Properties

Label 8624.2.a.ch
Level 86248624
Weight 22
Character orbit 8624.a
Self dual yes
Analytic conductor 68.86368.863
Analytic rank 00
Dimension 33
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8624,2,Mod(1,8624)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8624, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8624.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 8624=247211 8624 = 2^{4} \cdot 7^{2} \cdot 11
Weight: k k == 2 2
Character orbit: [χ][\chi] == 8624.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 68.862986703268.8629867032
Analytic rank: 00
Dimension: 33
Coefficient field: Q(ζ18)+\Q(\zeta_{18})^+
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x33x1 x^{3} - 3x - 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 77)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β21,\beta_1,\beta_2 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β11)q3+(β2+β1+2)q5+(β2+2β1)q9q11+(2β2+β1+1)q13+(2β13)q15+(3β24β11)q17++(β22β1)q99+O(q100) q + ( - \beta_1 - 1) q^{3} + ( - \beta_{2} + \beta_1 + 2) q^{5} + (\beta_{2} + 2 \beta_1) q^{9} - q^{11} + ( - 2 \beta_{2} + \beta_1 + 1) q^{13} + ( - 2 \beta_1 - 3) q^{15} + (3 \beta_{2} - 4 \beta_1 - 1) q^{17}+ \cdots + ( - \beta_{2} - 2 \beta_1) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 3q3q3+6q53q11+3q139q153q179q19+3q256q273q299q31+3q333q39+9q41+3q45+3q47+18q51+9q536q55++45q97+O(q100) 3 q - 3 q^{3} + 6 q^{5} - 3 q^{11} + 3 q^{13} - 9 q^{15} - 3 q^{17} - 9 q^{19} + 3 q^{25} - 6 q^{27} - 3 q^{29} - 9 q^{31} + 3 q^{33} - 3 q^{39} + 9 q^{41} + 3 q^{45} + 3 q^{47} + 18 q^{51} + 9 q^{53} - 6 q^{55}+ \cdots + 45 q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of ν=ζ18+ζ181\nu = \zeta_{18} + \zeta_{18}^{-1}:

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== ν22 \nu^{2} - 2 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β2+2 \beta_{2} + 2 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
1.87939
−0.347296
−1.53209
0 −2.87939 0 2.34730 0 0 0 5.29086 0
1.2 0 −0.652704 0 3.53209 0 0 0 −2.57398 0
1.3 0 0.532089 0 0.120615 0 0 0 −2.71688 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
77 +1 +1
1111 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 8624.2.a.ch 3
4.b odd 2 1 539.2.a.j 3
7.b odd 2 1 8624.2.a.co 3
7.c even 3 2 1232.2.q.m 6
12.b even 2 1 4851.2.a.bj 3
28.d even 2 1 539.2.a.g 3
28.f even 6 2 539.2.e.m 6
28.g odd 6 2 77.2.e.a 6
44.c even 2 1 5929.2.a.x 3
84.h odd 2 1 4851.2.a.bk 3
84.n even 6 2 693.2.i.h 6
308.g odd 2 1 5929.2.a.u 3
308.n even 6 2 847.2.e.c 6
308.bb odd 30 8 847.2.n.g 24
308.bc even 30 8 847.2.n.f 24
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
77.2.e.a 6 28.g odd 6 2
539.2.a.g 3 28.d even 2 1
539.2.a.j 3 4.b odd 2 1
539.2.e.m 6 28.f even 6 2
693.2.i.h 6 84.n even 6 2
847.2.e.c 6 308.n even 6 2
847.2.n.f 24 308.bc even 30 8
847.2.n.g 24 308.bb odd 30 8
1232.2.q.m 6 7.c even 3 2
4851.2.a.bj 3 12.b even 2 1
4851.2.a.bk 3 84.h odd 2 1
5929.2.a.u 3 308.g odd 2 1
5929.2.a.x 3 44.c even 2 1
8624.2.a.ch 3 1.a even 1 1 trivial
8624.2.a.co 3 7.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(8624))S_{2}^{\mathrm{new}}(\Gamma_0(8624)):

T33+3T321 T_{3}^{3} + 3T_{3}^{2} - 1 Copy content Toggle raw display
T536T52+9T51 T_{5}^{3} - 6T_{5}^{2} + 9T_{5} - 1 Copy content Toggle raw display
T1333T1326T131 T_{13}^{3} - 3T_{13}^{2} - 6T_{13} - 1 Copy content Toggle raw display
T173+3T17236T17127 T_{17}^{3} + 3T_{17}^{2} - 36T_{17} - 127 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T3 T^{3} Copy content Toggle raw display
33 T3+3T21 T^{3} + 3T^{2} - 1 Copy content Toggle raw display
55 T36T2+1 T^{3} - 6 T^{2} + \cdots - 1 Copy content Toggle raw display
77 T3 T^{3} Copy content Toggle raw display
1111 (T+1)3 (T + 1)^{3} Copy content Toggle raw display
1313 T33T2+1 T^{3} - 3 T^{2} + \cdots - 1 Copy content Toggle raw display
1717 T3+3T2+127 T^{3} + 3 T^{2} + \cdots - 127 Copy content Toggle raw display
1919 T3+9T2++9 T^{3} + 9 T^{2} + \cdots + 9 Copy content Toggle raw display
2323 T357T+107 T^{3} - 57T + 107 Copy content Toggle raw display
2929 T3+3T2++51 T^{3} + 3 T^{2} + \cdots + 51 Copy content Toggle raw display
3131 T3+9T2++19 T^{3} + 9 T^{2} + \cdots + 19 Copy content Toggle raw display
3737 T336T+72 T^{3} - 36T + 72 Copy content Toggle raw display
4141 T39T2+1 T^{3} - 9 T^{2} + \cdots - 1 Copy content Toggle raw display
4343 T39T9 T^{3} - 9T - 9 Copy content Toggle raw display
4747 T33T2++323 T^{3} - 3 T^{2} + \cdots + 323 Copy content Toggle raw display
5353 T39T2++459 T^{3} - 9 T^{2} + \cdots + 459 Copy content Toggle raw display
5959 T393T19 T^{3} - 93T - 19 Copy content Toggle raw display
6161 T312T2+24 T^{3} - 12 T^{2} + \cdots - 24 Copy content Toggle raw display
6767 T312T+8 T^{3} - 12T + 8 Copy content Toggle raw display
7171 T39T2++801 T^{3} - 9 T^{2} + \cdots + 801 Copy content Toggle raw display
7373 T36T2+1 T^{3} - 6 T^{2} + \cdots - 1 Copy content Toggle raw display
7979 T33T2+37 T^{3} - 3 T^{2} + \cdots - 37 Copy content Toggle raw display
8383 T315T2++267 T^{3} - 15 T^{2} + \cdots + 267 Copy content Toggle raw display
8989 T3+15T2++111 T^{3} + 15 T^{2} + \cdots + 111 Copy content Toggle raw display
9797 T345T2+3329 T^{3} - 45 T^{2} + \cdots - 3329 Copy content Toggle raw display
show more
show less