Properties

Label 4842.2.a.t.1.9
Level $4842$
Weight $2$
Character 4842.1
Self dual yes
Analytic conductor $38.664$
Analytic rank $0$
Dimension $13$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4842,2,Mod(1,4842)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4842, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4842.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4842 = 2 \cdot 3^{2} \cdot 269 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4842.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(38.6635646587\)
Analytic rank: \(0\)
Dimension: \(13\)
Coefficient field: \(\mathbb{Q}[x]/(x^{13} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{13} - 5 x^{12} - 33 x^{11} + 200 x^{10} + 236 x^{9} - 2569 x^{8} + 1311 x^{7} + 11583 x^{6} + \cdots + 2160 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.9
Root \(-0.515478\) of defining polynomial
Character \(\chi\) \(=\) 4842.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{4} +0.515478 q^{5} -4.54762 q^{7} -1.00000 q^{8} -0.515478 q^{10} -0.646622 q^{11} -5.04122 q^{13} +4.54762 q^{14} +1.00000 q^{16} -0.197175 q^{17} -6.64024 q^{19} +0.515478 q^{20} +0.646622 q^{22} -6.07059 q^{23} -4.73428 q^{25} +5.04122 q^{26} -4.54762 q^{28} -2.46368 q^{29} +4.70580 q^{31} -1.00000 q^{32} +0.197175 q^{34} -2.34420 q^{35} +6.75434 q^{37} +6.64024 q^{38} -0.515478 q^{40} -12.4131 q^{41} +5.56005 q^{43} -0.646622 q^{44} +6.07059 q^{46} +10.8909 q^{47} +13.6808 q^{49} +4.73428 q^{50} -5.04122 q^{52} -10.5761 q^{53} -0.333319 q^{55} +4.54762 q^{56} +2.46368 q^{58} -12.4961 q^{59} +8.74339 q^{61} -4.70580 q^{62} +1.00000 q^{64} -2.59864 q^{65} +12.5544 q^{67} -0.197175 q^{68} +2.34420 q^{70} +2.61034 q^{71} +4.04118 q^{73} -6.75434 q^{74} -6.64024 q^{76} +2.94059 q^{77} -13.0886 q^{79} +0.515478 q^{80} +12.4131 q^{82} +10.7430 q^{83} -0.101639 q^{85} -5.56005 q^{86} +0.646622 q^{88} +12.1522 q^{89} +22.9255 q^{91} -6.07059 q^{92} -10.8909 q^{94} -3.42290 q^{95} -9.57744 q^{97} -13.6808 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 13 q - 13 q^{2} + 13 q^{4} - 5 q^{5} + 6 q^{7} - 13 q^{8} + 5 q^{10} - 5 q^{11} + 8 q^{13} - 6 q^{14} + 13 q^{16} - 7 q^{17} + 13 q^{19} - 5 q^{20} + 5 q^{22} + 4 q^{23} + 26 q^{25} - 8 q^{26} + 6 q^{28}+ \cdots - 39 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) 0.515478 0.230529 0.115264 0.993335i \(-0.463228\pi\)
0.115264 + 0.993335i \(0.463228\pi\)
\(6\) 0 0
\(7\) −4.54762 −1.71884 −0.859419 0.511273i \(-0.829174\pi\)
−0.859419 + 0.511273i \(0.829174\pi\)
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) −0.515478 −0.163008
\(11\) −0.646622 −0.194964 −0.0974820 0.995237i \(-0.531079\pi\)
−0.0974820 + 0.995237i \(0.531079\pi\)
\(12\) 0 0
\(13\) −5.04122 −1.39818 −0.699092 0.715032i \(-0.746412\pi\)
−0.699092 + 0.715032i \(0.746412\pi\)
\(14\) 4.54762 1.21540
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −0.197175 −0.0478219 −0.0239110 0.999714i \(-0.507612\pi\)
−0.0239110 + 0.999714i \(0.507612\pi\)
\(18\) 0 0
\(19\) −6.64024 −1.52338 −0.761688 0.647944i \(-0.775629\pi\)
−0.761688 + 0.647944i \(0.775629\pi\)
\(20\) 0.515478 0.115264
\(21\) 0 0
\(22\) 0.646622 0.137860
\(23\) −6.07059 −1.26581 −0.632903 0.774231i \(-0.718137\pi\)
−0.632903 + 0.774231i \(0.718137\pi\)
\(24\) 0 0
\(25\) −4.73428 −0.946857
\(26\) 5.04122 0.988665
\(27\) 0 0
\(28\) −4.54762 −0.859419
\(29\) −2.46368 −0.457494 −0.228747 0.973486i \(-0.573463\pi\)
−0.228747 + 0.973486i \(0.573463\pi\)
\(30\) 0 0
\(31\) 4.70580 0.845187 0.422593 0.906319i \(-0.361120\pi\)
0.422593 + 0.906319i \(0.361120\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0 0
\(34\) 0.197175 0.0338152
\(35\) −2.34420 −0.396241
\(36\) 0 0
\(37\) 6.75434 1.11041 0.555203 0.831715i \(-0.312641\pi\)
0.555203 + 0.831715i \(0.312641\pi\)
\(38\) 6.64024 1.07719
\(39\) 0 0
\(40\) −0.515478 −0.0815042
\(41\) −12.4131 −1.93861 −0.969303 0.245868i \(-0.920927\pi\)
−0.969303 + 0.245868i \(0.920927\pi\)
\(42\) 0 0
\(43\) 5.56005 0.847899 0.423950 0.905686i \(-0.360643\pi\)
0.423950 + 0.905686i \(0.360643\pi\)
\(44\) −0.646622 −0.0974820
\(45\) 0 0
\(46\) 6.07059 0.895059
\(47\) 10.8909 1.58860 0.794299 0.607527i \(-0.207838\pi\)
0.794299 + 0.607527i \(0.207838\pi\)
\(48\) 0 0
\(49\) 13.6808 1.95440
\(50\) 4.73428 0.669529
\(51\) 0 0
\(52\) −5.04122 −0.699092
\(53\) −10.5761 −1.45274 −0.726368 0.687306i \(-0.758793\pi\)
−0.726368 + 0.687306i \(0.758793\pi\)
\(54\) 0 0
\(55\) −0.333319 −0.0449448
\(56\) 4.54762 0.607701
\(57\) 0 0
\(58\) 2.46368 0.323497
\(59\) −12.4961 −1.62686 −0.813428 0.581665i \(-0.802401\pi\)
−0.813428 + 0.581665i \(0.802401\pi\)
\(60\) 0 0
\(61\) 8.74339 1.11948 0.559738 0.828670i \(-0.310902\pi\)
0.559738 + 0.828670i \(0.310902\pi\)
\(62\) −4.70580 −0.597637
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −2.59864 −0.322321
\(66\) 0 0
\(67\) 12.5544 1.53377 0.766884 0.641785i \(-0.221806\pi\)
0.766884 + 0.641785i \(0.221806\pi\)
\(68\) −0.197175 −0.0239110
\(69\) 0 0
\(70\) 2.34420 0.280185
\(71\) 2.61034 0.309790 0.154895 0.987931i \(-0.450496\pi\)
0.154895 + 0.987931i \(0.450496\pi\)
\(72\) 0 0
\(73\) 4.04118 0.472985 0.236492 0.971633i \(-0.424002\pi\)
0.236492 + 0.971633i \(0.424002\pi\)
\(74\) −6.75434 −0.785176
\(75\) 0 0
\(76\) −6.64024 −0.761688
\(77\) 2.94059 0.335111
\(78\) 0 0
\(79\) −13.0886 −1.47258 −0.736292 0.676664i \(-0.763425\pi\)
−0.736292 + 0.676664i \(0.763425\pi\)
\(80\) 0.515478 0.0576322
\(81\) 0 0
\(82\) 12.4131 1.37080
\(83\) 10.7430 1.17920 0.589599 0.807696i \(-0.299286\pi\)
0.589599 + 0.807696i \(0.299286\pi\)
\(84\) 0 0
\(85\) −0.101639 −0.0110243
\(86\) −5.56005 −0.599555
\(87\) 0 0
\(88\) 0.646622 0.0689302
\(89\) 12.1522 1.28813 0.644065 0.764971i \(-0.277247\pi\)
0.644065 + 0.764971i \(0.277247\pi\)
\(90\) 0 0
\(91\) 22.9255 2.40325
\(92\) −6.07059 −0.632903
\(93\) 0 0
\(94\) −10.8909 −1.12331
\(95\) −3.42290 −0.351182
\(96\) 0 0
\(97\) −9.57744 −0.972442 −0.486221 0.873836i \(-0.661625\pi\)
−0.486221 + 0.873836i \(0.661625\pi\)
\(98\) −13.6808 −1.38197
\(99\) 0 0
\(100\) −4.73428 −0.473428
\(101\) −15.2726 −1.51968 −0.759838 0.650112i \(-0.774722\pi\)
−0.759838 + 0.650112i \(0.774722\pi\)
\(102\) 0 0
\(103\) 19.0993 1.88191 0.940954 0.338535i \(-0.109931\pi\)
0.940954 + 0.338535i \(0.109931\pi\)
\(104\) 5.04122 0.494333
\(105\) 0 0
\(106\) 10.5761 1.02724
\(107\) −1.09762 −0.106111 −0.0530556 0.998592i \(-0.516896\pi\)
−0.0530556 + 0.998592i \(0.516896\pi\)
\(108\) 0 0
\(109\) −9.93839 −0.951925 −0.475963 0.879465i \(-0.657900\pi\)
−0.475963 + 0.879465i \(0.657900\pi\)
\(110\) 0.333319 0.0317808
\(111\) 0 0
\(112\) −4.54762 −0.429709
\(113\) 13.2480 1.24626 0.623131 0.782117i \(-0.285860\pi\)
0.623131 + 0.782117i \(0.285860\pi\)
\(114\) 0 0
\(115\) −3.12925 −0.291804
\(116\) −2.46368 −0.228747
\(117\) 0 0
\(118\) 12.4961 1.15036
\(119\) 0.896676 0.0821981
\(120\) 0 0
\(121\) −10.5819 −0.961989
\(122\) −8.74339 −0.791589
\(123\) 0 0
\(124\) 4.70580 0.422593
\(125\) −5.01781 −0.448806
\(126\) 0 0
\(127\) −0.269090 −0.0238778 −0.0119389 0.999929i \(-0.503800\pi\)
−0.0119389 + 0.999929i \(0.503800\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 0 0
\(130\) 2.59864 0.227916
\(131\) 17.4788 1.52713 0.763565 0.645731i \(-0.223447\pi\)
0.763565 + 0.645731i \(0.223447\pi\)
\(132\) 0 0
\(133\) 30.1973 2.61844
\(134\) −12.5544 −1.08454
\(135\) 0 0
\(136\) 0.197175 0.0169076
\(137\) −19.0418 −1.62685 −0.813425 0.581670i \(-0.802400\pi\)
−0.813425 + 0.581670i \(0.802400\pi\)
\(138\) 0 0
\(139\) 0.925657 0.0785132 0.0392566 0.999229i \(-0.487501\pi\)
0.0392566 + 0.999229i \(0.487501\pi\)
\(140\) −2.34420 −0.198121
\(141\) 0 0
\(142\) −2.61034 −0.219055
\(143\) 3.25977 0.272595
\(144\) 0 0
\(145\) −1.26997 −0.105466
\(146\) −4.04118 −0.334451
\(147\) 0 0
\(148\) 6.75434 0.555203
\(149\) 9.09980 0.745485 0.372742 0.927935i \(-0.378418\pi\)
0.372742 + 0.927935i \(0.378418\pi\)
\(150\) 0 0
\(151\) 2.98407 0.242840 0.121420 0.992601i \(-0.461255\pi\)
0.121420 + 0.992601i \(0.461255\pi\)
\(152\) 6.64024 0.538595
\(153\) 0 0
\(154\) −2.94059 −0.236959
\(155\) 2.42574 0.194840
\(156\) 0 0
\(157\) 1.57112 0.125389 0.0626947 0.998033i \(-0.480031\pi\)
0.0626947 + 0.998033i \(0.480031\pi\)
\(158\) 13.0886 1.04127
\(159\) 0 0
\(160\) −0.515478 −0.0407521
\(161\) 27.6067 2.17571
\(162\) 0 0
\(163\) 5.81182 0.455217 0.227608 0.973753i \(-0.426909\pi\)
0.227608 + 0.973753i \(0.426909\pi\)
\(164\) −12.4131 −0.969303
\(165\) 0 0
\(166\) −10.7430 −0.833818
\(167\) 1.78569 0.138181 0.0690903 0.997610i \(-0.477990\pi\)
0.0690903 + 0.997610i \(0.477990\pi\)
\(168\) 0 0
\(169\) 12.4139 0.954917
\(170\) 0.101639 0.00779538
\(171\) 0 0
\(172\) 5.56005 0.423950
\(173\) −5.50216 −0.418321 −0.209161 0.977881i \(-0.567073\pi\)
−0.209161 + 0.977881i \(0.567073\pi\)
\(174\) 0 0
\(175\) 21.5297 1.62749
\(176\) −0.646622 −0.0487410
\(177\) 0 0
\(178\) −12.1522 −0.910846
\(179\) 13.3214 0.995686 0.497843 0.867267i \(-0.334126\pi\)
0.497843 + 0.867267i \(0.334126\pi\)
\(180\) 0 0
\(181\) −4.70187 −0.349487 −0.174744 0.984614i \(-0.555910\pi\)
−0.174744 + 0.984614i \(0.555910\pi\)
\(182\) −22.9255 −1.69935
\(183\) 0 0
\(184\) 6.07059 0.447530
\(185\) 3.48171 0.255981
\(186\) 0 0
\(187\) 0.127498 0.00932356
\(188\) 10.8909 0.794299
\(189\) 0 0
\(190\) 3.42290 0.248323
\(191\) −13.2513 −0.958833 −0.479417 0.877587i \(-0.659152\pi\)
−0.479417 + 0.877587i \(0.659152\pi\)
\(192\) 0 0
\(193\) 20.5170 1.47685 0.738423 0.674338i \(-0.235571\pi\)
0.738423 + 0.674338i \(0.235571\pi\)
\(194\) 9.57744 0.687620
\(195\) 0 0
\(196\) 13.6808 0.977201
\(197\) −8.86861 −0.631862 −0.315931 0.948782i \(-0.602317\pi\)
−0.315931 + 0.948782i \(0.602317\pi\)
\(198\) 0 0
\(199\) 6.26292 0.443967 0.221983 0.975050i \(-0.428747\pi\)
0.221983 + 0.975050i \(0.428747\pi\)
\(200\) 4.73428 0.334764
\(201\) 0 0
\(202\) 15.2726 1.07457
\(203\) 11.2039 0.786358
\(204\) 0 0
\(205\) −6.39870 −0.446905
\(206\) −19.0993 −1.33071
\(207\) 0 0
\(208\) −5.04122 −0.349546
\(209\) 4.29373 0.297003
\(210\) 0 0
\(211\) −17.3450 −1.19408 −0.597038 0.802213i \(-0.703656\pi\)
−0.597038 + 0.802213i \(0.703656\pi\)
\(212\) −10.5761 −0.726368
\(213\) 0 0
\(214\) 1.09762 0.0750320
\(215\) 2.86608 0.195465
\(216\) 0 0
\(217\) −21.4002 −1.45274
\(218\) 9.93839 0.673113
\(219\) 0 0
\(220\) −0.333319 −0.0224724
\(221\) 0.994003 0.0668639
\(222\) 0 0
\(223\) 17.6322 1.18074 0.590369 0.807133i \(-0.298982\pi\)
0.590369 + 0.807133i \(0.298982\pi\)
\(224\) 4.54762 0.303850
\(225\) 0 0
\(226\) −13.2480 −0.881241
\(227\) −8.20255 −0.544422 −0.272211 0.962238i \(-0.587755\pi\)
−0.272211 + 0.962238i \(0.587755\pi\)
\(228\) 0 0
\(229\) −7.30547 −0.482759 −0.241380 0.970431i \(-0.577600\pi\)
−0.241380 + 0.970431i \(0.577600\pi\)
\(230\) 3.12925 0.206337
\(231\) 0 0
\(232\) 2.46368 0.161749
\(233\) −5.33860 −0.349743 −0.174872 0.984591i \(-0.555951\pi\)
−0.174872 + 0.984591i \(0.555951\pi\)
\(234\) 0 0
\(235\) 5.61401 0.366218
\(236\) −12.4961 −0.813428
\(237\) 0 0
\(238\) −0.896676 −0.0581229
\(239\) 0.0672071 0.00434727 0.00217363 0.999998i \(-0.499308\pi\)
0.00217363 + 0.999998i \(0.499308\pi\)
\(240\) 0 0
\(241\) −11.4205 −0.735656 −0.367828 0.929894i \(-0.619898\pi\)
−0.367828 + 0.929894i \(0.619898\pi\)
\(242\) 10.5819 0.680229
\(243\) 0 0
\(244\) 8.74339 0.559738
\(245\) 7.05216 0.450546
\(246\) 0 0
\(247\) 33.4749 2.12996
\(248\) −4.70580 −0.298819
\(249\) 0 0
\(250\) 5.01781 0.317354
\(251\) −22.3307 −1.40950 −0.704752 0.709454i \(-0.748942\pi\)
−0.704752 + 0.709454i \(0.748942\pi\)
\(252\) 0 0
\(253\) 3.92538 0.246786
\(254\) 0.269090 0.0168842
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 8.56194 0.534079 0.267040 0.963686i \(-0.413955\pi\)
0.267040 + 0.963686i \(0.413955\pi\)
\(258\) 0 0
\(259\) −30.7161 −1.90861
\(260\) −2.59864 −0.161161
\(261\) 0 0
\(262\) −17.4788 −1.07984
\(263\) −25.3781 −1.56488 −0.782441 0.622725i \(-0.786026\pi\)
−0.782441 + 0.622725i \(0.786026\pi\)
\(264\) 0 0
\(265\) −5.45173 −0.334897
\(266\) −30.1973 −1.85151
\(267\) 0 0
\(268\) 12.5544 0.766884
\(269\) 1.00000 0.0609711
\(270\) 0 0
\(271\) −8.76637 −0.532519 −0.266259 0.963901i \(-0.585788\pi\)
−0.266259 + 0.963901i \(0.585788\pi\)
\(272\) −0.197175 −0.0119555
\(273\) 0 0
\(274\) 19.0418 1.15036
\(275\) 3.06129 0.184603
\(276\) 0 0
\(277\) 14.7263 0.884816 0.442408 0.896814i \(-0.354124\pi\)
0.442408 + 0.896814i \(0.354124\pi\)
\(278\) −0.925657 −0.0555172
\(279\) 0 0
\(280\) 2.34420 0.140092
\(281\) −20.6994 −1.23482 −0.617410 0.786641i \(-0.711818\pi\)
−0.617410 + 0.786641i \(0.711818\pi\)
\(282\) 0 0
\(283\) 7.14383 0.424657 0.212328 0.977198i \(-0.431895\pi\)
0.212328 + 0.977198i \(0.431895\pi\)
\(284\) 2.61034 0.154895
\(285\) 0 0
\(286\) −3.25977 −0.192754
\(287\) 56.4502 3.33215
\(288\) 0 0
\(289\) −16.9611 −0.997713
\(290\) 1.26997 0.0745754
\(291\) 0 0
\(292\) 4.04118 0.236492
\(293\) 15.8364 0.925170 0.462585 0.886575i \(-0.346922\pi\)
0.462585 + 0.886575i \(0.346922\pi\)
\(294\) 0 0
\(295\) −6.44148 −0.375037
\(296\) −6.75434 −0.392588
\(297\) 0 0
\(298\) −9.09980 −0.527137
\(299\) 30.6032 1.76983
\(300\) 0 0
\(301\) −25.2850 −1.45740
\(302\) −2.98407 −0.171714
\(303\) 0 0
\(304\) −6.64024 −0.380844
\(305\) 4.50702 0.258071
\(306\) 0 0
\(307\) −1.78858 −0.102080 −0.0510398 0.998697i \(-0.516254\pi\)
−0.0510398 + 0.998697i \(0.516254\pi\)
\(308\) 2.94059 0.167556
\(309\) 0 0
\(310\) −2.42574 −0.137773
\(311\) 32.7903 1.85937 0.929684 0.368358i \(-0.120080\pi\)
0.929684 + 0.368358i \(0.120080\pi\)
\(312\) 0 0
\(313\) −8.23738 −0.465604 −0.232802 0.972524i \(-0.574789\pi\)
−0.232802 + 0.972524i \(0.574789\pi\)
\(314\) −1.57112 −0.0886636
\(315\) 0 0
\(316\) −13.0886 −0.736292
\(317\) −20.6827 −1.16166 −0.580829 0.814026i \(-0.697271\pi\)
−0.580829 + 0.814026i \(0.697271\pi\)
\(318\) 0 0
\(319\) 1.59307 0.0891949
\(320\) 0.515478 0.0288161
\(321\) 0 0
\(322\) −27.6067 −1.53846
\(323\) 1.30929 0.0728508
\(324\) 0 0
\(325\) 23.8666 1.32388
\(326\) −5.81182 −0.321887
\(327\) 0 0
\(328\) 12.4131 0.685401
\(329\) −49.5275 −2.73054
\(330\) 0 0
\(331\) 21.1281 1.16130 0.580652 0.814152i \(-0.302798\pi\)
0.580652 + 0.814152i \(0.302798\pi\)
\(332\) 10.7430 0.589599
\(333\) 0 0
\(334\) −1.78569 −0.0977085
\(335\) 6.47154 0.353578
\(336\) 0 0
\(337\) 25.5481 1.39169 0.695846 0.718191i \(-0.255030\pi\)
0.695846 + 0.718191i \(0.255030\pi\)
\(338\) −12.4139 −0.675229
\(339\) 0 0
\(340\) −0.101639 −0.00551217
\(341\) −3.04288 −0.164781
\(342\) 0 0
\(343\) −30.3818 −1.64046
\(344\) −5.56005 −0.299778
\(345\) 0 0
\(346\) 5.50216 0.295798
\(347\) 23.2178 1.24640 0.623198 0.782064i \(-0.285833\pi\)
0.623198 + 0.782064i \(0.285833\pi\)
\(348\) 0 0
\(349\) −8.33926 −0.446390 −0.223195 0.974774i \(-0.571649\pi\)
−0.223195 + 0.974774i \(0.571649\pi\)
\(350\) −21.5297 −1.15081
\(351\) 0 0
\(352\) 0.646622 0.0344651
\(353\) −19.3248 −1.02856 −0.514278 0.857624i \(-0.671940\pi\)
−0.514278 + 0.857624i \(0.671940\pi\)
\(354\) 0 0
\(355\) 1.34557 0.0714156
\(356\) 12.1522 0.644065
\(357\) 0 0
\(358\) −13.3214 −0.704057
\(359\) −26.4164 −1.39420 −0.697102 0.716972i \(-0.745528\pi\)
−0.697102 + 0.716972i \(0.745528\pi\)
\(360\) 0 0
\(361\) 25.0928 1.32067
\(362\) 4.70187 0.247125
\(363\) 0 0
\(364\) 22.9255 1.20163
\(365\) 2.08314 0.109037
\(366\) 0 0
\(367\) −11.4430 −0.597322 −0.298661 0.954359i \(-0.596540\pi\)
−0.298661 + 0.954359i \(0.596540\pi\)
\(368\) −6.07059 −0.316451
\(369\) 0 0
\(370\) −3.48171 −0.181006
\(371\) 48.0959 2.49702
\(372\) 0 0
\(373\) 29.1222 1.50789 0.753944 0.656938i \(-0.228149\pi\)
0.753944 + 0.656938i \(0.228149\pi\)
\(374\) −0.127498 −0.00659275
\(375\) 0 0
\(376\) −10.8909 −0.561654
\(377\) 12.4200 0.639661
\(378\) 0 0
\(379\) −0.256508 −0.0131759 −0.00658797 0.999978i \(-0.502097\pi\)
−0.00658797 + 0.999978i \(0.502097\pi\)
\(380\) −3.42290 −0.175591
\(381\) 0 0
\(382\) 13.2513 0.677997
\(383\) −17.7921 −0.909132 −0.454566 0.890713i \(-0.650206\pi\)
−0.454566 + 0.890713i \(0.650206\pi\)
\(384\) 0 0
\(385\) 1.51581 0.0772528
\(386\) −20.5170 −1.04429
\(387\) 0 0
\(388\) −9.57744 −0.486221
\(389\) −24.3756 −1.23589 −0.617945 0.786221i \(-0.712035\pi\)
−0.617945 + 0.786221i \(0.712035\pi\)
\(390\) 0 0
\(391\) 1.19697 0.0605333
\(392\) −13.6808 −0.690985
\(393\) 0 0
\(394\) 8.86861 0.446794
\(395\) −6.74689 −0.339473
\(396\) 0 0
\(397\) 6.54642 0.328555 0.164278 0.986414i \(-0.447471\pi\)
0.164278 + 0.986414i \(0.447471\pi\)
\(398\) −6.26292 −0.313932
\(399\) 0 0
\(400\) −4.73428 −0.236714
\(401\) −35.6532 −1.78044 −0.890218 0.455534i \(-0.849448\pi\)
−0.890218 + 0.455534i \(0.849448\pi\)
\(402\) 0 0
\(403\) −23.7230 −1.18173
\(404\) −15.2726 −0.759838
\(405\) 0 0
\(406\) −11.2039 −0.556039
\(407\) −4.36750 −0.216489
\(408\) 0 0
\(409\) −7.24483 −0.358234 −0.179117 0.983828i \(-0.557324\pi\)
−0.179117 + 0.983828i \(0.557324\pi\)
\(410\) 6.39870 0.316009
\(411\) 0 0
\(412\) 19.0993 0.940954
\(413\) 56.8276 2.79630
\(414\) 0 0
\(415\) 5.53778 0.271839
\(416\) 5.04122 0.247166
\(417\) 0 0
\(418\) −4.29373 −0.210013
\(419\) 31.0240 1.51562 0.757810 0.652475i \(-0.226269\pi\)
0.757810 + 0.652475i \(0.226269\pi\)
\(420\) 0 0
\(421\) 5.11144 0.249116 0.124558 0.992212i \(-0.460249\pi\)
0.124558 + 0.992212i \(0.460249\pi\)
\(422\) 17.3450 0.844339
\(423\) 0 0
\(424\) 10.5761 0.513620
\(425\) 0.933482 0.0452805
\(426\) 0 0
\(427\) −39.7616 −1.92420
\(428\) −1.09762 −0.0530556
\(429\) 0 0
\(430\) −2.86608 −0.138215
\(431\) 25.5427 1.23035 0.615173 0.788392i \(-0.289086\pi\)
0.615173 + 0.788392i \(0.289086\pi\)
\(432\) 0 0
\(433\) 20.6432 0.992047 0.496024 0.868309i \(-0.334793\pi\)
0.496024 + 0.868309i \(0.334793\pi\)
\(434\) 21.4002 1.02724
\(435\) 0 0
\(436\) −9.93839 −0.475963
\(437\) 40.3102 1.92830
\(438\) 0 0
\(439\) −34.9387 −1.66753 −0.833767 0.552117i \(-0.813820\pi\)
−0.833767 + 0.552117i \(0.813820\pi\)
\(440\) 0.333319 0.0158904
\(441\) 0 0
\(442\) −0.994003 −0.0472799
\(443\) 18.3591 0.872267 0.436133 0.899882i \(-0.356348\pi\)
0.436133 + 0.899882i \(0.356348\pi\)
\(444\) 0 0
\(445\) 6.26419 0.296951
\(446\) −17.6322 −0.834908
\(447\) 0 0
\(448\) −4.54762 −0.214855
\(449\) 7.17048 0.338396 0.169198 0.985582i \(-0.445882\pi\)
0.169198 + 0.985582i \(0.445882\pi\)
\(450\) 0 0
\(451\) 8.02661 0.377958
\(452\) 13.2480 0.623131
\(453\) 0 0
\(454\) 8.20255 0.384965
\(455\) 11.8176 0.554018
\(456\) 0 0
\(457\) 15.6440 0.731796 0.365898 0.930655i \(-0.380762\pi\)
0.365898 + 0.930655i \(0.380762\pi\)
\(458\) 7.30547 0.341362
\(459\) 0 0
\(460\) −3.12925 −0.145902
\(461\) −8.75585 −0.407800 −0.203900 0.978992i \(-0.565362\pi\)
−0.203900 + 0.978992i \(0.565362\pi\)
\(462\) 0 0
\(463\) 19.5927 0.910552 0.455276 0.890350i \(-0.349541\pi\)
0.455276 + 0.890350i \(0.349541\pi\)
\(464\) −2.46368 −0.114374
\(465\) 0 0
\(466\) 5.33860 0.247306
\(467\) 25.7091 1.18967 0.594837 0.803847i \(-0.297217\pi\)
0.594837 + 0.803847i \(0.297217\pi\)
\(468\) 0 0
\(469\) −57.0928 −2.63630
\(470\) −5.61401 −0.258955
\(471\) 0 0
\(472\) 12.4961 0.575181
\(473\) −3.59525 −0.165310
\(474\) 0 0
\(475\) 31.4368 1.44242
\(476\) 0.896676 0.0410991
\(477\) 0 0
\(478\) −0.0672071 −0.00307398
\(479\) −9.00827 −0.411598 −0.205799 0.978594i \(-0.565979\pi\)
−0.205799 + 0.978594i \(0.565979\pi\)
\(480\) 0 0
\(481\) −34.0501 −1.55255
\(482\) 11.4205 0.520187
\(483\) 0 0
\(484\) −10.5819 −0.480995
\(485\) −4.93696 −0.224176
\(486\) 0 0
\(487\) 33.1458 1.50198 0.750989 0.660315i \(-0.229577\pi\)
0.750989 + 0.660315i \(0.229577\pi\)
\(488\) −8.74339 −0.395795
\(489\) 0 0
\(490\) −7.05216 −0.318584
\(491\) 38.0044 1.71511 0.857557 0.514390i \(-0.171981\pi\)
0.857557 + 0.514390i \(0.171981\pi\)
\(492\) 0 0
\(493\) 0.485776 0.0218783
\(494\) −33.4749 −1.50611
\(495\) 0 0
\(496\) 4.70580 0.211297
\(497\) −11.8708 −0.532479
\(498\) 0 0
\(499\) 11.6632 0.522117 0.261059 0.965323i \(-0.415928\pi\)
0.261059 + 0.965323i \(0.415928\pi\)
\(500\) −5.01781 −0.224403
\(501\) 0 0
\(502\) 22.3307 0.996670
\(503\) 17.6725 0.787977 0.393989 0.919115i \(-0.371095\pi\)
0.393989 + 0.919115i \(0.371095\pi\)
\(504\) 0 0
\(505\) −7.87267 −0.350329
\(506\) −3.92538 −0.174504
\(507\) 0 0
\(508\) −0.269090 −0.0119389
\(509\) −22.3438 −0.990370 −0.495185 0.868788i \(-0.664900\pi\)
−0.495185 + 0.868788i \(0.664900\pi\)
\(510\) 0 0
\(511\) −18.3778 −0.812984
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) −8.56194 −0.377651
\(515\) 9.84526 0.433834
\(516\) 0 0
\(517\) −7.04229 −0.309719
\(518\) 30.7161 1.34959
\(519\) 0 0
\(520\) 2.59864 0.113958
\(521\) 15.1174 0.662307 0.331153 0.943577i \(-0.392562\pi\)
0.331153 + 0.943577i \(0.392562\pi\)
\(522\) 0 0
\(523\) −38.2974 −1.67463 −0.837313 0.546723i \(-0.815875\pi\)
−0.837313 + 0.546723i \(0.815875\pi\)
\(524\) 17.4788 0.763565
\(525\) 0 0
\(526\) 25.3781 1.10654
\(527\) −0.927866 −0.0404185
\(528\) 0 0
\(529\) 13.8520 0.602263
\(530\) 5.45173 0.236808
\(531\) 0 0
\(532\) 30.1973 1.30922
\(533\) 62.5774 2.71053
\(534\) 0 0
\(535\) −0.565800 −0.0244617
\(536\) −12.5544 −0.542269
\(537\) 0 0
\(538\) −1.00000 −0.0431131
\(539\) −8.84632 −0.381038
\(540\) 0 0
\(541\) 25.1246 1.08019 0.540095 0.841604i \(-0.318388\pi\)
0.540095 + 0.841604i \(0.318388\pi\)
\(542\) 8.76637 0.376548
\(543\) 0 0
\(544\) 0.197175 0.00845381
\(545\) −5.12302 −0.219446
\(546\) 0 0
\(547\) −10.7226 −0.458466 −0.229233 0.973372i \(-0.573622\pi\)
−0.229233 + 0.973372i \(0.573622\pi\)
\(548\) −19.0418 −0.813425
\(549\) 0 0
\(550\) −3.06129 −0.130534
\(551\) 16.3594 0.696936
\(552\) 0 0
\(553\) 59.5220 2.53113
\(554\) −14.7263 −0.625659
\(555\) 0 0
\(556\) 0.925657 0.0392566
\(557\) 33.4302 1.41648 0.708241 0.705971i \(-0.249489\pi\)
0.708241 + 0.705971i \(0.249489\pi\)
\(558\) 0 0
\(559\) −28.0294 −1.18552
\(560\) −2.34420 −0.0990603
\(561\) 0 0
\(562\) 20.6994 0.873150
\(563\) −39.7267 −1.67428 −0.837141 0.546987i \(-0.815775\pi\)
−0.837141 + 0.546987i \(0.815775\pi\)
\(564\) 0 0
\(565\) 6.82903 0.287299
\(566\) −7.14383 −0.300278
\(567\) 0 0
\(568\) −2.61034 −0.109527
\(569\) 28.6505 1.20109 0.600545 0.799591i \(-0.294950\pi\)
0.600545 + 0.799591i \(0.294950\pi\)
\(570\) 0 0
\(571\) 23.8663 0.998773 0.499386 0.866379i \(-0.333559\pi\)
0.499386 + 0.866379i \(0.333559\pi\)
\(572\) 3.25977 0.136298
\(573\) 0 0
\(574\) −56.4502 −2.35619
\(575\) 28.7399 1.19854
\(576\) 0 0
\(577\) 44.3037 1.84439 0.922194 0.386727i \(-0.126395\pi\)
0.922194 + 0.386727i \(0.126395\pi\)
\(578\) 16.9611 0.705490
\(579\) 0 0
\(580\) −1.26997 −0.0527328
\(581\) −48.8550 −2.02685
\(582\) 0 0
\(583\) 6.83873 0.283231
\(584\) −4.04118 −0.167225
\(585\) 0 0
\(586\) −15.8364 −0.654194
\(587\) −29.0162 −1.19763 −0.598814 0.800888i \(-0.704361\pi\)
−0.598814 + 0.800888i \(0.704361\pi\)
\(588\) 0 0
\(589\) −31.2477 −1.28754
\(590\) 6.44148 0.265191
\(591\) 0 0
\(592\) 6.75434 0.277602
\(593\) 40.8507 1.67754 0.838768 0.544489i \(-0.183276\pi\)
0.838768 + 0.544489i \(0.183276\pi\)
\(594\) 0 0
\(595\) 0.462217 0.0189490
\(596\) 9.09980 0.372742
\(597\) 0 0
\(598\) −30.6032 −1.25146
\(599\) 15.5327 0.634648 0.317324 0.948317i \(-0.397216\pi\)
0.317324 + 0.948317i \(0.397216\pi\)
\(600\) 0 0
\(601\) 40.8195 1.66506 0.832532 0.553977i \(-0.186890\pi\)
0.832532 + 0.553977i \(0.186890\pi\)
\(602\) 25.2850 1.03054
\(603\) 0 0
\(604\) 2.98407 0.121420
\(605\) −5.45473 −0.221766
\(606\) 0 0
\(607\) −17.1079 −0.694389 −0.347194 0.937793i \(-0.612866\pi\)
−0.347194 + 0.937793i \(0.612866\pi\)
\(608\) 6.64024 0.269297
\(609\) 0 0
\(610\) −4.50702 −0.182484
\(611\) −54.9034 −2.22115
\(612\) 0 0
\(613\) −38.1661 −1.54151 −0.770756 0.637130i \(-0.780121\pi\)
−0.770756 + 0.637130i \(0.780121\pi\)
\(614\) 1.78858 0.0721812
\(615\) 0 0
\(616\) −2.94059 −0.118480
\(617\) −15.7366 −0.633531 −0.316766 0.948504i \(-0.602597\pi\)
−0.316766 + 0.948504i \(0.602597\pi\)
\(618\) 0 0
\(619\) −1.66495 −0.0669201 −0.0334601 0.999440i \(-0.510653\pi\)
−0.0334601 + 0.999440i \(0.510653\pi\)
\(620\) 2.42574 0.0974199
\(621\) 0 0
\(622\) −32.7903 −1.31477
\(623\) −55.2635 −2.21409
\(624\) 0 0
\(625\) 21.0848 0.843394
\(626\) 8.23738 0.329232
\(627\) 0 0
\(628\) 1.57112 0.0626947
\(629\) −1.33179 −0.0531018
\(630\) 0 0
\(631\) 31.1359 1.23950 0.619751 0.784798i \(-0.287233\pi\)
0.619751 + 0.784798i \(0.287233\pi\)
\(632\) 13.0886 0.520637
\(633\) 0 0
\(634\) 20.6827 0.821416
\(635\) −0.138710 −0.00550453
\(636\) 0 0
\(637\) −68.9680 −2.73261
\(638\) −1.59307 −0.0630703
\(639\) 0 0
\(640\) −0.515478 −0.0203761
\(641\) 6.63337 0.262002 0.131001 0.991382i \(-0.458181\pi\)
0.131001 + 0.991382i \(0.458181\pi\)
\(642\) 0 0
\(643\) −11.8643 −0.467884 −0.233942 0.972251i \(-0.575163\pi\)
−0.233942 + 0.972251i \(0.575163\pi\)
\(644\) 27.6067 1.08786
\(645\) 0 0
\(646\) −1.30929 −0.0515133
\(647\) 3.22521 0.126796 0.0633981 0.997988i \(-0.479806\pi\)
0.0633981 + 0.997988i \(0.479806\pi\)
\(648\) 0 0
\(649\) 8.08027 0.317178
\(650\) −23.8666 −0.936124
\(651\) 0 0
\(652\) 5.81182 0.227608
\(653\) −32.6756 −1.27870 −0.639348 0.768918i \(-0.720795\pi\)
−0.639348 + 0.768918i \(0.720795\pi\)
\(654\) 0 0
\(655\) 9.00993 0.352047
\(656\) −12.4131 −0.484652
\(657\) 0 0
\(658\) 49.5275 1.93078
\(659\) 21.9028 0.853213 0.426606 0.904437i \(-0.359709\pi\)
0.426606 + 0.904437i \(0.359709\pi\)
\(660\) 0 0
\(661\) 23.0216 0.895436 0.447718 0.894175i \(-0.352237\pi\)
0.447718 + 0.894175i \(0.352237\pi\)
\(662\) −21.1281 −0.821167
\(663\) 0 0
\(664\) −10.7430 −0.416909
\(665\) 15.5660 0.603624
\(666\) 0 0
\(667\) 14.9560 0.579099
\(668\) 1.78569 0.0690903
\(669\) 0 0
\(670\) −6.47154 −0.250017
\(671\) −5.65367 −0.218257
\(672\) 0 0
\(673\) −22.8348 −0.880216 −0.440108 0.897945i \(-0.645060\pi\)
−0.440108 + 0.897945i \(0.645060\pi\)
\(674\) −25.5481 −0.984075
\(675\) 0 0
\(676\) 12.4139 0.477459
\(677\) −36.3791 −1.39816 −0.699081 0.715042i \(-0.746408\pi\)
−0.699081 + 0.715042i \(0.746408\pi\)
\(678\) 0 0
\(679\) 43.5545 1.67147
\(680\) 0.101639 0.00389769
\(681\) 0 0
\(682\) 3.04288 0.116518
\(683\) −5.64183 −0.215879 −0.107939 0.994157i \(-0.534425\pi\)
−0.107939 + 0.994157i \(0.534425\pi\)
\(684\) 0 0
\(685\) −9.81562 −0.375036
\(686\) 30.3818 1.15998
\(687\) 0 0
\(688\) 5.56005 0.211975
\(689\) 53.3164 2.03119
\(690\) 0 0
\(691\) 0.339381 0.0129107 0.00645533 0.999979i \(-0.497945\pi\)
0.00645533 + 0.999979i \(0.497945\pi\)
\(692\) −5.50216 −0.209161
\(693\) 0 0
\(694\) −23.2178 −0.881336
\(695\) 0.477156 0.0180995
\(696\) 0 0
\(697\) 2.44756 0.0927079
\(698\) 8.33926 0.315646
\(699\) 0 0
\(700\) 21.5297 0.813746
\(701\) −35.5085 −1.34114 −0.670569 0.741847i \(-0.733950\pi\)
−0.670569 + 0.741847i \(0.733950\pi\)
\(702\) 0 0
\(703\) −44.8504 −1.69157
\(704\) −0.646622 −0.0243705
\(705\) 0 0
\(706\) 19.3248 0.727299
\(707\) 69.4537 2.61208
\(708\) 0 0
\(709\) −28.8982 −1.08529 −0.542647 0.839961i \(-0.682578\pi\)
−0.542647 + 0.839961i \(0.682578\pi\)
\(710\) −1.34557 −0.0504984
\(711\) 0 0
\(712\) −12.1522 −0.455423
\(713\) −28.5670 −1.06984
\(714\) 0 0
\(715\) 1.68034 0.0628411
\(716\) 13.3214 0.497843
\(717\) 0 0
\(718\) 26.4164 0.985851
\(719\) −29.9219 −1.11590 −0.557950 0.829875i \(-0.688412\pi\)
−0.557950 + 0.829875i \(0.688412\pi\)
\(720\) 0 0
\(721\) −86.8562 −3.23469
\(722\) −25.0928 −0.933857
\(723\) 0 0
\(724\) −4.70187 −0.174744
\(725\) 11.6638 0.433181
\(726\) 0 0
\(727\) −4.86802 −0.180545 −0.0902724 0.995917i \(-0.528774\pi\)
−0.0902724 + 0.995917i \(0.528774\pi\)
\(728\) −22.9255 −0.849677
\(729\) 0 0
\(730\) −2.08314 −0.0771005
\(731\) −1.09630 −0.0405482
\(732\) 0 0
\(733\) 44.8714 1.65736 0.828681 0.559721i \(-0.189092\pi\)
0.828681 + 0.559721i \(0.189092\pi\)
\(734\) 11.4430 0.422371
\(735\) 0 0
\(736\) 6.07059 0.223765
\(737\) −8.11798 −0.299030
\(738\) 0 0
\(739\) 24.9297 0.917053 0.458526 0.888681i \(-0.348377\pi\)
0.458526 + 0.888681i \(0.348377\pi\)
\(740\) 3.48171 0.127990
\(741\) 0 0
\(742\) −48.0959 −1.76566
\(743\) 10.1479 0.372289 0.186144 0.982522i \(-0.440401\pi\)
0.186144 + 0.982522i \(0.440401\pi\)
\(744\) 0 0
\(745\) 4.69075 0.171856
\(746\) −29.1222 −1.06624
\(747\) 0 0
\(748\) 0.127498 0.00466178
\(749\) 4.99157 0.182388
\(750\) 0 0
\(751\) 49.0715 1.79065 0.895323 0.445418i \(-0.146945\pi\)
0.895323 + 0.445418i \(0.146945\pi\)
\(752\) 10.8909 0.397150
\(753\) 0 0
\(754\) −12.4200 −0.452309
\(755\) 1.53822 0.0559817
\(756\) 0 0
\(757\) 0.698550 0.0253892 0.0126946 0.999919i \(-0.495959\pi\)
0.0126946 + 0.999919i \(0.495959\pi\)
\(758\) 0.256508 0.00931680
\(759\) 0 0
\(760\) 3.42290 0.124162
\(761\) 7.36467 0.266969 0.133485 0.991051i \(-0.457383\pi\)
0.133485 + 0.991051i \(0.457383\pi\)
\(762\) 0 0
\(763\) 45.1960 1.63621
\(764\) −13.2513 −0.479417
\(765\) 0 0
\(766\) 17.7921 0.642853
\(767\) 62.9957 2.27464
\(768\) 0 0
\(769\) 13.0544 0.470755 0.235377 0.971904i \(-0.424367\pi\)
0.235377 + 0.971904i \(0.424367\pi\)
\(770\) −1.51581 −0.0546260
\(771\) 0 0
\(772\) 20.5170 0.738423
\(773\) −17.6944 −0.636423 −0.318211 0.948020i \(-0.603082\pi\)
−0.318211 + 0.948020i \(0.603082\pi\)
\(774\) 0 0
\(775\) −22.2786 −0.800271
\(776\) 9.57744 0.343810
\(777\) 0 0
\(778\) 24.3756 0.873906
\(779\) 82.4262 2.95323
\(780\) 0 0
\(781\) −1.68790 −0.0603980
\(782\) −1.19697 −0.0428035
\(783\) 0 0
\(784\) 13.6808 0.488600
\(785\) 0.809880 0.0289058
\(786\) 0 0
\(787\) 27.0542 0.964379 0.482190 0.876067i \(-0.339842\pi\)
0.482190 + 0.876067i \(0.339842\pi\)
\(788\) −8.86861 −0.315931
\(789\) 0 0
\(790\) 6.74689 0.240044
\(791\) −60.2466 −2.14212
\(792\) 0 0
\(793\) −44.0774 −1.56523
\(794\) −6.54642 −0.232324
\(795\) 0 0
\(796\) 6.26292 0.221983
\(797\) −8.09022 −0.286570 −0.143285 0.989681i \(-0.545767\pi\)
−0.143285 + 0.989681i \(0.545767\pi\)
\(798\) 0 0
\(799\) −2.14741 −0.0759699
\(800\) 4.73428 0.167382
\(801\) 0 0
\(802\) 35.6532 1.25896
\(803\) −2.61312 −0.0922150
\(804\) 0 0
\(805\) 14.2306 0.501564
\(806\) 23.7230 0.835607
\(807\) 0 0
\(808\) 15.2726 0.537287
\(809\) −42.3580 −1.48923 −0.744615 0.667495i \(-0.767367\pi\)
−0.744615 + 0.667495i \(0.767367\pi\)
\(810\) 0 0
\(811\) 34.4740 1.21055 0.605273 0.796018i \(-0.293064\pi\)
0.605273 + 0.796018i \(0.293064\pi\)
\(812\) 11.2039 0.393179
\(813\) 0 0
\(814\) 4.36750 0.153081
\(815\) 2.99586 0.104940
\(816\) 0 0
\(817\) −36.9200 −1.29167
\(818\) 7.24483 0.253309
\(819\) 0 0
\(820\) −6.39870 −0.223452
\(821\) 0.0792741 0.00276669 0.00138334 0.999999i \(-0.499560\pi\)
0.00138334 + 0.999999i \(0.499560\pi\)
\(822\) 0 0
\(823\) −53.2780 −1.85716 −0.928578 0.371138i \(-0.878968\pi\)
−0.928578 + 0.371138i \(0.878968\pi\)
\(824\) −19.0993 −0.665355
\(825\) 0 0
\(826\) −56.8276 −1.97728
\(827\) −32.4912 −1.12983 −0.564915 0.825149i \(-0.691091\pi\)
−0.564915 + 0.825149i \(0.691091\pi\)
\(828\) 0 0
\(829\) 24.2734 0.843049 0.421525 0.906817i \(-0.361495\pi\)
0.421525 + 0.906817i \(0.361495\pi\)
\(830\) −5.53778 −0.192219
\(831\) 0 0
\(832\) −5.04122 −0.174773
\(833\) −2.69751 −0.0934633
\(834\) 0 0
\(835\) 0.920482 0.0318546
\(836\) 4.29373 0.148502
\(837\) 0 0
\(838\) −31.0240 −1.07171
\(839\) −39.4787 −1.36296 −0.681478 0.731838i \(-0.738663\pi\)
−0.681478 + 0.731838i \(0.738663\pi\)
\(840\) 0 0
\(841\) −22.9303 −0.790699
\(842\) −5.11144 −0.176152
\(843\) 0 0
\(844\) −17.3450 −0.597038
\(845\) 6.39910 0.220136
\(846\) 0 0
\(847\) 48.1223 1.65350
\(848\) −10.5761 −0.363184
\(849\) 0 0
\(850\) −0.933482 −0.0320182
\(851\) −41.0028 −1.40556
\(852\) 0 0
\(853\) −11.8518 −0.405799 −0.202900 0.979200i \(-0.565036\pi\)
−0.202900 + 0.979200i \(0.565036\pi\)
\(854\) 39.7616 1.36061
\(855\) 0 0
\(856\) 1.09762 0.0375160
\(857\) 14.8008 0.505586 0.252793 0.967520i \(-0.418651\pi\)
0.252793 + 0.967520i \(0.418651\pi\)
\(858\) 0 0
\(859\) −40.1831 −1.37103 −0.685514 0.728059i \(-0.740423\pi\)
−0.685514 + 0.728059i \(0.740423\pi\)
\(860\) 2.86608 0.0977325
\(861\) 0 0
\(862\) −25.5427 −0.869986
\(863\) −0.337706 −0.0114957 −0.00574783 0.999983i \(-0.501830\pi\)
−0.00574783 + 0.999983i \(0.501830\pi\)
\(864\) 0 0
\(865\) −2.83624 −0.0964351
\(866\) −20.6432 −0.701483
\(867\) 0 0
\(868\) −21.4002 −0.726369
\(869\) 8.46339 0.287101
\(870\) 0 0
\(871\) −63.2897 −2.14449
\(872\) 9.93839 0.336556
\(873\) 0 0
\(874\) −40.3102 −1.36351
\(875\) 22.8191 0.771425
\(876\) 0 0
\(877\) 33.4043 1.12798 0.563992 0.825780i \(-0.309265\pi\)
0.563992 + 0.825780i \(0.309265\pi\)
\(878\) 34.9387 1.17912
\(879\) 0 0
\(880\) −0.333319 −0.0112362
\(881\) 33.0905 1.11485 0.557424 0.830228i \(-0.311790\pi\)
0.557424 + 0.830228i \(0.311790\pi\)
\(882\) 0 0
\(883\) −51.6307 −1.73751 −0.868756 0.495241i \(-0.835080\pi\)
−0.868756 + 0.495241i \(0.835080\pi\)
\(884\) 0.994003 0.0334319
\(885\) 0 0
\(886\) −18.3591 −0.616786
\(887\) −25.4802 −0.855542 −0.427771 0.903887i \(-0.640701\pi\)
−0.427771 + 0.903887i \(0.640701\pi\)
\(888\) 0 0
\(889\) 1.22372 0.0410421
\(890\) −6.26419 −0.209976
\(891\) 0 0
\(892\) 17.6322 0.590369
\(893\) −72.3181 −2.42003
\(894\) 0 0
\(895\) 6.86687 0.229534
\(896\) 4.54762 0.151925
\(897\) 0 0
\(898\) −7.17048 −0.239282
\(899\) −11.5936 −0.386668
\(900\) 0 0
\(901\) 2.08534 0.0694727
\(902\) −8.02661 −0.267257
\(903\) 0 0
\(904\) −13.2480 −0.440620
\(905\) −2.42371 −0.0805669
\(906\) 0 0
\(907\) 46.7342 1.55178 0.775892 0.630866i \(-0.217300\pi\)
0.775892 + 0.630866i \(0.217300\pi\)
\(908\) −8.20255 −0.272211
\(909\) 0 0
\(910\) −11.8176 −0.391750
\(911\) 15.3274 0.507821 0.253910 0.967228i \(-0.418283\pi\)
0.253910 + 0.967228i \(0.418283\pi\)
\(912\) 0 0
\(913\) −6.94666 −0.229901
\(914\) −15.6440 −0.517458
\(915\) 0 0
\(916\) −7.30547 −0.241380
\(917\) −79.4868 −2.62489
\(918\) 0 0
\(919\) −56.6646 −1.86919 −0.934597 0.355709i \(-0.884239\pi\)
−0.934597 + 0.355709i \(0.884239\pi\)
\(920\) 3.12925 0.103168
\(921\) 0 0
\(922\) 8.75585 0.288358
\(923\) −13.1593 −0.433144
\(924\) 0 0
\(925\) −31.9769 −1.05140
\(926\) −19.5927 −0.643858
\(927\) 0 0
\(928\) 2.46368 0.0808743
\(929\) −27.7882 −0.911703 −0.455851 0.890056i \(-0.650665\pi\)
−0.455851 + 0.890056i \(0.650665\pi\)
\(930\) 0 0
\(931\) −90.8439 −2.97729
\(932\) −5.33860 −0.174872
\(933\) 0 0
\(934\) −25.7091 −0.841226
\(935\) 0.0657222 0.00214935
\(936\) 0 0
\(937\) −17.6446 −0.576425 −0.288213 0.957566i \(-0.593061\pi\)
−0.288213 + 0.957566i \(0.593061\pi\)
\(938\) 57.0928 1.86414
\(939\) 0 0
\(940\) 5.61401 0.183109
\(941\) −10.5607 −0.344269 −0.172134 0.985073i \(-0.555066\pi\)
−0.172134 + 0.985073i \(0.555066\pi\)
\(942\) 0 0
\(943\) 75.3551 2.45390
\(944\) −12.4961 −0.406714
\(945\) 0 0
\(946\) 3.59525 0.116892
\(947\) 3.84850 0.125059 0.0625297 0.998043i \(-0.480083\pi\)
0.0625297 + 0.998043i \(0.480083\pi\)
\(948\) 0 0
\(949\) −20.3725 −0.661320
\(950\) −31.4368 −1.01994
\(951\) 0 0
\(952\) −0.896676 −0.0290614
\(953\) 18.3569 0.594639 0.297320 0.954778i \(-0.403907\pi\)
0.297320 + 0.954778i \(0.403907\pi\)
\(954\) 0 0
\(955\) −6.83077 −0.221039
\(956\) 0.0672071 0.00217363
\(957\) 0 0
\(958\) 9.00827 0.291044
\(959\) 86.5948 2.79629
\(960\) 0 0
\(961\) −8.85543 −0.285659
\(962\) 34.0501 1.09782
\(963\) 0 0
\(964\) −11.4205 −0.367828
\(965\) 10.5761 0.340456
\(966\) 0 0
\(967\) −22.7305 −0.730964 −0.365482 0.930818i \(-0.619096\pi\)
−0.365482 + 0.930818i \(0.619096\pi\)
\(968\) 10.5819 0.340114
\(969\) 0 0
\(970\) 4.93696 0.158516
\(971\) 58.1610 1.86648 0.933238 0.359259i \(-0.116971\pi\)
0.933238 + 0.359259i \(0.116971\pi\)
\(972\) 0 0
\(973\) −4.20953 −0.134951
\(974\) −33.1458 −1.06206
\(975\) 0 0
\(976\) 8.74339 0.279869
\(977\) 48.2740 1.54442 0.772210 0.635367i \(-0.219151\pi\)
0.772210 + 0.635367i \(0.219151\pi\)
\(978\) 0 0
\(979\) −7.85788 −0.251139
\(980\) 7.05216 0.225273
\(981\) 0 0
\(982\) −38.0044 −1.21277
\(983\) −7.77950 −0.248128 −0.124064 0.992274i \(-0.539593\pi\)
−0.124064 + 0.992274i \(0.539593\pi\)
\(984\) 0 0
\(985\) −4.57157 −0.145662
\(986\) −0.485776 −0.0154703
\(987\) 0 0
\(988\) 33.4749 1.06498
\(989\) −33.7527 −1.07327
\(990\) 0 0
\(991\) 26.9972 0.857595 0.428798 0.903401i \(-0.358937\pi\)
0.428798 + 0.903401i \(0.358937\pi\)
\(992\) −4.70580 −0.149409
\(993\) 0 0
\(994\) 11.8708 0.376520
\(995\) 3.22840 0.102347
\(996\) 0 0
\(997\) −27.5982 −0.874045 −0.437023 0.899451i \(-0.643967\pi\)
−0.437023 + 0.899451i \(0.643967\pi\)
\(998\) −11.6632 −0.369193
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4842.2.a.t.1.9 13
3.2 odd 2 4842.2.a.u.1.5 yes 13
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4842.2.a.t.1.9 13 1.1 even 1 trivial
4842.2.a.u.1.5 yes 13 3.2 odd 2