Properties

Label 4896.2.a.bj.1.4
Level $4896$
Weight $2$
Character 4896.1
Self dual yes
Analytic conductor $39.095$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4896,2,Mod(1,4896)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4896, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4896.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4896 = 2^{5} \cdot 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4896.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(39.0947568296\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.13768.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 5x^{2} + 2x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-1.89761\) of defining polynomial
Character \(\chi\) \(=\) 4896.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.49854 q^{5} +4.74127 q^{7} +2.44459 q^{11} +1.24272 q^{13} -1.00000 q^{17} -0.444588 q^{19} -0.188768 q^{23} +7.23981 q^{25} -4.84918 q^{29} -2.84918 q^{31} +16.5875 q^{35} +4.84918 q^{37} -0.865188 q^{41} -0.552500 q^{43} +6.99709 q^{47} +15.4796 q^{49} +4.10791 q^{53} +8.55250 q^{55} -0.107912 q^{59} -13.9542 q^{61} +4.34772 q^{65} +13.2129 q^{67} -12.3317 q^{71} -9.59045 q^{73} +11.5904 q^{77} +6.25582 q^{79} +11.4825 q^{83} -3.49854 q^{85} -6.88918 q^{89} +5.89209 q^{91} -1.55541 q^{95} +14.1021 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{5} + 4 q^{7} + 2 q^{13} - 4 q^{17} + 8 q^{19} + 2 q^{25} + 8 q^{31} + 8 q^{35} - 2 q^{41} + 12 q^{43} + 4 q^{47} + 8 q^{49} + 12 q^{53} + 20 q^{55} + 4 q^{59} - 8 q^{61} - 14 q^{65} + 20 q^{67}+ \cdots + 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 3.49854 1.56460 0.782298 0.622904i \(-0.214047\pi\)
0.782298 + 0.622904i \(0.214047\pi\)
\(6\) 0 0
\(7\) 4.74127 1.79203 0.896015 0.444023i \(-0.146449\pi\)
0.896015 + 0.444023i \(0.146449\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 2.44459 0.737071 0.368536 0.929614i \(-0.379859\pi\)
0.368536 + 0.929614i \(0.379859\pi\)
\(12\) 0 0
\(13\) 1.24272 0.344670 0.172335 0.985038i \(-0.444869\pi\)
0.172335 + 0.985038i \(0.444869\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −1.00000 −0.242536
\(18\) 0 0
\(19\) −0.444588 −0.101996 −0.0509978 0.998699i \(-0.516240\pi\)
−0.0509978 + 0.998699i \(0.516240\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −0.188768 −0.0393608 −0.0196804 0.999806i \(-0.506265\pi\)
−0.0196804 + 0.999806i \(0.506265\pi\)
\(24\) 0 0
\(25\) 7.23981 1.44796
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −4.84918 −0.900470 −0.450235 0.892910i \(-0.648660\pi\)
−0.450235 + 0.892910i \(0.648660\pi\)
\(30\) 0 0
\(31\) −2.84918 −0.511728 −0.255864 0.966713i \(-0.582360\pi\)
−0.255864 + 0.966713i \(0.582360\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 16.5875 2.80381
\(36\) 0 0
\(37\) 4.84918 0.797200 0.398600 0.917125i \(-0.369496\pi\)
0.398600 + 0.917125i \(0.369496\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −0.865188 −0.135120 −0.0675599 0.997715i \(-0.521521\pi\)
−0.0675599 + 0.997715i \(0.521521\pi\)
\(42\) 0 0
\(43\) −0.552500 −0.0842555 −0.0421278 0.999112i \(-0.513414\pi\)
−0.0421278 + 0.999112i \(0.513414\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 6.99709 1.02063 0.510315 0.859987i \(-0.329529\pi\)
0.510315 + 0.859987i \(0.329529\pi\)
\(48\) 0 0
\(49\) 15.4796 2.21138
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 4.10791 0.564265 0.282133 0.959375i \(-0.408958\pi\)
0.282133 + 0.959375i \(0.408958\pi\)
\(54\) 0 0
\(55\) 8.55250 1.15322
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −0.107912 −0.0140490 −0.00702449 0.999975i \(-0.502236\pi\)
−0.00702449 + 0.999975i \(0.502236\pi\)
\(60\) 0 0
\(61\) −13.9542 −1.78665 −0.893325 0.449411i \(-0.851634\pi\)
−0.893325 + 0.449411i \(0.851634\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 4.34772 0.539269
\(66\) 0 0
\(67\) 13.2129 1.61421 0.807107 0.590405i \(-0.201032\pi\)
0.807107 + 0.590405i \(0.201032\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −12.3317 −1.46351 −0.731753 0.681570i \(-0.761297\pi\)
−0.731753 + 0.681570i \(0.761297\pi\)
\(72\) 0 0
\(73\) −9.59045 −1.12248 −0.561239 0.827654i \(-0.689675\pi\)
−0.561239 + 0.827654i \(0.689675\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 11.5904 1.32085
\(78\) 0 0
\(79\) 6.25582 0.703835 0.351917 0.936031i \(-0.385530\pi\)
0.351917 + 0.936031i \(0.385530\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 11.4825 1.26037 0.630186 0.776444i \(-0.282979\pi\)
0.630186 + 0.776444i \(0.282979\pi\)
\(84\) 0 0
\(85\) −3.49854 −0.379470
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −6.88918 −0.730251 −0.365126 0.930958i \(-0.618974\pi\)
−0.365126 + 0.930958i \(0.618974\pi\)
\(90\) 0 0
\(91\) 5.89209 0.617659
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −1.55541 −0.159582
\(96\) 0 0
\(97\) 14.1021 1.43185 0.715925 0.698177i \(-0.246005\pi\)
0.715925 + 0.698177i \(0.246005\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −15.9622 −1.58829 −0.794147 0.607725i \(-0.792082\pi\)
−0.794147 + 0.607725i \(0.792082\pi\)
\(102\) 0 0
\(103\) −6.03504 −0.594650 −0.297325 0.954776i \(-0.596094\pi\)
−0.297325 + 0.954776i \(0.596094\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 2.66041 0.257192 0.128596 0.991697i \(-0.458953\pi\)
0.128596 + 0.991697i \(0.458953\pi\)
\(108\) 0 0
\(109\) −17.1130 −1.63913 −0.819563 0.572989i \(-0.805784\pi\)
−0.819563 + 0.572989i \(0.805784\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −16.8332 −1.58353 −0.791766 0.610825i \(-0.790838\pi\)
−0.791766 + 0.610825i \(0.790838\pi\)
\(114\) 0 0
\(115\) −0.660413 −0.0615838
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −4.74127 −0.434631
\(120\) 0 0
\(121\) −5.02399 −0.456726
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 7.83608 0.700881
\(126\) 0 0
\(127\) 12.5525 1.11385 0.556927 0.830561i \(-0.311980\pi\)
0.556927 + 0.830561i \(0.311980\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −12.4388 −1.08678 −0.543390 0.839480i \(-0.682860\pi\)
−0.543390 + 0.839480i \(0.682860\pi\)
\(132\) 0 0
\(133\) −2.10791 −0.182779
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −11.3746 −0.971800 −0.485900 0.874014i \(-0.661508\pi\)
−0.485900 + 0.874014i \(0.661508\pi\)
\(138\) 0 0
\(139\) 19.8863 1.68673 0.843366 0.537340i \(-0.180571\pi\)
0.843366 + 0.537340i \(0.180571\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 3.03795 0.254046
\(144\) 0 0
\(145\) −16.9651 −1.40887
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 6.67335 0.546702 0.273351 0.961914i \(-0.411868\pi\)
0.273351 + 0.961914i \(0.411868\pi\)
\(150\) 0 0
\(151\) 13.1867 1.07312 0.536560 0.843862i \(-0.319723\pi\)
0.536560 + 0.843862i \(0.319723\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −9.96798 −0.800648
\(156\) 0 0
\(157\) 0.946908 0.0755715 0.0377857 0.999286i \(-0.487970\pi\)
0.0377857 + 0.999286i \(0.487970\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −0.894999 −0.0705358
\(162\) 0 0
\(163\) −1.99418 −0.156196 −0.0780980 0.996946i \(-0.524885\pi\)
−0.0780980 + 0.996946i \(0.524885\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −18.6946 −1.44663 −0.723315 0.690518i \(-0.757383\pi\)
−0.723315 + 0.690518i \(0.757383\pi\)
\(168\) 0 0
\(169\) −11.4556 −0.881203
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 16.9811 1.29105 0.645524 0.763740i \(-0.276639\pi\)
0.645524 + 0.763740i \(0.276639\pi\)
\(174\) 0 0
\(175\) 34.3259 2.59479
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −3.24493 −0.242537 −0.121269 0.992620i \(-0.538696\pi\)
−0.121269 + 0.992620i \(0.538696\pi\)
\(180\) 0 0
\(181\) −14.7093 −1.09333 −0.546665 0.837351i \(-0.684103\pi\)
−0.546665 + 0.837351i \(0.684103\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 16.9651 1.24730
\(186\) 0 0
\(187\) −2.44459 −0.178766
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 21.0730 1.52479 0.762394 0.647113i \(-0.224024\pi\)
0.762394 + 0.647113i \(0.224024\pi\)
\(192\) 0 0
\(193\) 14.7754 1.06356 0.531780 0.846883i \(-0.321523\pi\)
0.531780 + 0.846883i \(0.321523\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 1.50437 0.107182 0.0535909 0.998563i \(-0.482933\pi\)
0.0535909 + 0.998563i \(0.482933\pi\)
\(198\) 0 0
\(199\) −21.3230 −1.51155 −0.755773 0.654834i \(-0.772739\pi\)
−0.755773 + 0.654834i \(0.772739\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −22.9913 −1.61367
\(204\) 0 0
\(205\) −3.02690 −0.211408
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −1.08684 −0.0751780
\(210\) 0 0
\(211\) 2.51746 0.173309 0.0866547 0.996238i \(-0.472382\pi\)
0.0866547 + 0.996238i \(0.472382\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −1.93295 −0.131826
\(216\) 0 0
\(217\) −13.5087 −0.917032
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −1.24272 −0.0835947
\(222\) 0 0
\(223\) −9.95332 −0.666523 −0.333262 0.942834i \(-0.608149\pi\)
−0.333262 + 0.942834i \(0.608149\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −17.1138 −1.13589 −0.567943 0.823068i \(-0.692261\pi\)
−0.567943 + 0.823068i \(0.692261\pi\)
\(228\) 0 0
\(229\) 11.7784 0.778335 0.389168 0.921167i \(-0.372763\pi\)
0.389168 + 0.921167i \(0.372763\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −19.3186 −1.26560 −0.632802 0.774313i \(-0.718095\pi\)
−0.632802 + 0.774313i \(0.718095\pi\)
\(234\) 0 0
\(235\) 24.4796 1.59687
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −21.2071 −1.37177 −0.685886 0.727709i \(-0.740585\pi\)
−0.685886 + 0.727709i \(0.740585\pi\)
\(240\) 0 0
\(241\) −8.37171 −0.539269 −0.269635 0.962963i \(-0.586903\pi\)
−0.269635 + 0.962963i \(0.586903\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 54.1562 3.45991
\(246\) 0 0
\(247\) −0.552500 −0.0351548
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −24.0701 −1.51929 −0.759645 0.650338i \(-0.774627\pi\)
−0.759645 + 0.650338i \(0.774627\pi\)
\(252\) 0 0
\(253\) −0.461460 −0.0290117
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −29.5846 −1.84544 −0.922719 0.385473i \(-0.874038\pi\)
−0.922719 + 0.385473i \(0.874038\pi\)
\(258\) 0 0
\(259\) 22.9913 1.42861
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 12.8092 0.789848 0.394924 0.918714i \(-0.370771\pi\)
0.394924 + 0.918714i \(0.370771\pi\)
\(264\) 0 0
\(265\) 14.3717 0.882847
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 5.76817 0.351691 0.175846 0.984418i \(-0.443734\pi\)
0.175846 + 0.984418i \(0.443734\pi\)
\(270\) 0 0
\(271\) 22.1150 1.34339 0.671696 0.740827i \(-0.265566\pi\)
0.671696 + 0.740827i \(0.265566\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 17.6984 1.06725
\(276\) 0 0
\(277\) 31.7005 1.90470 0.952350 0.305008i \(-0.0986591\pi\)
0.952350 + 0.305008i \(0.0986591\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 3.86007 0.230273 0.115136 0.993350i \(-0.463270\pi\)
0.115136 + 0.993350i \(0.463270\pi\)
\(282\) 0 0
\(283\) 26.5875 1.58047 0.790233 0.612807i \(-0.209960\pi\)
0.790233 + 0.612807i \(0.209960\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −4.10209 −0.242139
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 9.02910 0.527486 0.263743 0.964593i \(-0.415043\pi\)
0.263743 + 0.964593i \(0.415043\pi\)
\(294\) 0 0
\(295\) −0.377536 −0.0219810
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −0.234586 −0.0135665
\(300\) 0 0
\(301\) −2.61955 −0.150989
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −48.8193 −2.79539
\(306\) 0 0
\(307\) 8.97090 0.511996 0.255998 0.966677i \(-0.417596\pi\)
0.255998 + 0.966677i \(0.417596\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −5.58247 −0.316553 −0.158276 0.987395i \(-0.550594\pi\)
−0.158276 + 0.987395i \(0.550594\pi\)
\(312\) 0 0
\(313\) 5.29463 0.299270 0.149635 0.988741i \(-0.452190\pi\)
0.149635 + 0.988741i \(0.452190\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −15.5984 −0.876095 −0.438048 0.898952i \(-0.644330\pi\)
−0.438048 + 0.898952i \(0.644330\pi\)
\(318\) 0 0
\(319\) −11.8542 −0.663711
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0.444588 0.0247376
\(324\) 0 0
\(325\) 8.99709 0.499069
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 33.1751 1.82900
\(330\) 0 0
\(331\) 14.5467 0.799558 0.399779 0.916612i \(-0.369087\pi\)
0.399779 + 0.916612i \(0.369087\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 46.2260 2.52559
\(336\) 0 0
\(337\) 11.8601 0.646059 0.323030 0.946389i \(-0.395299\pi\)
0.323030 + 0.946389i \(0.395299\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −6.96507 −0.377180
\(342\) 0 0
\(343\) 40.2042 2.17082
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −36.9593 −1.98408 −0.992038 0.125937i \(-0.959806\pi\)
−0.992038 + 0.125937i \(0.959806\pi\)
\(348\) 0 0
\(349\) 7.94400 0.425232 0.212616 0.977136i \(-0.431802\pi\)
0.212616 + 0.977136i \(0.431802\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 1.18090 0.0628528 0.0314264 0.999506i \(-0.489995\pi\)
0.0314264 + 0.999506i \(0.489995\pi\)
\(354\) 0 0
\(355\) −43.1431 −2.28980
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −5.86007 −0.309283 −0.154641 0.987971i \(-0.549422\pi\)
−0.154641 + 0.987971i \(0.549422\pi\)
\(360\) 0 0
\(361\) −18.8023 −0.989597
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −33.5526 −1.75622
\(366\) 0 0
\(367\) −19.9542 −1.04160 −0.520800 0.853679i \(-0.674366\pi\)
−0.520800 + 0.853679i \(0.674366\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 19.4767 1.01118
\(372\) 0 0
\(373\) 25.4767 1.31913 0.659567 0.751646i \(-0.270740\pi\)
0.659567 + 0.751646i \(0.270740\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −6.02619 −0.310365
\(378\) 0 0
\(379\) 3.65448 0.187718 0.0938590 0.995585i \(-0.470080\pi\)
0.0938590 + 0.995585i \(0.470080\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 4.39963 0.224811 0.112405 0.993662i \(-0.464144\pi\)
0.112405 + 0.993662i \(0.464144\pi\)
\(384\) 0 0
\(385\) 40.5497 2.06660
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 22.9709 1.16467 0.582335 0.812949i \(-0.302139\pi\)
0.582335 + 0.812949i \(0.302139\pi\)
\(390\) 0 0
\(391\) 0.188768 0.00954640
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 21.8863 1.10122
\(396\) 0 0
\(397\) 20.5196 1.02985 0.514925 0.857235i \(-0.327820\pi\)
0.514925 + 0.857235i \(0.327820\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 24.5257 1.22476 0.612378 0.790565i \(-0.290213\pi\)
0.612378 + 0.790565i \(0.290213\pi\)
\(402\) 0 0
\(403\) −3.54074 −0.176377
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 11.8542 0.587593
\(408\) 0 0
\(409\) −7.26309 −0.359137 −0.179568 0.983745i \(-0.557470\pi\)
−0.179568 + 0.983745i \(0.557470\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −0.511641 −0.0251762
\(414\) 0 0
\(415\) 40.1722 1.97197
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −3.78418 −0.184869 −0.0924345 0.995719i \(-0.529465\pi\)
−0.0924345 + 0.995719i \(0.529465\pi\)
\(420\) 0 0
\(421\) 8.48765 0.413663 0.206831 0.978377i \(-0.433685\pi\)
0.206831 + 0.978377i \(0.433685\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −7.23981 −0.351182
\(426\) 0 0
\(427\) −66.1605 −3.20173
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 15.3608 0.739905 0.369952 0.929051i \(-0.379374\pi\)
0.369952 + 0.929051i \(0.379374\pi\)
\(432\) 0 0
\(433\) −30.9353 −1.48665 −0.743327 0.668928i \(-0.766753\pi\)
−0.743327 + 0.668928i \(0.766753\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0.0839240 0.00401463
\(438\) 0 0
\(439\) −7.38843 −0.352630 −0.176315 0.984334i \(-0.556418\pi\)
−0.176315 + 0.984334i \(0.556418\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −17.6663 −0.839353 −0.419677 0.907674i \(-0.637857\pi\)
−0.419677 + 0.907674i \(0.637857\pi\)
\(444\) 0 0
\(445\) −24.1021 −1.14255
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 9.93597 0.468907 0.234454 0.972127i \(-0.424670\pi\)
0.234454 + 0.972127i \(0.424670\pi\)
\(450\) 0 0
\(451\) −2.11503 −0.0995928
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 20.6137 0.966387
\(456\) 0 0
\(457\) −20.6656 −0.966698 −0.483349 0.875428i \(-0.660580\pi\)
−0.483349 + 0.875428i \(0.660580\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 10.5116 0.489576 0.244788 0.969577i \(-0.421282\pi\)
0.244788 + 0.969577i \(0.421282\pi\)
\(462\) 0 0
\(463\) 27.2609 1.26692 0.633460 0.773775i \(-0.281634\pi\)
0.633460 + 0.773775i \(0.281634\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 25.1530 1.16394 0.581970 0.813210i \(-0.302282\pi\)
0.581970 + 0.813210i \(0.302282\pi\)
\(468\) 0 0
\(469\) 62.6460 2.89272
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −1.35064 −0.0621023
\(474\) 0 0
\(475\) −3.21874 −0.147686
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 26.3171 1.20246 0.601228 0.799077i \(-0.294678\pi\)
0.601228 + 0.799077i \(0.294678\pi\)
\(480\) 0 0
\(481\) 6.02619 0.274771
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 49.3368 2.24027
\(486\) 0 0
\(487\) 11.8183 0.535541 0.267770 0.963483i \(-0.413713\pi\)
0.267770 + 0.963483i \(0.413713\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 8.70709 0.392946 0.196473 0.980509i \(-0.437051\pi\)
0.196473 + 0.980509i \(0.437051\pi\)
\(492\) 0 0
\(493\) 4.84918 0.218396
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −58.4680 −2.62265
\(498\) 0 0
\(499\) 35.9563 1.60963 0.804813 0.593528i \(-0.202265\pi\)
0.804813 + 0.593528i \(0.202265\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −24.9980 −1.11460 −0.557302 0.830310i \(-0.688163\pi\)
−0.557302 + 0.830310i \(0.688163\pi\)
\(504\) 0 0
\(505\) −55.8443 −2.48504
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −27.2347 −1.20716 −0.603578 0.797304i \(-0.706259\pi\)
−0.603578 + 0.797304i \(0.706259\pi\)
\(510\) 0 0
\(511\) −45.4709 −2.01151
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −21.1138 −0.930387
\(516\) 0 0
\(517\) 17.1050 0.752277
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −24.8012 −1.08656 −0.543279 0.839552i \(-0.682817\pi\)
−0.543279 + 0.839552i \(0.682817\pi\)
\(522\) 0 0
\(523\) 33.3647 1.45894 0.729468 0.684015i \(-0.239768\pi\)
0.729468 + 0.684015i \(0.239768\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 2.84918 0.124112
\(528\) 0 0
\(529\) −22.9644 −0.998451
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −1.07519 −0.0465717
\(534\) 0 0
\(535\) 9.30757 0.402401
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 37.8413 1.62994
\(540\) 0 0
\(541\) −13.6043 −0.584892 −0.292446 0.956282i \(-0.594469\pi\)
−0.292446 + 0.956282i \(0.594469\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −59.8705 −2.56457
\(546\) 0 0
\(547\) 23.8746 1.02081 0.510403 0.859936i \(-0.329496\pi\)
0.510403 + 0.859936i \(0.329496\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 2.15589 0.0918439
\(552\) 0 0
\(553\) 29.6605 1.26129
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 29.9084 1.26726 0.633629 0.773637i \(-0.281565\pi\)
0.633629 + 0.773637i \(0.281565\pi\)
\(558\) 0 0
\(559\) −0.686606 −0.0290403
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 37.7405 1.59057 0.795287 0.606234i \(-0.207320\pi\)
0.795287 + 0.606234i \(0.207320\pi\)
\(564\) 0 0
\(565\) −58.8916 −2.47759
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −19.4784 −0.816579 −0.408289 0.912853i \(-0.633875\pi\)
−0.408289 + 0.912853i \(0.633875\pi\)
\(570\) 0 0
\(571\) −21.0713 −0.881805 −0.440902 0.897555i \(-0.645341\pi\)
−0.440902 + 0.897555i \(0.645341\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −1.36664 −0.0569930
\(576\) 0 0
\(577\) 23.6365 0.984002 0.492001 0.870595i \(-0.336266\pi\)
0.492001 + 0.870595i \(0.336266\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 54.4418 2.25863
\(582\) 0 0
\(583\) 10.0422 0.415904
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 12.9593 0.534886 0.267443 0.963574i \(-0.413821\pi\)
0.267443 + 0.963574i \(0.413821\pi\)
\(588\) 0 0
\(589\) 1.26671 0.0521940
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 36.0584 1.48074 0.740371 0.672198i \(-0.234650\pi\)
0.740371 + 0.672198i \(0.234650\pi\)
\(594\) 0 0
\(595\) −16.5875 −0.680023
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −42.7597 −1.74711 −0.873557 0.486722i \(-0.838193\pi\)
−0.873557 + 0.486722i \(0.838193\pi\)
\(600\) 0 0
\(601\) −31.6663 −1.29170 −0.645849 0.763466i \(-0.723496\pi\)
−0.645849 + 0.763466i \(0.723496\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −17.5766 −0.714592
\(606\) 0 0
\(607\) −40.2980 −1.63564 −0.817822 0.575471i \(-0.804819\pi\)
−0.817822 + 0.575471i \(0.804819\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 8.69545 0.351780
\(612\) 0 0
\(613\) −7.43236 −0.300190 −0.150095 0.988672i \(-0.547958\pi\)
−0.150095 + 0.988672i \(0.547958\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 38.1242 1.53482 0.767411 0.641155i \(-0.221545\pi\)
0.767411 + 0.641155i \(0.221545\pi\)
\(618\) 0 0
\(619\) −37.0410 −1.48880 −0.744401 0.667733i \(-0.767265\pi\)
−0.744401 + 0.667733i \(0.767265\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −32.6634 −1.30863
\(624\) 0 0
\(625\) −8.78418 −0.351367
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −4.84918 −0.193349
\(630\) 0 0
\(631\) −28.1633 −1.12116 −0.560582 0.828099i \(-0.689423\pi\)
−0.560582 + 0.828099i \(0.689423\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 43.9155 1.74273
\(636\) 0 0
\(637\) 19.2369 0.762194
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −29.1290 −1.15053 −0.575263 0.817969i \(-0.695100\pi\)
−0.575263 + 0.817969i \(0.695100\pi\)
\(642\) 0 0
\(643\) 36.4156 1.43609 0.718045 0.695996i \(-0.245037\pi\)
0.718045 + 0.695996i \(0.245037\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 43.4988 1.71011 0.855057 0.518533i \(-0.173522\pi\)
0.855057 + 0.518533i \(0.173522\pi\)
\(648\) 0 0
\(649\) −0.263801 −0.0103551
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 27.5145 1.07673 0.538363 0.842713i \(-0.319043\pi\)
0.538363 + 0.842713i \(0.319043\pi\)
\(654\) 0 0
\(655\) −43.5176 −1.70037
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 19.9959 0.778930 0.389465 0.921041i \(-0.372660\pi\)
0.389465 + 0.921041i \(0.372660\pi\)
\(660\) 0 0
\(661\) −38.9570 −1.51525 −0.757627 0.652688i \(-0.773641\pi\)
−0.757627 + 0.652688i \(0.773641\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −7.37462 −0.285976
\(666\) 0 0
\(667\) 0.915369 0.0354432
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −34.1122 −1.31689
\(672\) 0 0
\(673\) −11.8281 −0.455938 −0.227969 0.973668i \(-0.573209\pi\)
−0.227969 + 0.973668i \(0.573209\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 15.2347 0.585519 0.292759 0.956186i \(-0.405427\pi\)
0.292759 + 0.956186i \(0.405427\pi\)
\(678\) 0 0
\(679\) 66.8618 2.56592
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 4.82795 0.184736 0.0923681 0.995725i \(-0.470556\pi\)
0.0923681 + 0.995725i \(0.470556\pi\)
\(684\) 0 0
\(685\) −39.7946 −1.52047
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 5.10500 0.194485
\(690\) 0 0
\(691\) 21.6867 0.825002 0.412501 0.910957i \(-0.364655\pi\)
0.412501 + 0.910957i \(0.364655\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 69.5730 2.63905
\(696\) 0 0
\(697\) 0.865188 0.0327713
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 38.7638 1.46409 0.732044 0.681257i \(-0.238566\pi\)
0.732044 + 0.681257i \(0.238566\pi\)
\(702\) 0 0
\(703\) −2.15589 −0.0813109
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −75.6809 −2.84627
\(708\) 0 0
\(709\) 21.4105 0.804089 0.402045 0.915620i \(-0.368300\pi\)
0.402045 + 0.915620i \(0.368300\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0.537834 0.0201420
\(714\) 0 0
\(715\) 10.6284 0.397480
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −16.8621 −0.628851 −0.314425 0.949282i \(-0.601812\pi\)
−0.314425 + 0.949282i \(0.601812\pi\)
\(720\) 0 0
\(721\) −28.6137 −1.06563
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −35.1072 −1.30385
\(726\) 0 0
\(727\) −45.9942 −1.70583 −0.852915 0.522050i \(-0.825167\pi\)
−0.852915 + 0.522050i \(0.825167\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0.552500 0.0204350
\(732\) 0 0
\(733\) −17.0451 −0.629574 −0.314787 0.949162i \(-0.601933\pi\)
−0.314787 + 0.949162i \(0.601933\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 32.3001 1.18979
\(738\) 0 0
\(739\) −20.8122 −0.765589 −0.382795 0.923833i \(-0.625038\pi\)
−0.382795 + 0.923833i \(0.625038\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −42.9893 −1.57713 −0.788563 0.614954i \(-0.789174\pi\)
−0.788563 + 0.614954i \(0.789174\pi\)
\(744\) 0 0
\(745\) 23.3470 0.855369
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 12.6137 0.460896
\(750\) 0 0
\(751\) 2.38993 0.0872096 0.0436048 0.999049i \(-0.486116\pi\)
0.0436048 + 0.999049i \(0.486116\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 46.1343 1.67900
\(756\) 0 0
\(757\) 22.9891 0.835552 0.417776 0.908550i \(-0.362810\pi\)
0.417776 + 0.908550i \(0.362810\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −7.01746 −0.254383 −0.127191 0.991878i \(-0.540596\pi\)
−0.127191 + 0.991878i \(0.540596\pi\)
\(762\) 0 0
\(763\) −81.1372 −2.93737
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −0.134105 −0.00484225
\(768\) 0 0
\(769\) 12.0764 0.435485 0.217743 0.976006i \(-0.430131\pi\)
0.217743 + 0.976006i \(0.430131\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −4.39208 −0.157972 −0.0789861 0.996876i \(-0.525168\pi\)
−0.0789861 + 0.996876i \(0.525168\pi\)
\(774\) 0 0
\(775\) −20.6275 −0.740963
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0.384653 0.0137816
\(780\) 0 0
\(781\) −30.1460 −1.07871
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 3.31280 0.118239
\(786\) 0 0
\(787\) −4.19545 −0.149552 −0.0747759 0.997200i \(-0.523824\pi\)
−0.0747759 + 0.997200i \(0.523824\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −79.8106 −2.83774
\(792\) 0 0
\(793\) −17.3412 −0.615804
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −11.0553 −0.391599 −0.195799 0.980644i \(-0.562730\pi\)
−0.195799 + 0.980644i \(0.562730\pi\)
\(798\) 0 0
\(799\) −6.99709 −0.247539
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −23.4447 −0.827345
\(804\) 0 0
\(805\) −3.13119 −0.110360
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 15.9423 0.560500 0.280250 0.959927i \(-0.409583\pi\)
0.280250 + 0.959927i \(0.409583\pi\)
\(810\) 0 0
\(811\) −19.7246 −0.692623 −0.346311 0.938120i \(-0.612566\pi\)
−0.346311 + 0.938120i \(0.612566\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −6.97672 −0.244384
\(816\) 0 0
\(817\) 0.245635 0.00859369
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −4.48981 −0.156695 −0.0783477 0.996926i \(-0.524964\pi\)
−0.0783477 + 0.996926i \(0.524964\pi\)
\(822\) 0 0
\(823\) −20.3858 −0.710605 −0.355303 0.934751i \(-0.615622\pi\)
−0.355303 + 0.934751i \(0.615622\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −42.6488 −1.48304 −0.741521 0.670929i \(-0.765895\pi\)
−0.741521 + 0.670929i \(0.765895\pi\)
\(828\) 0 0
\(829\) −23.9301 −0.831128 −0.415564 0.909564i \(-0.636416\pi\)
−0.415564 + 0.909564i \(0.636416\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −15.4796 −0.536337
\(834\) 0 0
\(835\) −65.4038 −2.26339
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −43.5721 −1.50428 −0.752138 0.659005i \(-0.770977\pi\)
−0.752138 + 0.659005i \(0.770977\pi\)
\(840\) 0 0
\(841\) −5.48545 −0.189153
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −40.0781 −1.37873
\(846\) 0 0
\(847\) −23.8201 −0.818468
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −0.915369 −0.0313785
\(852\) 0 0
\(853\) −19.8783 −0.680620 −0.340310 0.940313i \(-0.610532\pi\)
−0.340310 + 0.940313i \(0.610532\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −12.5858 −0.429923 −0.214962 0.976623i \(-0.568963\pi\)
−0.214962 + 0.976623i \(0.568963\pi\)
\(858\) 0 0
\(859\) 11.5043 0.392522 0.196261 0.980552i \(-0.437120\pi\)
0.196261 + 0.980552i \(0.437120\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −26.2321 −0.892951 −0.446476 0.894796i \(-0.647321\pi\)
−0.446476 + 0.894796i \(0.647321\pi\)
\(864\) 0 0
\(865\) 59.4091 2.01997
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 15.2929 0.518776
\(870\) 0 0
\(871\) 16.4200 0.556371
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 37.1530 1.25600
\(876\) 0 0
\(877\) −37.5109 −1.26665 −0.633326 0.773885i \(-0.718311\pi\)
−0.633326 + 0.773885i \(0.718311\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 10.2318 0.344718 0.172359 0.985034i \(-0.444861\pi\)
0.172359 + 0.985034i \(0.444861\pi\)
\(882\) 0 0
\(883\) −21.5673 −0.725797 −0.362898 0.931829i \(-0.618213\pi\)
−0.362898 + 0.931829i \(0.618213\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 49.6073 1.66565 0.832825 0.553537i \(-0.186722\pi\)
0.832825 + 0.553537i \(0.186722\pi\)
\(888\) 0 0
\(889\) 59.5148 1.99606
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −3.11082 −0.104100
\(894\) 0 0
\(895\) −11.3525 −0.379473
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 13.8162 0.460796
\(900\) 0 0
\(901\) −4.10791 −0.136854
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −51.4610 −1.71062
\(906\) 0 0
\(907\) −16.7054 −0.554693 −0.277346 0.960770i \(-0.589455\pi\)
−0.277346 + 0.960770i \(0.589455\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −44.7004 −1.48099 −0.740495 0.672062i \(-0.765409\pi\)
−0.740495 + 0.672062i \(0.765409\pi\)
\(912\) 0 0
\(913\) 28.0701 0.928984
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −58.9755 −1.94754
\(918\) 0 0
\(919\) −43.1560 −1.42359 −0.711793 0.702390i \(-0.752116\pi\)
−0.711793 + 0.702390i \(0.752116\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −15.3249 −0.504426
\(924\) 0 0
\(925\) 35.1072 1.15432
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −30.6915 −1.00696 −0.503478 0.864008i \(-0.667947\pi\)
−0.503478 + 0.864008i \(0.667947\pi\)
\(930\) 0 0
\(931\) −6.88206 −0.225550
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −8.55250 −0.279697
\(936\) 0 0
\(937\) 37.0072 1.20897 0.604487 0.796615i \(-0.293378\pi\)
0.604487 + 0.796615i \(0.293378\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −39.4350 −1.28554 −0.642772 0.766058i \(-0.722216\pi\)
−0.642772 + 0.766058i \(0.722216\pi\)
\(942\) 0 0
\(943\) 0.163320 0.00531842
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −28.4360 −0.924045 −0.462022 0.886868i \(-0.652876\pi\)
−0.462022 + 0.886868i \(0.652876\pi\)
\(948\) 0 0
\(949\) −11.9183 −0.386884
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 22.9113 0.742169 0.371084 0.928599i \(-0.378986\pi\)
0.371084 + 0.928599i \(0.378986\pi\)
\(954\) 0 0
\(955\) 73.7248 2.38568
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −53.9301 −1.74150
\(960\) 0 0
\(961\) −22.8822 −0.738135
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 51.6925 1.66404
\(966\) 0 0
\(967\) 16.8660 0.542374 0.271187 0.962527i \(-0.412584\pi\)
0.271187 + 0.962527i \(0.412584\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −6.77544 −0.217434 −0.108717 0.994073i \(-0.534674\pi\)
−0.108717 + 0.994073i \(0.534674\pi\)
\(972\) 0 0
\(973\) 94.2861 3.02267
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 6.16203 0.197141 0.0985703 0.995130i \(-0.468573\pi\)
0.0985703 + 0.995130i \(0.468573\pi\)
\(978\) 0 0
\(979\) −16.8412 −0.538247
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 34.0113 1.08479 0.542396 0.840123i \(-0.317517\pi\)
0.542396 + 0.840123i \(0.317517\pi\)
\(984\) 0 0
\(985\) 5.26309 0.167696
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0.104294 0.00331637
\(990\) 0 0
\(991\) 57.0431 1.81203 0.906017 0.423241i \(-0.139107\pi\)
0.906017 + 0.423241i \(0.139107\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −74.5994 −2.36496
\(996\) 0 0
\(997\) −8.63336 −0.273421 −0.136711 0.990611i \(-0.543653\pi\)
−0.136711 + 0.990611i \(0.543653\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4896.2.a.bj.1.4 yes 4
3.2 odd 2 4896.2.a.bh.1.1 yes 4
4.3 odd 2 4896.2.a.bi.1.4 yes 4
8.3 odd 2 9792.2.a.dm.1.1 4
8.5 even 2 9792.2.a.dn.1.1 4
12.11 even 2 4896.2.a.bg.1.1 4
24.5 odd 2 9792.2.a.dp.1.4 4
24.11 even 2 9792.2.a.do.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4896.2.a.bg.1.1 4 12.11 even 2
4896.2.a.bh.1.1 yes 4 3.2 odd 2
4896.2.a.bi.1.4 yes 4 4.3 odd 2
4896.2.a.bj.1.4 yes 4 1.1 even 1 trivial
9792.2.a.dm.1.1 4 8.3 odd 2
9792.2.a.dn.1.1 4 8.5 even 2
9792.2.a.do.1.4 4 24.11 even 2
9792.2.a.dp.1.4 4 24.5 odd 2