Properties

Label 484.3.d.c.241.1
Level $484$
Weight $3$
Character 484.241
Analytic conductor $13.188$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [484,3,Mod(241,484)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(484, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("484.241");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 484 = 2^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 484.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.1880447950\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} + 19x^{6} - 37x^{5} + 229x^{4} + 196x^{3} + 1496x^{2} + 2952x + 26896 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{4}\cdot 11^{3} \)
Twist minimal: no (minimal twist has level 44)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 241.1
Root \(-2.28040 - 1.65680i\) of defining polynomial
Character \(\chi\) \(=\) 484.241
Dual form 484.3.d.c.241.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.43676 q^{3} +6.56079 q^{5} -11.5169i q^{7} +10.6848 q^{9} +5.05831i q^{13} -29.1086 q^{15} +8.56914i q^{17} -10.8348i q^{19} +51.0977i q^{21} +11.7519 q^{23} +18.0440 q^{25} -7.47516 q^{27} -20.2412i q^{29} -36.4007 q^{31} -75.5600i q^{35} -36.8986 q^{37} -22.4425i q^{39} -42.3954i q^{41} -72.4430i q^{43} +70.1009 q^{45} -10.9196 q^{47} -83.6390 q^{49} -38.0192i q^{51} +72.3029 q^{53} +48.0715i q^{57} +4.47350 q^{59} -108.646i q^{61} -123.056i q^{63} +33.1866i q^{65} -37.6104 q^{67} -52.1405 q^{69} -53.6299 q^{71} +24.9469i q^{73} -80.0568 q^{75} -71.2745i q^{79} -62.9979 q^{81} -11.5389i q^{83} +56.2203i q^{85} +89.8052i q^{87} -75.6980 q^{89} +58.2561 q^{91} +161.501 q^{93} -71.0850i q^{95} +2.98620 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 14 q^{5} + 44 q^{9} - 28 q^{15} + 100 q^{23} - 34 q^{25} + 60 q^{27} + 98 q^{31} - 210 q^{37} + 332 q^{45} - 110 q^{47} + 22 q^{49} + 250 q^{53} + 112 q^{59} + 10 q^{67} - 176 q^{69} - 198 q^{71}+ \cdots - 220 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/484\mathbb{Z}\right)^\times\).

\(n\) \(243\) \(365\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −4.43676 −1.47892 −0.739460 0.673201i \(-0.764919\pi\)
−0.739460 + 0.673201i \(0.764919\pi\)
\(4\) 0 0
\(5\) 6.56079 1.31216 0.656079 0.754692i \(-0.272214\pi\)
0.656079 + 0.754692i \(0.272214\pi\)
\(6\) 0 0
\(7\) − 11.5169i − 1.64527i −0.568569 0.822636i \(-0.692503\pi\)
0.568569 0.822636i \(-0.307497\pi\)
\(8\) 0 0
\(9\) 10.6848 1.18720
\(10\) 0 0
\(11\) 0 0
\(12\) 0 0
\(13\) 5.05831i 0.389101i 0.980892 + 0.194551i \(0.0623248\pi\)
−0.980892 + 0.194551i \(0.937675\pi\)
\(14\) 0 0
\(15\) −29.1086 −1.94058
\(16\) 0 0
\(17\) 8.56914i 0.504067i 0.967718 + 0.252034i \(0.0810993\pi\)
−0.967718 + 0.252034i \(0.918901\pi\)
\(18\) 0 0
\(19\) − 10.8348i − 0.570254i −0.958490 0.285127i \(-0.907964\pi\)
0.958490 0.285127i \(-0.0920358\pi\)
\(20\) 0 0
\(21\) 51.0977i 2.43322i
\(22\) 0 0
\(23\) 11.7519 0.510954 0.255477 0.966815i \(-0.417768\pi\)
0.255477 + 0.966815i \(0.417768\pi\)
\(24\) 0 0
\(25\) 18.0440 0.721760
\(26\) 0 0
\(27\) −7.47516 −0.276858
\(28\) 0 0
\(29\) − 20.2412i − 0.697971i −0.937128 0.348986i \(-0.886526\pi\)
0.937128 0.348986i \(-0.113474\pi\)
\(30\) 0 0
\(31\) −36.4007 −1.17422 −0.587108 0.809508i \(-0.699734\pi\)
−0.587108 + 0.809508i \(0.699734\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) − 75.5600i − 2.15886i
\(36\) 0 0
\(37\) −36.8986 −0.997260 −0.498630 0.866815i \(-0.666163\pi\)
−0.498630 + 0.866815i \(0.666163\pi\)
\(38\) 0 0
\(39\) − 22.4425i − 0.575449i
\(40\) 0 0
\(41\) − 42.3954i − 1.03404i −0.855975 0.517018i \(-0.827042\pi\)
0.855975 0.517018i \(-0.172958\pi\)
\(42\) 0 0
\(43\) − 72.4430i − 1.68472i −0.538915 0.842360i \(-0.681165\pi\)
0.538915 0.842360i \(-0.318835\pi\)
\(44\) 0 0
\(45\) 70.1009 1.55780
\(46\) 0 0
\(47\) −10.9196 −0.232331 −0.116166 0.993230i \(-0.537060\pi\)
−0.116166 + 0.993230i \(0.537060\pi\)
\(48\) 0 0
\(49\) −83.6390 −1.70692
\(50\) 0 0
\(51\) − 38.0192i − 0.745475i
\(52\) 0 0
\(53\) 72.3029 1.36421 0.682103 0.731256i \(-0.261066\pi\)
0.682103 + 0.731256i \(0.261066\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 48.0715i 0.843360i
\(58\) 0 0
\(59\) 4.47350 0.0758220 0.0379110 0.999281i \(-0.487930\pi\)
0.0379110 + 0.999281i \(0.487930\pi\)
\(60\) 0 0
\(61\) − 108.646i − 1.78108i −0.454902 0.890542i \(-0.650326\pi\)
0.454902 0.890542i \(-0.349674\pi\)
\(62\) 0 0
\(63\) − 123.056i − 1.95327i
\(64\) 0 0
\(65\) 33.1866i 0.510562i
\(66\) 0 0
\(67\) −37.6104 −0.561349 −0.280674 0.959803i \(-0.590558\pi\)
−0.280674 + 0.959803i \(0.590558\pi\)
\(68\) 0 0
\(69\) −52.1405 −0.755659
\(70\) 0 0
\(71\) −53.6299 −0.755350 −0.377675 0.925938i \(-0.623276\pi\)
−0.377675 + 0.925938i \(0.623276\pi\)
\(72\) 0 0
\(73\) 24.9469i 0.341738i 0.985294 + 0.170869i \(0.0546576\pi\)
−0.985294 + 0.170869i \(0.945342\pi\)
\(74\) 0 0
\(75\) −80.0568 −1.06742
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) − 71.2745i − 0.902209i −0.892471 0.451105i \(-0.851030\pi\)
0.892471 0.451105i \(-0.148970\pi\)
\(80\) 0 0
\(81\) −62.9979 −0.777752
\(82\) 0 0
\(83\) − 11.5389i − 0.139023i −0.997581 0.0695115i \(-0.977856\pi\)
0.997581 0.0695115i \(-0.0221441\pi\)
\(84\) 0 0
\(85\) 56.2203i 0.661416i
\(86\) 0 0
\(87\) 89.8052i 1.03224i
\(88\) 0 0
\(89\) −75.6980 −0.850540 −0.425270 0.905067i \(-0.639821\pi\)
−0.425270 + 0.905067i \(0.639821\pi\)
\(90\) 0 0
\(91\) 58.2561 0.640177
\(92\) 0 0
\(93\) 161.501 1.73657
\(94\) 0 0
\(95\) − 71.0850i − 0.748264i
\(96\) 0 0
\(97\) 2.98620 0.0307856 0.0153928 0.999882i \(-0.495100\pi\)
0.0153928 + 0.999882i \(0.495100\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 44.4427i 0.440027i 0.975497 + 0.220014i \(0.0706101\pi\)
−0.975497 + 0.220014i \(0.929390\pi\)
\(102\) 0 0
\(103\) 54.0041 0.524312 0.262156 0.965026i \(-0.415567\pi\)
0.262156 + 0.965026i \(0.415567\pi\)
\(104\) 0 0
\(105\) 335.241i 3.19278i
\(106\) 0 0
\(107\) 131.392i 1.22796i 0.789322 + 0.613980i \(0.210432\pi\)
−0.789322 + 0.613980i \(0.789568\pi\)
\(108\) 0 0
\(109\) 6.96523i 0.0639012i 0.999489 + 0.0319506i \(0.0101719\pi\)
−0.999489 + 0.0319506i \(0.989828\pi\)
\(110\) 0 0
\(111\) 163.710 1.47487
\(112\) 0 0
\(113\) 54.6655 0.483766 0.241883 0.970305i \(-0.422235\pi\)
0.241883 + 0.970305i \(0.422235\pi\)
\(114\) 0 0
\(115\) 77.1020 0.670452
\(116\) 0 0
\(117\) 54.0472i 0.461942i
\(118\) 0 0
\(119\) 98.6899 0.829327
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) 188.098i 1.52925i
\(124\) 0 0
\(125\) −45.6369 −0.365095
\(126\) 0 0
\(127\) 8.15329i 0.0641992i 0.999485 + 0.0320996i \(0.0102194\pi\)
−0.999485 + 0.0320996i \(0.989781\pi\)
\(128\) 0 0
\(129\) 321.412i 2.49157i
\(130\) 0 0
\(131\) − 162.483i − 1.24033i −0.784473 0.620163i \(-0.787066\pi\)
0.784473 0.620163i \(-0.212934\pi\)
\(132\) 0 0
\(133\) −124.784 −0.938223
\(134\) 0 0
\(135\) −49.0430 −0.363281
\(136\) 0 0
\(137\) 234.863 1.71433 0.857165 0.515042i \(-0.172224\pi\)
0.857165 + 0.515042i \(0.172224\pi\)
\(138\) 0 0
\(139\) 237.521i 1.70878i 0.519629 + 0.854392i \(0.326070\pi\)
−0.519629 + 0.854392i \(0.673930\pi\)
\(140\) 0 0
\(141\) 48.4475 0.343599
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) − 132.798i − 0.915849i
\(146\) 0 0
\(147\) 371.086 2.52439
\(148\) 0 0
\(149\) − 163.988i − 1.10059i −0.834971 0.550294i \(-0.814516\pi\)
0.834971 0.550294i \(-0.185484\pi\)
\(150\) 0 0
\(151\) − 43.9622i − 0.291140i −0.989348 0.145570i \(-0.953498\pi\)
0.989348 0.145570i \(-0.0465016\pi\)
\(152\) 0 0
\(153\) 91.5598i 0.598430i
\(154\) 0 0
\(155\) −238.817 −1.54076
\(156\) 0 0
\(157\) 8.04622 0.0512498 0.0256249 0.999672i \(-0.491842\pi\)
0.0256249 + 0.999672i \(0.491842\pi\)
\(158\) 0 0
\(159\) −320.791 −2.01755
\(160\) 0 0
\(161\) − 135.346i − 0.840657i
\(162\) 0 0
\(163\) −126.237 −0.774459 −0.387229 0.921983i \(-0.626568\pi\)
−0.387229 + 0.921983i \(0.626568\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 211.983i 1.26936i 0.772774 + 0.634681i \(0.218868\pi\)
−0.772774 + 0.634681i \(0.781132\pi\)
\(168\) 0 0
\(169\) 143.413 0.848600
\(170\) 0 0
\(171\) − 115.768i − 0.677007i
\(172\) 0 0
\(173\) − 251.815i − 1.45558i −0.685802 0.727788i \(-0.740548\pi\)
0.685802 0.727788i \(-0.259452\pi\)
\(174\) 0 0
\(175\) − 207.811i − 1.18749i
\(176\) 0 0
\(177\) −19.8478 −0.112135
\(178\) 0 0
\(179\) −221.779 −1.23899 −0.619495 0.785001i \(-0.712662\pi\)
−0.619495 + 0.785001i \(0.712662\pi\)
\(180\) 0 0
\(181\) −1.97299 −0.0109005 −0.00545025 0.999985i \(-0.501735\pi\)
−0.00545025 + 0.999985i \(0.501735\pi\)
\(182\) 0 0
\(183\) 482.036i 2.63408i
\(184\) 0 0
\(185\) −242.084 −1.30856
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 86.0907i 0.455506i
\(190\) 0 0
\(191\) −20.7963 −0.108881 −0.0544407 0.998517i \(-0.517338\pi\)
−0.0544407 + 0.998517i \(0.517338\pi\)
\(192\) 0 0
\(193\) 186.854i 0.968157i 0.875025 + 0.484078i \(0.160845\pi\)
−0.875025 + 0.484078i \(0.839155\pi\)
\(194\) 0 0
\(195\) − 147.241i − 0.755081i
\(196\) 0 0
\(197\) − 325.621i − 1.65290i −0.563011 0.826449i \(-0.690357\pi\)
0.563011 0.826449i \(-0.309643\pi\)
\(198\) 0 0
\(199\) −76.6068 −0.384959 −0.192479 0.981301i \(-0.561653\pi\)
−0.192479 + 0.981301i \(0.561653\pi\)
\(200\) 0 0
\(201\) 166.868 0.830190
\(202\) 0 0
\(203\) −233.116 −1.14835
\(204\) 0 0
\(205\) − 278.148i − 1.35682i
\(206\) 0 0
\(207\) 125.567 0.606606
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) − 229.452i − 1.08745i −0.839264 0.543724i \(-0.817014\pi\)
0.839264 0.543724i \(-0.182986\pi\)
\(212\) 0 0
\(213\) 237.943 1.11710
\(214\) 0 0
\(215\) − 475.283i − 2.21062i
\(216\) 0 0
\(217\) 419.223i 1.93190i
\(218\) 0 0
\(219\) − 110.683i − 0.505404i
\(220\) 0 0
\(221\) −43.3454 −0.196133
\(222\) 0 0
\(223\) 340.105 1.52514 0.762568 0.646908i \(-0.223938\pi\)
0.762568 + 0.646908i \(0.223938\pi\)
\(224\) 0 0
\(225\) 192.797 0.856875
\(226\) 0 0
\(227\) 185.842i 0.818685i 0.912381 + 0.409343i \(0.134242\pi\)
−0.912381 + 0.409343i \(0.865758\pi\)
\(228\) 0 0
\(229\) 148.459 0.648291 0.324146 0.946007i \(-0.394923\pi\)
0.324146 + 0.946007i \(0.394923\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 81.4706i 0.349659i 0.984599 + 0.174830i \(0.0559375\pi\)
−0.984599 + 0.174830i \(0.944063\pi\)
\(234\) 0 0
\(235\) −71.6411 −0.304856
\(236\) 0 0
\(237\) 316.228i 1.33429i
\(238\) 0 0
\(239\) 201.381i 0.842600i 0.906921 + 0.421300i \(0.138426\pi\)
−0.906921 + 0.421300i \(0.861574\pi\)
\(240\) 0 0
\(241\) 381.337i 1.58231i 0.611616 + 0.791155i \(0.290520\pi\)
−0.611616 + 0.791155i \(0.709480\pi\)
\(242\) 0 0
\(243\) 346.783 1.42709
\(244\) 0 0
\(245\) −548.738 −2.23975
\(246\) 0 0
\(247\) 54.8060 0.221886
\(248\) 0 0
\(249\) 51.1954i 0.205604i
\(250\) 0 0
\(251\) 103.927 0.414052 0.207026 0.978335i \(-0.433621\pi\)
0.207026 + 0.978335i \(0.433621\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) − 249.436i − 0.978181i
\(256\) 0 0
\(257\) −160.509 −0.624547 −0.312274 0.949992i \(-0.601091\pi\)
−0.312274 + 0.949992i \(0.601091\pi\)
\(258\) 0 0
\(259\) 424.958i 1.64076i
\(260\) 0 0
\(261\) − 216.273i − 0.828634i
\(262\) 0 0
\(263\) 203.520i 0.773840i 0.922113 + 0.386920i \(0.126461\pi\)
−0.922113 + 0.386920i \(0.873539\pi\)
\(264\) 0 0
\(265\) 474.364 1.79005
\(266\) 0 0
\(267\) 335.854 1.25788
\(268\) 0 0
\(269\) 225.953 0.839972 0.419986 0.907530i \(-0.362035\pi\)
0.419986 + 0.907530i \(0.362035\pi\)
\(270\) 0 0
\(271\) − 290.788i − 1.07302i −0.843894 0.536510i \(-0.819742\pi\)
0.843894 0.536510i \(-0.180258\pi\)
\(272\) 0 0
\(273\) −258.468 −0.946770
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 190.661i 0.688308i 0.938913 + 0.344154i \(0.111834\pi\)
−0.938913 + 0.344154i \(0.888166\pi\)
\(278\) 0 0
\(279\) −388.935 −1.39403
\(280\) 0 0
\(281\) − 21.7299i − 0.0773306i −0.999252 0.0386653i \(-0.987689\pi\)
0.999252 0.0386653i \(-0.0123106\pi\)
\(282\) 0 0
\(283\) 54.9793i 0.194273i 0.995271 + 0.0971366i \(0.0309684\pi\)
−0.995271 + 0.0971366i \(0.969032\pi\)
\(284\) 0 0
\(285\) 315.387i 1.10662i
\(286\) 0 0
\(287\) −488.264 −1.70127
\(288\) 0 0
\(289\) 215.570 0.745916
\(290\) 0 0
\(291\) −13.2491 −0.0455294
\(292\) 0 0
\(293\) − 438.667i − 1.49716i −0.663046 0.748578i \(-0.730737\pi\)
0.663046 0.748578i \(-0.269263\pi\)
\(294\) 0 0
\(295\) 29.3497 0.0994904
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 59.4450i 0.198813i
\(300\) 0 0
\(301\) −834.319 −2.77182
\(302\) 0 0
\(303\) − 197.182i − 0.650765i
\(304\) 0 0
\(305\) − 712.804i − 2.33706i
\(306\) 0 0
\(307\) 232.888i 0.758594i 0.925275 + 0.379297i \(0.123834\pi\)
−0.925275 + 0.379297i \(0.876166\pi\)
\(308\) 0 0
\(309\) −239.603 −0.775415
\(310\) 0 0
\(311\) −152.125 −0.489148 −0.244574 0.969631i \(-0.578648\pi\)
−0.244574 + 0.969631i \(0.578648\pi\)
\(312\) 0 0
\(313\) 100.695 0.321710 0.160855 0.986978i \(-0.448575\pi\)
0.160855 + 0.986978i \(0.448575\pi\)
\(314\) 0 0
\(315\) − 807.345i − 2.56300i
\(316\) 0 0
\(317\) 334.093 1.05392 0.526960 0.849890i \(-0.323332\pi\)
0.526960 + 0.849890i \(0.323332\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) − 582.953i − 1.81605i
\(322\) 0 0
\(323\) 92.8451 0.287446
\(324\) 0 0
\(325\) 91.2722i 0.280837i
\(326\) 0 0
\(327\) − 30.9030i − 0.0945047i
\(328\) 0 0
\(329\) 125.760i 0.382248i
\(330\) 0 0
\(331\) 168.614 0.509409 0.254705 0.967019i \(-0.418022\pi\)
0.254705 + 0.967019i \(0.418022\pi\)
\(332\) 0 0
\(333\) −394.255 −1.18395
\(334\) 0 0
\(335\) −246.754 −0.736579
\(336\) 0 0
\(337\) 523.585i 1.55366i 0.629708 + 0.776832i \(0.283174\pi\)
−0.629708 + 0.776832i \(0.716826\pi\)
\(338\) 0 0
\(339\) −242.538 −0.715451
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 398.934i 1.16307i
\(344\) 0 0
\(345\) −342.083 −0.991545
\(346\) 0 0
\(347\) − 478.209i − 1.37812i −0.724703 0.689062i \(-0.758023\pi\)
0.724703 0.689062i \(-0.241977\pi\)
\(348\) 0 0
\(349\) − 9.60448i − 0.0275200i −0.999905 0.0137600i \(-0.995620\pi\)
0.999905 0.0137600i \(-0.00438008\pi\)
\(350\) 0 0
\(351\) − 37.8117i − 0.107726i
\(352\) 0 0
\(353\) 691.089 1.95776 0.978880 0.204436i \(-0.0655361\pi\)
0.978880 + 0.204436i \(0.0655361\pi\)
\(354\) 0 0
\(355\) −351.854 −0.991139
\(356\) 0 0
\(357\) −437.863 −1.22651
\(358\) 0 0
\(359\) − 46.1883i − 0.128658i −0.997929 0.0643291i \(-0.979509\pi\)
0.997929 0.0643291i \(-0.0204907\pi\)
\(360\) 0 0
\(361\) 243.607 0.674810
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 163.671i 0.448415i
\(366\) 0 0
\(367\) 456.172 1.24298 0.621488 0.783424i \(-0.286528\pi\)
0.621488 + 0.783424i \(0.286528\pi\)
\(368\) 0 0
\(369\) − 452.988i − 1.22761i
\(370\) 0 0
\(371\) − 832.706i − 2.24449i
\(372\) 0 0
\(373\) 99.8021i 0.267566i 0.991011 + 0.133783i \(0.0427125\pi\)
−0.991011 + 0.133783i \(0.957288\pi\)
\(374\) 0 0
\(375\) 202.480 0.539947
\(376\) 0 0
\(377\) 102.386 0.271581
\(378\) 0 0
\(379\) 387.237 1.02173 0.510867 0.859660i \(-0.329324\pi\)
0.510867 + 0.859660i \(0.329324\pi\)
\(380\) 0 0
\(381\) − 36.1742i − 0.0949454i
\(382\) 0 0
\(383\) 606.285 1.58299 0.791495 0.611175i \(-0.209303\pi\)
0.791495 + 0.611175i \(0.209303\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) − 774.041i − 2.00011i
\(388\) 0 0
\(389\) 579.347 1.48932 0.744662 0.667442i \(-0.232611\pi\)
0.744662 + 0.667442i \(0.232611\pi\)
\(390\) 0 0
\(391\) 100.704i 0.257555i
\(392\) 0 0
\(393\) 720.897i 1.83434i
\(394\) 0 0
\(395\) − 467.617i − 1.18384i
\(396\) 0 0
\(397\) −163.072 −0.410761 −0.205381 0.978682i \(-0.565843\pi\)
−0.205381 + 0.978682i \(0.565843\pi\)
\(398\) 0 0
\(399\) 553.635 1.38756
\(400\) 0 0
\(401\) −747.040 −1.86294 −0.931471 0.363816i \(-0.881474\pi\)
−0.931471 + 0.363816i \(0.881474\pi\)
\(402\) 0 0
\(403\) − 184.126i − 0.456889i
\(404\) 0 0
\(405\) −413.316 −1.02053
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) − 121.932i − 0.298122i −0.988828 0.149061i \(-0.952375\pi\)
0.988828 0.149061i \(-0.0476251\pi\)
\(410\) 0 0
\(411\) −1042.03 −2.53536
\(412\) 0 0
\(413\) − 51.5208i − 0.124748i
\(414\) 0 0
\(415\) − 75.7044i − 0.182420i
\(416\) 0 0
\(417\) − 1053.82i − 2.52715i
\(418\) 0 0
\(419\) 330.708 0.789279 0.394640 0.918836i \(-0.370869\pi\)
0.394640 + 0.918836i \(0.370869\pi\)
\(420\) 0 0
\(421\) 640.074 1.52037 0.760183 0.649709i \(-0.225109\pi\)
0.760183 + 0.649709i \(0.225109\pi\)
\(422\) 0 0
\(423\) −116.674 −0.275824
\(424\) 0 0
\(425\) 154.622i 0.363815i
\(426\) 0 0
\(427\) −1251.27 −2.93037
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) − 146.091i − 0.338959i −0.985534 0.169479i \(-0.945791\pi\)
0.985534 0.169479i \(-0.0542086\pi\)
\(432\) 0 0
\(433\) 91.8796 0.212193 0.106097 0.994356i \(-0.466165\pi\)
0.106097 + 0.994356i \(0.466165\pi\)
\(434\) 0 0
\(435\) 589.193i 1.35447i
\(436\) 0 0
\(437\) − 127.330i − 0.291373i
\(438\) 0 0
\(439\) 358.371i 0.816335i 0.912907 + 0.408168i \(0.133832\pi\)
−0.912907 + 0.408168i \(0.866168\pi\)
\(440\) 0 0
\(441\) −893.668 −2.02646
\(442\) 0 0
\(443\) −821.312 −1.85398 −0.926989 0.375089i \(-0.877612\pi\)
−0.926989 + 0.375089i \(0.877612\pi\)
\(444\) 0 0
\(445\) −496.639 −1.11604
\(446\) 0 0
\(447\) 727.573i 1.62768i
\(448\) 0 0
\(449\) 162.139 0.361111 0.180556 0.983565i \(-0.442210\pi\)
0.180556 + 0.983565i \(0.442210\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 195.050i 0.430573i
\(454\) 0 0
\(455\) 382.206 0.840014
\(456\) 0 0
\(457\) − 363.463i − 0.795324i −0.917532 0.397662i \(-0.869822\pi\)
0.917532 0.397662i \(-0.130178\pi\)
\(458\) 0 0
\(459\) − 64.0557i − 0.139555i
\(460\) 0 0
\(461\) 487.885i 1.05832i 0.848523 + 0.529159i \(0.177493\pi\)
−0.848523 + 0.529159i \(0.822507\pi\)
\(462\) 0 0
\(463\) 367.635 0.794028 0.397014 0.917812i \(-0.370046\pi\)
0.397014 + 0.917812i \(0.370046\pi\)
\(464\) 0 0
\(465\) 1059.58 2.27866
\(466\) 0 0
\(467\) 412.459 0.883209 0.441605 0.897210i \(-0.354409\pi\)
0.441605 + 0.897210i \(0.354409\pi\)
\(468\) 0 0
\(469\) 433.155i 0.923571i
\(470\) 0 0
\(471\) −35.6991 −0.0757943
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) − 195.503i − 0.411586i
\(476\) 0 0
\(477\) 772.544 1.61959
\(478\) 0 0
\(479\) 531.662i 1.10994i 0.831870 + 0.554970i \(0.187270\pi\)
−0.831870 + 0.554970i \(0.812730\pi\)
\(480\) 0 0
\(481\) − 186.645i − 0.388035i
\(482\) 0 0
\(483\) 600.497i 1.24326i
\(484\) 0 0
\(485\) 19.5919 0.0403956
\(486\) 0 0
\(487\) −643.438 −1.32123 −0.660614 0.750726i \(-0.729704\pi\)
−0.660614 + 0.750726i \(0.729704\pi\)
\(488\) 0 0
\(489\) 560.082 1.14536
\(490\) 0 0
\(491\) − 750.349i − 1.52821i −0.645095 0.764103i \(-0.723182\pi\)
0.645095 0.764103i \(-0.276818\pi\)
\(492\) 0 0
\(493\) 173.449 0.351824
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 617.650i 1.24276i
\(498\) 0 0
\(499\) 184.075 0.368888 0.184444 0.982843i \(-0.440952\pi\)
0.184444 + 0.982843i \(0.440952\pi\)
\(500\) 0 0
\(501\) − 940.519i − 1.87728i
\(502\) 0 0
\(503\) 443.922i 0.882550i 0.897372 + 0.441275i \(0.145474\pi\)
−0.897372 + 0.441275i \(0.854526\pi\)
\(504\) 0 0
\(505\) 291.580i 0.577385i
\(506\) 0 0
\(507\) −636.291 −1.25501
\(508\) 0 0
\(509\) −498.940 −0.980235 −0.490118 0.871656i \(-0.663046\pi\)
−0.490118 + 0.871656i \(0.663046\pi\)
\(510\) 0 0
\(511\) 287.311 0.562253
\(512\) 0 0
\(513\) 80.9921i 0.157879i
\(514\) 0 0
\(515\) 354.310 0.687980
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 1117.24i 2.15268i
\(520\) 0 0
\(521\) −256.146 −0.491643 −0.245822 0.969315i \(-0.579058\pi\)
−0.245822 + 0.969315i \(0.579058\pi\)
\(522\) 0 0
\(523\) 730.547i 1.39684i 0.715689 + 0.698419i \(0.246113\pi\)
−0.715689 + 0.698419i \(0.753887\pi\)
\(524\) 0 0
\(525\) 922.006i 1.75620i
\(526\) 0 0
\(527\) − 311.923i − 0.591884i
\(528\) 0 0
\(529\) −390.892 −0.738926
\(530\) 0 0
\(531\) 47.7985 0.0900161
\(532\) 0 0
\(533\) 214.450 0.402344
\(534\) 0 0
\(535\) 862.033i 1.61128i
\(536\) 0 0
\(537\) 983.980 1.83237
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) − 352.255i − 0.651119i −0.945522 0.325560i \(-0.894447\pi\)
0.945522 0.325560i \(-0.105553\pi\)
\(542\) 0 0
\(543\) 8.75369 0.0161210
\(544\) 0 0
\(545\) 45.6974i 0.0838485i
\(546\) 0 0
\(547\) 835.372i 1.52719i 0.645697 + 0.763594i \(0.276567\pi\)
−0.645697 + 0.763594i \(0.723433\pi\)
\(548\) 0 0
\(549\) − 1160.86i − 2.11451i
\(550\) 0 0
\(551\) −219.310 −0.398021
\(552\) 0 0
\(553\) −820.862 −1.48438
\(554\) 0 0
\(555\) 1074.07 1.93526
\(556\) 0 0
\(557\) − 392.747i − 0.705112i −0.935791 0.352556i \(-0.885313\pi\)
0.935791 0.352556i \(-0.114687\pi\)
\(558\) 0 0
\(559\) 366.439 0.655527
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 388.716i 0.690437i 0.938522 + 0.345218i \(0.112195\pi\)
−0.938522 + 0.345218i \(0.887805\pi\)
\(564\) 0 0
\(565\) 358.649 0.634777
\(566\) 0 0
\(567\) 725.541i 1.27961i
\(568\) 0 0
\(569\) − 659.098i − 1.15834i −0.815205 0.579172i \(-0.803376\pi\)
0.815205 0.579172i \(-0.196624\pi\)
\(570\) 0 0
\(571\) − 893.667i − 1.56509i −0.622593 0.782546i \(-0.713921\pi\)
0.622593 0.782546i \(-0.286079\pi\)
\(572\) 0 0
\(573\) 92.2683 0.161027
\(574\) 0 0
\(575\) 212.052 0.368786
\(576\) 0 0
\(577\) −17.7492 −0.0307612 −0.0153806 0.999882i \(-0.504896\pi\)
−0.0153806 + 0.999882i \(0.504896\pi\)
\(578\) 0 0
\(579\) − 829.027i − 1.43183i
\(580\) 0 0
\(581\) −132.893 −0.228731
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 354.593i 0.606141i
\(586\) 0 0
\(587\) −163.056 −0.277778 −0.138889 0.990308i \(-0.544353\pi\)
−0.138889 + 0.990308i \(0.544353\pi\)
\(588\) 0 0
\(589\) 394.395i 0.669602i
\(590\) 0 0
\(591\) 1444.70i 2.44450i
\(592\) 0 0
\(593\) 513.367i 0.865711i 0.901463 + 0.432855i \(0.142494\pi\)
−0.901463 + 0.432855i \(0.857506\pi\)
\(594\) 0 0
\(595\) 647.484 1.08821
\(596\) 0 0
\(597\) 339.886 0.569323
\(598\) 0 0
\(599\) 926.376 1.54654 0.773269 0.634078i \(-0.218620\pi\)
0.773269 + 0.634078i \(0.218620\pi\)
\(600\) 0 0
\(601\) − 160.568i − 0.267168i −0.991038 0.133584i \(-0.957351\pi\)
0.991038 0.133584i \(-0.0426486\pi\)
\(602\) 0 0
\(603\) −401.860 −0.666435
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 527.231i 0.868584i 0.900772 + 0.434292i \(0.143001\pi\)
−0.900772 + 0.434292i \(0.856999\pi\)
\(608\) 0 0
\(609\) 1034.28 1.69832
\(610\) 0 0
\(611\) − 55.2346i − 0.0904004i
\(612\) 0 0
\(613\) − 663.170i − 1.08184i −0.841073 0.540922i \(-0.818076\pi\)
0.841073 0.540922i \(-0.181924\pi\)
\(614\) 0 0
\(615\) 1234.07i 2.00662i
\(616\) 0 0
\(617\) −260.782 −0.422661 −0.211331 0.977415i \(-0.567780\pi\)
−0.211331 + 0.977415i \(0.567780\pi\)
\(618\) 0 0
\(619\) 1062.72 1.71683 0.858415 0.512956i \(-0.171450\pi\)
0.858415 + 0.512956i \(0.171450\pi\)
\(620\) 0 0
\(621\) −87.8476 −0.141462
\(622\) 0 0
\(623\) 871.807i 1.39937i
\(624\) 0 0
\(625\) −750.514 −1.20082
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) − 316.189i − 0.502686i
\(630\) 0 0
\(631\) 522.733 0.828420 0.414210 0.910181i \(-0.364058\pi\)
0.414210 + 0.910181i \(0.364058\pi\)
\(632\) 0 0
\(633\) 1018.02i 1.60825i
\(634\) 0 0
\(635\) 53.4921i 0.0842395i
\(636\) 0 0
\(637\) − 423.072i − 0.664164i
\(638\) 0 0
\(639\) −573.026 −0.896754
\(640\) 0 0
\(641\) −1110.91 −1.73309 −0.866547 0.499095i \(-0.833666\pi\)
−0.866547 + 0.499095i \(0.833666\pi\)
\(642\) 0 0
\(643\) −885.748 −1.37752 −0.688762 0.724987i \(-0.741846\pi\)
−0.688762 + 0.724987i \(0.741846\pi\)
\(644\) 0 0
\(645\) 2108.72i 3.26933i
\(646\) 0 0
\(647\) −114.389 −0.176799 −0.0883993 0.996085i \(-0.528175\pi\)
−0.0883993 + 0.996085i \(0.528175\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) − 1859.99i − 2.85713i
\(652\) 0 0
\(653\) −163.928 −0.251038 −0.125519 0.992091i \(-0.540060\pi\)
−0.125519 + 0.992091i \(0.540060\pi\)
\(654\) 0 0
\(655\) − 1066.02i − 1.62750i
\(656\) 0 0
\(657\) 266.553i 0.405713i
\(658\) 0 0
\(659\) 116.651i 0.177012i 0.996076 + 0.0885062i \(0.0282093\pi\)
−0.996076 + 0.0885062i \(0.971791\pi\)
\(660\) 0 0
\(661\) 205.962 0.311591 0.155796 0.987789i \(-0.450206\pi\)
0.155796 + 0.987789i \(0.450206\pi\)
\(662\) 0 0
\(663\) 192.313 0.290065
\(664\) 0 0
\(665\) −818.679 −1.23110
\(666\) 0 0
\(667\) − 237.873i − 0.356631i
\(668\) 0 0
\(669\) −1508.96 −2.25555
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 27.9419i 0.0415184i 0.999785 + 0.0207592i \(0.00660834\pi\)
−0.999785 + 0.0207592i \(0.993392\pi\)
\(674\) 0 0
\(675\) −134.882 −0.199825
\(676\) 0 0
\(677\) − 540.241i − 0.797993i −0.916952 0.398997i \(-0.869359\pi\)
0.916952 0.398997i \(-0.130641\pi\)
\(678\) 0 0
\(679\) − 34.3918i − 0.0506507i
\(680\) 0 0
\(681\) − 824.534i − 1.21077i
\(682\) 0 0
\(683\) −1117.89 −1.63674 −0.818369 0.574694i \(-0.805121\pi\)
−0.818369 + 0.574694i \(0.805121\pi\)
\(684\) 0 0
\(685\) 1540.89 2.24947
\(686\) 0 0
\(687\) −658.675 −0.958771
\(688\) 0 0
\(689\) 365.731i 0.530814i
\(690\) 0 0
\(691\) 500.242 0.723939 0.361969 0.932190i \(-0.382104\pi\)
0.361969 + 0.932190i \(0.382104\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 1558.33i 2.24219i
\(696\) 0 0
\(697\) 363.293 0.521223
\(698\) 0 0
\(699\) − 361.466i − 0.517118i
\(700\) 0 0
\(701\) 646.819i 0.922709i 0.887216 + 0.461355i \(0.152636\pi\)
−0.887216 + 0.461355i \(0.847364\pi\)
\(702\) 0 0
\(703\) 399.790i 0.568691i
\(704\) 0 0
\(705\) 317.854 0.450857
\(706\) 0 0
\(707\) 511.842 0.723964
\(708\) 0 0
\(709\) −789.315 −1.11328 −0.556640 0.830754i \(-0.687910\pi\)
−0.556640 + 0.830754i \(0.687910\pi\)
\(710\) 0 0
\(711\) − 761.556i − 1.07111i
\(712\) 0 0
\(713\) −427.779 −0.599970
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) − 893.481i − 1.24614i
\(718\) 0 0
\(719\) −247.723 −0.344539 −0.172269 0.985050i \(-0.555110\pi\)
−0.172269 + 0.985050i \(0.555110\pi\)
\(720\) 0 0
\(721\) − 621.960i − 0.862635i
\(722\) 0 0
\(723\) − 1691.90i − 2.34011i
\(724\) 0 0
\(725\) − 365.231i − 0.503768i
\(726\) 0 0
\(727\) −133.030 −0.182986 −0.0914928 0.995806i \(-0.529164\pi\)
−0.0914928 + 0.995806i \(0.529164\pi\)
\(728\) 0 0
\(729\) −971.611 −1.33280
\(730\) 0 0
\(731\) 620.774 0.849212
\(732\) 0 0
\(733\) 412.846i 0.563227i 0.959528 + 0.281614i \(0.0908696\pi\)
−0.959528 + 0.281614i \(0.909130\pi\)
\(734\) 0 0
\(735\) 2434.62 3.31240
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 79.1777i 0.107142i 0.998564 + 0.0535708i \(0.0170603\pi\)
−0.998564 + 0.0535708i \(0.982940\pi\)
\(740\) 0 0
\(741\) −243.161 −0.328152
\(742\) 0 0
\(743\) − 513.850i − 0.691589i −0.938310 0.345794i \(-0.887609\pi\)
0.938310 0.345794i \(-0.112391\pi\)
\(744\) 0 0
\(745\) − 1075.89i − 1.44415i
\(746\) 0 0
\(747\) − 123.291i − 0.165049i
\(748\) 0 0
\(749\) 1513.22 2.02033
\(750\) 0 0
\(751\) −48.6547 −0.0647865 −0.0323932 0.999475i \(-0.510313\pi\)
−0.0323932 + 0.999475i \(0.510313\pi\)
\(752\) 0 0
\(753\) −461.099 −0.612350
\(754\) 0 0
\(755\) − 288.427i − 0.382022i
\(756\) 0 0
\(757\) −204.410 −0.270027 −0.135014 0.990844i \(-0.543108\pi\)
−0.135014 + 0.990844i \(0.543108\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 372.239i 0.489144i 0.969631 + 0.244572i \(0.0786475\pi\)
−0.969631 + 0.244572i \(0.921353\pi\)
\(762\) 0 0
\(763\) 80.2178 0.105135
\(764\) 0 0
\(765\) 600.705i 0.785235i
\(766\) 0 0
\(767\) 22.6284i 0.0295024i
\(768\) 0 0
\(769\) − 1491.70i − 1.93979i −0.243531 0.969893i \(-0.578306\pi\)
0.243531 0.969893i \(-0.421694\pi\)
\(770\) 0 0
\(771\) 712.138 0.923655
\(772\) 0 0
\(773\) −679.260 −0.878732 −0.439366 0.898308i \(-0.644797\pi\)
−0.439366 + 0.898308i \(0.644797\pi\)
\(774\) 0 0
\(775\) −656.814 −0.847502
\(776\) 0 0
\(777\) − 1885.43i − 2.42656i
\(778\) 0 0
\(779\) −459.347 −0.589663
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 151.306i 0.193239i
\(784\) 0 0
\(785\) 52.7896 0.0672478
\(786\) 0 0
\(787\) 530.519i 0.674103i 0.941486 + 0.337052i \(0.109430\pi\)
−0.941486 + 0.337052i \(0.890570\pi\)
\(788\) 0 0
\(789\) − 902.969i − 1.14445i
\(790\) 0 0
\(791\) − 629.577i − 0.795926i
\(792\) 0 0
\(793\) 549.566 0.693022
\(794\) 0 0
\(795\) −2104.64 −2.64735
\(796\) 0 0
\(797\) 894.517 1.12236 0.561178 0.827695i \(-0.310348\pi\)
0.561178 + 0.827695i \(0.310348\pi\)
\(798\) 0 0
\(799\) − 93.5714i − 0.117111i
\(800\) 0 0
\(801\) −808.820 −1.00976
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) − 887.976i − 1.10308i
\(806\) 0 0
\(807\) −1002.50 −1.24225
\(808\) 0 0
\(809\) − 1079.13i − 1.33391i −0.745099 0.666954i \(-0.767598\pi\)
0.745099 0.666954i \(-0.232402\pi\)
\(810\) 0 0
\(811\) 1189.16i 1.46628i 0.680076 + 0.733142i \(0.261947\pi\)
−0.680076 + 0.733142i \(0.738053\pi\)
\(812\) 0 0
\(813\) 1290.16i 1.58691i
\(814\) 0 0
\(815\) −828.213 −1.01621
\(816\) 0 0
\(817\) −784.907 −0.960719
\(818\) 0 0
\(819\) 622.456 0.760020
\(820\) 0 0
\(821\) − 1063.96i − 1.29593i −0.761670 0.647965i \(-0.775620\pi\)
0.761670 0.647965i \(-0.224380\pi\)
\(822\) 0 0
\(823\) 1029.49 1.25090 0.625449 0.780265i \(-0.284916\pi\)
0.625449 + 0.780265i \(0.284916\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 1113.21i − 1.34609i −0.739603 0.673044i \(-0.764986\pi\)
0.739603 0.673044i \(-0.235014\pi\)
\(828\) 0 0
\(829\) −1293.00 −1.55971 −0.779853 0.625963i \(-0.784706\pi\)
−0.779853 + 0.625963i \(0.784706\pi\)
\(830\) 0 0
\(831\) − 845.918i − 1.01795i
\(832\) 0 0
\(833\) − 716.714i − 0.860401i
\(834\) 0 0
\(835\) 1390.78i 1.66560i
\(836\) 0 0
\(837\) 272.101 0.325091
\(838\) 0 0
\(839\) 1230.48 1.46660 0.733302 0.679904i \(-0.237978\pi\)
0.733302 + 0.679904i \(0.237978\pi\)
\(840\) 0 0
\(841\) 431.295 0.512836
\(842\) 0 0
\(843\) 96.4104i 0.114366i
\(844\) 0 0
\(845\) 940.906 1.11350
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) − 243.930i − 0.287314i
\(850\) 0 0
\(851\) −433.630 −0.509553
\(852\) 0 0
\(853\) 866.309i 1.01560i 0.861474 + 0.507801i \(0.169542\pi\)
−0.861474 + 0.507801i \(0.830458\pi\)
\(854\) 0 0
\(855\) − 759.531i − 0.888341i
\(856\) 0 0
\(857\) 1219.98i 1.42354i 0.702411 + 0.711772i \(0.252107\pi\)
−0.702411 + 0.711772i \(0.747893\pi\)
\(858\) 0 0
\(859\) −469.893 −0.547023 −0.273512 0.961869i \(-0.588185\pi\)
−0.273512 + 0.961869i \(0.588185\pi\)
\(860\) 0 0
\(861\) 2166.31 2.51604
\(862\) 0 0
\(863\) 4.23962 0.00491265 0.00245633 0.999997i \(-0.499218\pi\)
0.00245633 + 0.999997i \(0.499218\pi\)
\(864\) 0 0
\(865\) − 1652.10i − 1.90995i
\(866\) 0 0
\(867\) −956.431 −1.10315
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) − 190.245i − 0.218421i
\(872\) 0 0
\(873\) 31.9071 0.0365488
\(874\) 0 0
\(875\) 525.596i 0.600681i
\(876\) 0 0
\(877\) 425.554i 0.485239i 0.970122 + 0.242619i \(0.0780066\pi\)
−0.970122 + 0.242619i \(0.921993\pi\)
\(878\) 0 0
\(879\) 1946.26i 2.21417i
\(880\) 0 0
\(881\) −1669.31 −1.89479 −0.947396 0.320064i \(-0.896296\pi\)
−0.947396 + 0.320064i \(0.896296\pi\)
\(882\) 0 0
\(883\) −213.204 −0.241455 −0.120727 0.992686i \(-0.538523\pi\)
−0.120727 + 0.992686i \(0.538523\pi\)
\(884\) 0 0
\(885\) −130.217 −0.147138
\(886\) 0 0
\(887\) 523.852i 0.590589i 0.955406 + 0.295294i \(0.0954177\pi\)
−0.955406 + 0.295294i \(0.904582\pi\)
\(888\) 0 0
\(889\) 93.9006 0.105625
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 118.312i 0.132488i
\(894\) 0 0
\(895\) −1455.05 −1.62575
\(896\) 0 0
\(897\) − 263.743i − 0.294028i
\(898\) 0 0
\(899\) 736.793i 0.819569i
\(900\) 0 0
\(901\) 619.574i 0.687651i
\(902\) 0 0
\(903\) 3701.67 4.09930
\(904\) 0 0
\(905\) −12.9444 −0.0143032
\(906\) 0 0
\(907\) 872.013 0.961426 0.480713 0.876878i \(-0.340378\pi\)
0.480713 + 0.876878i \(0.340378\pi\)
\(908\) 0 0
\(909\) 474.863i 0.522401i
\(910\) 0 0
\(911\) −907.086 −0.995704 −0.497852 0.867262i \(-0.665878\pi\)
−0.497852 + 0.867262i \(0.665878\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 3162.54i 3.45633i
\(916\) 0 0
\(917\) −1871.30 −2.04067
\(918\) 0 0
\(919\) 1204.69i 1.31087i 0.755253 + 0.655434i \(0.227514\pi\)
−0.755253 + 0.655434i \(0.772486\pi\)
\(920\) 0 0
\(921\) − 1033.27i − 1.12190i
\(922\) 0 0
\(923\) − 271.277i − 0.293908i
\(924\) 0 0
\(925\) −665.798 −0.719782
\(926\) 0 0
\(927\) 577.025 0.622464
\(928\) 0 0
\(929\) −1714.81 −1.84587 −0.922934 0.384958i \(-0.874216\pi\)
−0.922934 + 0.384958i \(0.874216\pi\)
\(930\) 0 0
\(931\) 906.214i 0.973377i
\(932\) 0 0
\(933\) 674.943 0.723411
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) − 893.655i − 0.953741i −0.878974 0.476870i \(-0.841771\pi\)
0.878974 0.476870i \(-0.158229\pi\)
\(938\) 0 0
\(939\) −446.761 −0.475784
\(940\) 0 0
\(941\) 1456.50i 1.54782i 0.633295 + 0.773910i \(0.281702\pi\)
−0.633295 + 0.773910i \(0.718298\pi\)
\(942\) 0 0
\(943\) − 498.228i − 0.528344i
\(944\) 0 0
\(945\) 564.823i 0.597697i
\(946\) 0 0
\(947\) 1026.37 1.08381 0.541906 0.840439i \(-0.317703\pi\)
0.541906 + 0.840439i \(0.317703\pi\)
\(948\) 0 0
\(949\) −126.189 −0.132971
\(950\) 0 0
\(951\) −1482.29 −1.55866
\(952\) 0 0
\(953\) − 77.0539i − 0.0808541i −0.999182 0.0404270i \(-0.987128\pi\)
0.999182 0.0404270i \(-0.0128718\pi\)
\(954\) 0 0
\(955\) −136.440 −0.142870
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) − 2704.90i − 2.82054i
\(960\) 0 0
\(961\) 364.012 0.378784
\(962\) 0 0
\(963\) 1403.90i 1.45784i
\(964\) 0 0
\(965\) 1225.91i 1.27037i
\(966\) 0 0
\(967\) 637.935i 0.659705i 0.944032 + 0.329853i \(0.106999\pi\)
−0.944032 + 0.329853i \(0.893001\pi\)
\(968\) 0 0
\(969\) −411.931 −0.425110
\(970\) 0 0
\(971\) 1344.13 1.38428 0.692139 0.721764i \(-0.256668\pi\)
0.692139 + 0.721764i \(0.256668\pi\)
\(972\) 0 0
\(973\) 2735.50 2.81141
\(974\) 0 0
\(975\) − 404.953i − 0.415336i
\(976\) 0 0
\(977\) 766.956 0.785012 0.392506 0.919750i \(-0.371608\pi\)
0.392506 + 0.919750i \(0.371608\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 74.4223i 0.0758637i
\(982\) 0 0
\(983\) 641.293 0.652383 0.326192 0.945304i \(-0.394235\pi\)
0.326192 + 0.945304i \(0.394235\pi\)
\(984\) 0 0
\(985\) − 2136.33i − 2.16887i
\(986\) 0 0
\(987\) − 557.965i − 0.565314i
\(988\) 0 0
\(989\) − 851.345i − 0.860814i
\(990\) 0 0
\(991\) −1547.49 −1.56154 −0.780770 0.624818i \(-0.785173\pi\)
−0.780770 + 0.624818i \(0.785173\pi\)
\(992\) 0 0
\(993\) −748.102 −0.753375
\(994\) 0 0
\(995\) −502.601 −0.505127
\(996\) 0 0
\(997\) − 1943.59i − 1.94943i −0.223443 0.974717i \(-0.571730\pi\)
0.223443 0.974717i \(-0.428270\pi\)
\(998\) 0 0
\(999\) 275.823 0.276099
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 484.3.d.c.241.1 8
3.2 odd 2 4356.3.f.g.1693.1 8
11.2 odd 10 484.3.f.a.161.1 8
11.3 even 5 484.3.f.d.233.2 8
11.4 even 5 484.3.f.e.457.2 8
11.5 even 5 484.3.f.a.481.1 8
11.6 odd 10 44.3.f.a.41.1 yes 8
11.7 odd 10 484.3.f.d.457.2 8
11.8 odd 10 484.3.f.e.233.2 8
11.9 even 5 44.3.f.a.29.1 8
11.10 odd 2 inner 484.3.d.c.241.2 8
33.17 even 10 396.3.t.a.217.2 8
33.20 odd 10 396.3.t.a.73.2 8
33.32 even 2 4356.3.f.g.1693.2 8
44.31 odd 10 176.3.n.c.161.2 8
44.39 even 10 176.3.n.c.129.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
44.3.f.a.29.1 8 11.9 even 5
44.3.f.a.41.1 yes 8 11.6 odd 10
176.3.n.c.129.2 8 44.39 even 10
176.3.n.c.161.2 8 44.31 odd 10
396.3.t.a.73.2 8 33.20 odd 10
396.3.t.a.217.2 8 33.17 even 10
484.3.d.c.241.1 8 1.1 even 1 trivial
484.3.d.c.241.2 8 11.10 odd 2 inner
484.3.f.a.161.1 8 11.2 odd 10
484.3.f.a.481.1 8 11.5 even 5
484.3.f.d.233.2 8 11.3 even 5
484.3.f.d.457.2 8 11.7 odd 10
484.3.f.e.233.2 8 11.8 odd 10
484.3.f.e.457.2 8 11.4 even 5
4356.3.f.g.1693.1 8 3.2 odd 2
4356.3.f.g.1693.2 8 33.32 even 2