Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [4851,2,Mod(1,4851)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4851, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("4851.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 4851.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 77) |
Fricke sign: | |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of :
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | |||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 |
|
−1.87939 | 0 | 1.53209 | 3.53209 | 0 | 0 | 0.879385 | 0 | −6.63816 | |||||||||||||||||||||||||||
1.2 | 0.347296 | 0 | −1.87939 | 0.120615 | 0 | 0 | −1.34730 | 0 | 0.0418891 | ||||||||||||||||||||||||||||
1.3 | 1.53209 | 0 | 0.347296 | 2.34730 | 0 | 0 | −2.53209 | 0 | 3.59627 | ||||||||||||||||||||||||||||
Atkin-Lehner signs
Sign | |
---|---|
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 4851.2.a.bk | 3 | |
3.b | odd | 2 | 1 | 539.2.a.g | 3 | ||
7.b | odd | 2 | 1 | 4851.2.a.bj | 3 | ||
7.d | odd | 6 | 2 | 693.2.i.h | 6 | ||
12.b | even | 2 | 1 | 8624.2.a.co | 3 | ||
21.c | even | 2 | 1 | 539.2.a.j | 3 | ||
21.g | even | 6 | 2 | 77.2.e.a | ✓ | 6 | |
21.h | odd | 6 | 2 | 539.2.e.m | 6 | ||
33.d | even | 2 | 1 | 5929.2.a.u | 3 | ||
84.h | odd | 2 | 1 | 8624.2.a.ch | 3 | ||
84.j | odd | 6 | 2 | 1232.2.q.m | 6 | ||
231.h | odd | 2 | 1 | 5929.2.a.x | 3 | ||
231.k | odd | 6 | 2 | 847.2.e.c | 6 | ||
231.bc | even | 30 | 8 | 847.2.n.g | 24 | ||
231.bf | odd | 30 | 8 | 847.2.n.f | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
77.2.e.a | ✓ | 6 | 21.g | even | 6 | 2 | |
539.2.a.g | 3 | 3.b | odd | 2 | 1 | ||
539.2.a.j | 3 | 21.c | even | 2 | 1 | ||
539.2.e.m | 6 | 21.h | odd | 6 | 2 | ||
693.2.i.h | 6 | 7.d | odd | 6 | 2 | ||
847.2.e.c | 6 | 231.k | odd | 6 | 2 | ||
847.2.n.f | 24 | 231.bf | odd | 30 | 8 | ||
847.2.n.g | 24 | 231.bc | even | 30 | 8 | ||
1232.2.q.m | 6 | 84.j | odd | 6 | 2 | ||
4851.2.a.bj | 3 | 7.b | odd | 2 | 1 | ||
4851.2.a.bk | 3 | 1.a | even | 1 | 1 | trivial | |
5929.2.a.u | 3 | 33.d | even | 2 | 1 | ||
5929.2.a.x | 3 | 231.h | odd | 2 | 1 | ||
8624.2.a.ch | 3 | 84.h | odd | 2 | 1 | ||
8624.2.a.co | 3 | 12.b | even | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|
|
|