Properties

Label 4896.2.a.bf.1.2
Level $4896$
Weight $2$
Character 4896.1
Self dual yes
Analytic conductor $39.095$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4896,2,Mod(1,4896)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4896, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4896.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4896 = 2^{5} \cdot 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4896.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(39.0947568296\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.148.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 3x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 544)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(0.311108\) of defining polynomial
Character \(\chi\) \(=\) 4896.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.622216 q^{5} -1.52543 q^{7} -1.09679 q^{11} +2.42864 q^{13} -1.00000 q^{17} +5.80642 q^{19} -8.57628 q^{23} -4.61285 q^{25} +3.37778 q^{29} -3.33185 q^{31} -0.949145 q^{35} -3.37778 q^{37} +6.85728 q^{41} -7.05086 q^{43} +1.24443 q^{47} -4.67307 q^{49} +10.8573 q^{53} -0.682439 q^{55} +4.56199 q^{59} -14.9906 q^{61} +1.51114 q^{65} -11.6128 q^{67} -12.2810 q^{71} +13.6128 q^{73} +1.67307 q^{77} +12.1891 q^{79} -7.05086 q^{83} -0.622216 q^{85} -7.67307 q^{89} -3.70471 q^{91} +3.61285 q^{95} +5.61285 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 2 q^{5} + 2 q^{7} - 10 q^{11} - 6 q^{13} - 3 q^{17} + 4 q^{19} - 6 q^{23} + 13 q^{25} + 10 q^{29} + 10 q^{31} - 16 q^{35} - 10 q^{37} - 6 q^{41} - 8 q^{43} + 4 q^{47} - q^{49} + 6 q^{53} - 16 q^{55}+ \cdots - 10 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.622216 0.278263 0.139132 0.990274i \(-0.455569\pi\)
0.139132 + 0.990274i \(0.455569\pi\)
\(6\) 0 0
\(7\) −1.52543 −0.576557 −0.288279 0.957547i \(-0.593083\pi\)
−0.288279 + 0.957547i \(0.593083\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −1.09679 −0.330694 −0.165347 0.986235i \(-0.552874\pi\)
−0.165347 + 0.986235i \(0.552874\pi\)
\(12\) 0 0
\(13\) 2.42864 0.673583 0.336792 0.941579i \(-0.390658\pi\)
0.336792 + 0.941579i \(0.390658\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −1.00000 −0.242536
\(18\) 0 0
\(19\) 5.80642 1.33208 0.666042 0.745914i \(-0.267987\pi\)
0.666042 + 0.745914i \(0.267987\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −8.57628 −1.78828 −0.894139 0.447789i \(-0.852212\pi\)
−0.894139 + 0.447789i \(0.852212\pi\)
\(24\) 0 0
\(25\) −4.61285 −0.922570
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 3.37778 0.627239 0.313619 0.949549i \(-0.398458\pi\)
0.313619 + 0.949549i \(0.398458\pi\)
\(30\) 0 0
\(31\) −3.33185 −0.598418 −0.299209 0.954188i \(-0.596723\pi\)
−0.299209 + 0.954188i \(0.596723\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −0.949145 −0.160435
\(36\) 0 0
\(37\) −3.37778 −0.555304 −0.277652 0.960682i \(-0.589556\pi\)
−0.277652 + 0.960682i \(0.589556\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 6.85728 1.07093 0.535464 0.844558i \(-0.320137\pi\)
0.535464 + 0.844558i \(0.320137\pi\)
\(42\) 0 0
\(43\) −7.05086 −1.07525 −0.537623 0.843186i \(-0.680677\pi\)
−0.537623 + 0.843186i \(0.680677\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 1.24443 0.181519 0.0907595 0.995873i \(-0.471071\pi\)
0.0907595 + 0.995873i \(0.471071\pi\)
\(48\) 0 0
\(49\) −4.67307 −0.667582
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 10.8573 1.49136 0.745681 0.666303i \(-0.232124\pi\)
0.745681 + 0.666303i \(0.232124\pi\)
\(54\) 0 0
\(55\) −0.682439 −0.0920200
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 4.56199 0.593921 0.296960 0.954890i \(-0.404027\pi\)
0.296960 + 0.954890i \(0.404027\pi\)
\(60\) 0 0
\(61\) −14.9906 −1.91935 −0.959677 0.281105i \(-0.909299\pi\)
−0.959677 + 0.281105i \(0.909299\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 1.51114 0.187434
\(66\) 0 0
\(67\) −11.6128 −1.41874 −0.709368 0.704839i \(-0.751019\pi\)
−0.709368 + 0.704839i \(0.751019\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −12.2810 −1.45749 −0.728743 0.684787i \(-0.759895\pi\)
−0.728743 + 0.684787i \(0.759895\pi\)
\(72\) 0 0
\(73\) 13.6128 1.59326 0.796632 0.604465i \(-0.206613\pi\)
0.796632 + 0.604465i \(0.206613\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 1.67307 0.190664
\(78\) 0 0
\(79\) 12.1891 1.37138 0.685692 0.727892i \(-0.259500\pi\)
0.685692 + 0.727892i \(0.259500\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −7.05086 −0.773932 −0.386966 0.922094i \(-0.626477\pi\)
−0.386966 + 0.922094i \(0.626477\pi\)
\(84\) 0 0
\(85\) −0.622216 −0.0674888
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −7.67307 −0.813344 −0.406672 0.913574i \(-0.633311\pi\)
−0.406672 + 0.913574i \(0.633311\pi\)
\(90\) 0 0
\(91\) −3.70471 −0.388360
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 3.61285 0.370670
\(96\) 0 0
\(97\) 5.61285 0.569898 0.284949 0.958543i \(-0.408023\pi\)
0.284949 + 0.958543i \(0.408023\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −10.4286 −1.03769 −0.518844 0.854869i \(-0.673638\pi\)
−0.518844 + 0.854869i \(0.673638\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 3.46520 0.334994 0.167497 0.985873i \(-0.446432\pi\)
0.167497 + 0.985873i \(0.446432\pi\)
\(108\) 0 0
\(109\) 5.47949 0.524840 0.262420 0.964954i \(-0.415479\pi\)
0.262420 + 0.964954i \(0.415479\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 18.4701 1.73752 0.868762 0.495230i \(-0.164916\pi\)
0.868762 + 0.495230i \(0.164916\pi\)
\(114\) 0 0
\(115\) −5.33630 −0.497612
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 1.52543 0.139836
\(120\) 0 0
\(121\) −9.79706 −0.890641
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −5.98126 −0.534981
\(126\) 0 0
\(127\) −4.94914 −0.439166 −0.219583 0.975594i \(-0.570470\pi\)
−0.219583 + 0.975594i \(0.570470\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −5.65878 −0.494410 −0.247205 0.968963i \(-0.579512\pi\)
−0.247205 + 0.968963i \(0.579512\pi\)
\(132\) 0 0
\(133\) −8.85728 −0.768023
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −16.7971 −1.43507 −0.717535 0.696523i \(-0.754730\pi\)
−0.717535 + 0.696523i \(0.754730\pi\)
\(138\) 0 0
\(139\) −10.8113 −0.917006 −0.458503 0.888693i \(-0.651614\pi\)
−0.458503 + 0.888693i \(0.651614\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −2.66370 −0.222750
\(144\) 0 0
\(145\) 2.10171 0.174538
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −8.48886 −0.695435 −0.347717 0.937599i \(-0.613043\pi\)
−0.347717 + 0.937599i \(0.613043\pi\)
\(150\) 0 0
\(151\) −0.561993 −0.0457343 −0.0228672 0.999739i \(-0.507279\pi\)
−0.0228672 + 0.999739i \(0.507279\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −2.07313 −0.166518
\(156\) 0 0
\(157\) −16.1017 −1.28506 −0.642528 0.766262i \(-0.722114\pi\)
−0.642528 + 0.766262i \(0.722114\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 13.0825 1.03105
\(162\) 0 0
\(163\) 9.95407 0.779663 0.389831 0.920886i \(-0.372533\pi\)
0.389831 + 0.920886i \(0.372533\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −21.1383 −1.63573 −0.817864 0.575411i \(-0.804842\pi\)
−0.817864 + 0.575411i \(0.804842\pi\)
\(168\) 0 0
\(169\) −7.10171 −0.546285
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 6.99063 0.531488 0.265744 0.964044i \(-0.414382\pi\)
0.265744 + 0.964044i \(0.414382\pi\)
\(174\) 0 0
\(175\) 7.03657 0.531914
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −17.4193 −1.30198 −0.650989 0.759087i \(-0.725646\pi\)
−0.650989 + 0.759087i \(0.725646\pi\)
\(180\) 0 0
\(181\) −6.99063 −0.519610 −0.259805 0.965661i \(-0.583658\pi\)
−0.259805 + 0.965661i \(0.583658\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −2.10171 −0.154521
\(186\) 0 0
\(187\) 1.09679 0.0802051
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −9.24443 −0.668904 −0.334452 0.942413i \(-0.608551\pi\)
−0.334452 + 0.942413i \(0.608551\pi\)
\(192\) 0 0
\(193\) 18.8573 1.35738 0.678688 0.734426i \(-0.262549\pi\)
0.678688 + 0.734426i \(0.262549\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −1.86665 −0.132993 −0.0664965 0.997787i \(-0.521182\pi\)
−0.0664965 + 0.997787i \(0.521182\pi\)
\(198\) 0 0
\(199\) −17.7003 −1.25474 −0.627369 0.778722i \(-0.715868\pi\)
−0.627369 + 0.778722i \(0.715868\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −5.15257 −0.361639
\(204\) 0 0
\(205\) 4.26671 0.298000
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −6.36842 −0.440513
\(210\) 0 0
\(211\) −5.65878 −0.389567 −0.194783 0.980846i \(-0.562400\pi\)
−0.194783 + 0.980846i \(0.562400\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −4.38715 −0.299201
\(216\) 0 0
\(217\) 5.08250 0.345022
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −2.42864 −0.163368
\(222\) 0 0
\(223\) −26.9304 −1.80339 −0.901697 0.432369i \(-0.857678\pi\)
−0.901697 + 0.432369i \(0.857678\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 21.8622 1.45105 0.725523 0.688198i \(-0.241598\pi\)
0.725523 + 0.688198i \(0.241598\pi\)
\(228\) 0 0
\(229\) −3.67307 −0.242723 −0.121362 0.992608i \(-0.538726\pi\)
−0.121362 + 0.992608i \(0.538726\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 17.3461 1.13638 0.568192 0.822896i \(-0.307643\pi\)
0.568192 + 0.822896i \(0.307643\pi\)
\(234\) 0 0
\(235\) 0.774305 0.0505101
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −11.1427 −0.720763 −0.360381 0.932805i \(-0.617353\pi\)
−0.360381 + 0.932805i \(0.617353\pi\)
\(240\) 0 0
\(241\) −0.755569 −0.0486705 −0.0243352 0.999704i \(-0.507747\pi\)
−0.0243352 + 0.999704i \(0.507747\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −2.90766 −0.185763
\(246\) 0 0
\(247\) 14.1017 0.897270
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 9.40636 0.591373
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −10.4286 −0.650521 −0.325260 0.945625i \(-0.605452\pi\)
−0.325260 + 0.945625i \(0.605452\pi\)
\(258\) 0 0
\(259\) 5.15257 0.320165
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −8.56199 −0.527955 −0.263978 0.964529i \(-0.585034\pi\)
−0.263978 + 0.964529i \(0.585034\pi\)
\(264\) 0 0
\(265\) 6.75557 0.414991
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −16.5018 −1.00613 −0.503065 0.864248i \(-0.667794\pi\)
−0.503065 + 0.864248i \(0.667794\pi\)
\(270\) 0 0
\(271\) 18.3684 1.11580 0.557901 0.829908i \(-0.311607\pi\)
0.557901 + 0.829908i \(0.311607\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 5.05932 0.305088
\(276\) 0 0
\(277\) 29.5625 1.77624 0.888118 0.459615i \(-0.152013\pi\)
0.888118 + 0.459615i \(0.152013\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 20.1017 1.19917 0.599584 0.800312i \(-0.295333\pi\)
0.599584 + 0.800312i \(0.295333\pi\)
\(282\) 0 0
\(283\) −9.39207 −0.558301 −0.279150 0.960247i \(-0.590053\pi\)
−0.279150 + 0.960247i \(0.590053\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −10.4603 −0.617451
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −31.7146 −1.85278 −0.926392 0.376560i \(-0.877107\pi\)
−0.926392 + 0.376560i \(0.877107\pi\)
\(294\) 0 0
\(295\) 2.83854 0.165266
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −20.8287 −1.20455
\(300\) 0 0
\(301\) 10.7556 0.619941
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −9.32741 −0.534086
\(306\) 0 0
\(307\) 11.1427 0.635949 0.317974 0.948099i \(-0.396997\pi\)
0.317974 + 0.948099i \(0.396997\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −17.5254 −0.993776 −0.496888 0.867815i \(-0.665524\pi\)
−0.496888 + 0.867815i \(0.665524\pi\)
\(312\) 0 0
\(313\) 19.4479 1.09926 0.549629 0.835409i \(-0.314769\pi\)
0.549629 + 0.835409i \(0.314769\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 16.6222 0.933597 0.466798 0.884364i \(-0.345407\pi\)
0.466798 + 0.884364i \(0.345407\pi\)
\(318\) 0 0
\(319\) −3.70471 −0.207424
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −5.80642 −0.323078
\(324\) 0 0
\(325\) −11.2029 −0.621428
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −1.89829 −0.104656
\(330\) 0 0
\(331\) −32.7654 −1.80095 −0.900475 0.434908i \(-0.856781\pi\)
−0.900475 + 0.434908i \(0.856781\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −7.22570 −0.394782
\(336\) 0 0
\(337\) 16.1017 0.877116 0.438558 0.898703i \(-0.355489\pi\)
0.438558 + 0.898703i \(0.355489\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 3.65433 0.197893
\(342\) 0 0
\(343\) 17.8064 0.961457
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −0.830082 −0.0445611 −0.0222806 0.999752i \(-0.507093\pi\)
−0.0222806 + 0.999752i \(0.507093\pi\)
\(348\) 0 0
\(349\) −2.85728 −0.152947 −0.0764733 0.997072i \(-0.524366\pi\)
−0.0764733 + 0.997072i \(0.524366\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 1.61285 0.0858432 0.0429216 0.999078i \(-0.486333\pi\)
0.0429216 + 0.999078i \(0.486333\pi\)
\(354\) 0 0
\(355\) −7.64143 −0.405565
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 25.6227 1.35231 0.676157 0.736758i \(-0.263644\pi\)
0.676157 + 0.736758i \(0.263644\pi\)
\(360\) 0 0
\(361\) 14.7146 0.774450
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 8.47013 0.443347
\(366\) 0 0
\(367\) 11.7190 0.611727 0.305864 0.952075i \(-0.401055\pi\)
0.305864 + 0.952075i \(0.401055\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −16.5620 −0.859856
\(372\) 0 0
\(373\) −33.0005 −1.70870 −0.854350 0.519698i \(-0.826044\pi\)
−0.854350 + 0.519698i \(0.826044\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 8.20342 0.422498
\(378\) 0 0
\(379\) 2.90321 0.149128 0.0745640 0.997216i \(-0.476243\pi\)
0.0745640 + 0.997216i \(0.476243\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 30.6637 1.56684 0.783421 0.621491i \(-0.213473\pi\)
0.783421 + 0.621491i \(0.213473\pi\)
\(384\) 0 0
\(385\) 1.04101 0.0530548
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 6.16193 0.312422 0.156211 0.987724i \(-0.450072\pi\)
0.156211 + 0.987724i \(0.450072\pi\)
\(390\) 0 0
\(391\) 8.57628 0.433721
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 7.58427 0.381606
\(396\) 0 0
\(397\) −16.8889 −0.847631 −0.423815 0.905749i \(-0.639309\pi\)
−0.423815 + 0.905749i \(0.639309\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −6.47013 −0.323103 −0.161551 0.986864i \(-0.551650\pi\)
−0.161551 + 0.986864i \(0.551650\pi\)
\(402\) 0 0
\(403\) −8.09187 −0.403085
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 3.70471 0.183636
\(408\) 0 0
\(409\) 10.0000 0.494468 0.247234 0.968956i \(-0.420478\pi\)
0.247234 + 0.968956i \(0.420478\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −6.95899 −0.342429
\(414\) 0 0
\(415\) −4.38715 −0.215357
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −17.3002 −0.845170 −0.422585 0.906323i \(-0.638877\pi\)
−0.422585 + 0.906323i \(0.638877\pi\)
\(420\) 0 0
\(421\) −29.5714 −1.44122 −0.720610 0.693341i \(-0.756138\pi\)
−0.720610 + 0.693341i \(0.756138\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 4.61285 0.223756
\(426\) 0 0
\(427\) 22.8671 1.10662
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −9.70027 −0.467245 −0.233623 0.972327i \(-0.575058\pi\)
−0.233623 + 0.972327i \(0.575058\pi\)
\(432\) 0 0
\(433\) 1.83807 0.0883318 0.0441659 0.999024i \(-0.485937\pi\)
0.0441659 + 0.999024i \(0.485937\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −49.7975 −2.38214
\(438\) 0 0
\(439\) −15.9224 −0.759936 −0.379968 0.925000i \(-0.624065\pi\)
−0.379968 + 0.925000i \(0.624065\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 6.10171 0.289901 0.144951 0.989439i \(-0.453698\pi\)
0.144951 + 0.989439i \(0.453698\pi\)
\(444\) 0 0
\(445\) −4.77430 −0.226324
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −9.22570 −0.435387 −0.217694 0.976017i \(-0.569853\pi\)
−0.217694 + 0.976017i \(0.569853\pi\)
\(450\) 0 0
\(451\) −7.52098 −0.354149
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −2.30513 −0.108066
\(456\) 0 0
\(457\) 11.0192 0.515457 0.257729 0.966217i \(-0.417026\pi\)
0.257729 + 0.966217i \(0.417026\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −25.3461 −1.18049 −0.590244 0.807225i \(-0.700968\pi\)
−0.590244 + 0.807225i \(0.700968\pi\)
\(462\) 0 0
\(463\) −25.1240 −1.16761 −0.583805 0.811894i \(-0.698437\pi\)
−0.583805 + 0.811894i \(0.698437\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −19.1338 −0.885408 −0.442704 0.896668i \(-0.645981\pi\)
−0.442704 + 0.896668i \(0.645981\pi\)
\(468\) 0 0
\(469\) 17.7146 0.817982
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 7.73329 0.355577
\(474\) 0 0
\(475\) −26.7841 −1.22894
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −24.0143 −1.09724 −0.548620 0.836072i \(-0.684847\pi\)
−0.548620 + 0.836072i \(0.684847\pi\)
\(480\) 0 0
\(481\) −8.20342 −0.374044
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 3.49240 0.158582
\(486\) 0 0
\(487\) −0.484417 −0.0219510 −0.0109755 0.999940i \(-0.503494\pi\)
−0.0109755 + 0.999940i \(0.503494\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −1.60300 −0.0723425 −0.0361713 0.999346i \(-0.511516\pi\)
−0.0361713 + 0.999346i \(0.511516\pi\)
\(492\) 0 0
\(493\) −3.37778 −0.152128
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 18.7338 0.840324
\(498\) 0 0
\(499\) 13.1798 0.590007 0.295004 0.955496i \(-0.404679\pi\)
0.295004 + 0.955496i \(0.404679\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 36.8716 1.64402 0.822011 0.569472i \(-0.192852\pi\)
0.822011 + 0.569472i \(0.192852\pi\)
\(504\) 0 0
\(505\) −6.48886 −0.288751
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 17.2257 0.763516 0.381758 0.924262i \(-0.375319\pi\)
0.381758 + 0.924262i \(0.375319\pi\)
\(510\) 0 0
\(511\) −20.7654 −0.918608
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −1.36488 −0.0600272
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −39.0607 −1.71128 −0.855640 0.517571i \(-0.826836\pi\)
−0.855640 + 0.517571i \(0.826836\pi\)
\(522\) 0 0
\(523\) 1.71456 0.0749724 0.0374862 0.999297i \(-0.488065\pi\)
0.0374862 + 0.999297i \(0.488065\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 3.33185 0.145138
\(528\) 0 0
\(529\) 50.5526 2.19794
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 16.6539 0.721359
\(534\) 0 0
\(535\) 2.15610 0.0932165
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 5.12537 0.220765
\(540\) 0 0
\(541\) 41.9496 1.80356 0.901778 0.432200i \(-0.142263\pi\)
0.901778 + 0.432200i \(0.142263\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 3.40943 0.146044
\(546\) 0 0
\(547\) 1.27163 0.0543709 0.0271855 0.999630i \(-0.491346\pi\)
0.0271855 + 0.999630i \(0.491346\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 19.6128 0.835535
\(552\) 0 0
\(553\) −18.5936 −0.790682
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 25.0005 1.05930 0.529652 0.848215i \(-0.322322\pi\)
0.529652 + 0.848215i \(0.322322\pi\)
\(558\) 0 0
\(559\) −17.1240 −0.724267
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −29.5022 −1.24337 −0.621686 0.783267i \(-0.713552\pi\)
−0.621686 + 0.783267i \(0.713552\pi\)
\(564\) 0 0
\(565\) 11.4924 0.483489
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −26.3497 −1.10464 −0.552318 0.833633i \(-0.686257\pi\)
−0.552318 + 0.833633i \(0.686257\pi\)
\(570\) 0 0
\(571\) 26.6079 1.11351 0.556754 0.830678i \(-0.312047\pi\)
0.556754 + 0.830678i \(0.312047\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 39.5611 1.64981
\(576\) 0 0
\(577\) −8.14320 −0.339006 −0.169503 0.985530i \(-0.554216\pi\)
−0.169503 + 0.985530i \(0.554216\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 10.7556 0.446216
\(582\) 0 0
\(583\) −11.9081 −0.493185
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 29.8064 1.23024 0.615121 0.788432i \(-0.289107\pi\)
0.615121 + 0.788432i \(0.289107\pi\)
\(588\) 0 0
\(589\) −19.3461 −0.797144
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 29.8163 1.22441 0.612204 0.790700i \(-0.290283\pi\)
0.612204 + 0.790700i \(0.290283\pi\)
\(594\) 0 0
\(595\) 0.949145 0.0389111
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −31.8163 −1.29998 −0.649989 0.759944i \(-0.725226\pi\)
−0.649989 + 0.759944i \(0.725226\pi\)
\(600\) 0 0
\(601\) −2.20342 −0.0898794 −0.0449397 0.998990i \(-0.514310\pi\)
−0.0449397 + 0.998990i \(0.514310\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −6.09588 −0.247833
\(606\) 0 0
\(607\) −9.43356 −0.382896 −0.191448 0.981503i \(-0.561318\pi\)
−0.191448 + 0.981503i \(0.561318\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 3.02227 0.122268
\(612\) 0 0
\(613\) −13.0223 −0.525965 −0.262982 0.964801i \(-0.584706\pi\)
−0.262982 + 0.964801i \(0.584706\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 6.85728 0.276064 0.138032 0.990428i \(-0.455922\pi\)
0.138032 + 0.990428i \(0.455922\pi\)
\(618\) 0 0
\(619\) 5.56691 0.223753 0.111877 0.993722i \(-0.464314\pi\)
0.111877 + 0.993722i \(0.464314\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 11.7047 0.468939
\(624\) 0 0
\(625\) 19.3426 0.773704
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 3.37778 0.134681
\(630\) 0 0
\(631\) 30.0098 1.19467 0.597337 0.801991i \(-0.296226\pi\)
0.597337 + 0.801991i \(0.296226\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −3.07944 −0.122204
\(636\) 0 0
\(637\) −11.3492 −0.449672
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −5.07944 −0.200626 −0.100313 0.994956i \(-0.531984\pi\)
−0.100313 + 0.994956i \(0.531984\pi\)
\(642\) 0 0
\(643\) 41.3546 1.63087 0.815433 0.578851i \(-0.196499\pi\)
0.815433 + 0.578851i \(0.196499\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −35.3087 −1.38813 −0.694064 0.719914i \(-0.744181\pi\)
−0.694064 + 0.719914i \(0.744181\pi\)
\(648\) 0 0
\(649\) −5.00354 −0.196406
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −16.2351 −0.635327 −0.317664 0.948203i \(-0.602898\pi\)
−0.317664 + 0.948203i \(0.602898\pi\)
\(654\) 0 0
\(655\) −3.52098 −0.137576
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 29.4479 1.14713 0.573563 0.819162i \(-0.305561\pi\)
0.573563 + 0.819162i \(0.305561\pi\)
\(660\) 0 0
\(661\) −34.6735 −1.34864 −0.674322 0.738437i \(-0.735564\pi\)
−0.674322 + 0.738437i \(0.735564\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −5.51114 −0.213713
\(666\) 0 0
\(667\) −28.9688 −1.12168
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 16.4415 0.634719
\(672\) 0 0
\(673\) 23.5111 0.906288 0.453144 0.891437i \(-0.350302\pi\)
0.453144 + 0.891437i \(0.350302\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 7.25734 0.278922 0.139461 0.990228i \(-0.455463\pi\)
0.139461 + 0.990228i \(0.455463\pi\)
\(678\) 0 0
\(679\) −8.56199 −0.328579
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −33.0049 −1.26290 −0.631449 0.775417i \(-0.717540\pi\)
−0.631449 + 0.775417i \(0.717540\pi\)
\(684\) 0 0
\(685\) −10.4514 −0.399327
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 26.3684 1.00456
\(690\) 0 0
\(691\) 23.1985 0.882512 0.441256 0.897381i \(-0.354533\pi\)
0.441256 + 0.897381i \(0.354533\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −6.72699 −0.255169
\(696\) 0 0
\(697\) −6.85728 −0.259738
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −12.9175 −0.487887 −0.243944 0.969789i \(-0.578441\pi\)
−0.243944 + 0.969789i \(0.578441\pi\)
\(702\) 0 0
\(703\) −19.6128 −0.739713
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 15.9081 0.598287
\(708\) 0 0
\(709\) −34.4197 −1.29266 −0.646330 0.763058i \(-0.723697\pi\)
−0.646330 + 0.763058i \(0.723697\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 28.5749 1.07014
\(714\) 0 0
\(715\) −1.65740 −0.0619832
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 18.1704 0.677641 0.338821 0.940851i \(-0.389972\pi\)
0.338821 + 0.940851i \(0.389972\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −15.5812 −0.578671
\(726\) 0 0
\(727\) −6.75557 −0.250550 −0.125275 0.992122i \(-0.539981\pi\)
−0.125275 + 0.992122i \(0.539981\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 7.05086 0.260785
\(732\) 0 0
\(733\) −1.73329 −0.0640207 −0.0320103 0.999488i \(-0.510191\pi\)
−0.0320103 + 0.999488i \(0.510191\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 12.7368 0.469167
\(738\) 0 0
\(739\) 43.9081 1.61519 0.807593 0.589740i \(-0.200770\pi\)
0.807593 + 0.589740i \(0.200770\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 13.8207 0.507033 0.253516 0.967331i \(-0.418413\pi\)
0.253516 + 0.967331i \(0.418413\pi\)
\(744\) 0 0
\(745\) −5.28190 −0.193514
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −5.28592 −0.193143
\(750\) 0 0
\(751\) 3.69042 0.134665 0.0673327 0.997731i \(-0.478551\pi\)
0.0673327 + 0.997731i \(0.478551\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −0.349681 −0.0127262
\(756\) 0 0
\(757\) −40.4099 −1.46872 −0.734361 0.678759i \(-0.762518\pi\)
−0.734361 + 0.678759i \(0.762518\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 32.9175 1.19326 0.596629 0.802517i \(-0.296506\pi\)
0.596629 + 0.802517i \(0.296506\pi\)
\(762\) 0 0
\(763\) −8.35857 −0.302601
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 11.0794 0.400055
\(768\) 0 0
\(769\) 37.0005 1.33427 0.667136 0.744936i \(-0.267520\pi\)
0.667136 + 0.744936i \(0.267520\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 3.67307 0.132111 0.0660556 0.997816i \(-0.478959\pi\)
0.0660556 + 0.997816i \(0.478959\pi\)
\(774\) 0 0
\(775\) 15.3693 0.552082
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 39.8163 1.42657
\(780\) 0 0
\(781\) 13.4697 0.481982
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −10.0187 −0.357584
\(786\) 0 0
\(787\) 2.16638 0.0772231 0.0386115 0.999254i \(-0.487707\pi\)
0.0386115 + 0.999254i \(0.487707\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −28.1748 −1.00178
\(792\) 0 0
\(793\) −36.4068 −1.29284
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 16.1847 0.573291 0.286645 0.958037i \(-0.407460\pi\)
0.286645 + 0.958037i \(0.407460\pi\)
\(798\) 0 0
\(799\) −1.24443 −0.0440248
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −14.9304 −0.526883
\(804\) 0 0
\(805\) 8.14013 0.286902
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −4.67259 −0.164280 −0.0821398 0.996621i \(-0.526175\pi\)
−0.0821398 + 0.996621i \(0.526175\pi\)
\(810\) 0 0
\(811\) 37.0879 1.30233 0.651166 0.758935i \(-0.274280\pi\)
0.651166 + 0.758935i \(0.274280\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 6.19358 0.216952
\(816\) 0 0
\(817\) −40.9403 −1.43232
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −23.7275 −0.828094 −0.414047 0.910255i \(-0.635885\pi\)
−0.414047 + 0.910255i \(0.635885\pi\)
\(822\) 0 0
\(823\) 33.7003 1.17472 0.587359 0.809327i \(-0.300168\pi\)
0.587359 + 0.809327i \(0.300168\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 9.86220 0.342942 0.171471 0.985189i \(-0.445148\pi\)
0.171471 + 0.985189i \(0.445148\pi\)
\(828\) 0 0
\(829\) −16.1017 −0.559236 −0.279618 0.960111i \(-0.590208\pi\)
−0.279618 + 0.960111i \(0.590208\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 4.67307 0.161912
\(834\) 0 0
\(835\) −13.1526 −0.455163
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 10.6494 0.367659 0.183829 0.982958i \(-0.441151\pi\)
0.183829 + 0.982958i \(0.441151\pi\)
\(840\) 0 0
\(841\) −17.5906 −0.606571
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −4.41880 −0.152011
\(846\) 0 0
\(847\) 14.9447 0.513506
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 28.9688 0.993039
\(852\) 0 0
\(853\) −36.0513 −1.23437 −0.617187 0.786816i \(-0.711728\pi\)
−0.617187 + 0.786816i \(0.711728\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −7.24443 −0.247465 −0.123733 0.992316i \(-0.539486\pi\)
−0.123733 + 0.992316i \(0.539486\pi\)
\(858\) 0 0
\(859\) 39.6414 1.35255 0.676274 0.736650i \(-0.263594\pi\)
0.676274 + 0.736650i \(0.263594\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 16.5906 0.564750 0.282375 0.959304i \(-0.408878\pi\)
0.282375 + 0.959304i \(0.408878\pi\)
\(864\) 0 0
\(865\) 4.34968 0.147894
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −13.3689 −0.453509
\(870\) 0 0
\(871\) −28.2034 −0.955636
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 9.12399 0.308447
\(876\) 0 0
\(877\) 39.1941 1.32349 0.661745 0.749729i \(-0.269816\pi\)
0.661745 + 0.749729i \(0.269816\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −30.5531 −1.02936 −0.514680 0.857382i \(-0.672089\pi\)
−0.514680 + 0.857382i \(0.672089\pi\)
\(882\) 0 0
\(883\) 45.3274 1.52539 0.762694 0.646759i \(-0.223876\pi\)
0.762694 + 0.646759i \(0.223876\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 26.8243 0.900670 0.450335 0.892860i \(-0.351305\pi\)
0.450335 + 0.892860i \(0.351305\pi\)
\(888\) 0 0
\(889\) 7.54956 0.253204
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 7.22570 0.241799
\(894\) 0 0
\(895\) −10.8385 −0.362293
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −11.2543 −0.375351
\(900\) 0 0
\(901\) −10.8573 −0.361708
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −4.34968 −0.144588
\(906\) 0 0
\(907\) −49.5580 −1.64555 −0.822774 0.568369i \(-0.807575\pi\)
−0.822774 + 0.568369i \(0.807575\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 4.19802 0.139087 0.0695433 0.997579i \(-0.477846\pi\)
0.0695433 + 0.997579i \(0.477846\pi\)
\(912\) 0 0
\(913\) 7.73329 0.255935
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 8.63206 0.285056
\(918\) 0 0
\(919\) 49.5941 1.63596 0.817979 0.575248i \(-0.195094\pi\)
0.817979 + 0.575248i \(0.195094\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −29.8261 −0.981738
\(924\) 0 0
\(925\) 15.5812 0.512307
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 0.755569 0.0247894 0.0123947 0.999923i \(-0.496055\pi\)
0.0123947 + 0.999923i \(0.496055\pi\)
\(930\) 0 0
\(931\) −27.1338 −0.889275
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0.682439 0.0223181
\(936\) 0 0
\(937\) −4.28544 −0.139999 −0.0699996 0.997547i \(-0.522300\pi\)
−0.0699996 + 0.997547i \(0.522300\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 16.4385 0.535879 0.267940 0.963436i \(-0.413657\pi\)
0.267940 + 0.963436i \(0.413657\pi\)
\(942\) 0 0
\(943\) −58.8100 −1.91512
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 26.0370 0.846090 0.423045 0.906109i \(-0.360961\pi\)
0.423045 + 0.906109i \(0.360961\pi\)
\(948\) 0 0
\(949\) 33.0607 1.07320
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −17.3876 −0.563241 −0.281620 0.959526i \(-0.590872\pi\)
−0.281620 + 0.959526i \(0.590872\pi\)
\(954\) 0 0
\(955\) −5.75203 −0.186131
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 25.6227 0.827400
\(960\) 0 0
\(961\) −19.8988 −0.641896
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 11.7333 0.377708
\(966\) 0 0
\(967\) −8.44155 −0.271462 −0.135731 0.990746i \(-0.543338\pi\)
−0.135731 + 0.990746i \(0.543338\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 30.8671 0.990573 0.495287 0.868730i \(-0.335063\pi\)
0.495287 + 0.868730i \(0.335063\pi\)
\(972\) 0 0
\(973\) 16.4919 0.528707
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 58.5531 1.87328 0.936640 0.350294i \(-0.113918\pi\)
0.936640 + 0.350294i \(0.113918\pi\)
\(978\) 0 0
\(979\) 8.41573 0.268968
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −26.1990 −0.835618 −0.417809 0.908535i \(-0.637202\pi\)
−0.417809 + 0.908535i \(0.637202\pi\)
\(984\) 0 0
\(985\) −1.16146 −0.0370071
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 60.4701 1.92284
\(990\) 0 0
\(991\) 56.4844 1.79429 0.897143 0.441740i \(-0.145638\pi\)
0.897143 + 0.441740i \(0.145638\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −11.0134 −0.349148
\(996\) 0 0
\(997\) −22.9077 −0.725493 −0.362746 0.931888i \(-0.618161\pi\)
−0.362746 + 0.931888i \(0.618161\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4896.2.a.bf.1.2 3
3.2 odd 2 544.2.a.j.1.3 yes 3
4.3 odd 2 4896.2.a.be.1.2 3
8.3 odd 2 9792.2.a.dc.1.2 3
8.5 even 2 9792.2.a.dd.1.2 3
12.11 even 2 544.2.a.i.1.1 3
24.5 odd 2 1088.2.a.u.1.1 3
24.11 even 2 1088.2.a.v.1.3 3
51.50 odd 2 9248.2.a.t.1.1 3
204.203 even 2 9248.2.a.u.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
544.2.a.i.1.1 3 12.11 even 2
544.2.a.j.1.3 yes 3 3.2 odd 2
1088.2.a.u.1.1 3 24.5 odd 2
1088.2.a.v.1.3 3 24.11 even 2
4896.2.a.be.1.2 3 4.3 odd 2
4896.2.a.bf.1.2 3 1.1 even 1 trivial
9248.2.a.t.1.1 3 51.50 odd 2
9248.2.a.u.1.3 3 204.203 even 2
9792.2.a.dc.1.2 3 8.3 odd 2
9792.2.a.dd.1.2 3 8.5 even 2