Properties

Label 4842.2.a.p.1.8
Level $4842$
Weight $2$
Character 4842.1
Self dual yes
Analytic conductor $38.664$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4842,2,Mod(1,4842)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4842, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4842.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4842 = 2 \cdot 3^{2} \cdot 269 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4842.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(38.6635646587\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} - 21x^{6} + 3x^{5} + 135x^{4} + 76x^{3} - 180x^{2} - 110x + 41 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1614)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.8
Root \(-1.21132\) of defining polynomial
Character \(\chi\) \(=\) 4842.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{4} +3.38195 q^{5} -0.211316 q^{7} -1.00000 q^{8} -3.38195 q^{10} +2.61950 q^{11} +5.18926 q^{13} +0.211316 q^{14} +1.00000 q^{16} -2.02697 q^{17} +6.25886 q^{19} +3.38195 q^{20} -2.61950 q^{22} -1.76118 q^{23} +6.43755 q^{25} -5.18926 q^{26} -0.211316 q^{28} +1.11008 q^{29} +2.08264 q^{31} -1.00000 q^{32} +2.02697 q^{34} -0.714658 q^{35} +8.28583 q^{37} -6.25886 q^{38} -3.38195 q^{40} +5.45377 q^{41} +4.73911 q^{43} +2.61950 q^{44} +1.76118 q^{46} -8.87857 q^{47} -6.95535 q^{49} -6.43755 q^{50} +5.18926 q^{52} -12.4763 q^{53} +8.85899 q^{55} +0.211316 q^{56} -1.11008 q^{58} +7.55598 q^{59} -13.6395 q^{61} -2.08264 q^{62} +1.00000 q^{64} +17.5498 q^{65} +9.62462 q^{67} -2.02697 q^{68} +0.714658 q^{70} -2.61981 q^{71} +6.98186 q^{73} -8.28583 q^{74} +6.25886 q^{76} -0.553540 q^{77} -9.85401 q^{79} +3.38195 q^{80} -5.45377 q^{82} +10.8941 q^{83} -6.85509 q^{85} -4.73911 q^{86} -2.61950 q^{88} -10.9577 q^{89} -1.09657 q^{91} -1.76118 q^{92} +8.87857 q^{94} +21.1671 q^{95} +0.644025 q^{97} +6.95535 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{2} + 8 q^{4} - 4 q^{5} + 9 q^{7} - 8 q^{8} + 4 q^{10} - 2 q^{11} + 9 q^{13} - 9 q^{14} + 8 q^{16} + 2 q^{17} + 12 q^{19} - 4 q^{20} + 2 q^{22} - 6 q^{23} + 10 q^{25} - 9 q^{26} + 9 q^{28} - q^{29}+ \cdots + 3 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) 3.38195 1.51245 0.756226 0.654311i \(-0.227041\pi\)
0.756226 + 0.654311i \(0.227041\pi\)
\(6\) 0 0
\(7\) −0.211316 −0.0798698 −0.0399349 0.999202i \(-0.512715\pi\)
−0.0399349 + 0.999202i \(0.512715\pi\)
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) −3.38195 −1.06946
\(11\) 2.61950 0.789807 0.394904 0.918723i \(-0.370778\pi\)
0.394904 + 0.918723i \(0.370778\pi\)
\(12\) 0 0
\(13\) 5.18926 1.43924 0.719620 0.694368i \(-0.244316\pi\)
0.719620 + 0.694368i \(0.244316\pi\)
\(14\) 0.211316 0.0564765
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −2.02697 −0.491612 −0.245806 0.969319i \(-0.579053\pi\)
−0.245806 + 0.969319i \(0.579053\pi\)
\(18\) 0 0
\(19\) 6.25886 1.43588 0.717940 0.696105i \(-0.245085\pi\)
0.717940 + 0.696105i \(0.245085\pi\)
\(20\) 3.38195 0.756226
\(21\) 0 0
\(22\) −2.61950 −0.558478
\(23\) −1.76118 −0.367230 −0.183615 0.982998i \(-0.558780\pi\)
−0.183615 + 0.982998i \(0.558780\pi\)
\(24\) 0 0
\(25\) 6.43755 1.28751
\(26\) −5.18926 −1.01770
\(27\) 0 0
\(28\) −0.211316 −0.0399349
\(29\) 1.11008 0.206137 0.103069 0.994674i \(-0.467134\pi\)
0.103069 + 0.994674i \(0.467134\pi\)
\(30\) 0 0
\(31\) 2.08264 0.374053 0.187026 0.982355i \(-0.440115\pi\)
0.187026 + 0.982355i \(0.440115\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0 0
\(34\) 2.02697 0.347622
\(35\) −0.714658 −0.120799
\(36\) 0 0
\(37\) 8.28583 1.36218 0.681091 0.732199i \(-0.261506\pi\)
0.681091 + 0.732199i \(0.261506\pi\)
\(38\) −6.25886 −1.01532
\(39\) 0 0
\(40\) −3.38195 −0.534732
\(41\) 5.45377 0.851736 0.425868 0.904785i \(-0.359969\pi\)
0.425868 + 0.904785i \(0.359969\pi\)
\(42\) 0 0
\(43\) 4.73911 0.722708 0.361354 0.932429i \(-0.382315\pi\)
0.361354 + 0.932429i \(0.382315\pi\)
\(44\) 2.61950 0.394904
\(45\) 0 0
\(46\) 1.76118 0.259671
\(47\) −8.87857 −1.29507 −0.647536 0.762035i \(-0.724201\pi\)
−0.647536 + 0.762035i \(0.724201\pi\)
\(48\) 0 0
\(49\) −6.95535 −0.993621
\(50\) −6.43755 −0.910407
\(51\) 0 0
\(52\) 5.18926 0.719620
\(53\) −12.4763 −1.71375 −0.856875 0.515524i \(-0.827597\pi\)
−0.856875 + 0.515524i \(0.827597\pi\)
\(54\) 0 0
\(55\) 8.85899 1.19455
\(56\) 0.211316 0.0282382
\(57\) 0 0
\(58\) −1.11008 −0.145761
\(59\) 7.55598 0.983704 0.491852 0.870679i \(-0.336320\pi\)
0.491852 + 0.870679i \(0.336320\pi\)
\(60\) 0 0
\(61\) −13.6395 −1.74636 −0.873179 0.487399i \(-0.837946\pi\)
−0.873179 + 0.487399i \(0.837946\pi\)
\(62\) −2.08264 −0.264495
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 17.5498 2.17678
\(66\) 0 0
\(67\) 9.62462 1.17583 0.587917 0.808921i \(-0.299948\pi\)
0.587917 + 0.808921i \(0.299948\pi\)
\(68\) −2.02697 −0.245806
\(69\) 0 0
\(70\) 0.714658 0.0854179
\(71\) −2.61981 −0.310915 −0.155457 0.987843i \(-0.549685\pi\)
−0.155457 + 0.987843i \(0.549685\pi\)
\(72\) 0 0
\(73\) 6.98186 0.817165 0.408582 0.912721i \(-0.366023\pi\)
0.408582 + 0.912721i \(0.366023\pi\)
\(74\) −8.28583 −0.963208
\(75\) 0 0
\(76\) 6.25886 0.717940
\(77\) −0.553540 −0.0630817
\(78\) 0 0
\(79\) −9.85401 −1.10866 −0.554331 0.832296i \(-0.687026\pi\)
−0.554331 + 0.832296i \(0.687026\pi\)
\(80\) 3.38195 0.378113
\(81\) 0 0
\(82\) −5.45377 −0.602268
\(83\) 10.8941 1.19578 0.597890 0.801578i \(-0.296006\pi\)
0.597890 + 0.801578i \(0.296006\pi\)
\(84\) 0 0
\(85\) −6.85509 −0.743539
\(86\) −4.73911 −0.511032
\(87\) 0 0
\(88\) −2.61950 −0.279239
\(89\) −10.9577 −1.16152 −0.580759 0.814075i \(-0.697244\pi\)
−0.580759 + 0.814075i \(0.697244\pi\)
\(90\) 0 0
\(91\) −1.09657 −0.114952
\(92\) −1.76118 −0.183615
\(93\) 0 0
\(94\) 8.87857 0.915755
\(95\) 21.1671 2.17170
\(96\) 0 0
\(97\) 0.644025 0.0653908 0.0326954 0.999465i \(-0.489591\pi\)
0.0326954 + 0.999465i \(0.489591\pi\)
\(98\) 6.95535 0.702596
\(99\) 0 0
\(100\) 6.43755 0.643755
\(101\) 3.84144 0.382238 0.191119 0.981567i \(-0.438788\pi\)
0.191119 + 0.981567i \(0.438788\pi\)
\(102\) 0 0
\(103\) 13.1362 1.29435 0.647174 0.762342i \(-0.275951\pi\)
0.647174 + 0.762342i \(0.275951\pi\)
\(104\) −5.18926 −0.508848
\(105\) 0 0
\(106\) 12.4763 1.21180
\(107\) 5.52143 0.533777 0.266889 0.963727i \(-0.414004\pi\)
0.266889 + 0.963727i \(0.414004\pi\)
\(108\) 0 0
\(109\) −12.2900 −1.17717 −0.588583 0.808437i \(-0.700314\pi\)
−0.588583 + 0.808437i \(0.700314\pi\)
\(110\) −8.85899 −0.844671
\(111\) 0 0
\(112\) −0.211316 −0.0199674
\(113\) −11.9287 −1.12215 −0.561077 0.827764i \(-0.689613\pi\)
−0.561077 + 0.827764i \(0.689613\pi\)
\(114\) 0 0
\(115\) −5.95620 −0.555418
\(116\) 1.11008 0.103069
\(117\) 0 0
\(118\) −7.55598 −0.695584
\(119\) 0.428330 0.0392649
\(120\) 0 0
\(121\) −4.13825 −0.376204
\(122\) 13.6395 1.23486
\(123\) 0 0
\(124\) 2.08264 0.187026
\(125\) 4.86172 0.434846
\(126\) 0 0
\(127\) −11.7616 −1.04368 −0.521838 0.853045i \(-0.674754\pi\)
−0.521838 + 0.853045i \(0.674754\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 0 0
\(130\) −17.5498 −1.53922
\(131\) 13.8987 1.21433 0.607166 0.794575i \(-0.292306\pi\)
0.607166 + 0.794575i \(0.292306\pi\)
\(132\) 0 0
\(133\) −1.32259 −0.114683
\(134\) −9.62462 −0.831440
\(135\) 0 0
\(136\) 2.02697 0.173811
\(137\) 19.0685 1.62913 0.814567 0.580069i \(-0.196975\pi\)
0.814567 + 0.580069i \(0.196975\pi\)
\(138\) 0 0
\(139\) 11.4309 0.969559 0.484780 0.874636i \(-0.338900\pi\)
0.484780 + 0.874636i \(0.338900\pi\)
\(140\) −0.714658 −0.0603996
\(141\) 0 0
\(142\) 2.61981 0.219850
\(143\) 13.5932 1.13672
\(144\) 0 0
\(145\) 3.75424 0.311773
\(146\) −6.98186 −0.577823
\(147\) 0 0
\(148\) 8.28583 0.681091
\(149\) −17.0440 −1.39630 −0.698149 0.715952i \(-0.745993\pi\)
−0.698149 + 0.715952i \(0.745993\pi\)
\(150\) 0 0
\(151\) −8.04111 −0.654376 −0.327188 0.944959i \(-0.606101\pi\)
−0.327188 + 0.944959i \(0.606101\pi\)
\(152\) −6.25886 −0.507660
\(153\) 0 0
\(154\) 0.553540 0.0446055
\(155\) 7.04337 0.565737
\(156\) 0 0
\(157\) 6.20006 0.494819 0.247409 0.968911i \(-0.420421\pi\)
0.247409 + 0.968911i \(0.420421\pi\)
\(158\) 9.85401 0.783943
\(159\) 0 0
\(160\) −3.38195 −0.267366
\(161\) 0.372164 0.0293306
\(162\) 0 0
\(163\) −14.9933 −1.17437 −0.587184 0.809453i \(-0.699764\pi\)
−0.587184 + 0.809453i \(0.699764\pi\)
\(164\) 5.45377 0.425868
\(165\) 0 0
\(166\) −10.8941 −0.845545
\(167\) −1.94990 −0.150888 −0.0754438 0.997150i \(-0.524037\pi\)
−0.0754438 + 0.997150i \(0.524037\pi\)
\(168\) 0 0
\(169\) 13.9284 1.07141
\(170\) 6.85509 0.525761
\(171\) 0 0
\(172\) 4.73911 0.361354
\(173\) 1.12775 0.0857414 0.0428707 0.999081i \(-0.486350\pi\)
0.0428707 + 0.999081i \(0.486350\pi\)
\(174\) 0 0
\(175\) −1.36035 −0.102833
\(176\) 2.61950 0.197452
\(177\) 0 0
\(178\) 10.9577 0.821318
\(179\) −3.61157 −0.269941 −0.134971 0.990850i \(-0.543094\pi\)
−0.134971 + 0.990850i \(0.543094\pi\)
\(180\) 0 0
\(181\) −23.8339 −1.77156 −0.885781 0.464104i \(-0.846376\pi\)
−0.885781 + 0.464104i \(0.846376\pi\)
\(182\) 1.09657 0.0812832
\(183\) 0 0
\(184\) 1.76118 0.129836
\(185\) 28.0222 2.06023
\(186\) 0 0
\(187\) −5.30963 −0.388279
\(188\) −8.87857 −0.647536
\(189\) 0 0
\(190\) −21.1671 −1.53562
\(191\) 6.39834 0.462968 0.231484 0.972839i \(-0.425642\pi\)
0.231484 + 0.972839i \(0.425642\pi\)
\(192\) 0 0
\(193\) −13.5035 −0.972004 −0.486002 0.873958i \(-0.661545\pi\)
−0.486002 + 0.873958i \(0.661545\pi\)
\(194\) −0.644025 −0.0462383
\(195\) 0 0
\(196\) −6.95535 −0.496810
\(197\) −5.46878 −0.389634 −0.194817 0.980840i \(-0.562411\pi\)
−0.194817 + 0.980840i \(0.562411\pi\)
\(198\) 0 0
\(199\) 17.1793 1.21781 0.608905 0.793243i \(-0.291609\pi\)
0.608905 + 0.793243i \(0.291609\pi\)
\(200\) −6.43755 −0.455204
\(201\) 0 0
\(202\) −3.84144 −0.270283
\(203\) −0.234578 −0.0164641
\(204\) 0 0
\(205\) 18.4444 1.28821
\(206\) −13.1362 −0.915243
\(207\) 0 0
\(208\) 5.18926 0.359810
\(209\) 16.3950 1.13407
\(210\) 0 0
\(211\) −8.03629 −0.553241 −0.276620 0.960979i \(-0.589214\pi\)
−0.276620 + 0.960979i \(0.589214\pi\)
\(212\) −12.4763 −0.856875
\(213\) 0 0
\(214\) −5.52143 −0.377437
\(215\) 16.0274 1.09306
\(216\) 0 0
\(217\) −0.440094 −0.0298755
\(218\) 12.2900 0.832382
\(219\) 0 0
\(220\) 8.85899 0.597273
\(221\) −10.5184 −0.707547
\(222\) 0 0
\(223\) 6.05563 0.405515 0.202758 0.979229i \(-0.435010\pi\)
0.202758 + 0.979229i \(0.435010\pi\)
\(224\) 0.211316 0.0141191
\(225\) 0 0
\(226\) 11.9287 0.793482
\(227\) 2.97393 0.197386 0.0986932 0.995118i \(-0.468534\pi\)
0.0986932 + 0.995118i \(0.468534\pi\)
\(228\) 0 0
\(229\) 2.39817 0.158476 0.0792378 0.996856i \(-0.474751\pi\)
0.0792378 + 0.996856i \(0.474751\pi\)
\(230\) 5.95620 0.392740
\(231\) 0 0
\(232\) −1.11008 −0.0728806
\(233\) 17.4919 1.14593 0.572967 0.819578i \(-0.305792\pi\)
0.572967 + 0.819578i \(0.305792\pi\)
\(234\) 0 0
\(235\) −30.0268 −1.95874
\(236\) 7.55598 0.491852
\(237\) 0 0
\(238\) −0.428330 −0.0277645
\(239\) −5.72249 −0.370157 −0.185079 0.982724i \(-0.559254\pi\)
−0.185079 + 0.982724i \(0.559254\pi\)
\(240\) 0 0
\(241\) 13.6485 0.879179 0.439590 0.898199i \(-0.355124\pi\)
0.439590 + 0.898199i \(0.355124\pi\)
\(242\) 4.13825 0.266017
\(243\) 0 0
\(244\) −13.6395 −0.873179
\(245\) −23.5226 −1.50280
\(246\) 0 0
\(247\) 32.4788 2.06658
\(248\) −2.08264 −0.132248
\(249\) 0 0
\(250\) −4.86172 −0.307482
\(251\) −16.8931 −1.06628 −0.533142 0.846025i \(-0.678989\pi\)
−0.533142 + 0.846025i \(0.678989\pi\)
\(252\) 0 0
\(253\) −4.61339 −0.290041
\(254\) 11.7616 0.737991
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 5.93163 0.370005 0.185002 0.982738i \(-0.440771\pi\)
0.185002 + 0.982738i \(0.440771\pi\)
\(258\) 0 0
\(259\) −1.75092 −0.108797
\(260\) 17.5498 1.08839
\(261\) 0 0
\(262\) −13.8987 −0.858663
\(263\) −6.91162 −0.426189 −0.213094 0.977032i \(-0.568354\pi\)
−0.213094 + 0.977032i \(0.568354\pi\)
\(264\) 0 0
\(265\) −42.1941 −2.59196
\(266\) 1.32259 0.0810934
\(267\) 0 0
\(268\) 9.62462 0.587917
\(269\) −1.00000 −0.0609711
\(270\) 0 0
\(271\) −27.8504 −1.69179 −0.845896 0.533348i \(-0.820934\pi\)
−0.845896 + 0.533348i \(0.820934\pi\)
\(272\) −2.02697 −0.122903
\(273\) 0 0
\(274\) −19.0685 −1.15197
\(275\) 16.8631 1.01689
\(276\) 0 0
\(277\) 21.5773 1.29645 0.648226 0.761448i \(-0.275511\pi\)
0.648226 + 0.761448i \(0.275511\pi\)
\(278\) −11.4309 −0.685582
\(279\) 0 0
\(280\) 0.714658 0.0427090
\(281\) 1.55635 0.0928438 0.0464219 0.998922i \(-0.485218\pi\)
0.0464219 + 0.998922i \(0.485218\pi\)
\(282\) 0 0
\(283\) −18.9435 −1.12607 −0.563036 0.826432i \(-0.690367\pi\)
−0.563036 + 0.826432i \(0.690367\pi\)
\(284\) −2.61981 −0.155457
\(285\) 0 0
\(286\) −13.5932 −0.803784
\(287\) −1.15247 −0.0680280
\(288\) 0 0
\(289\) −12.8914 −0.758318
\(290\) −3.75424 −0.220457
\(291\) 0 0
\(292\) 6.98186 0.408582
\(293\) −19.5482 −1.14202 −0.571008 0.820945i \(-0.693447\pi\)
−0.571008 + 0.820945i \(0.693447\pi\)
\(294\) 0 0
\(295\) 25.5539 1.48781
\(296\) −8.28583 −0.481604
\(297\) 0 0
\(298\) 17.0440 0.987332
\(299\) −9.13919 −0.528533
\(300\) 0 0
\(301\) −1.00145 −0.0577225
\(302\) 8.04111 0.462714
\(303\) 0 0
\(304\) 6.25886 0.358970
\(305\) −46.1280 −2.64128
\(306\) 0 0
\(307\) 22.7738 1.29977 0.649883 0.760034i \(-0.274818\pi\)
0.649883 + 0.760034i \(0.274818\pi\)
\(308\) −0.553540 −0.0315409
\(309\) 0 0
\(310\) −7.04337 −0.400036
\(311\) −32.0583 −1.81786 −0.908929 0.416951i \(-0.863099\pi\)
−0.908929 + 0.416951i \(0.863099\pi\)
\(312\) 0 0
\(313\) −1.84320 −0.104184 −0.0520920 0.998642i \(-0.516589\pi\)
−0.0520920 + 0.998642i \(0.516589\pi\)
\(314\) −6.20006 −0.349890
\(315\) 0 0
\(316\) −9.85401 −0.554331
\(317\) −21.5496 −1.21034 −0.605172 0.796095i \(-0.706896\pi\)
−0.605172 + 0.796095i \(0.706896\pi\)
\(318\) 0 0
\(319\) 2.90786 0.162809
\(320\) 3.38195 0.189056
\(321\) 0 0
\(322\) −0.372164 −0.0207399
\(323\) −12.6865 −0.705896
\(324\) 0 0
\(325\) 33.4061 1.85304
\(326\) 14.9933 0.830404
\(327\) 0 0
\(328\) −5.45377 −0.301134
\(329\) 1.87618 0.103437
\(330\) 0 0
\(331\) 17.5003 0.961903 0.480952 0.876747i \(-0.340291\pi\)
0.480952 + 0.876747i \(0.340291\pi\)
\(332\) 10.8941 0.597890
\(333\) 0 0
\(334\) 1.94990 0.106694
\(335\) 32.5499 1.77839
\(336\) 0 0
\(337\) 0.945178 0.0514871 0.0257436 0.999669i \(-0.491805\pi\)
0.0257436 + 0.999669i \(0.491805\pi\)
\(338\) −13.9284 −0.757603
\(339\) 0 0
\(340\) −6.85509 −0.371770
\(341\) 5.45546 0.295430
\(342\) 0 0
\(343\) 2.94898 0.159230
\(344\) −4.73911 −0.255516
\(345\) 0 0
\(346\) −1.12775 −0.0606283
\(347\) 30.5256 1.63870 0.819350 0.573293i \(-0.194334\pi\)
0.819350 + 0.573293i \(0.194334\pi\)
\(348\) 0 0
\(349\) −17.0713 −0.913808 −0.456904 0.889516i \(-0.651042\pi\)
−0.456904 + 0.889516i \(0.651042\pi\)
\(350\) 1.36035 0.0727140
\(351\) 0 0
\(352\) −2.61950 −0.139620
\(353\) 11.3088 0.601907 0.300953 0.953639i \(-0.402695\pi\)
0.300953 + 0.953639i \(0.402695\pi\)
\(354\) 0 0
\(355\) −8.86006 −0.470243
\(356\) −10.9577 −0.580759
\(357\) 0 0
\(358\) 3.61157 0.190877
\(359\) 20.7803 1.09674 0.548371 0.836235i \(-0.315248\pi\)
0.548371 + 0.836235i \(0.315248\pi\)
\(360\) 0 0
\(361\) 20.1733 1.06175
\(362\) 23.8339 1.25268
\(363\) 0 0
\(364\) −1.09657 −0.0574759
\(365\) 23.6123 1.23592
\(366\) 0 0
\(367\) 30.5653 1.59550 0.797748 0.602990i \(-0.206024\pi\)
0.797748 + 0.602990i \(0.206024\pi\)
\(368\) −1.76118 −0.0918076
\(369\) 0 0
\(370\) −28.0222 −1.45681
\(371\) 2.63643 0.136877
\(372\) 0 0
\(373\) 24.0416 1.24483 0.622413 0.782689i \(-0.286153\pi\)
0.622413 + 0.782689i \(0.286153\pi\)
\(374\) 5.30963 0.274554
\(375\) 0 0
\(376\) 8.87857 0.457877
\(377\) 5.76051 0.296681
\(378\) 0 0
\(379\) 1.76832 0.0908322 0.0454161 0.998968i \(-0.485539\pi\)
0.0454161 + 0.998968i \(0.485539\pi\)
\(380\) 21.1671 1.08585
\(381\) 0 0
\(382\) −6.39834 −0.327368
\(383\) −3.12837 −0.159852 −0.0799260 0.996801i \(-0.525468\pi\)
−0.0799260 + 0.996801i \(0.525468\pi\)
\(384\) 0 0
\(385\) −1.87204 −0.0954081
\(386\) 13.5035 0.687310
\(387\) 0 0
\(388\) 0.644025 0.0326954
\(389\) 12.3873 0.628062 0.314031 0.949413i \(-0.398320\pi\)
0.314031 + 0.949413i \(0.398320\pi\)
\(390\) 0 0
\(391\) 3.56984 0.180535
\(392\) 6.95535 0.351298
\(393\) 0 0
\(394\) 5.46878 0.275513
\(395\) −33.3257 −1.67680
\(396\) 0 0
\(397\) 14.6465 0.735088 0.367544 0.930006i \(-0.380199\pi\)
0.367544 + 0.930006i \(0.380199\pi\)
\(398\) −17.1793 −0.861122
\(399\) 0 0
\(400\) 6.43755 0.321878
\(401\) 25.5604 1.27642 0.638212 0.769861i \(-0.279674\pi\)
0.638212 + 0.769861i \(0.279674\pi\)
\(402\) 0 0
\(403\) 10.8073 0.538352
\(404\) 3.84144 0.191119
\(405\) 0 0
\(406\) 0.234578 0.0116419
\(407\) 21.7047 1.07586
\(408\) 0 0
\(409\) −14.0929 −0.696848 −0.348424 0.937337i \(-0.613283\pi\)
−0.348424 + 0.937337i \(0.613283\pi\)
\(410\) −18.4444 −0.910902
\(411\) 0 0
\(412\) 13.1362 0.647174
\(413\) −1.59670 −0.0785682
\(414\) 0 0
\(415\) 36.8432 1.80856
\(416\) −5.18926 −0.254424
\(417\) 0 0
\(418\) −16.3950 −0.801908
\(419\) −10.3282 −0.504566 −0.252283 0.967654i \(-0.581181\pi\)
−0.252283 + 0.967654i \(0.581181\pi\)
\(420\) 0 0
\(421\) −21.7560 −1.06032 −0.530160 0.847897i \(-0.677868\pi\)
−0.530160 + 0.847897i \(0.677868\pi\)
\(422\) 8.03629 0.391200
\(423\) 0 0
\(424\) 12.4763 0.605902
\(425\) −13.0487 −0.632955
\(426\) 0 0
\(427\) 2.88224 0.139481
\(428\) 5.52143 0.266889
\(429\) 0 0
\(430\) −16.0274 −0.772911
\(431\) −17.2355 −0.830203 −0.415102 0.909775i \(-0.636254\pi\)
−0.415102 + 0.909775i \(0.636254\pi\)
\(432\) 0 0
\(433\) −24.5562 −1.18009 −0.590047 0.807369i \(-0.700891\pi\)
−0.590047 + 0.807369i \(0.700891\pi\)
\(434\) 0.440094 0.0211252
\(435\) 0 0
\(436\) −12.2900 −0.588583
\(437\) −11.0229 −0.527299
\(438\) 0 0
\(439\) −21.3132 −1.01722 −0.508611 0.860997i \(-0.669841\pi\)
−0.508611 + 0.860997i \(0.669841\pi\)
\(440\) −8.85899 −0.422336
\(441\) 0 0
\(442\) 10.5184 0.500312
\(443\) 22.6790 1.07751 0.538756 0.842462i \(-0.318894\pi\)
0.538756 + 0.842462i \(0.318894\pi\)
\(444\) 0 0
\(445\) −37.0585 −1.75674
\(446\) −6.05563 −0.286742
\(447\) 0 0
\(448\) −0.211316 −0.00998372
\(449\) 32.4566 1.53172 0.765860 0.643007i \(-0.222313\pi\)
0.765860 + 0.643007i \(0.222313\pi\)
\(450\) 0 0
\(451\) 14.2861 0.672708
\(452\) −11.9287 −0.561077
\(453\) 0 0
\(454\) −2.97393 −0.139573
\(455\) −3.70854 −0.173859
\(456\) 0 0
\(457\) −28.2009 −1.31918 −0.659591 0.751625i \(-0.729271\pi\)
−0.659591 + 0.751625i \(0.729271\pi\)
\(458\) −2.39817 −0.112059
\(459\) 0 0
\(460\) −5.95620 −0.277709
\(461\) 34.2926 1.59716 0.798582 0.601886i \(-0.205584\pi\)
0.798582 + 0.601886i \(0.205584\pi\)
\(462\) 0 0
\(463\) 29.9743 1.39302 0.696512 0.717545i \(-0.254734\pi\)
0.696512 + 0.717545i \(0.254734\pi\)
\(464\) 1.11008 0.0515343
\(465\) 0 0
\(466\) −17.4919 −0.810298
\(467\) 24.6700 1.14159 0.570795 0.821093i \(-0.306635\pi\)
0.570795 + 0.821093i \(0.306635\pi\)
\(468\) 0 0
\(469\) −2.03383 −0.0939136
\(470\) 30.0268 1.38503
\(471\) 0 0
\(472\) −7.55598 −0.347792
\(473\) 12.4141 0.570800
\(474\) 0 0
\(475\) 40.2917 1.84871
\(476\) 0.428330 0.0196325
\(477\) 0 0
\(478\) 5.72249 0.261741
\(479\) 10.9908 0.502183 0.251091 0.967963i \(-0.419211\pi\)
0.251091 + 0.967963i \(0.419211\pi\)
\(480\) 0 0
\(481\) 42.9973 1.96051
\(482\) −13.6485 −0.621674
\(483\) 0 0
\(484\) −4.13825 −0.188102
\(485\) 2.17806 0.0989005
\(486\) 0 0
\(487\) −15.1938 −0.688495 −0.344247 0.938879i \(-0.611866\pi\)
−0.344247 + 0.938879i \(0.611866\pi\)
\(488\) 13.6395 0.617431
\(489\) 0 0
\(490\) 23.5226 1.06264
\(491\) −17.0007 −0.767229 −0.383615 0.923493i \(-0.625321\pi\)
−0.383615 + 0.923493i \(0.625321\pi\)
\(492\) 0 0
\(493\) −2.25010 −0.101340
\(494\) −32.4788 −1.46129
\(495\) 0 0
\(496\) 2.08264 0.0935132
\(497\) 0.553607 0.0248327
\(498\) 0 0
\(499\) −13.2475 −0.593040 −0.296520 0.955027i \(-0.595826\pi\)
−0.296520 + 0.955027i \(0.595826\pi\)
\(500\) 4.86172 0.217423
\(501\) 0 0
\(502\) 16.8931 0.753977
\(503\) 35.2526 1.57183 0.785917 0.618332i \(-0.212191\pi\)
0.785917 + 0.618332i \(0.212191\pi\)
\(504\) 0 0
\(505\) 12.9916 0.578117
\(506\) 4.61339 0.205090
\(507\) 0 0
\(508\) −11.7616 −0.521838
\(509\) 6.10249 0.270488 0.135244 0.990812i \(-0.456818\pi\)
0.135244 + 0.990812i \(0.456818\pi\)
\(510\) 0 0
\(511\) −1.47537 −0.0652667
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) −5.93163 −0.261633
\(515\) 44.4259 1.95764
\(516\) 0 0
\(517\) −23.2574 −1.02286
\(518\) 1.75092 0.0769312
\(519\) 0 0
\(520\) −17.5498 −0.769609
\(521\) 33.2669 1.45745 0.728724 0.684808i \(-0.240114\pi\)
0.728724 + 0.684808i \(0.240114\pi\)
\(522\) 0 0
\(523\) 16.0834 0.703276 0.351638 0.936136i \(-0.385625\pi\)
0.351638 + 0.936136i \(0.385625\pi\)
\(524\) 13.8987 0.607166
\(525\) 0 0
\(526\) 6.91162 0.301361
\(527\) −4.22144 −0.183889
\(528\) 0 0
\(529\) −19.8983 −0.865142
\(530\) 42.1941 1.83280
\(531\) 0 0
\(532\) −1.32259 −0.0573417
\(533\) 28.3010 1.22585
\(534\) 0 0
\(535\) 18.6732 0.807312
\(536\) −9.62462 −0.415720
\(537\) 0 0
\(538\) 1.00000 0.0431131
\(539\) −18.2195 −0.784769
\(540\) 0 0
\(541\) 19.6968 0.846833 0.423416 0.905935i \(-0.360831\pi\)
0.423416 + 0.905935i \(0.360831\pi\)
\(542\) 27.8504 1.19628
\(543\) 0 0
\(544\) 2.02697 0.0869055
\(545\) −41.5640 −1.78041
\(546\) 0 0
\(547\) 21.3592 0.913254 0.456627 0.889658i \(-0.349057\pi\)
0.456627 + 0.889658i \(0.349057\pi\)
\(548\) 19.0685 0.814567
\(549\) 0 0
\(550\) −16.8631 −0.719047
\(551\) 6.94786 0.295989
\(552\) 0 0
\(553\) 2.08231 0.0885486
\(554\) −21.5773 −0.916730
\(555\) 0 0
\(556\) 11.4309 0.484780
\(557\) −21.8619 −0.926318 −0.463159 0.886275i \(-0.653284\pi\)
−0.463159 + 0.886275i \(0.653284\pi\)
\(558\) 0 0
\(559\) 24.5925 1.04015
\(560\) −0.714658 −0.0301998
\(561\) 0 0
\(562\) −1.55635 −0.0656505
\(563\) −39.9978 −1.68571 −0.842853 0.538143i \(-0.819126\pi\)
−0.842853 + 0.538143i \(0.819126\pi\)
\(564\) 0 0
\(565\) −40.3421 −1.69720
\(566\) 18.9435 0.796254
\(567\) 0 0
\(568\) 2.61981 0.109925
\(569\) 7.67701 0.321837 0.160918 0.986968i \(-0.448554\pi\)
0.160918 + 0.986968i \(0.448554\pi\)
\(570\) 0 0
\(571\) 16.7701 0.701805 0.350903 0.936412i \(-0.385875\pi\)
0.350903 + 0.936412i \(0.385875\pi\)
\(572\) 13.5932 0.568361
\(573\) 0 0
\(574\) 1.15247 0.0481030
\(575\) −11.3377 −0.472813
\(576\) 0 0
\(577\) −4.99672 −0.208016 −0.104008 0.994576i \(-0.533167\pi\)
−0.104008 + 0.994576i \(0.533167\pi\)
\(578\) 12.8914 0.536212
\(579\) 0 0
\(580\) 3.75424 0.155886
\(581\) −2.30209 −0.0955067
\(582\) 0 0
\(583\) −32.6816 −1.35353
\(584\) −6.98186 −0.288911
\(585\) 0 0
\(586\) 19.5482 0.807527
\(587\) −30.4574 −1.25711 −0.628555 0.777765i \(-0.716353\pi\)
−0.628555 + 0.777765i \(0.716353\pi\)
\(588\) 0 0
\(589\) 13.0349 0.537095
\(590\) −25.5539 −1.05204
\(591\) 0 0
\(592\) 8.28583 0.340545
\(593\) 9.76939 0.401181 0.200590 0.979675i \(-0.435714\pi\)
0.200590 + 0.979675i \(0.435714\pi\)
\(594\) 0 0
\(595\) 1.44859 0.0593863
\(596\) −17.0440 −0.698149
\(597\) 0 0
\(598\) 9.13919 0.373729
\(599\) 41.8225 1.70882 0.854410 0.519599i \(-0.173919\pi\)
0.854410 + 0.519599i \(0.173919\pi\)
\(600\) 0 0
\(601\) 9.04220 0.368839 0.184419 0.982848i \(-0.440960\pi\)
0.184419 + 0.982848i \(0.440960\pi\)
\(602\) 1.00145 0.0408160
\(603\) 0 0
\(604\) −8.04111 −0.327188
\(605\) −13.9953 −0.568991
\(606\) 0 0
\(607\) 36.5577 1.48383 0.741915 0.670494i \(-0.233918\pi\)
0.741915 + 0.670494i \(0.233918\pi\)
\(608\) −6.25886 −0.253830
\(609\) 0 0
\(610\) 46.1280 1.86767
\(611\) −46.0732 −1.86392
\(612\) 0 0
\(613\) −17.2863 −0.698185 −0.349093 0.937088i \(-0.613510\pi\)
−0.349093 + 0.937088i \(0.613510\pi\)
\(614\) −22.7738 −0.919074
\(615\) 0 0
\(616\) 0.553540 0.0223028
\(617\) 1.17923 0.0474740 0.0237370 0.999718i \(-0.492444\pi\)
0.0237370 + 0.999718i \(0.492444\pi\)
\(618\) 0 0
\(619\) 30.6570 1.23221 0.616103 0.787665i \(-0.288710\pi\)
0.616103 + 0.787665i \(0.288710\pi\)
\(620\) 7.04337 0.282868
\(621\) 0 0
\(622\) 32.0583 1.28542
\(623\) 2.31554 0.0927702
\(624\) 0 0
\(625\) −15.7457 −0.629827
\(626\) 1.84320 0.0736692
\(627\) 0 0
\(628\) 6.20006 0.247409
\(629\) −16.7951 −0.669664
\(630\) 0 0
\(631\) 34.5328 1.37473 0.687365 0.726313i \(-0.258767\pi\)
0.687365 + 0.726313i \(0.258767\pi\)
\(632\) 9.85401 0.391971
\(633\) 0 0
\(634\) 21.5496 0.855842
\(635\) −39.7772 −1.57851
\(636\) 0 0
\(637\) −36.0931 −1.43006
\(638\) −2.90786 −0.115123
\(639\) 0 0
\(640\) −3.38195 −0.133683
\(641\) 32.5266 1.28472 0.642362 0.766401i \(-0.277955\pi\)
0.642362 + 0.766401i \(0.277955\pi\)
\(642\) 0 0
\(643\) −9.84633 −0.388301 −0.194151 0.980972i \(-0.562195\pi\)
−0.194151 + 0.980972i \(0.562195\pi\)
\(644\) 0.372164 0.0146653
\(645\) 0 0
\(646\) 12.6865 0.499144
\(647\) 25.4515 1.00060 0.500300 0.865852i \(-0.333223\pi\)
0.500300 + 0.865852i \(0.333223\pi\)
\(648\) 0 0
\(649\) 19.7928 0.776937
\(650\) −33.4061 −1.31030
\(651\) 0 0
\(652\) −14.9933 −0.587184
\(653\) 17.3275 0.678078 0.339039 0.940772i \(-0.389898\pi\)
0.339039 + 0.940772i \(0.389898\pi\)
\(654\) 0 0
\(655\) 47.0045 1.83662
\(656\) 5.45377 0.212934
\(657\) 0 0
\(658\) −1.87618 −0.0731411
\(659\) −7.72466 −0.300910 −0.150455 0.988617i \(-0.548074\pi\)
−0.150455 + 0.988617i \(0.548074\pi\)
\(660\) 0 0
\(661\) 32.8193 1.27652 0.638261 0.769820i \(-0.279654\pi\)
0.638261 + 0.769820i \(0.279654\pi\)
\(662\) −17.5003 −0.680168
\(663\) 0 0
\(664\) −10.8941 −0.422772
\(665\) −4.47294 −0.173453
\(666\) 0 0
\(667\) −1.95505 −0.0756999
\(668\) −1.94990 −0.0754438
\(669\) 0 0
\(670\) −32.5499 −1.25751
\(671\) −35.7286 −1.37929
\(672\) 0 0
\(673\) −26.0908 −1.00573 −0.502864 0.864366i \(-0.667720\pi\)
−0.502864 + 0.864366i \(0.667720\pi\)
\(674\) −0.945178 −0.0364069
\(675\) 0 0
\(676\) 13.9284 0.535707
\(677\) 11.8070 0.453778 0.226889 0.973921i \(-0.427145\pi\)
0.226889 + 0.973921i \(0.427145\pi\)
\(678\) 0 0
\(679\) −0.136093 −0.00522275
\(680\) 6.85509 0.262881
\(681\) 0 0
\(682\) −5.45546 −0.208900
\(683\) −42.5317 −1.62743 −0.813716 0.581263i \(-0.802559\pi\)
−0.813716 + 0.581263i \(0.802559\pi\)
\(684\) 0 0
\(685\) 64.4887 2.46399
\(686\) −2.94898 −0.112593
\(687\) 0 0
\(688\) 4.73911 0.180677
\(689\) −64.7427 −2.46650
\(690\) 0 0
\(691\) 19.1908 0.730052 0.365026 0.930997i \(-0.381060\pi\)
0.365026 + 0.930997i \(0.381060\pi\)
\(692\) 1.12775 0.0428707
\(693\) 0 0
\(694\) −30.5256 −1.15874
\(695\) 38.6588 1.46641
\(696\) 0 0
\(697\) −11.0546 −0.418723
\(698\) 17.0713 0.646160
\(699\) 0 0
\(700\) −1.36035 −0.0514166
\(701\) −10.7604 −0.406413 −0.203207 0.979136i \(-0.565136\pi\)
−0.203207 + 0.979136i \(0.565136\pi\)
\(702\) 0 0
\(703\) 51.8598 1.95593
\(704\) 2.61950 0.0987259
\(705\) 0 0
\(706\) −11.3088 −0.425612
\(707\) −0.811757 −0.0305293
\(708\) 0 0
\(709\) −47.7161 −1.79202 −0.896008 0.444038i \(-0.853546\pi\)
−0.896008 + 0.444038i \(0.853546\pi\)
\(710\) 8.86006 0.332512
\(711\) 0 0
\(712\) 10.9577 0.410659
\(713\) −3.66789 −0.137364
\(714\) 0 0
\(715\) 45.9716 1.71924
\(716\) −3.61157 −0.134971
\(717\) 0 0
\(718\) −20.7803 −0.775514
\(719\) 7.84050 0.292401 0.146201 0.989255i \(-0.453296\pi\)
0.146201 + 0.989255i \(0.453296\pi\)
\(720\) 0 0
\(721\) −2.77588 −0.103379
\(722\) −20.1733 −0.750773
\(723\) 0 0
\(724\) −23.8339 −0.885781
\(725\) 7.14622 0.265404
\(726\) 0 0
\(727\) −7.18234 −0.266378 −0.133189 0.991091i \(-0.542522\pi\)
−0.133189 + 0.991091i \(0.542522\pi\)
\(728\) 1.09657 0.0406416
\(729\) 0 0
\(730\) −23.6123 −0.873929
\(731\) −9.60603 −0.355292
\(732\) 0 0
\(733\) −14.5003 −0.535580 −0.267790 0.963477i \(-0.586293\pi\)
−0.267790 + 0.963477i \(0.586293\pi\)
\(734\) −30.5653 −1.12819
\(735\) 0 0
\(736\) 1.76118 0.0649178
\(737\) 25.2116 0.928683
\(738\) 0 0
\(739\) −20.0900 −0.739024 −0.369512 0.929226i \(-0.620475\pi\)
−0.369512 + 0.929226i \(0.620475\pi\)
\(740\) 28.0222 1.03012
\(741\) 0 0
\(742\) −2.63643 −0.0967865
\(743\) 3.89941 0.143055 0.0715277 0.997439i \(-0.477213\pi\)
0.0715277 + 0.997439i \(0.477213\pi\)
\(744\) 0 0
\(745\) −57.6419 −2.11183
\(746\) −24.0416 −0.880224
\(747\) 0 0
\(748\) −5.30963 −0.194139
\(749\) −1.16676 −0.0426327
\(750\) 0 0
\(751\) 2.96519 0.108201 0.0541006 0.998535i \(-0.482771\pi\)
0.0541006 + 0.998535i \(0.482771\pi\)
\(752\) −8.87857 −0.323768
\(753\) 0 0
\(754\) −5.76051 −0.209785
\(755\) −27.1946 −0.989712
\(756\) 0 0
\(757\) 1.14811 0.0417288 0.0208644 0.999782i \(-0.493358\pi\)
0.0208644 + 0.999782i \(0.493358\pi\)
\(758\) −1.76832 −0.0642281
\(759\) 0 0
\(760\) −21.1671 −0.767812
\(761\) 34.7165 1.25847 0.629236 0.777215i \(-0.283368\pi\)
0.629236 + 0.777215i \(0.283368\pi\)
\(762\) 0 0
\(763\) 2.59706 0.0940200
\(764\) 6.39834 0.231484
\(765\) 0 0
\(766\) 3.12837 0.113032
\(767\) 39.2099 1.41579
\(768\) 0 0
\(769\) 8.46957 0.305420 0.152710 0.988271i \(-0.451200\pi\)
0.152710 + 0.988271i \(0.451200\pi\)
\(770\) 1.87204 0.0674637
\(771\) 0 0
\(772\) −13.5035 −0.486002
\(773\) −48.4852 −1.74389 −0.871945 0.489604i \(-0.837141\pi\)
−0.871945 + 0.489604i \(0.837141\pi\)
\(774\) 0 0
\(775\) 13.4071 0.481597
\(776\) −0.644025 −0.0231192
\(777\) 0 0
\(778\) −12.3873 −0.444107
\(779\) 34.1344 1.22299
\(780\) 0 0
\(781\) −6.86259 −0.245563
\(782\) −3.56984 −0.127657
\(783\) 0 0
\(784\) −6.95535 −0.248405
\(785\) 20.9683 0.748389
\(786\) 0 0
\(787\) −5.21440 −0.185873 −0.0929366 0.995672i \(-0.529625\pi\)
−0.0929366 + 0.995672i \(0.529625\pi\)
\(788\) −5.46878 −0.194817
\(789\) 0 0
\(790\) 33.3257 1.18568
\(791\) 2.52071 0.0896261
\(792\) 0 0
\(793\) −70.7788 −2.51343
\(794\) −14.6465 −0.519786
\(795\) 0 0
\(796\) 17.1793 0.608905
\(797\) −41.1631 −1.45807 −0.729035 0.684476i \(-0.760031\pi\)
−0.729035 + 0.684476i \(0.760031\pi\)
\(798\) 0 0
\(799\) 17.9966 0.636673
\(800\) −6.43755 −0.227602
\(801\) 0 0
\(802\) −25.5604 −0.902568
\(803\) 18.2889 0.645403
\(804\) 0 0
\(805\) 1.25864 0.0443611
\(806\) −10.8073 −0.380672
\(807\) 0 0
\(808\) −3.84144 −0.135142
\(809\) −22.9918 −0.808349 −0.404174 0.914682i \(-0.632441\pi\)
−0.404174 + 0.914682i \(0.632441\pi\)
\(810\) 0 0
\(811\) 12.0503 0.423144 0.211572 0.977362i \(-0.432142\pi\)
0.211572 + 0.977362i \(0.432142\pi\)
\(812\) −0.234578 −0.00823207
\(813\) 0 0
\(814\) −21.7047 −0.760749
\(815\) −50.7066 −1.77618
\(816\) 0 0
\(817\) 29.6614 1.03772
\(818\) 14.0929 0.492746
\(819\) 0 0
\(820\) 18.4444 0.644105
\(821\) −53.2225 −1.85748 −0.928740 0.370732i \(-0.879107\pi\)
−0.928740 + 0.370732i \(0.879107\pi\)
\(822\) 0 0
\(823\) −41.2893 −1.43926 −0.719628 0.694360i \(-0.755688\pi\)
−0.719628 + 0.694360i \(0.755688\pi\)
\(824\) −13.1362 −0.457621
\(825\) 0 0
\(826\) 1.59670 0.0555561
\(827\) −52.4750 −1.82473 −0.912366 0.409374i \(-0.865747\pi\)
−0.912366 + 0.409374i \(0.865747\pi\)
\(828\) 0 0
\(829\) 34.0952 1.18418 0.592088 0.805873i \(-0.298304\pi\)
0.592088 + 0.805873i \(0.298304\pi\)
\(830\) −36.8432 −1.27885
\(831\) 0 0
\(832\) 5.18926 0.179905
\(833\) 14.0983 0.488476
\(834\) 0 0
\(835\) −6.59445 −0.228210
\(836\) 16.3950 0.567035
\(837\) 0 0
\(838\) 10.3282 0.356782
\(839\) −43.8212 −1.51288 −0.756439 0.654065i \(-0.773062\pi\)
−0.756439 + 0.654065i \(0.773062\pi\)
\(840\) 0 0
\(841\) −27.7677 −0.957507
\(842\) 21.7560 0.749760
\(843\) 0 0
\(844\) −8.03629 −0.276620
\(845\) 47.1050 1.62046
\(846\) 0 0
\(847\) 0.874476 0.0300473
\(848\) −12.4763 −0.428438
\(849\) 0 0
\(850\) 13.0487 0.447567
\(851\) −14.5928 −0.500234
\(852\) 0 0
\(853\) −46.0183 −1.57564 −0.787818 0.615909i \(-0.788789\pi\)
−0.787818 + 0.615909i \(0.788789\pi\)
\(854\) −2.88224 −0.0986281
\(855\) 0 0
\(856\) −5.52143 −0.188719
\(857\) 5.48596 0.187397 0.0936985 0.995601i \(-0.470131\pi\)
0.0936985 + 0.995601i \(0.470131\pi\)
\(858\) 0 0
\(859\) −21.8117 −0.744207 −0.372103 0.928191i \(-0.621363\pi\)
−0.372103 + 0.928191i \(0.621363\pi\)
\(860\) 16.0274 0.546531
\(861\) 0 0
\(862\) 17.2355 0.587043
\(863\) 14.4383 0.491487 0.245743 0.969335i \(-0.420968\pi\)
0.245743 + 0.969335i \(0.420968\pi\)
\(864\) 0 0
\(865\) 3.81400 0.129680
\(866\) 24.5562 0.834453
\(867\) 0 0
\(868\) −0.440094 −0.0149378
\(869\) −25.8125 −0.875630
\(870\) 0 0
\(871\) 49.9446 1.69231
\(872\) 12.2900 0.416191
\(873\) 0 0
\(874\) 11.0229 0.372857
\(875\) −1.02736 −0.0347310
\(876\) 0 0
\(877\) −8.02253 −0.270902 −0.135451 0.990784i \(-0.543248\pi\)
−0.135451 + 0.990784i \(0.543248\pi\)
\(878\) 21.3132 0.719284
\(879\) 0 0
\(880\) 8.85899 0.298636
\(881\) −17.5013 −0.589634 −0.294817 0.955554i \(-0.595259\pi\)
−0.294817 + 0.955554i \(0.595259\pi\)
\(882\) 0 0
\(883\) −17.3465 −0.583757 −0.291878 0.956455i \(-0.594280\pi\)
−0.291878 + 0.956455i \(0.594280\pi\)
\(884\) −10.5184 −0.353774
\(885\) 0 0
\(886\) −22.6790 −0.761917
\(887\) 52.4553 1.76128 0.880638 0.473791i \(-0.157115\pi\)
0.880638 + 0.473791i \(0.157115\pi\)
\(888\) 0 0
\(889\) 2.48542 0.0833582
\(890\) 37.0585 1.24220
\(891\) 0 0
\(892\) 6.05563 0.202758
\(893\) −55.5697 −1.85957
\(894\) 0 0
\(895\) −12.2141 −0.408273
\(896\) 0.211316 0.00705956
\(897\) 0 0
\(898\) −32.4566 −1.08309
\(899\) 2.31190 0.0771063
\(900\) 0 0
\(901\) 25.2890 0.842500
\(902\) −14.2861 −0.475676
\(903\) 0 0
\(904\) 11.9287 0.396741
\(905\) −80.6050 −2.67940
\(906\) 0 0
\(907\) −28.7504 −0.954641 −0.477320 0.878729i \(-0.658392\pi\)
−0.477320 + 0.878729i \(0.658392\pi\)
\(908\) 2.97393 0.0986932
\(909\) 0 0
\(910\) 3.70854 0.122937
\(911\) −28.9160 −0.958029 −0.479014 0.877807i \(-0.659006\pi\)
−0.479014 + 0.877807i \(0.659006\pi\)
\(912\) 0 0
\(913\) 28.5370 0.944436
\(914\) 28.2009 0.932803
\(915\) 0 0
\(916\) 2.39817 0.0792378
\(917\) −2.93700 −0.0969884
\(918\) 0 0
\(919\) −52.4043 −1.72866 −0.864330 0.502925i \(-0.832257\pi\)
−0.864330 + 0.502925i \(0.832257\pi\)
\(920\) 5.95620 0.196370
\(921\) 0 0
\(922\) −34.2926 −1.12937
\(923\) −13.5949 −0.447481
\(924\) 0 0
\(925\) 53.3404 1.75382
\(926\) −29.9743 −0.985017
\(927\) 0 0
\(928\) −1.11008 −0.0364403
\(929\) 0.985702 0.0323398 0.0161699 0.999869i \(-0.494853\pi\)
0.0161699 + 0.999869i \(0.494853\pi\)
\(930\) 0 0
\(931\) −43.5325 −1.42672
\(932\) 17.4919 0.572967
\(933\) 0 0
\(934\) −24.6700 −0.807225
\(935\) −17.9569 −0.587253
\(936\) 0 0
\(937\) 40.1614 1.31202 0.656008 0.754754i \(-0.272244\pi\)
0.656008 + 0.754754i \(0.272244\pi\)
\(938\) 2.03383 0.0664070
\(939\) 0 0
\(940\) −30.0268 −0.979368
\(941\) −33.8428 −1.10324 −0.551622 0.834094i \(-0.685991\pi\)
−0.551622 + 0.834094i \(0.685991\pi\)
\(942\) 0 0
\(943\) −9.60505 −0.312783
\(944\) 7.55598 0.245926
\(945\) 0 0
\(946\) −12.4141 −0.403617
\(947\) −28.8796 −0.938460 −0.469230 0.883076i \(-0.655468\pi\)
−0.469230 + 0.883076i \(0.655468\pi\)
\(948\) 0 0
\(949\) 36.2306 1.17610
\(950\) −40.2917 −1.30724
\(951\) 0 0
\(952\) −0.428330 −0.0138822
\(953\) 13.1799 0.426940 0.213470 0.976950i \(-0.431523\pi\)
0.213470 + 0.976950i \(0.431523\pi\)
\(954\) 0 0
\(955\) 21.6388 0.700216
\(956\) −5.72249 −0.185079
\(957\) 0 0
\(958\) −10.9908 −0.355097
\(959\) −4.02948 −0.130119
\(960\) 0 0
\(961\) −26.6626 −0.860084
\(962\) −42.9973 −1.38629
\(963\) 0 0
\(964\) 13.6485 0.439590
\(965\) −45.6681 −1.47011
\(966\) 0 0
\(967\) −22.4858 −0.723094 −0.361547 0.932354i \(-0.617751\pi\)
−0.361547 + 0.932354i \(0.617751\pi\)
\(968\) 4.13825 0.133008
\(969\) 0 0
\(970\) −2.17806 −0.0699332
\(971\) −1.35975 −0.0436365 −0.0218183 0.999762i \(-0.506946\pi\)
−0.0218183 + 0.999762i \(0.506946\pi\)
\(972\) 0 0
\(973\) −2.41553 −0.0774385
\(974\) 15.1938 0.486839
\(975\) 0 0
\(976\) −13.6395 −0.436590
\(977\) 23.7667 0.760364 0.380182 0.924912i \(-0.375861\pi\)
0.380182 + 0.924912i \(0.375861\pi\)
\(978\) 0 0
\(979\) −28.7038 −0.917376
\(980\) −23.5226 −0.751402
\(981\) 0 0
\(982\) 17.0007 0.542513
\(983\) −36.3850 −1.16050 −0.580251 0.814438i \(-0.697046\pi\)
−0.580251 + 0.814438i \(0.697046\pi\)
\(984\) 0 0
\(985\) −18.4951 −0.589303
\(986\) 2.25010 0.0716579
\(987\) 0 0
\(988\) 32.4788 1.03329
\(989\) −8.34641 −0.265400
\(990\) 0 0
\(991\) −17.8966 −0.568506 −0.284253 0.958749i \(-0.591746\pi\)
−0.284253 + 0.958749i \(0.591746\pi\)
\(992\) −2.08264 −0.0661238
\(993\) 0 0
\(994\) −0.553607 −0.0175594
\(995\) 58.0995 1.84188
\(996\) 0 0
\(997\) 45.9039 1.45379 0.726896 0.686747i \(-0.240962\pi\)
0.726896 + 0.686747i \(0.240962\pi\)
\(998\) 13.2475 0.419343
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4842.2.a.p.1.8 8
3.2 odd 2 1614.2.a.j.1.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1614.2.a.j.1.1 8 3.2 odd 2
4842.2.a.p.1.8 8 1.1 even 1 trivial