Properties

Label 4851.2.a.bk
Level $4851$
Weight $2$
Character orbit 4851.a
Self dual yes
Analytic conductor $38.735$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4851,2,Mod(1,4851)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4851, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4851.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4851 = 3^{2} \cdot 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4851.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(38.7354300205\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{18})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 3x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 77)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} + \beta_{2} q^{4} + (\beta_{2} + 2) q^{5} + (\beta_1 - 1) q^{8} + ( - 3 \beta_1 - 1) q^{10} - q^{11} + ( - \beta_{2} - \beta_1 - 1) q^{13} + ( - 3 \beta_{2} + \beta_1 - 2) q^{16} + ( - 4 \beta_{2} + \beta_1 - 1) q^{17}+ \cdots + (\beta_{2} - \beta_1 - 15) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 6 q^{5} - 3 q^{8} - 3 q^{10} - 3 q^{11} - 3 q^{13} - 6 q^{16} - 3 q^{17} - 9 q^{19} + 6 q^{20} + 3 q^{25} + 9 q^{26} + 3 q^{29} - 9 q^{31} + 9 q^{32} + 6 q^{34} - 3 q^{40} + 9 q^{41} - 24 q^{46} - 3 q^{47}+ \cdots - 45 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of \(\nu = \zeta_{18} + \zeta_{18}^{-1}\):

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
1.87939
−0.347296
−1.53209
−1.87939 0 1.53209 3.53209 0 0 0.879385 0 −6.63816
1.2 0.347296 0 −1.87939 0.120615 0 0 −1.34730 0 0.0418891
1.3 1.53209 0 0.347296 2.34730 0 0 −2.53209 0 3.59627
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(7\) \( -1 \)
\(11\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4851.2.a.bk 3
3.b odd 2 1 539.2.a.g 3
7.b odd 2 1 4851.2.a.bj 3
7.d odd 6 2 693.2.i.h 6
12.b even 2 1 8624.2.a.co 3
21.c even 2 1 539.2.a.j 3
21.g even 6 2 77.2.e.a 6
21.h odd 6 2 539.2.e.m 6
33.d even 2 1 5929.2.a.u 3
84.h odd 2 1 8624.2.a.ch 3
84.j odd 6 2 1232.2.q.m 6
231.h odd 2 1 5929.2.a.x 3
231.k odd 6 2 847.2.e.c 6
231.bc even 30 8 847.2.n.g 24
231.bf odd 30 8 847.2.n.f 24
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
77.2.e.a 6 21.g even 6 2
539.2.a.g 3 3.b odd 2 1
539.2.a.j 3 21.c even 2 1
539.2.e.m 6 21.h odd 6 2
693.2.i.h 6 7.d odd 6 2
847.2.e.c 6 231.k odd 6 2
847.2.n.f 24 231.bf odd 30 8
847.2.n.g 24 231.bc even 30 8
1232.2.q.m 6 84.j odd 6 2
4851.2.a.bj 3 7.b odd 2 1
4851.2.a.bk 3 1.a even 1 1 trivial
5929.2.a.u 3 33.d even 2 1
5929.2.a.x 3 231.h odd 2 1
8624.2.a.ch 3 84.h odd 2 1
8624.2.a.co 3 12.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(4851))\):

\( T_{2}^{3} - 3T_{2} + 1 \) Copy content Toggle raw display
\( T_{5}^{3} - 6T_{5}^{2} + 9T_{5} - 1 \) Copy content Toggle raw display
\( T_{13}^{3} + 3T_{13}^{2} - 6T_{13} + 1 \) Copy content Toggle raw display
\( T_{17}^{3} + 3T_{17}^{2} - 36T_{17} - 127 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} - 3T + 1 \) Copy content Toggle raw display
$3$ \( T^{3} \) Copy content Toggle raw display
$5$ \( T^{3} - 6 T^{2} + \cdots - 1 \) Copy content Toggle raw display
$7$ \( T^{3} \) Copy content Toggle raw display
$11$ \( (T + 1)^{3} \) Copy content Toggle raw display
$13$ \( T^{3} + 3 T^{2} + \cdots + 1 \) Copy content Toggle raw display
$17$ \( T^{3} + 3 T^{2} + \cdots - 127 \) Copy content Toggle raw display
$19$ \( T^{3} + 9 T^{2} + \cdots + 9 \) Copy content Toggle raw display
$23$ \( T^{3} - 57T + 107 \) Copy content Toggle raw display
$29$ \( T^{3} - 3 T^{2} + \cdots - 51 \) Copy content Toggle raw display
$31$ \( T^{3} + 9 T^{2} + \cdots + 19 \) Copy content Toggle raw display
$37$ \( T^{3} - 36T + 72 \) Copy content Toggle raw display
$41$ \( T^{3} - 9 T^{2} + \cdots - 1 \) Copy content Toggle raw display
$43$ \( T^{3} - 9T + 9 \) Copy content Toggle raw display
$47$ \( T^{3} + 3 T^{2} + \cdots - 323 \) Copy content Toggle raw display
$53$ \( T^{3} + 9 T^{2} + \cdots - 459 \) Copy content Toggle raw display
$59$ \( T^{3} - 93T + 19 \) Copy content Toggle raw display
$61$ \( T^{3} + 12 T^{2} + \cdots + 24 \) Copy content Toggle raw display
$67$ \( T^{3} - 12T - 8 \) Copy content Toggle raw display
$71$ \( T^{3} - 9 T^{2} + \cdots + 801 \) Copy content Toggle raw display
$73$ \( T^{3} + 6 T^{2} + \cdots + 1 \) Copy content Toggle raw display
$79$ \( T^{3} + 3 T^{2} + \cdots + 37 \) Copy content Toggle raw display
$83$ \( T^{3} + 15 T^{2} + \cdots - 267 \) Copy content Toggle raw display
$89$ \( T^{3} + 15 T^{2} + \cdots + 111 \) Copy content Toggle raw display
$97$ \( T^{3} + 45 T^{2} + \cdots + 3329 \) Copy content Toggle raw display
show more
show less