \(-0.911114\pi\)
0.837801 + 0.545976i \(0.183841\pi\)
\(194\) 0 0
\(195\) 0.993415 + 6.90935i 0.0711399 + 0.494789i
\(196\) 0 0
\(197\) −0.941295 2.06115i −0.0670645 0.146851i 0.873131 0.487485i \(-0.162086\pi\)
−0.940196 + 0.340634i \(0.889358\pi\)
\(198\) 0 0
\(199\) −1.89770 + 4.15539i −0.134525 + 0.294568i −0.964891 0.262650i \(-0.915404\pi\)
0.830367 + 0.557217i \(0.188131\pi\)
\(200\) 0 0
\(201\) −2.74280 + 19.0766i −0.193462 + 1.34556i
\(202\) 0 0
\(203\) 24.2242 + 7.11287i 1.70021 + 0.499226i
\(204\) 0 0
\(205\) 16.5144 4.84907i 1.15342 0.338674i
\(206\) 0 0
\(207\) −3.94239 2.53362i −0.274015 0.176099i
\(208\) 0 0
\(209\) −12.8169 + 12.4223i −0.886562 + 0.859266i
\(210\) 0 0
\(211\) −7.90908 + 2.32231i −0.544483 + 0.159875i −0.542396 0.840123i \(-0.682483\pi\)
−0.00208754 + 0.999998i \(0.500664\pi\)
\(212\) 0 0
\(213\) −12.2052 14.0856i −0.836289 0.965129i
\(214\) 0 0
\(215\) 27.1809 1.85372
\(216\) 0 0
\(217\) −12.6702 + 14.6221i −0.860106 + 0.992615i
\(218\) 0 0
\(219\) 7.53288 + 4.84109i 0.509025 + 0.327130i
\(220\) 0 0
\(221\) −5.81164 + 3.73492i −0.390933 + 0.251238i
\(222\) 0 0
\(223\) 16.1732 + 18.6649i 1.08304 + 1.24989i 0.966489 + 0.256707i \(0.0826377\pi\)
0.116549 + 0.993185i \(0.462817\pi\)
\(224\) 0 0
\(225\) 4.46104 5.14831i 0.297402 0.343221i
\(226\) 0 0
\(227\) 3.31985 + 7.26946i 0.220346 + 0.482491i 0.987231 0.159293i \(-0.0509216\pi\)
−0.766885 + 0.641785i \(0.778194\pi\)
\(228\) 0 0
\(229\) 27.4617 + 8.06348i 1.81472 + 0.532850i 0.998962 0.0455457i \(-0.0145027\pi\)
0.815757 + 0.578395i \(0.196321\pi\)
\(230\) 0 0
\(231\) −12.8635 17.7555i −0.846354 1.16823i
\(232\) 0 0
\(233\) 23.8739 1.56403 0.782015 0.623260i \(-0.214192\pi\)
0.782015 + 0.623260i \(0.214192\pi\)
\(234\) 0 0
\(235\) 1.05906 0.680619i 0.0690857 0.0443987i
\(236\) 0 0
\(237\) 2.41328 + 5.28434i 0.156759 + 0.343255i
\(238\) 0 0
\(239\) −7.45718 −0.482365 −0.241183 0.970480i \(-0.577535\pi\)
−0.241183 + 0.970480i \(0.577535\pi\)
\(240\) 0 0
\(241\) 4.33939 0.279525 0.139762 0.990185i \(-0.455366\pi\)
0.139762 + 0.990185i \(0.455366\pi\)
\(242\) 0 0
\(243\) 8.99227 0.576854
\(244\) 0 0
\(245\) 48.9491 3.12724
\(246\) 0 0
\(247\) −3.03620 6.64835i −0.193189 0.423025i
\(248\) 0 0
\(249\) −19.6930 + 12.6559i −1.24799 + 0.802037i
\(250\) 0 0
\(251\) 22.2961 1.40732 0.703660 0.710537i \(-0.251548\pi\)
0.703660 + 0.710537i \(0.251548\pi\)
\(252\) 0 0
\(253\) 8.51958 15.0386i 0.535622 0.945471i
\(254\) 0 0
\(255\) −25.0860 7.36590i −1.57094 0.461271i
\(256\) 0 0
\(257\) −0.201844 0.441976i −0.0125907 0.0275697i 0.903232 0.429152i \(-0.141188\pi\)
−0.915823 + 0.401582i \(0.868460\pi\)
\(258\) 0 0
\(259\) −13.2789 + 15.3247i −0.825112 + 0.952230i
\(260\) 0 0
\(261\) −3.25965 3.76183i −0.201767 0.232852i
\(262\) 0 0
\(263\) 0.0274060 0.0176128i 0.00168993 0.00108605i −0.539796 0.841796i \(-0.681498\pi\)
0.541486 + 0.840710i \(0.317862\pi\)
\(264\) 0 0
\(265\) −13.1943 8.47946i −0.810520 0.520889i
\(266\) 0 0
\(267\) 10.5122 12.1317i 0.643337 0.742450i
\(268\) 0 0
\(269\) −26.9612 −1.64386 −0.821928 0.569591i \(-0.807101\pi\)
−0.821928 + 0.569591i \(0.807101\pi\)
\(270\) 0 0
\(271\) −15.0044 17.3160i −0.911451 1.05187i −0.998450 0.0556623i \(-0.982273\pi\)
0.0869985 0.996208i \(-0.472272\pi\)
\(272\) 0 0
\(273\) 8.61444 2.52943i 0.521370 0.153088i
\(274\) 0 0
\(275\) 19.8756 + 15.3694i 1.19855 + 0.926807i
\(276\) 0 0
\(277\) 13.3596 + 8.58568i 0.802699 + 0.515863i 0.876496 0.481410i \(-0.159875\pi\)
−0.0737965 + 0.997273i \(0.523512\pi\)
\(278\) 0 0
\(279\) 3.66006 1.07469i 0.219122 0.0643401i
\(280\) 0 0
\(281\) 14.1195 + 4.14586i 0.842299 + 0.247321i 0.674292 0.738465i \(-0.264449\pi\)
0.168007 + 0.985786i \(0.446267\pi\)
\(282\) 0 0
\(283\) 2.86294 19.9122i 0.170184 1.18366i −0.708309 0.705902i \(-0.750542\pi\)
0.878493 0.477755i \(-0.158549\pi\)
\(284\) 0 0
\(285\) 11.4907 25.1612i 0.680651 1.49042i
\(286\) 0 0
\(287\) −9.19620 20.1369i −0.542835 1.18864i
\(288\) 0 0
\(289\) −1.26304 8.78467i −0.0742968 0.516745i
\(290\) 0 0
\(291\) −1.64978 + 3.61251i −0.0967116 + 0.211769i
\(292\) 0 0
\(293\) 3.48774 4.02507i 0.203756 0.235147i −0.644670 0.764461i \(-0.723005\pi\)
0.848426 + 0.529314i \(0.177551\pi\)
\(294\) 0 0
\(295\) −1.42557 + 0.916157i −0.0829997 + 0.0533407i
\(296\) 0 0
\(297\) 1.04474 + 18.7150i 0.0606219 + 1.08595i
\(298\) 0 0
\(299\) 4.63483 + 5.34888i 0.268039 + 0.309334i
\(300\) 0 0
\(301\) −4.97530 34.6040i −0.286771 1.99454i
\(302\) 0 0
\(303\) 1.01202 + 7.03878i 0.0581392 + 0.404367i
\(304\) 0 0
\(305\) 15.8678 10.1976i 0.908589 0.583915i
\(306\) 0 0
\(307\) 3.87121 + 26.9249i 0.220942 + 1.53668i 0.734487 + 0.678622i \(0.237423\pi\)
−0.513546 + 0.858062i \(0.671668\pi\)
\(308\) 0 0
\(309\) 3.17813 22.1044i 0.180798 1.25748i
\(310\) 0 0
\(311\) 18.7454 + 12.0469i 1.06295 + 0.683118i 0.950559 0.310545i \(-0.100512\pi\)
0.112394 + 0.993664i \(0.464148\pi\)
\(312\) 0 0
\(313\) 23.1158 + 26.6771i 1.30658 + 1.50788i 0.705576 + 0.708634i \(0.250688\pi\)
0.601007 + 0.799244i \(0.294766\pi\)
\(314\) 0 0
\(315\) −12.2359 7.86351i −0.689412 0.443058i
\(316\) 0 0
\(317\) −22.6845 + 26.1793i −1.27409 + 1.47037i −0.461949 + 0.886907i \(0.652850\pi\)
−0.812137 + 0.583467i \(0.801696\pi\)
\(318\) 0 0
\(319\) 13.1828 12.7769i 0.738095 0.715370i
\(320\) 0 0
\(321\) 8.53126 + 18.6809i 0.476169 + 1.04266i
\(322\) 0 0
\(323\) 27.3752 1.52319
\(324\) 0 0
\(325\) −8.65497 + 5.56221i −0.480091 + 0.308536i
\(326\) 0 0
\(327\) −14.3040 4.20005i −0.791015 0.232263i
\(328\) 0 0
\(329\) −1.06035 1.22371i −0.0584590 0.0674653i
\(330\) 0 0
\(331\) −22.3237 + 25.7629i −1.22702 + 1.41606i −0.349212 + 0.937044i \(0.613551\pi\)
−0.877808 + 0.479012i \(0.840995\pi\)
\(332\) 0 0
\(333\) 3.83592 1.12633i 0.210207 0.0617223i
\(334\) 0 0
\(335\) −45.2439 + 13.2848i −2.47194 + 0.725826i
\(336\) 0 0
\(337\) −2.43666 + 5.33554i −0.132733 + 0.290646i −0.964315 0.264757i \(-0.914708\pi\)
0.831582 + 0.555402i \(0.187436\pi\)
\(338\) 0 0
\(339\) −0.474467 + 1.03894i −0.0257695 + 0.0564273i
\(340\) 0 0
\(341\) 4.70993 + 13.2572i 0.255057 + 0.717917i
\(342\) 0 0
\(343\) −4.41607 30.7145i −0.238446 1.65842i
\(344\) 0 0
\(345\) −3.81199 + 26.5130i −0.205231 + 1.42741i
\(346\) 0 0
\(347\) −16.3123 10.4833i −0.875691 0.562773i 0.0237972 0.999717i \(-0.492424\pi\)
−0.899489 + 0.436944i \(0.856061\pi\)
\(348\) 0 0
\(349\) −8.13818 17.8201i −0.435627 0.953889i −0.992380 0.123212i \(-0.960681\pi\)
0.556754 0.830677i \(-0.312047\pi\)
\(350\) 0 0
\(351\) −7.36448 2.16241i −0.393087 0.115421i
\(352\) 0 0
\(353\) 15.8513 4.65435i 0.843678 0.247726i 0.168795 0.985651i \(-0.446012\pi\)
0.674883 + 0.737925i \(0.264194\pi\)
\(354\) 0 0
\(355\) 18.9432 41.4798i 1.00540 2.20152i
\(356\) 0 0
\(357\) −4.78568 + 33.2851i −0.253285 + 1.76164i
\(358\) 0 0
\(359\) −29.4013 8.63301i −1.55174 0.455633i −0.610122 0.792308i \(-0.708879\pi\)
−0.941621 + 0.336675i \(0.890698\pi\)
\(360\) 0 0
\(361\) −1.41778 + 9.86088i −0.0746201 + 0.518994i
\(362\) 0 0
\(363\) −15.8443 + 1.77451i −0.831610 + 0.0931375i
\(364\) 0 0
\(365\) −3.11787 + 21.6853i −0.163197 + 1.13506i
\(366\) 0 0
\(367\) 9.19920 + 2.70113i 0.480195 + 0.140998i 0.512867 0.858468i \(-0.328584\pi\)
−0.0326721 + 0.999466i \(0.510402\pi\)
\(368\) 0 0
\(369\) −0.621141 + 4.32013i −0.0323353 + 0.224897i
\(370\) 0 0
\(371\) −8.38005 + 18.3498i −0.435071 + 0.952672i
\(372\) 0 0
\(373\) 34.2001 10.0421i 1.77082 0.519958i 0.776853 0.629681i \(-0.216815\pi\)
0.993962 + 0.109723i \(0.0349964\pi\)
\(374\) 0 0
\(375\) −12.7010 3.72936i −0.655878 0.192583i
\(376\) 0 0
\(377\) 3.12288 + 6.83816i 0.160837 + 0.352183i
\(378\) 0 0
\(379\) −28.2626 18.1633i −1.45175 0.932986i −0.999148 0.0412750i \(-0.986858\pi\)
−0.452606 0.891711i \(-0.649506\pi\)
\(380\) 0 0
\(381\) 2.84194 19.7661i 0.145597 1.01265i
\(382\) 0 0
\(383\) 0.103796 + 0.721918i 0.00530374 + 0.0368883i 0.992301 0.123846i \(-0.0395229\pi\)
−0.986998 + 0.160734i \(0.948614\pi\)
\(384\) 0 0
\(385\) 26.4419 46.6748i 1.34760 2.37877i
\(386\) 0 0
\(387\) −2.86329 + 6.26972i −0.145549 + 0.318708i
\(388\) 0 0
\(389\) −13.4466 + 29.4440i −0.681772 + 1.49287i 0.178983 + 0.983852i \(0.442719\pi\)
−0.860755 + 0.509020i \(0.830008\pi\)
\(390\) 0 0
\(391\) −25.4352 + 7.46845i −1.28631 + 0.377696i
\(392\) 0 0
\(393\) 4.61489 1.35506i 0.232791 0.0683535i
\(394\) 0 0
\(395\) −9.30783 + 10.7418i −0.468328 + 0.540479i
\(396\) 0 0
\(397\) 23.0759 + 26.6310i 1.15815 + 1.33657i 0.931991 + 0.362482i \(0.118071\pi\)
0.226157 + 0.974091i \(0.427384\pi\)
\(398\) 0 0
\(399\) −34.1359 10.0232i −1.70893 0.501788i
\(400\) 0 0
\(401\) −0.0330043 + 0.0212106i −0.00164816 + 0.00105920i −0.541465 0.840724i \(-0.682130\pi\)
0.539816 + 0.841783i \(0.318494\pi\)
\(402\) 0 0
\(403\) −5.76101 −0.286976
\(404\) 0 0
\(405\) −8.09284 17.7208i −0.402136 0.880556i
\(406\) 0 0
\(407\) 4.93623 + 13.8942i 0.244680 + 0.688708i
\(408\) 0 0
\(409\) −1.13268 + 1.30718i −0.0560072 + 0.0646358i −0.783062 0.621944i \(-0.786343\pi\)
0.727055 + 0.686580i \(0.240889\pi\)
\(410\) 0 0
\(411\) −20.4748 13.1584i −1.00995 0.649055i
\(412\) 0 0
\(413\) 1.42730 + 1.64719i 0.0702327 + 0.0810529i
\(414\) 0 0
\(415\) −48.1821 30.9648i −2.36517 1.52000i
\(416\) 0 0
\(417\) 1.23695 8.60317i 0.0605736 0.421299i
\(418\) 0 0
\(419\) 1.41271 + 9.82564i 0.0690156 + 0.480014i 0.994791 + 0.101939i \(0.0325047\pi\)
−0.925775 + 0.378075i \(0.876586\pi\)
\(420\) 0 0
\(421\) −17.6199 + 11.3237i −0.858744 + 0.551881i −0.894290 0.447487i \(-0.852319\pi\)
0.0355469 + 0.999368i \(0.488683\pi\)
\(422\) 0 0
\(423\) 0.0454323 + 0.315988i 0.00220899 + 0.0153639i
\(424\) 0 0
\(425\) −5.48400 38.1420i −0.266013 1.85016i
\(426\) 0 0
\(427\) −15.8871 18.3347i −0.768830 0.887277i
\(428\) 0 0
\(429\) 1.48730 6.35686i 0.0718075 0.306912i
\(430\) 0 0
\(431\) 20.2211 12.9953i 0.974017 0.625963i 0.0461737 0.998933i \(-0.485297\pi\)
0.927843 + 0.372971i \(0.121661\pi\)
\(432\) 0 0
\(433\) 10.3450 11.9388i 0.497150 0.573742i −0.450612 0.892720i \(-0.648794\pi\)
0.947762 + 0.318978i \(0.103340\pi\)
\(434\) 0 0
\(435\) −11.8188 + 25.8795i −0.566667 + 1.24083i
\(436\) 0 0
\(437\) −3.99135 27.7604i −0.190932 1.32796i
\(438\) 0 0
\(439\) −4.81018 10.5328i −0.229577 0.502704i 0.759427 0.650593i \(-0.225480\pi\)
−0.989004 + 0.147889i \(0.952752\pi\)
\(440\) 0 0
\(441\) −5.15638 + 11.2909i −0.245542 + 0.537662i
\(442\) 0 0
\(443\) −4.10905 + 28.5791i −0.195227 + 1.35783i 0.622677 + 0.782479i \(0.286045\pi\)
−0.817904 + 0.575354i \(0.804864\pi\)
\(444\) 0 0
\(445\) 37.6843 + 11.0651i 1.78641 + 0.524537i
\(446\) 0 0
\(447\) 29.2338 8.58383i 1.38271 0.406001i
\(448\) 0 0
\(449\) −7.10431 4.56566i −0.335273 0.215467i 0.362161 0.932115i \(-0.382039\pi\)
−0.697435 + 0.716648i \(0.745675\pi\)
\(450\) 0 0
\(451\) −16.0365 1.39925i −0.755129 0.0658882i
\(452\) 0 0
\(453\) 5.72026 1.67962i 0.268761 0.0789154i
\(454\) 0 0
\(455\) 14.3849 + 16.6011i 0.674377 + 0.778272i
\(456\) 0 0
\(457\) −24.4517 −1.14380 −0.571901 0.820322i \(-0.693794\pi\)
−0.571901 + 0.820322i \(0.693794\pi\)
\(458\) 0 0
\(459\) 18.8260 21.7263i 0.878721 1.01410i
\(460\) 0 0
\(461\) 24.2764 + 15.6015i 1.13067 + 0.726635i 0.965699 0.259665i \(-0.0836120\pi\)
0.164967 + 0.986299i \(0.447248\pi\)
\(462\) 0 0
\(463\) 11.4323 7.34712i 0.531306 0.341450i −0.247324 0.968933i \(-0.579551\pi\)
0.778630 + 0.627483i \(0.215915\pi\)
\(464\) 0 0
\(465\) −14.2779 16.4776i −0.662122 0.764129i
\(466\) 0 0
\(467\) 3.20775 3.70194i 0.148437 0.171306i −0.676662 0.736294i \(-0.736574\pi\)
0.825099 + 0.564989i \(0.191119\pi\)
\(468\) 0 0
\(469\) 25.1945 + 55.1682i 1.16337 + 2.54743i
\(470\) 0 0
\(471\) −19.5306 5.73471i −0.899923 0.264241i
\(472\) 0 0
\(473\) −23.6768 9.25514i −1.08866 0.425552i
\(474\) 0 0
\(475\) 40.7684 1.87058
\(476\) 0 0
\(477\) 3.34584 2.15024i 0.153196 0.0984528i
\(478\) 0 0
\(479\) −2.35755 5.16232i −0.107719 0.235872i 0.848095 0.529845i \(-0.177750\pi\)
−0.955814 + 0.293972i \(0.905023\pi\)
\(480\) 0 0
\(481\) −6.03781 −0.275300
\(482\) 0 0
\(483\) 34.4514 1.56759
\(484\) 0 0
\(485\) −9.71666 −0.441211
\(486\) 0 0
\(487\) 5.30022 0.240176 0.120088 0.992763i \(-0.461682\pi\)
0.120088 + 0.992763i \(0.461682\pi\)
\(488\) 0 0
\(489\) −6.20728 13.5921i −0.280703 0.614654i
\(490\) 0 0
\(491\) 13.7406 8.83053i 0.620104 0.398516i −0.192530 0.981291i \(-0.561669\pi\)
0.812634 + 0.582775i \(0.198033\pi\)
\(492\) 0 0
\(493\) −28.1567 −1.26811
\(494\) 0 0
\(495\) −9.36079 + 4.92299i −0.420736 + 0.221272i
\(496\) 0 0
\(497\) −56.2753 16.5239i −2.52429 0.741199i
\(498\) 0 0
\(499\) 2.13714 + 4.67968i 0.0956714 + 0.209491i 0.951417 0.307906i \(-0.0996283\pi\)
−0.855745 + 0.517397i \(0.826901\pi\)
\(500\) 0 0
\(501\) −7.67775 + 8.86060i −0.343017 + 0.395862i
\(502\) 0 0
\(503\) −3.53183 4.07595i −0.157476 0.181738i 0.671529 0.740979i \(-0.265638\pi\)
−0.829005 + 0.559241i \(0.811093\pi\)
\(504\) 0 0
\(505\) −14.6366 + 9.40640i −0.651322 + 0.418579i
\(506\) 0 0
\(507\) −13.6021 8.74153i −0.604090 0.388225i
\(508\) 0 0
\(509\) 2.15954 2.49224i 0.0957199 0.110467i −0.705869 0.708343i \(-0.749443\pi\)
0.801589 + 0.597876i \(0.203989\pi\)
\(510\) 0 0
\(511\) 28.1782 1.24653
\(512\) 0 0
\(513\) 19.9174 + 22.9860i 0.879377 + 1.01485i
\(514\) 0 0
\(515\) 52.4249 15.3933i 2.31012 0.678312i
\(516\) 0 0
\(517\) −1.15428 + 0.232261i −0.0507653 + 0.0102148i
\(518\) 0 0
\(519\) 10.7077 + 6.88145i 0.470018 + 0.302062i
\(520\) 0 0
\(521\) 4.78055 1.40370i 0.209440 0.0614970i −0.175330 0.984510i \(-0.556099\pi\)
0.384769 + 0.923013i \(0.374281\pi\)
\(522\) 0 0
\(523\) 34.2462 + 10.0556i 1.49748 + 0.439701i 0.924921 0.380160i \(-0.124131\pi\)
0.572562 + 0.819861i \(0.305949\pi\)
\(524\) 0 0
\(525\) −7.12706 + 49.5698i −0.311050 + 2.16340i
\(526\) 0 0
\(527\) 8.96374 19.6278i 0.390466 0.855002i
\(528\) 0 0
\(529\) 1.72751 + 3.78272i 0.0751091 + 0.164466i
\(530\) 0 0
\(531\) −0.0611547 0.425340i −0.00265389 0.0184582i
\(532\) 0 0
\(533\) 2.73826 5.99595i 0.118607 0.259713i
\(534\) 0 0
\(535\) −32.9044 + 37.9737i −1.42258 + 1.64175i
\(536\) 0 0
\(537\) 20.2523 13.0154i 0.873952 0.561655i
\(538\) 0 0
\(539\) −42.6386 16.6672i −1.83657 0.717908i
\(540\) 0 0
\(541\) −9.32545 10.7621i −0.400933 0.462701i 0.519002 0.854773i \(-0.326304\pi\)
−0.919934 + 0.392072i \(0.871758\pi\)
\(542\) 0 0
\(543\) 2.77137 + 19.2753i 0.118931 + 0.827181i
\(544\) 0 0
\(545\) −5.19088 36.1034i −0.222353 1.54650i
\(546\) 0 0
\(547\) 27.9195 17.9428i 1.19375 0.767178i 0.215888 0.976418i \(-0.430735\pi\)
0.977864 + 0.209240i \(0.0670990\pi\)
\(548\) 0 0
\(549\) 0.680706 + 4.73441i 0.0290518 + 0.202060i
\(550\) 0 0
\(551\) 4.23944 29.4859i 0.180606 1.25614i
\(552\) 0 0
\(553\) 15.3791 + 9.88355i 0.653986 + 0.420291i
\(554\) 0 0
\(555\) −14.9639 17.2693i −0.635183 0.733040i
\(556\) 0 0
\(557\) −21.1994 13.6240i −0.898246 0.577268i 0.00802356 0.999968i \(-0.497446\pi\)
−0.906270 + 0.422700i \(0.861082\pi\)
\(558\) 0 0
\(559\) 6.81685 7.86706i 0.288322 0.332741i
\(560\) 0 0
\(561\) 19.3438 + 14.9581i 0.816695 + 0.631531i
\(562\) 0 0
\(563\) 7.71245 + 16.8879i 0.325041 + 0.711741i 0.999651 0.0264341i \(-0.00841520\pi\)
−0.674609 + 0.738175i \(0.735688\pi\)
\(564\) 0 0
\(565\) −2.79446 −0.117564
\(566\) 0 0
\(567\) −21.0790 + 13.5467i −0.885236 + 0.568906i
\(568\) 0 0
\(569\) −15.9645 4.68759i −0.669265 0.196514i −0.0705892 0.997505i \(-0.522488\pi\)
−0.598676 + 0.800992i \(0.704306\pi\)
\(570\) 0 0
\(571\) −6.02932 6.95821i −0.252319 0.291192i 0.615433 0.788189i \(-0.288981\pi\)
−0.867752 + 0.496998i \(0.834436\pi\)
\(572\) 0 0
\(573\) 0.632869 0.730369i 0.0264385 0.0305116i
\(574\) 0 0
\(575\) −37.8793 + 11.1224i −1.57968 + 0.463834i
\(576\) 0 0
\(577\) 1.97349 0.579470i 0.0821576 0.0241236i −0.240395 0.970675i \(-0.577277\pi\)
0.322553 + 0.946551i \(0.395459\pi\)
\(578\) 0 0
\(579\) −2.48601 + 5.44361i −0.103315 + 0.226229i
\(580\) 0 0
\(581\) −30.6017 + 67.0085i −1.26957 + 2.77998i
\(582\) 0 0
\(583\) 8.60603 + 11.8790i 0.356425 + 0.491977i
\(584\) 0 0
\(585\) −0.616344 4.28677i −0.0254827 0.177236i
\(586\) 0 0
\(587\) −0.868204 + 6.03849i −0.0358346 + 0.249235i −0.999863 0.0165649i \(-0.994727\pi\)
0.964028 + 0.265800i \(0.0856361\pi\)
\(588\) 0 0
\(589\) 19.2048 + 12.3422i 0.791320 + 0.508551i
\(590\) 0 0
\(591\) −1.36431 2.98742i −0.0561202 0.122886i
\(592\) 0 0
\(593\) −39.0564 11.4680i −1.60386 0.470934i −0.647240 0.762287i \(-0.724077\pi\)
−0.956616 + 0.291352i \(0.905895\pi\)
\(594\) 0 0
\(595\) −78.9422 + 23.1795i −3.23632 + 0.950268i
\(596\) 0 0
\(597\) −2.75052 + 6.02280i −0.112571 + 0.246497i
\(598\) 0 0
\(599\) −2.59798 + 18.0693i −0.106150 + 0.738293i 0.865335 + 0.501194i \(0.167106\pi\)
−0.971486 + 0.237099i \(0.923803\pi\)
\(600\) 0 0
\(601\) 4.26422 + 1.25209i 0.173941 + 0.0510737i 0.367543 0.930006i \(-0.380199\pi\)
−0.193602 + 0.981080i \(0.562017\pi\)
\(602\) 0 0
\(603\) 1.70172 11.8357i 0.0692992 0.481987i
\(604\) 0 0
\(605\) −20.0531 33.4589i −0.815275 1.36030i
\(606\) 0 0
\(607\) 6.06568 42.1878i 0.246198 1.71235i −0.373602 0.927589i \(-0.621878\pi\)
0.619801 0.784759i \(-0.287213\pi\)
\(608\) 0 0
\(609\) 35.1105 + 10.3094i 1.42275 + 0.417757i
\(610\) 0 0
\(611\) 0.0686145 0.477225i 0.00277585 0.0193064i
\(612\) 0 0
\(613\) 0.637691 1.39635i 0.0257561 0.0563980i −0.896317 0.443414i \(-0.853767\pi\)
0.922073 + 0.387016i \(0.126494\pi\)
\(614\) 0 0
\(615\) 23.9359 7.02823i 0.965190 0.283405i
\(616\) 0 0
\(617\) 21.6285 + 6.35070i 0.870731 + 0.255670i 0.686426 0.727199i \(-0.259178\pi\)
0.184305 + 0.982869i \(0.440997\pi\)
\(618\) 0 0
\(619\) 2.66550 + 5.83662i 0.107135 + 0.234594i 0.955605 0.294650i \(-0.0952030\pi\)
−0.848470 + 0.529244i \(0.822476\pi\)
\(620\) 0 0
\(621\) −24.7770 15.9232i −0.994266 0.638976i
\(622\) 0 0
\(623\) 7.18909 50.0012i 0.288025 2.00326i
\(624\) 0 0
\(625\) 0.781320 + 5.43420i 0.0312528 + 0.217368i
\(626\) 0 0
\(627\) −18.5767 + 18.0048i −0.741884 + 0.719042i
\(628\) 0 0
\(629\) 9.39442 20.5709i 0.374580 0.820216i
\(630\) 0 0
\(631\) −6.48529 + 14.2008i −0.258175 + 0.565325i −0.993687 0.112187i \(-0.964214\pi\)
0.735512 + 0.677512i \(0.236942\pi\)
\(632\) 0 0
\(633\) −11.4634 + 3.36596i −0.455629 + 0.133785i
\(634\) 0 0
\(635\) 46.8792 13.7650i 1.86034 0.546247i
\(636\) 0 0
\(637\) 12.2762 14.1675i 0.486401 0.561336i
\(638\) 0 0
\(639\) 7.57249 + 8.73912i 0.299563 + 0.345714i
\(640\) 0 0
\(641\) −36.0520 10.5858i −1.42397 0.418115i −0.523123 0.852257i \(-0.675233\pi\)
−0.900844 + 0.434143i \(0.857051\pi\)
\(642\) 0 0
\(643\) −3.30844 + 2.12621i −0.130472 + 0.0838493i −0.604249 0.796796i \(-0.706527\pi\)
0.473777 + 0.880645i \(0.342890\pi\)
\(644\) 0 0
\(645\) 39.3959 1.55121
\(646\) 0 0
\(647\) 13.4338 + 29.4160i 0.528139 + 1.15646i 0.966265 + 0.257549i \(0.0829149\pi\)
−0.438126 + 0.898913i \(0.644358\pi\)
\(648\) 0 0
\(649\) 1.55374 0.312638i 0.0609895 0.0122721i
\(650\) 0 0
\(651\) −18.3641 + 21.1933i −0.719745 + 0.830630i
\(652\) 0 0
\(653\) −17.5810 11.2986i −0.687999 0.442150i 0.149375 0.988781i \(-0.452274\pi\)
−0.837374 + 0.546631i \(0.815910\pi\)
\(654\) 0 0
\(655\) 7.70625 + 8.89348i 0.301108 + 0.347497i
\(656\) 0 0
\(657\) −4.67362 3.00355i −0.182335 0.117180i
\(658\) 0 0
\(659\) −6.50750 + 45.2607i −0.253496 + 1.76311i 0.323375 + 0.946271i \(0.395182\pi\)
−0.576871 + 0.816835i \(0.695727\pi\)
\(660\) 0 0
\(661\) 5.72854 + 39.8429i 0.222814 + 1.54971i 0.727320 + 0.686299i \(0.240766\pi\)
−0.504505 + 0.863409i \(0.668325\pi\)
\(662\) 0 0
\(663\) −8.42338 + 5.41338i −0.327137 + 0.210238i
\(664\) 0 0
\(665\) −12.3878 86.1590i −0.480378 3.34110i
\(666\) 0 0
\(667\) 4.10530 + 28.5530i 0.158958 + 1.10558i
\(668\) 0 0
\(669\) 23.4414 + 27.0528i 0.906297 + 1.04592i
\(670\) 0 0
\(671\) −17.2945 + 3.47994i −0.667645 + 0.134342i
\(672\) 0 0
\(673\) 14.6494 9.41463i 0.564695 0.362907i −0.226934 0.973910i \(-0.572870\pi\)
0.791628 + 0.611003i \(0.209234\pi\)
\(674\) 0 0
\(675\) 28.0365 32.3559i 1.07913 1.24538i
\(676\) 0 0
\(677\) 1.20395 2.63628i 0.0462715 0.101320i −0.885084 0.465430i \(-0.845900\pi\)
0.931356 + 0.364110i \(0.118627\pi\)
\(678\) 0 0
\(679\) 1.77857 + 12.3703i 0.0682554 + 0.474727i
\(680\) 0 0
\(681\) 4.81178 + 10.5363i 0.184388 + 0.403753i
\(682\) 0 0
\(683\) −3.72803 + 8.16324i −0.142649 + 0.312358i −0.967449 0.253067i \(-0.918561\pi\)
0.824800 + 0.565425i \(0.191288\pi\)
\(684\) 0 0
\(685\) 8.47457 58.9420i 0.323797 2.25206i
\(686\) 0 0
\(687\) 39.8029 + 11.6872i 1.51857 + 0.445894i
\(688\) 0 0
\(689\) −5.76331 + 1.69226i −0.219565 + 0.0644700i
\(690\) 0 0
\(691\) −4.22282 2.71384i −0.160644 0.103239i 0.457849 0.889030i \(-0.348620\pi\)
−0.618493 + 0.785791i \(0.712256\pi\)
\(692\) 0 0
\(693\) 7.98088 + 11.0161i 0.303169 + 0.418466i
\(694\) 0 0
\(695\) 20.4041 5.99118i 0.773971 0.227259i
\(696\) 0 0
\(697\) 16.1677 + 18.6586i 0.612397 + 0.706743i
\(698\) 0 0
\(699\) 34.6027 1.30880
\(700\) 0 0
\(701\) −12.5357 + 14.4670i −0.473468 + 0.546411i −0.941373 0.337368i \(-0.890463\pi\)
0.467905 + 0.883779i \(0.345009\pi\)
\(702\) 0 0
\(703\) 20.1275 + 12.9352i 0.759125 + 0.487860i
\(704\) 0 0
\(705\) 1.53500 0.986487i 0.0578116 0.0371533i
\(706\) 0 0
\(707\) 14.6544 + 16.9121i 0.551136 + 0.636045i
\(708\) 0 0
\(709\) 21.0614 24.3062i 0.790979 0.912838i −0.206872 0.978368i \(-0.566328\pi\)
0.997851 + 0.0655300i \(0.0208738\pi\)
\(710\) 0 0
\(711\) −1.49727 3.27857i −0.0561520 0.122956i
\(712\) 0 0
\(713\) −21.2110 6.22812i −0.794359 0.233245i
\(714\) 0 0
\(715\) 15.6592 3.15091i 0.585623 0.117837i
\(716\) 0 0
\(717\) −10.8084 −0.403648
\(718\) 0 0
\(719\) −2.60407 + 1.67353i −0.0971153 + 0.0624122i −0.588297 0.808645i \(-0.700201\pi\)
0.491182 + 0.871057i \(0.336565\pi\)
\(720\) 0 0
\(721\) −29.1933 63.9244i −1.08722 2.38067i
\(722\) 0 0
\(723\) 6.28950 0.233909
\(724\) 0 0
\(725\) −41.9323 −1.55733
\(726\) 0 0
\(727\) 9.80831 0.363770 0.181885 0.983320i \(-0.441780\pi\)
0.181885 + 0.983320i \(0.441780\pi\)
\(728\) 0 0
\(729\) 29.5142 1.09312
\(730\) 0 0
\(731\) 16.1966 + 35.4657i 0.599055 + 1.31175i
\(732\) 0 0
\(733\) 25.9016 16.6459i 0.956697 0.614832i 0.0336148 0.999435i \(-0.489298\pi\)
0.923082 + 0.384603i \(0.125662\pi\)
\(734\) 0 0
\(735\) 70.9466 2.61690
\(736\) 0 0
\(737\) 43.9346 + 3.83347i 1.61835 + 0.141208i
\(738\) 0 0
\(739\) −29.4391 8.64410i −1.08294 0.317979i −0.308883 0.951100i \(-0.599955\pi\)
−0.774052 + 0.633122i \(0.781773\pi\)
\(740\) 0 0
\(741\) −4.40066 9.63610i −0.161662 0.353991i
\(742\) 0 0
\(743\) −0.0385046 + 0.0444367i −0.00141260 + 0.00163023i −0.756455 0.654045i \(-0.773071\pi\)
0.755043 + 0.655675i \(0.227616\pi\)
\(744\) 0 0
\(745\) 48.8166 + 56.3373i 1.78850 + 2.06404i
\(746\) 0 0
\(747\) 12.2181 7.85211i 0.447038 0.287294i
\(748\) 0 0
\(749\) 54.3672 + 34.9397i 1.98653 + 1.27667i
\(750\) 0 0
\(751\) 13.9887 16.1438i 0.510453 0.589095i −0.440761 0.897624i \(-0.645291\pi\)
0.951215 + 0.308530i \(0.0998369\pi\)
\(752\) 0 0
\(753\) 32.3160 1.17766
\(754\) 0 0
\(755\) 9.55205 + 11.0237i 0.347635 + 0.401192i
\(756\) 0 0
\(757\) −37.1405 + 10.9054i −1.34989 + 0.396364i −0.875189 0.483781i \(-0.839263\pi\)
−0.474704 + 0.880145i \(0.657445\pi\)
\(758\) 0 0
\(759\) 12.3483 21.7969i 0.448213 0.791179i
\(760\) 0 0
\(761\) −5.71431 3.67237i −0.207144 0.133123i 0.432956 0.901415i \(-0.357471\pi\)
−0.640100 + 0.768292i \(0.721107\pi\)
\(762\) 0 0
\(763\) −45.0130 + 13.2170i −1.62958 + 0.478488i
\(764\) 0 0
\(765\) 15.5641 + 4.57002i 0.562720 + 0.165230i
\(766\) 0 0
\(767\) −0.0923595 + 0.642374i −0.00333491 + 0.0231948i
\(768\) 0 0
\(769\) −16.3903 + 35.8898i −0.591050 + 1.29422i 0.343755 + 0.939059i \(0.388301\pi\)
−0.934805 + 0.355160i \(0.884426\pi\)
\(770\) 0 0
\(771\) −0.292552 0.640599i −0.0105360 0.0230706i
\(772\) 0 0
\(773\) 2.80417 + 19.5034i 0.100859 + 0.701489i 0.976024 + 0.217664i \(0.0698438\pi\)
−0.875165 + 0.483825i \(0.839247\pi\)
\(774\) 0 0
\(775\) 13.3492 29.2307i 0.479518 1.05000i
\(776\) 0 0
\(777\) −19.2464 + 22.2115i −0.690461 + 0.796835i
\(778\) 0 0
\(779\) −21.9737 + 14.1216i −0.787290 + 0.505960i
\(780\) 0 0
\(781\) −30.6250 + 29.6821i −1.09585 + 1.06211i
\(782\) 0 0
\(783\) −20.4861 23.6422i −0.732113 0.844903i
\(784\) 0 0
\(785\) −7.08759 49.2953i −0.252967 1.75942i
\(786\) 0 0
\(787\) −2.67718 18.6202i −0.0954312 0.663738i −0.980244 0.197792i \(-0.936623\pi\)
0.884813 0.465947i \(-0.154286\pi\)
\(788\) 0 0
\(789\) 0.0397221 0.0255279i 0.00141415 0.000908816i
\(790\) 0 0
\(791\) 0.511508 + 3.55762i 0.0181871 + 0.126494i
\(792\) 0 0
\(793\) 1.02804 7.15020i 0.0365069 0.253911i
\(794\) 0 0
\(795\) −19.1238 12.2901i −0.678251 0.435885i
\(796\) 0 0
\(797\) −1.39999 1.61568i −0.0495903 0.0572303i 0.730412 0.683006i \(-0.239328\pi\)
−0.780003 + 0.625776i \(0.784782\pi\)
\(798\) 0 0
\(799\) 1.51915 + 0.976300i 0.0537437 + 0.0345390i
\(800\) 0 0
\(801\) −6.52209 + 7.52689i −0.230447 + 0.265950i
\(802\) 0 0
\(803\) 10.0998 17.8280i 0.356413 0.629135i
\(804\) 0 0
\(805\) 35.0157 + 76.6737i 1.23414 + 2.70239i
\(806\) 0 0
\(807\) −39.0775 −1.37559
\(808\) 0 0
\(809\) 26.5814 17.0828i 0.934552 0.600600i 0.0177071 0.999843i \(-0.494363\pi\)
0.916845 + 0.399243i \(0.130727\pi\)
\(810\) 0 0
\(811\) −2.26564 0.665251i −0.0795573 0.0233601i 0.241712 0.970348i \(-0.422291\pi\)
−0.321269 + 0.946988i \(0.604109\pi\)
\(812\) 0 0
\(813\) −21.7473 25.0977i −0.762711 0.880216i
\(814\) 0 0
\(815\) 23.9410 27.6294i 0.838617 0.967815i
\(816\) 0 0
\(817\) −39.5786 + 11.6213i −1.38468 + 0.406579i
\(818\) 0 0
\(819\) −5.34466 + 1.56933i −0.186757 + 0.0548369i
\(820\) 0 0
\(821\) −4.94937 + 10.8376i −0.172734 + 0.378235i −0.976123 0.217220i \(-0.930301\pi\)
0.803389 + 0.595455i \(0.203028\pi\)
\(822\) 0 0
\(823\) −1.16077 + 2.54172i −0.0404617 + 0.0885989i −0.928784 0.370623i \(-0.879144\pi\)
0.888322 + 0.459222i \(0.151872\pi\)
\(824\) 0 0
\(825\) 28.8077 + 22.2763i 1.00295 + 0.775561i
\(826\) 0 0
\(827\) −0.567066 3.94403i −0.0197188 0.137147i 0.977584 0.210547i \(-0.0675244\pi\)
−0.997303 + 0.0733992i \(0.976615\pi\)
\(828\) 0 0
\(829\) 0.0308833 0.214798i 0.00107262 0.00746024i −0.989278 0.146044i \(-0.953346\pi\)
0.990351 + 0.138584i \(0.0442550\pi\)
\(830\) 0 0
\(831\) 19.3633 + 12.4441i 0.671706 + 0.431679i
\(832\) 0 0
\(833\) 29.1679 + 63.8688i 1.01061 + 2.21292i
\(834\) 0 0
\(835\) −27.5233 8.08158i −0.952484 0.279675i
\(836\) 0 0
\(837\) 23.0026 6.75417i 0.795086 0.233458i
\(838\) 0 0
\(839\) 2.09598 4.58956i 0.0723613 0.158449i −0.869995 0.493061i \(-0.835878\pi\)
0.942356 + 0.334612i \(0.108605\pi\)
\(840\) 0 0
\(841\) −0.233344 + 1.62294i −0.00804635 + 0.0559636i
\(842\) 0 0
\(843\) 20.4648 + 6.00899i 0.704844 + 0.206961i
\(844\) 0 0
\(845\) 5.62993 39.1570i 0.193675 1.34704i
\(846\) 0 0
\(847\) −38.9259 + 31.6540i −1.33751 + 1.08764i
\(848\) 0 0
\(849\) 4.14954 28.8607i 0.142412 0.990496i
\(850\) 0 0
\(851\) −22.2301 6.52736i −0.762040 0.223755i
\(852\) 0 0
\(853\) 3.52201 24.4961i 0.120591 0.838730i −0.836298 0.548276i \(-0.815284\pi\)
0.956889 0.290455i \(-0.0938065\pi\)
\(854\) 0 0
\(855\) −7.12919 + 15.6107i −0.243813 + 0.533876i
\(856\) 0 0
\(857\) −40.2698 + 11.8243i −1.37559 + 0.403909i −0.884232 0.467049i \(-0.845317\pi\)
−0.491357 + 0.870958i \(0.663499\pi\)
\(858\) 0 0
\(859\) 32.4862 + 9.53881i 1.10842 + 0.325460i 0.784191 0.620520i \(-0.213078\pi\)
0.324225 + 0.945980i \(0.394897\pi\)
\(860\) 0 0
\(861\) −13.3289 29.1863i −0.454249 0.994667i
\(862\) 0 0
\(863\) 19.3819 + 12.4560i 0.659769 + 0.424008i 0.827224 0.561872i \(-0.189919\pi\)
−0.167455 + 0.985880i \(0.553555\pi\)
\(864\) 0 0
\(865\) −4.43195 + 30.8249i −0.150691 + 1.04808i
\(866\) 0 0
\(867\) −1.83065 12.7325i −0.0621722 0.432417i
\(868\) 0 0
\(869\) 11.7655 6.18765i 0.399116 0.209902i
\(870\) 0 0
\(871\) −7.50189 + 16.4269i −0.254192 + 0.556603i
\(872\) 0 0
\(873\) 1.02357 2.24131i 0.0346426 0.0758568i
\(874\) 0 0
\(875\) −39.9685 + 11.7358i −1.35118 + 0.396743i
\(876\) 0 0
\(877\) 4.27904 1.25644i 0.144493 0.0424270i −0.208686 0.977983i \(-0.566919\pi\)
0.353179 + 0.935556i \(0.385101\pi\)
\(878\) 0 0
\(879\) 5.05512 5.83392i 0.170505 0.196773i
\(880\) 0 0
\(881\) −16.6032 19.1611i −0.559376 0.645555i 0.403665 0.914907i \(-0.367736\pi\)
−0.963042 + 0.269352i \(0.913191\pi\)
\(882\) 0 0
\(883\) −25.0574 7.35752i −0.843249 0.247600i −0.168550 0.985693i \(-0.553908\pi\)
−0.674699 + 0.738093i \(0.735727\pi\)
\(884\) 0 0
\(885\) −2.06621 + 1.32787i −0.0694550 + 0.0446360i
\(886\) 0 0
\(887\) 2.78739 0.0935913 0.0467957 0.998904i \(-0.485099\pi\)
0.0467957 + 0.998904i \(0.485099\pi\)
\(888\) 0 0
\(889\) −26.1051 57.1622i −0.875537 1.91716i
\(890\) 0 0
\(891\) 1.01554 + 18.1919i 0.0340219 + 0.609452i
\(892\) 0 0
\(893\) −1.25112 + 1.44387i −0.0418672 + 0.0483173i
\(894\) 0 0
\(895\) 49.5506 + 31.8442i 1.65629 + 1.06444i
\(896\) 0 0
\(897\) 6.71771 + 7.75265i 0.224298 + 0.258853i
\(898\) 0 0
\(899\) −19.7531 12.6945i −0.658803 0.423387i
\(900\) 0 0
\(901\) 3.20176 22.2687i 0.106666 0.741879i
\(902\) 0 0
\(903\) −7.21118 50.1549i −0.239973 1.66905i
\(904\) 0 0
\(905\) −40.0816 + 25.7588i −1.33236 + 0.856253i
\(906\) 0 0
\(907\) −0.00740593 0.0515094i −0.000245910 0.00171034i 0.989698 0.143170i \(-0.0457296\pi\)
−0.989944 + 0.141460i \(0.954820\pi\)
\(908\) 0 0
\(909\) −0.627890 4.36707i −0.0208258 0.144847i
\(910\) 0 0
\(911\) −7.64070 8.81784i −0.253148 0.292148i 0.614925 0.788586i \(-0.289186\pi\)
−0.868072 + 0.496438i \(0.834641\pi\)
\(912\) 0 0
\(913\) 31.4269 + 43.3789i 1.04008 + 1.43563i
\(914\) 0 0
\(915\) 22.9988 14.7804i 0.760316 0.488625i
\(916\) 0 0
\(917\) 9.91169 11.4387i 0.327313 0.377739i
\(918\) 0 0
\(919\) 21.5028 47.0845i 0.709311 1.55317i −0.118994 0.992895i \(-0.537967\pi\)
0.828304 0.560278i \(-0.189306\pi\)
\(920\) 0 0
\(921\) 5.61093 + 39.0248i 0.184886 + 1.28591i
\(922\) 0 0
\(923\) −7.25478 15.8857i −0.238794 0.522886i
\(924\) 0 0
\(925\) 13.9906 30.6352i 0.460008 1.00728i
\(926\) 0 0
\(927\) −1.97181 + 13.7142i −0.0647627 + 0.450435i
\(928\) 0 0
\(929\) −14.5006 4.25777i −0.475750 0.139693i 0.0350622 0.999385i \(-0.488837\pi\)
−0.510812 + 0.859692i \(0.670655\pi\)
\(930\) 0 0
\(931\) −71.2757 + 20.9284i −2.33597 + 0.685901i
\(932\) 0 0
\(933\) 27.1695 + 17.4608i 0.889489 + 0.571640i
\(934\) 0 0
\(935\) −13.6295 + 58.2539i −0.445733 + 1.90511i
\(936\) 0 0
\(937\) 21.2548 6.24098i 0.694365 0.203884i 0.0845398 0.996420i \(-0.473058\pi\)
0.609825 + 0.792536i \(0.291240\pi\)
\(938\) 0 0
\(939\) 33.5040 + 38.6657i 1.09336 + 1.26181i
\(940\) 0 0
\(941\) −3.66227 −0.119387 −0.0596933 0.998217i \(-0.519012\pi\)
−0.0596933 + 0.998217i \(0.519012\pi\)
\(942\) 0 0
\(943\) 16.5639 19.1157i 0.539394 0.622494i
\(944\) 0 0
\(945\) −76.8993 49.4202i −2.50154 1.60764i
\(946\) 0 0
\(947\) 14.0482 9.02824i 0.456506 0.293378i −0.292107 0.956385i \(-0.594357\pi\)
0.748613 + 0.663007i \(0.230720\pi\)
\(948\) 0 0
\(949\) 5.49449 + 6.34098i 0.178359 + 0.205837i
\(950\) 0 0
\(951\) −32.8788 + 37.9441i −1.06617 + 1.23042i
\(952\) 0 0
\(953\) 6.03048 + 13.2049i 0.195346 + 0.427749i 0.981804 0.189895i \(-0.0608147\pi\)
−0.786458 + 0.617644i \(0.788087\pi\)
\(954\) 0 0
\(955\) 2.26872 + 0.666155i 0.0734140 + 0.0215563i
\(956\) 0 0
\(957\) 19.1071 18.5188i 0.617645 0.598629i
\(958\) 0 0
\(959\) −76.5901 −2.47322
\(960\) 0 0
\(961\) −10.9411 + 7.03145i −0.352940 + 0.226821i
\(962\) 0 0
\(963\) −5.29305 11.5902i −0.170566 0.373488i
\(964\) 0 0
\(965\) −14.6418 −0.471337
\(966\) 0 0
\(967\) 13.5906 0.437045 0.218522 0.975832i \(-0.429876\pi\)
0.218522 + 0.975832i \(0.429876\pi\)
\(968\) 0 0
\(969\) 39.6775 1.27462
\(970\) 0 0
\(971\) 24.6775 0.791937 0.395969 0.918264i \(-0.370409\pi\)
0.395969 + 0.918264i \(0.370409\pi\)
\(972\) 0 0
\(973\) −11.3622 24.8798i −0.364256 0.797608i
\(974\) 0 0
\(975\) −12.5445 + 8.06185i −0.401745 + 0.258186i
\(976\) 0 0
\(977\) −30.4196 −0.973210 −0.486605 0.873622i \(-0.661765\pi\)
−0.486605 + 0.873622i \(0.661765\pi\)
\(978\) 0 0
\(979\) −29.0584 22.4702i −0.928710 0.718150i
\(980\) 0 0
\(981\) 8.87466 + 2.60583i 0.283346 + 0.0831979i
\(982\) 0 0
\(983\) −4.00840 8.77718i −0.127848 0.279949i 0.834874 0.550442i \(-0.185541\pi\)
−0.962722 + 0.270493i \(0.912813\pi\)
\(984\) 0 0
\(985\) 5.26204 6.07271i 0.167662 0.193493i
\(986\) 0 0
\(987\) −1.53687 1.77364i −0.0489190 0.0564556i
\(988\) 0 0
\(989\) 33.6034 21.5956i 1.06852 0.686699i
\(990\) 0 0
\(991\) −5.33082 3.42591i −0.169339 0.108828i 0.453226 0.891396i \(-0.350273\pi\)
−0.622565 + 0.782568i \(0.713909\pi\)
\(992\) 0 0
\(993\) −32.3559 + 37.3406i −1.02678 + 1.18497i
\(994\) 0 0
\(995\) −16.1997 −0.513565
\(996\) 0 0
\(997\) −19.9305 23.0010i −0.631205 0.728449i 0.346589 0.938017i \(-0.387340\pi\)
−0.977794 + 0.209568i \(0.932794\pi\)
\(998\) 0 0
\(999\) 24.1078 7.07869i 0.762737 0.223960i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 484.2.i.a.89.9 110
121.34 even 11 inner 484.2.i.a.397.9 yes 110
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
484.2.i.a.89.9 110 1.1 even 1 trivial
484.2.i.a.397.9 yes 110 121.34 even 11 inner