Properties

Label 4896.2.a.bk.1.2
Level $4896$
Weight $2$
Character 4896.1
Self dual yes
Analytic conductor $39.095$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4896,2,Mod(1,4896)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4896, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4896.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4896 = 2^{5} \cdot 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4896.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(39.0947568296\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.102503232.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 15x^{4} - 16x^{3} + 27x^{2} + 42x + 12 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-1.19689\) of defining polynomial
Character \(\chi\) \(=\) 4896.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.88202 q^{5} +2.71807 q^{7} +6.16328 q^{11} +3.30604 q^{13} -1.00000 q^{17} +1.04782 q^{19} +8.88136 q^{23} +10.0701 q^{25} -2.57598 q^{29} +2.71807 q^{31} -10.5516 q^{35} -8.95210 q^{37} -7.07008 q^{41} +9.50379 q^{43} +3.34051 q^{47} +0.387915 q^{49} -12.3761 q^{53} -23.9260 q^{55} -12.6472 q^{59} -1.18806 q^{61} -12.8341 q^{65} +10.5516 q^{67} -12.9490 q^{71} +6.00000 q^{73} +16.7523 q^{77} +15.0446 q^{79} +12.6472 q^{83} +3.88202 q^{85} +8.61208 q^{89} +8.98606 q^{91} -4.06765 q^{95} +16.3761 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{5} + 6 q^{13} - 6 q^{17} + 12 q^{25} - 12 q^{29} + 12 q^{37} + 6 q^{41} + 30 q^{49} - 12 q^{53} + 24 q^{61} + 6 q^{65} + 36 q^{73} - 24 q^{77} + 6 q^{85} + 24 q^{89} + 36 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −3.88202 −1.73609 −0.868046 0.496483i \(-0.834624\pi\)
−0.868046 + 0.496483i \(0.834624\pi\)
\(6\) 0 0
\(7\) 2.71807 1.02733 0.513667 0.857989i \(-0.328287\pi\)
0.513667 + 0.857989i \(0.328287\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 6.16328 1.85830 0.929150 0.369703i \(-0.120540\pi\)
0.929150 + 0.369703i \(0.120540\pi\)
\(12\) 0 0
\(13\) 3.30604 0.916931 0.458466 0.888712i \(-0.348399\pi\)
0.458466 + 0.888712i \(0.348399\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −1.00000 −0.242536
\(18\) 0 0
\(19\) 1.04782 0.240386 0.120193 0.992751i \(-0.461649\pi\)
0.120193 + 0.992751i \(0.461649\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 8.88136 1.85189 0.925945 0.377657i \(-0.123270\pi\)
0.925945 + 0.377657i \(0.123270\pi\)
\(24\) 0 0
\(25\) 10.0701 2.01402
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −2.57598 −0.478347 −0.239174 0.970977i \(-0.576876\pi\)
−0.239174 + 0.970977i \(0.576876\pi\)
\(30\) 0 0
\(31\) 2.71807 0.488180 0.244090 0.969753i \(-0.421511\pi\)
0.244090 + 0.969753i \(0.421511\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −10.5516 −1.78355
\(36\) 0 0
\(37\) −8.95210 −1.47172 −0.735858 0.677135i \(-0.763221\pi\)
−0.735858 + 0.677135i \(0.763221\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −7.07008 −1.10416 −0.552081 0.833791i \(-0.686166\pi\)
−0.552081 + 0.833791i \(0.686166\pi\)
\(42\) 0 0
\(43\) 9.50379 1.44931 0.724657 0.689109i \(-0.241998\pi\)
0.724657 + 0.689109i \(0.241998\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 3.34051 0.487263 0.243632 0.969868i \(-0.421661\pi\)
0.243632 + 0.969868i \(0.421661\pi\)
\(48\) 0 0
\(49\) 0.387915 0.0554165
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −12.3761 −1.69999 −0.849996 0.526789i \(-0.823396\pi\)
−0.849996 + 0.526789i \(0.823396\pi\)
\(54\) 0 0
\(55\) −23.9260 −3.22618
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −12.6472 −1.64653 −0.823266 0.567656i \(-0.807850\pi\)
−0.823266 + 0.567656i \(0.807850\pi\)
\(60\) 0 0
\(61\) −1.18806 −0.152116 −0.0760579 0.997103i \(-0.524233\pi\)
−0.0760579 + 0.997103i \(0.524233\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −12.8341 −1.59188
\(66\) 0 0
\(67\) 10.5516 1.28908 0.644542 0.764569i \(-0.277048\pi\)
0.644542 + 0.764569i \(0.277048\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −12.9490 −1.53676 −0.768382 0.639991i \(-0.778938\pi\)
−0.768382 + 0.639991i \(0.778938\pi\)
\(72\) 0 0
\(73\) 6.00000 0.702247 0.351123 0.936329i \(-0.385800\pi\)
0.351123 + 0.936329i \(0.385800\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 16.7523 1.90910
\(78\) 0 0
\(79\) 15.0446 1.69265 0.846327 0.532663i \(-0.178809\pi\)
0.846327 + 0.532663i \(0.178809\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 12.6472 1.38822 0.694108 0.719871i \(-0.255799\pi\)
0.694108 + 0.719871i \(0.255799\pi\)
\(84\) 0 0
\(85\) 3.88202 0.421064
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 8.61208 0.912879 0.456440 0.889754i \(-0.349124\pi\)
0.456440 + 0.889754i \(0.349124\pi\)
\(90\) 0 0
\(91\) 8.98606 0.941995
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −4.06765 −0.417332
\(96\) 0 0
\(97\) 16.3761 1.66274 0.831372 0.555717i \(-0.187556\pi\)
0.831372 + 0.555717i \(0.187556\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −9.76404 −0.971558 −0.485779 0.874082i \(-0.661464\pi\)
−0.485779 + 0.874082i \(0.661464\pi\)
\(102\) 0 0
\(103\) −6.16328 −0.607287 −0.303643 0.952786i \(-0.598203\pi\)
−0.303643 + 0.952786i \(0.598203\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −8.25892 −0.798420 −0.399210 0.916860i \(-0.630716\pi\)
−0.399210 + 0.916860i \(0.630716\pi\)
\(108\) 0 0
\(109\) 2.81194 0.269335 0.134667 0.990891i \(-0.457003\pi\)
0.134667 + 0.990891i \(0.457003\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 12.2220 1.14975 0.574876 0.818240i \(-0.305050\pi\)
0.574876 + 0.818240i \(0.305050\pi\)
\(114\) 0 0
\(115\) −34.4776 −3.21505
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −2.71807 −0.249165
\(120\) 0 0
\(121\) 26.9861 2.45328
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −19.6822 −1.76043
\(126\) 0 0
\(127\) 0.727141 0.0645233 0.0322617 0.999479i \(-0.489729\pi\)
0.0322617 + 0.999479i \(0.489729\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 4.06765 0.355392 0.177696 0.984085i \(-0.443136\pi\)
0.177696 + 0.984085i \(0.443136\pi\)
\(132\) 0 0
\(133\) 2.84804 0.246957
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 8.00000 0.683486 0.341743 0.939793i \(-0.388983\pi\)
0.341743 + 0.939793i \(0.388983\pi\)
\(138\) 0 0
\(139\) −15.6671 −1.32886 −0.664432 0.747349i \(-0.731327\pi\)
−0.664432 + 0.747349i \(0.731327\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 20.3761 1.70393
\(144\) 0 0
\(145\) 10.0000 0.830455
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 6.91600 0.566581 0.283290 0.959034i \(-0.408574\pi\)
0.283290 + 0.959034i \(0.408574\pi\)
\(150\) 0 0
\(151\) −10.8723 −0.884774 −0.442387 0.896824i \(-0.645868\pi\)
−0.442387 + 0.896824i \(0.645868\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −10.5516 −0.847526
\(156\) 0 0
\(157\) −3.07008 −0.245019 −0.122510 0.992467i \(-0.539094\pi\)
−0.122510 + 0.992467i \(0.539094\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 24.1402 1.90251
\(162\) 0 0
\(163\) 10.2309 0.801349 0.400674 0.916221i \(-0.368776\pi\)
0.400674 + 0.916221i \(0.368776\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 3.44521 0.266599 0.133299 0.991076i \(-0.457443\pi\)
0.133299 + 0.991076i \(0.457443\pi\)
\(168\) 0 0
\(169\) −2.07008 −0.159237
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −6.73006 −0.511677 −0.255839 0.966719i \(-0.582352\pi\)
−0.255839 + 0.966719i \(0.582352\pi\)
\(174\) 0 0
\(175\) 27.3712 2.06907
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 10.8723 0.812633 0.406316 0.913732i \(-0.366813\pi\)
0.406316 + 0.913732i \(0.366813\pi\)
\(180\) 0 0
\(181\) 12.0361 0.894637 0.447318 0.894375i \(-0.352379\pi\)
0.447318 + 0.894375i \(0.352379\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 34.7523 2.55504
\(186\) 0 0
\(187\) −6.16328 −0.450704
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 8.98606 0.650209 0.325104 0.945678i \(-0.394601\pi\)
0.325104 + 0.945678i \(0.394601\pi\)
\(192\) 0 0
\(193\) −9.29212 −0.668862 −0.334431 0.942420i \(-0.608544\pi\)
−0.334431 + 0.942420i \(0.608544\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −0.353938 −0.0252171 −0.0126085 0.999921i \(-0.504014\pi\)
−0.0126085 + 0.999921i \(0.504014\pi\)
\(198\) 0 0
\(199\) 15.0446 1.06649 0.533243 0.845962i \(-0.320973\pi\)
0.533243 + 0.845962i \(0.320973\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −7.00169 −0.491423
\(204\) 0 0
\(205\) 27.4462 1.91693
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 6.45800 0.446709
\(210\) 0 0
\(211\) −8.98606 −0.618626 −0.309313 0.950960i \(-0.600099\pi\)
−0.309313 + 0.950960i \(0.600099\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −36.8939 −2.51614
\(216\) 0 0
\(217\) 7.38792 0.501524
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −3.30604 −0.222388
\(222\) 0 0
\(223\) −8.25892 −0.553058 −0.276529 0.961006i \(-0.589184\pi\)
−0.276529 + 0.961006i \(0.589184\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −10.9581 −0.727313 −0.363657 0.931533i \(-0.618472\pi\)
−0.363657 + 0.931533i \(0.618472\pi\)
\(228\) 0 0
\(229\) −26.2803 −1.73665 −0.868327 0.495993i \(-0.834804\pi\)
−0.868327 + 0.495993i \(0.834804\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 19.3060 1.26478 0.632390 0.774650i \(-0.282074\pi\)
0.632390 + 0.774650i \(0.282074\pi\)
\(234\) 0 0
\(235\) −12.9679 −0.845934
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 6.89043 0.445705 0.222852 0.974852i \(-0.428463\pi\)
0.222852 + 0.974852i \(0.428463\pi\)
\(240\) 0 0
\(241\) −0.539871 −0.0347762 −0.0173881 0.999849i \(-0.505535\pi\)
−0.0173881 + 0.999849i \(0.505535\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −1.50589 −0.0962081
\(246\) 0 0
\(247\) 3.46413 0.220417
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 12.3266 0.778046 0.389023 0.921228i \(-0.372813\pi\)
0.389023 + 0.921228i \(0.372813\pi\)
\(252\) 0 0
\(253\) 54.7383 3.44137
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −5.22417 −0.325875 −0.162937 0.986636i \(-0.552097\pi\)
−0.162937 + 0.986636i \(0.552097\pi\)
\(258\) 0 0
\(259\) −24.3325 −1.51195
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 17.1214 1.05575 0.527874 0.849323i \(-0.322989\pi\)
0.527874 + 0.849323i \(0.322989\pi\)
\(264\) 0 0
\(265\) 48.0444 2.95134
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −9.26994 −0.565198 −0.282599 0.959238i \(-0.591197\pi\)
−0.282599 + 0.959238i \(0.591197\pi\)
\(270\) 0 0
\(271\) −20.3761 −1.23776 −0.618879 0.785486i \(-0.712413\pi\)
−0.618879 + 0.785486i \(0.712413\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 62.0648 3.74265
\(276\) 0 0
\(277\) −23.3282 −1.40166 −0.700829 0.713330i \(-0.747186\pi\)
−0.700829 + 0.713330i \(0.747186\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 12.6121 0.752374 0.376187 0.926544i \(-0.377235\pi\)
0.376187 + 0.926544i \(0.377235\pi\)
\(282\) 0 0
\(283\) 17.7627 1.05588 0.527942 0.849281i \(-0.322964\pi\)
0.527942 + 0.849281i \(0.322964\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −19.2170 −1.13434
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 33.0562 1.93116 0.965581 0.260103i \(-0.0837565\pi\)
0.965581 + 0.260103i \(0.0837565\pi\)
\(294\) 0 0
\(295\) 49.0969 2.85853
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 29.3621 1.69806
\(300\) 0 0
\(301\) 25.8320 1.48893
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 4.61208 0.264087
\(306\) 0 0
\(307\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 18.3852 1.04253 0.521263 0.853396i \(-0.325461\pi\)
0.521263 + 0.853396i \(0.325461\pi\)
\(312\) 0 0
\(313\) −8.37613 −0.473447 −0.236723 0.971577i \(-0.576073\pi\)
−0.236723 + 0.971577i \(0.576073\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −22.5760 −1.26799 −0.633997 0.773336i \(-0.718587\pi\)
−0.633997 + 0.773336i \(0.718587\pi\)
\(318\) 0 0
\(319\) −15.8765 −0.888913
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −1.04782 −0.0583021
\(324\) 0 0
\(325\) 33.2921 1.84671
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 9.07974 0.500582
\(330\) 0 0
\(331\) 26.0216 1.43028 0.715139 0.698982i \(-0.246363\pi\)
0.715139 + 0.698982i \(0.246363\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −40.9616 −2.23797
\(336\) 0 0
\(337\) −16.1402 −0.879211 −0.439605 0.898191i \(-0.644882\pi\)
−0.439605 + 0.898191i \(0.644882\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 16.7523 0.907185
\(342\) 0 0
\(343\) −17.9721 −0.970403
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0.641353 0.0344296 0.0172148 0.999852i \(-0.494520\pi\)
0.0172148 + 0.999852i \(0.494520\pi\)
\(348\) 0 0
\(349\) 12.2220 0.654231 0.327115 0.944984i \(-0.393923\pi\)
0.327115 + 0.944984i \(0.393923\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −21.0562 −1.12071 −0.560353 0.828254i \(-0.689335\pi\)
−0.560353 + 0.828254i \(0.689335\pi\)
\(354\) 0 0
\(355\) 50.2683 2.66796
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 26.7488 1.41175 0.705873 0.708338i \(-0.250555\pi\)
0.705873 + 0.708338i \(0.250555\pi\)
\(360\) 0 0
\(361\) −17.9021 −0.942215
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −23.2921 −1.21917
\(366\) 0 0
\(367\) 19.2359 1.00411 0.502053 0.864837i \(-0.332578\pi\)
0.502053 + 0.864837i \(0.332578\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −33.6392 −1.74646
\(372\) 0 0
\(373\) −14.6800 −0.760104 −0.380052 0.924965i \(-0.624094\pi\)
−0.380052 + 0.924965i \(0.624094\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −8.51629 −0.438611
\(378\) 0 0
\(379\) 21.1032 1.08400 0.542000 0.840379i \(-0.317667\pi\)
0.542000 + 0.840379i \(0.317667\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 7.53178 0.384856 0.192428 0.981311i \(-0.438364\pi\)
0.192428 + 0.981311i \(0.438364\pi\)
\(384\) 0 0
\(385\) −65.0326 −3.31437
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −17.0562 −0.864782 −0.432391 0.901686i \(-0.642330\pi\)
−0.432391 + 0.901686i \(0.642330\pi\)
\(390\) 0 0
\(391\) −8.88136 −0.449150
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −58.4036 −2.93860
\(396\) 0 0
\(397\) 24.4802 1.22863 0.614313 0.789063i \(-0.289433\pi\)
0.614313 + 0.789063i \(0.289433\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −7.54200 −0.376630 −0.188315 0.982109i \(-0.560303\pi\)
−0.188315 + 0.982109i \(0.560303\pi\)
\(402\) 0 0
\(403\) 8.98606 0.447628
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −55.1744 −2.73489
\(408\) 0 0
\(409\) 1.23383 0.0610089 0.0305045 0.999535i \(-0.490289\pi\)
0.0305045 + 0.999535i \(0.490289\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −34.3761 −1.69154
\(414\) 0 0
\(415\) −49.0969 −2.41007
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −21.7446 −1.06229 −0.531146 0.847280i \(-0.678238\pi\)
−0.531146 + 0.847280i \(0.678238\pi\)
\(420\) 0 0
\(421\) 10.8341 0.528023 0.264011 0.964520i \(-0.414954\pi\)
0.264011 + 0.964520i \(0.414954\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −10.0701 −0.488471
\(426\) 0 0
\(427\) −3.22924 −0.156274
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 28.0126 1.34932 0.674659 0.738130i \(-0.264291\pi\)
0.674659 + 0.738130i \(0.264291\pi\)
\(432\) 0 0
\(433\) 1.54200 0.0741039 0.0370519 0.999313i \(-0.488203\pi\)
0.0370519 + 0.999313i \(0.488203\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 9.30604 0.445168
\(438\) 0 0
\(439\) 6.90934 0.329765 0.164882 0.986313i \(-0.447276\pi\)
0.164882 + 0.986313i \(0.447276\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 8.13530 0.386520 0.193260 0.981148i \(-0.438094\pi\)
0.193260 + 0.981148i \(0.438094\pi\)
\(444\) 0 0
\(445\) −33.4323 −1.58484
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −0.775830 −0.0366137 −0.0183068 0.999832i \(-0.505828\pi\)
−0.0183068 + 0.999832i \(0.505828\pi\)
\(450\) 0 0
\(451\) −43.5749 −2.05186
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −34.8841 −1.63539
\(456\) 0 0
\(457\) −9.54200 −0.446356 −0.223178 0.974778i \(-0.571643\pi\)
−0.223178 + 0.974778i \(0.571643\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 7.90421 0.368136 0.184068 0.982914i \(-0.441073\pi\)
0.184068 + 0.982914i \(0.441073\pi\)
\(462\) 0 0
\(463\) −8.98606 −0.417618 −0.208809 0.977956i \(-0.566959\pi\)
−0.208809 + 0.977956i \(0.566959\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −20.4619 −0.946862 −0.473431 0.880831i \(-0.656985\pi\)
−0.473431 + 0.880831i \(0.656985\pi\)
\(468\) 0 0
\(469\) 28.6800 1.32432
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 58.5746 2.69326
\(474\) 0 0
\(475\) 10.5516 0.484141
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −14.5269 −0.663751 −0.331876 0.943323i \(-0.607681\pi\)
−0.331876 + 0.943323i \(0.607681\pi\)
\(480\) 0 0
\(481\) −29.5960 −1.34946
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −63.5725 −2.88668
\(486\) 0 0
\(487\) −9.60850 −0.435403 −0.217701 0.976015i \(-0.569856\pi\)
−0.217701 + 0.976015i \(0.569856\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 29.8799 1.34846 0.674230 0.738521i \(-0.264476\pi\)
0.674230 + 0.738521i \(0.264476\pi\)
\(492\) 0 0
\(493\) 2.57598 0.116016
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −35.1963 −1.57877
\(498\) 0 0
\(499\) 2.69916 0.120831 0.0604154 0.998173i \(-0.480757\pi\)
0.0604154 + 0.998173i \(0.480757\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −2.20034 −0.0981083 −0.0490541 0.998796i \(-0.515621\pi\)
−0.0490541 + 0.998796i \(0.515621\pi\)
\(504\) 0 0
\(505\) 37.9042 1.68672
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −15.3879 −0.682057 −0.341029 0.940053i \(-0.610775\pi\)
−0.341029 + 0.940053i \(0.610775\pi\)
\(510\) 0 0
\(511\) 16.3084 0.721443
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 23.9260 1.05431
\(516\) 0 0
\(517\) 20.5885 0.905481
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −35.3504 −1.54873 −0.774365 0.632739i \(-0.781931\pi\)
−0.774365 + 0.632739i \(0.781931\pi\)
\(522\) 0 0
\(523\) 35.2048 1.53940 0.769698 0.638408i \(-0.220407\pi\)
0.769698 + 0.638408i \(0.220407\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −2.71807 −0.118401
\(528\) 0 0
\(529\) 55.8785 2.42950
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −23.3740 −1.01244
\(534\) 0 0
\(535\) 32.0613 1.38613
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 2.39083 0.102980
\(540\) 0 0
\(541\) 11.7279 0.504223 0.252112 0.967698i \(-0.418875\pi\)
0.252112 + 0.967698i \(0.418875\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −10.9160 −0.467590
\(546\) 0 0
\(547\) 15.6671 0.669876 0.334938 0.942240i \(-0.391285\pi\)
0.334938 + 0.942240i \(0.391285\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −2.69916 −0.114988
\(552\) 0 0
\(553\) 40.8924 1.73892
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −4.84804 −0.205418 −0.102709 0.994711i \(-0.532751\pi\)
−0.102709 + 0.994711i \(0.532751\pi\)
\(558\) 0 0
\(559\) 31.4199 1.32892
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −24.9738 −1.05252 −0.526260 0.850323i \(-0.676406\pi\)
−0.526260 + 0.850323i \(0.676406\pi\)
\(564\) 0 0
\(565\) −47.4462 −1.99608
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 13.8598 0.581034 0.290517 0.956870i \(-0.406173\pi\)
0.290517 + 0.956870i \(0.406173\pi\)
\(570\) 0 0
\(571\) −34.0711 −1.42583 −0.712917 0.701249i \(-0.752626\pi\)
−0.712917 + 0.701249i \(0.752626\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 89.4360 3.72974
\(576\) 0 0
\(577\) −47.0422 −1.95839 −0.979197 0.202911i \(-0.934960\pi\)
−0.979197 + 0.202911i \(0.934960\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 34.3761 1.42616
\(582\) 0 0
\(583\) −76.2776 −3.15910
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 21.7446 0.897495 0.448747 0.893659i \(-0.351870\pi\)
0.448747 + 0.893659i \(0.351870\pi\)
\(588\) 0 0
\(589\) 2.84804 0.117352
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 17.3879 0.714036 0.357018 0.934097i \(-0.383793\pi\)
0.357018 + 0.934097i \(0.383793\pi\)
\(594\) 0 0
\(595\) 10.5516 0.432574
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 31.3342 1.28028 0.640139 0.768259i \(-0.278877\pi\)
0.640139 + 0.768259i \(0.278877\pi\)
\(600\) 0 0
\(601\) 8.14017 0.332044 0.166022 0.986122i \(-0.446908\pi\)
0.166022 + 0.986122i \(0.446908\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −104.761 −4.25912
\(606\) 0 0
\(607\) −20.6902 −0.839789 −0.419895 0.907573i \(-0.637933\pi\)
−0.419895 + 0.907573i \(0.637933\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 11.0439 0.446787
\(612\) 0 0
\(613\) 24.4580 0.987849 0.493925 0.869505i \(-0.335562\pi\)
0.493925 + 0.869505i \(0.335562\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 39.4323 1.58748 0.793742 0.608254i \(-0.208130\pi\)
0.793742 + 0.608254i \(0.208130\pi\)
\(618\) 0 0
\(619\) −22.5575 −0.906663 −0.453331 0.891342i \(-0.649765\pi\)
−0.453331 + 0.891342i \(0.649765\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 23.4083 0.937832
\(624\) 0 0
\(625\) 26.0562 1.04225
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 8.95210 0.356944
\(630\) 0 0
\(631\) −25.8122 −1.02757 −0.513784 0.857919i \(-0.671757\pi\)
−0.513784 + 0.857919i \(0.671757\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −2.82278 −0.112018
\(636\) 0 0
\(637\) 1.28246 0.0508131
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 38.5982 1.52454 0.762268 0.647262i \(-0.224086\pi\)
0.762268 + 0.647262i \(0.224086\pi\)
\(642\) 0 0
\(643\) 5.64555 0.222639 0.111319 0.993785i \(-0.464492\pi\)
0.111319 + 0.993785i \(0.464492\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −26.5394 −1.04337 −0.521685 0.853138i \(-0.674696\pi\)
−0.521685 + 0.853138i \(0.674696\pi\)
\(648\) 0 0
\(649\) −77.9486 −3.05975
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 8.32610 0.325825 0.162913 0.986640i \(-0.447911\pi\)
0.162913 + 0.986640i \(0.447911\pi\)
\(654\) 0 0
\(655\) −15.7907 −0.616994
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 24.9738 0.972842 0.486421 0.873725i \(-0.338302\pi\)
0.486421 + 0.873725i \(0.338302\pi\)
\(660\) 0 0
\(661\) −1.60995 −0.0626200 −0.0313100 0.999510i \(-0.509968\pi\)
−0.0313100 + 0.999510i \(0.509968\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −11.0562 −0.428740
\(666\) 0 0
\(667\) −22.8782 −0.885847
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −7.32237 −0.282677
\(672\) 0 0
\(673\) −45.1284 −1.73957 −0.869786 0.493430i \(-0.835743\pi\)
−0.869786 + 0.493430i \(0.835743\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 5.03398 0.193471 0.0967357 0.995310i \(-0.469160\pi\)
0.0967357 + 0.995310i \(0.469160\pi\)
\(678\) 0 0
\(679\) 44.5115 1.70819
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −18.2804 −0.699482 −0.349741 0.936846i \(-0.613730\pi\)
−0.349741 + 0.936846i \(0.613730\pi\)
\(684\) 0 0
\(685\) −31.0562 −1.18660
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −40.9160 −1.55878
\(690\) 0 0
\(691\) −41.6029 −1.58265 −0.791325 0.611396i \(-0.790608\pi\)
−0.791325 + 0.611396i \(0.790608\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 60.8199 2.30703
\(696\) 0 0
\(697\) 7.07008 0.267799
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 21.2921 0.804192 0.402096 0.915597i \(-0.368282\pi\)
0.402096 + 0.915597i \(0.368282\pi\)
\(702\) 0 0
\(703\) −9.38017 −0.353780
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −26.5394 −0.998116
\(708\) 0 0
\(709\) −11.1201 −0.417624 −0.208812 0.977956i \(-0.566960\pi\)
−0.208812 + 0.977956i \(0.566960\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 24.1402 0.904056
\(714\) 0 0
\(715\) −79.1004 −2.95819
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −23.9071 −0.891584 −0.445792 0.895137i \(-0.647078\pi\)
−0.445792 + 0.895137i \(0.647078\pi\)
\(720\) 0 0
\(721\) −16.7523 −0.623886
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −25.9403 −0.963399
\(726\) 0 0
\(727\) 25.2945 0.938121 0.469060 0.883166i \(-0.344593\pi\)
0.469060 + 0.883166i \(0.344593\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −9.50379 −0.351511
\(732\) 0 0
\(733\) 37.7362 1.39382 0.696909 0.717159i \(-0.254558\pi\)
0.696909 + 0.717159i \(0.254558\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 65.0326 2.39551
\(738\) 0 0
\(739\) 22.1510 0.814839 0.407420 0.913241i \(-0.366429\pi\)
0.407420 + 0.913241i \(0.366429\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −0.831845 −0.0305174 −0.0152587 0.999884i \(-0.504857\pi\)
−0.0152587 + 0.999884i \(0.504857\pi\)
\(744\) 0 0
\(745\) −26.8480 −0.983636
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −22.4483 −0.820244
\(750\) 0 0
\(751\) 20.6902 0.754996 0.377498 0.926010i \(-0.376785\pi\)
0.377498 + 0.926010i \(0.376785\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 42.2064 1.53605
\(756\) 0 0
\(757\) 0.149826 0.00544553 0.00272277 0.999996i \(-0.499133\pi\)
0.00272277 + 0.999996i \(0.499133\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 2.77583 0.100624 0.0503119 0.998734i \(-0.483978\pi\)
0.0503119 + 0.998734i \(0.483978\pi\)
\(762\) 0 0
\(763\) 7.64305 0.276697
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −41.8123 −1.50976
\(768\) 0 0
\(769\) −8.45800 −0.305003 −0.152502 0.988303i \(-0.548733\pi\)
−0.152502 + 0.988303i \(0.548733\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 18.0000 0.647415 0.323708 0.946157i \(-0.395071\pi\)
0.323708 + 0.946157i \(0.395071\pi\)
\(774\) 0 0
\(775\) 27.3712 0.983203
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −7.40816 −0.265425
\(780\) 0 0
\(781\) −79.8084 −2.85577
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 11.9181 0.425376
\(786\) 0 0
\(787\) 53.9295 1.92238 0.961189 0.275889i \(-0.0889723\pi\)
0.961189 + 0.275889i \(0.0889723\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 33.2204 1.18118
\(792\) 0 0
\(793\) −3.92779 −0.139480
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 26.9882 0.955971 0.477986 0.878368i \(-0.341367\pi\)
0.477986 + 0.878368i \(0.341367\pi\)
\(798\) 0 0
\(799\) −3.34051 −0.118179
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 36.9797 1.30499
\(804\) 0 0
\(805\) −93.7126 −3.30294
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 24.7383 0.869753 0.434877 0.900490i \(-0.356792\pi\)
0.434877 + 0.900490i \(0.356792\pi\)
\(810\) 0 0
\(811\) 1.45428 0.0510667 0.0255334 0.999674i \(-0.491872\pi\)
0.0255334 + 0.999674i \(0.491872\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −39.7167 −1.39122
\(816\) 0 0
\(817\) 9.95824 0.348395
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −26.1859 −0.913895 −0.456948 0.889494i \(-0.651057\pi\)
−0.456948 + 0.889494i \(0.651057\pi\)
\(822\) 0 0
\(823\) −0.0189166 −0.000659392 0 −0.000329696 1.00000i \(-0.500105\pi\)
−0.000329696 1.00000i \(0.500105\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 14.2986 0.497210 0.248605 0.968605i \(-0.420028\pi\)
0.248605 + 0.968605i \(0.420028\pi\)
\(828\) 0 0
\(829\) −2.00000 −0.0694629 −0.0347314 0.999397i \(-0.511058\pi\)
−0.0347314 + 0.999397i \(0.511058\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −0.387915 −0.0134405
\(834\) 0 0
\(835\) −13.3744 −0.462840
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 33.3251 1.15051 0.575255 0.817974i \(-0.304903\pi\)
0.575255 + 0.817974i \(0.304903\pi\)
\(840\) 0 0
\(841\) −22.3643 −0.771184
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 8.03611 0.276450
\(846\) 0 0
\(847\) 73.3501 2.52034
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −79.5068 −2.72546
\(852\) 0 0
\(853\) −41.6321 −1.42546 −0.712729 0.701440i \(-0.752541\pi\)
−0.712729 + 0.701440i \(0.752541\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −13.5281 −0.462110 −0.231055 0.972941i \(-0.574218\pi\)
−0.231055 + 0.972941i \(0.574218\pi\)
\(858\) 0 0
\(859\) −17.9721 −0.613201 −0.306600 0.951838i \(-0.599192\pi\)
−0.306600 + 0.951838i \(0.599192\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −6.68102 −0.227424 −0.113712 0.993514i \(-0.536274\pi\)
−0.113712 + 0.993514i \(0.536274\pi\)
\(864\) 0 0
\(865\) 26.1262 0.888319
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 92.7244 3.14546
\(870\) 0 0
\(871\) 34.8841 1.18200
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −53.4975 −1.80855
\(876\) 0 0
\(877\) 30.6204 1.03398 0.516988 0.855993i \(-0.327053\pi\)
0.516988 + 0.855993i \(0.327053\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −2.54413 −0.0857140 −0.0428570 0.999081i \(-0.513646\pi\)
−0.0428570 + 0.999081i \(0.513646\pi\)
\(882\) 0 0
\(883\) −33.8363 −1.13868 −0.569340 0.822102i \(-0.692801\pi\)
−0.569340 + 0.822102i \(0.692801\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −17.2261 −0.578395 −0.289197 0.957270i \(-0.593388\pi\)
−0.289197 + 0.957270i \(0.593388\pi\)
\(888\) 0 0
\(889\) 1.97642 0.0662871
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 3.50024 0.117131
\(894\) 0 0
\(895\) −42.2064 −1.41081
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −7.00169 −0.233520
\(900\) 0 0
\(901\) 12.3761 0.412309
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −46.7244 −1.55317
\(906\) 0 0
\(907\) −1.24487 −0.0413353 −0.0206677 0.999786i \(-0.506579\pi\)
−0.0206677 + 0.999786i \(0.506579\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −21.2079 −0.702650 −0.351325 0.936254i \(-0.614269\pi\)
−0.351325 + 0.936254i \(0.614269\pi\)
\(912\) 0 0
\(913\) 77.9486 2.57972
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 11.0562 0.365107
\(918\) 0 0
\(919\) 18.2804 0.603016 0.301508 0.953464i \(-0.402510\pi\)
0.301508 + 0.953464i \(0.402510\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −42.8100 −1.40911
\(924\) 0 0
\(925\) −90.1484 −2.96406
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 38.8785 1.27556 0.637781 0.770218i \(-0.279852\pi\)
0.637781 + 0.770218i \(0.279852\pi\)
\(930\) 0 0
\(931\) 0.406464 0.0133213
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 23.9260 0.782464
\(936\) 0 0
\(937\) −15.8363 −0.517348 −0.258674 0.965965i \(-0.583286\pi\)
−0.258674 + 0.965965i \(0.583286\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −26.8563 −0.875491 −0.437745 0.899099i \(-0.644223\pi\)
−0.437745 + 0.899099i \(0.644223\pi\)
\(942\) 0 0
\(943\) −62.7919 −2.04479
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 19.8583 0.645310 0.322655 0.946517i \(-0.395425\pi\)
0.322655 + 0.946517i \(0.395425\pi\)
\(948\) 0 0
\(949\) 19.8363 0.643912
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −5.36434 −0.173768 −0.0868840 0.996218i \(-0.527691\pi\)
−0.0868840 + 0.996218i \(0.527691\pi\)
\(954\) 0 0
\(955\) −34.8841 −1.12882
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 21.7446 0.702169
\(960\) 0 0
\(961\) −23.6121 −0.761680
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 36.0722 1.16121
\(966\) 0 0
\(967\) −38.1388 −1.22646 −0.613230 0.789904i \(-0.710130\pi\)
−0.613230 + 0.789904i \(0.710130\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 21.4239 0.687526 0.343763 0.939057i \(-0.388298\pi\)
0.343763 + 0.939057i \(0.388298\pi\)
\(972\) 0 0
\(973\) −42.5842 −1.36519
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 30.7480 0.983715 0.491858 0.870676i \(-0.336318\pi\)
0.491858 + 0.870676i \(0.336318\pi\)
\(978\) 0 0
\(979\) 53.0787 1.69640
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −46.8965 −1.49577 −0.747884 0.663830i \(-0.768930\pi\)
−0.747884 + 0.663830i \(0.768930\pi\)
\(984\) 0 0
\(985\) 1.37400 0.0437792
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 84.4066 2.68397
\(990\) 0 0
\(991\) −8.36362 −0.265679 −0.132840 0.991138i \(-0.542410\pi\)
−0.132840 + 0.991138i \(0.542410\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −58.4036 −1.85152
\(996\) 0 0
\(997\) −46.1041 −1.46013 −0.730065 0.683378i \(-0.760510\pi\)
−0.730065 + 0.683378i \(0.760510\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4896.2.a.bk.1.2 yes 6
3.2 odd 2 4896.2.a.bl.1.6 yes 6
4.3 odd 2 inner 4896.2.a.bk.1.1 6
8.3 odd 2 9792.2.a.dr.1.5 6
8.5 even 2 9792.2.a.dr.1.6 6
12.11 even 2 4896.2.a.bl.1.5 yes 6
24.5 odd 2 9792.2.a.dq.1.2 6
24.11 even 2 9792.2.a.dq.1.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4896.2.a.bk.1.1 6 4.3 odd 2 inner
4896.2.a.bk.1.2 yes 6 1.1 even 1 trivial
4896.2.a.bl.1.5 yes 6 12.11 even 2
4896.2.a.bl.1.6 yes 6 3.2 odd 2
9792.2.a.dq.1.1 6 24.11 even 2
9792.2.a.dq.1.2 6 24.5 odd 2
9792.2.a.dr.1.5 6 8.3 odd 2
9792.2.a.dr.1.6 6 8.5 even 2