Properties

Label 4896.2.a.w
Level $4896$
Weight $2$
Character orbit 4896.a
Self dual yes
Analytic conductor $39.095$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4896,2,Mod(1,4896)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4896, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4896.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4896 = 2^{5} \cdot 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4896.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(39.0947568296\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{17}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1632)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{17})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta + 1) q^{5} + (2 \beta - 2) q^{7} + (\beta - 1) q^{11} + ( - \beta + 3) q^{13} - q^{17} + (\beta - 5) q^{19} + (\beta - 5) q^{23} + 3 \beta q^{25} - 2 q^{29} + ( - 2 \beta + 2) q^{31} + (2 \beta + 6) q^{35}+ \cdots - 6 q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 3 q^{5} - 2 q^{7} - q^{11} + 5 q^{13} - 2 q^{17} - 9 q^{19} - 9 q^{23} + 3 q^{25} - 4 q^{29} + 2 q^{31} + 14 q^{35} + 2 q^{37} + 21 q^{41} - 11 q^{43} + 16 q^{47} + 22 q^{49} + 6 q^{53} + 7 q^{55}+ \cdots - 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.56155
2.56155
0 0 0 −0.561553 0 −5.12311 0 0 0
1.2 0 0 0 3.56155 0 3.12311 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)
\(17\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4896.2.a.w 2
3.b odd 2 1 1632.2.a.m 2
4.b odd 2 1 4896.2.a.x 2
8.b even 2 1 9792.2.a.ci 2
8.d odd 2 1 9792.2.a.cj 2
12.b even 2 1 1632.2.a.o yes 2
24.f even 2 1 3264.2.a.bk 2
24.h odd 2 1 3264.2.a.bp 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1632.2.a.m 2 3.b odd 2 1
1632.2.a.o yes 2 12.b even 2 1
3264.2.a.bk 2 24.f even 2 1
3264.2.a.bp 2 24.h odd 2 1
4896.2.a.w 2 1.a even 1 1 trivial
4896.2.a.x 2 4.b odd 2 1
9792.2.a.ci 2 8.b even 2 1
9792.2.a.cj 2 8.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(4896))\):

\( T_{5}^{2} - 3T_{5} - 2 \) Copy content Toggle raw display
\( T_{7}^{2} + 2T_{7} - 16 \) Copy content Toggle raw display
\( T_{11}^{2} + T_{11} - 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 3T - 2 \) Copy content Toggle raw display
$7$ \( T^{2} + 2T - 16 \) Copy content Toggle raw display
$11$ \( T^{2} + T - 4 \) Copy content Toggle raw display
$13$ \( T^{2} - 5T + 2 \) Copy content Toggle raw display
$17$ \( (T + 1)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} + 9T + 16 \) Copy content Toggle raw display
$23$ \( T^{2} + 9T + 16 \) Copy content Toggle raw display
$29$ \( (T + 2)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} - 2T - 16 \) Copy content Toggle raw display
$37$ \( T^{2} - 2T - 16 \) Copy content Toggle raw display
$41$ \( T^{2} - 21T + 106 \) Copy content Toggle raw display
$43$ \( T^{2} + 11T - 8 \) Copy content Toggle raw display
$47$ \( (T - 8)^{2} \) Copy content Toggle raw display
$53$ \( T^{2} - 6T - 8 \) Copy content Toggle raw display
$59$ \( T^{2} - 14T + 32 \) Copy content Toggle raw display
$61$ \( T^{2} - 68 \) Copy content Toggle raw display
$67$ \( T^{2} + 12T - 32 \) Copy content Toggle raw display
$71$ \( T^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 2T - 152 \) Copy content Toggle raw display
$79$ \( T^{2} + 10T - 128 \) Copy content Toggle raw display
$83$ \( (T - 16)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} - 4T - 268 \) Copy content Toggle raw display
$97$ \( (T + 6)^{2} \) Copy content Toggle raw display
show more
show less