Properties

Label 4896.2.l.d.3025.5
Level $4896$
Weight $2$
Character 4896.3025
Analytic conductor $39.095$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4896,2,Mod(3025,4896)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4896, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4896.3025");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4896 = 2^{5} \cdot 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4896.l (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(39.0947568296\)
Analytic rank: \(0\)
Dimension: \(18\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - x^{16} - 2x^{14} + 2x^{12} - 4x^{11} + 4x^{10} + 8x^{8} - 16x^{7} + 16x^{6} - 64x^{4} - 128x^{2} + 512 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{23}]\)
Coefficient ring index: \( 2^{17} \)
Twist minimal: no (minimal twist has level 408)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 3025.5
Root \(1.40931 - 0.117654i\) of defining polynomial
Character \(\chi\) \(=\) 4896.3025
Dual form 4896.2.l.d.3025.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.46472 q^{5} -3.26018i q^{7} +0.312167 q^{11} +6.39254i q^{13} +(3.01195 - 2.81570i) q^{17} +2.24353i q^{19} -7.34630i q^{23} -2.85460 q^{25} -5.39236 q^{29} -0.606910i q^{31} +4.77524i q^{35} +11.2816 q^{37} +5.36742i q^{41} -7.51199i q^{43} -4.24122 q^{47} -3.62875 q^{49} -8.91746i q^{53} -0.457236 q^{55} -5.15579i q^{59} +6.41607 q^{61} -9.36327i q^{65} +11.8427i q^{67} +6.62295i q^{71} -4.81332i q^{73} -1.01772i q^{77} +11.5068i q^{79} -13.3845i q^{83} +(-4.41165 + 4.12421i) q^{85} -9.54739 q^{89} +20.8408 q^{91} -3.28614i q^{95} -13.0210i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q + 4 q^{5} + 2 q^{17} + 22 q^{25} - 12 q^{29} - 16 q^{37} - 18 q^{49} + 16 q^{55} - 16 q^{61} + 16 q^{85} - 20 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4896\mathbb{Z}\right)^\times\).

\(n\) \(613\) \(2143\) \(3809\) \(4321\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.46472 −0.655041 −0.327521 0.944844i \(-0.606213\pi\)
−0.327521 + 0.944844i \(0.606213\pi\)
\(6\) 0 0
\(7\) 3.26018i 1.23223i −0.787656 0.616115i \(-0.788705\pi\)
0.787656 0.616115i \(-0.211295\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0.312167 0.0941219 0.0470609 0.998892i \(-0.485015\pi\)
0.0470609 + 0.998892i \(0.485015\pi\)
\(12\) 0 0
\(13\) 6.39254i 1.77297i 0.462755 + 0.886486i \(0.346861\pi\)
−0.462755 + 0.886486i \(0.653139\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.01195 2.81570i 0.730505 0.682908i
\(18\) 0 0
\(19\) 2.24353i 0.514702i 0.966318 + 0.257351i \(0.0828496\pi\)
−0.966318 + 0.257351i \(0.917150\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 7.34630i 1.53181i −0.642954 0.765905i \(-0.722291\pi\)
0.642954 0.765905i \(-0.277709\pi\)
\(24\) 0 0
\(25\) −2.85460 −0.570921
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −5.39236 −1.00134 −0.500668 0.865639i \(-0.666912\pi\)
−0.500668 + 0.865639i \(0.666912\pi\)
\(30\) 0 0
\(31\) 0.606910i 0.109004i −0.998514 0.0545021i \(-0.982643\pi\)
0.998514 0.0545021i \(-0.0173572\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 4.77524i 0.807162i
\(36\) 0 0
\(37\) 11.2816 1.85469 0.927344 0.374211i \(-0.122086\pi\)
0.927344 + 0.374211i \(0.122086\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 5.36742i 0.838249i 0.907929 + 0.419125i \(0.137663\pi\)
−0.907929 + 0.419125i \(0.862337\pi\)
\(42\) 0 0
\(43\) 7.51199i 1.14557i −0.819707 0.572784i \(-0.805863\pi\)
0.819707 0.572784i \(-0.194137\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −4.24122 −0.618646 −0.309323 0.950957i \(-0.600102\pi\)
−0.309323 + 0.950957i \(0.600102\pi\)
\(48\) 0 0
\(49\) −3.62875 −0.518393
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 8.91746i 1.22491i −0.790507 0.612454i \(-0.790183\pi\)
0.790507 0.612454i \(-0.209817\pi\)
\(54\) 0 0
\(55\) −0.457236 −0.0616537
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 5.15579i 0.671226i −0.942000 0.335613i \(-0.891057\pi\)
0.942000 0.335613i \(-0.108943\pi\)
\(60\) 0 0
\(61\) 6.41607 0.821493 0.410747 0.911750i \(-0.365268\pi\)
0.410747 + 0.911750i \(0.365268\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 9.36327i 1.16137i
\(66\) 0 0
\(67\) 11.8427i 1.44682i 0.690421 + 0.723408i \(0.257425\pi\)
−0.690421 + 0.723408i \(0.742575\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 6.62295i 0.785999i 0.919539 + 0.393000i \(0.128563\pi\)
−0.919539 + 0.393000i \(0.871437\pi\)
\(72\) 0 0
\(73\) 4.81332i 0.563356i −0.959509 0.281678i \(-0.909109\pi\)
0.959509 0.281678i \(-0.0908910\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 1.01772i 0.115980i
\(78\) 0 0
\(79\) 11.5068i 1.29461i 0.762230 + 0.647306i \(0.224104\pi\)
−0.762230 + 0.647306i \(0.775896\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 13.3845i 1.46914i −0.678535 0.734568i \(-0.737385\pi\)
0.678535 0.734568i \(-0.262615\pi\)
\(84\) 0 0
\(85\) −4.41165 + 4.12421i −0.478511 + 0.447333i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −9.54739 −1.01202 −0.506011 0.862527i \(-0.668880\pi\)
−0.506011 + 0.862527i \(0.668880\pi\)
\(90\) 0 0
\(91\) 20.8408 2.18471
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 3.28614i 0.337151i
\(96\) 0 0
\(97\) 13.0210i 1.32208i −0.750351 0.661040i \(-0.770115\pi\)
0.750351 0.661040i \(-0.229885\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 1.94347i 0.193383i 0.995314 + 0.0966913i \(0.0308259\pi\)
−0.995314 + 0.0966913i \(0.969174\pi\)
\(102\) 0 0
\(103\) −6.97083 −0.686856 −0.343428 0.939179i \(-0.611588\pi\)
−0.343428 + 0.939179i \(0.611588\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −7.39946 −0.715333 −0.357667 0.933849i \(-0.616428\pi\)
−0.357667 + 0.933849i \(0.616428\pi\)
\(108\) 0 0
\(109\) −10.6455 −1.01966 −0.509828 0.860277i \(-0.670291\pi\)
−0.509828 + 0.860277i \(0.670291\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 11.0887i 1.04313i −0.853211 0.521567i \(-0.825348\pi\)
0.853211 0.521567i \(-0.174652\pi\)
\(114\) 0 0
\(115\) 10.7603i 1.00340i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −9.17968 9.81948i −0.841500 0.900150i
\(120\) 0 0
\(121\) −10.9026 −0.991141
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 11.5048 1.02902
\(126\) 0 0
\(127\) 16.9758 1.50636 0.753179 0.657816i \(-0.228520\pi\)
0.753179 + 0.657816i \(0.228520\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −0.168506 −0.0147225 −0.00736123 0.999973i \(-0.502343\pi\)
−0.00736123 + 0.999973i \(0.502343\pi\)
\(132\) 0 0
\(133\) 7.31432 0.634232
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −6.02753 −0.514966 −0.257483 0.966283i \(-0.582893\pi\)
−0.257483 + 0.966283i \(0.582893\pi\)
\(138\) 0 0
\(139\) −3.56380 −0.302278 −0.151139 0.988513i \(-0.548294\pi\)
−0.151139 + 0.988513i \(0.548294\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 1.99554i 0.166875i
\(144\) 0 0
\(145\) 7.89829 0.655917
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 5.50380i 0.450889i −0.974256 0.225444i \(-0.927617\pi\)
0.974256 0.225444i \(-0.0723834\pi\)
\(150\) 0 0
\(151\) −0.619725 −0.0504325 −0.0252162 0.999682i \(-0.508027\pi\)
−0.0252162 + 0.999682i \(0.508027\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0.888952i 0.0714023i
\(156\) 0 0
\(157\) 18.7631i 1.49746i −0.662875 0.748730i \(-0.730664\pi\)
0.662875 0.748730i \(-0.269336\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −23.9502 −1.88754
\(162\) 0 0
\(163\) −15.9222 −1.24712 −0.623561 0.781775i \(-0.714315\pi\)
−0.623561 + 0.781775i \(0.714315\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 7.08898i 0.548561i −0.961650 0.274281i \(-0.911560\pi\)
0.961650 0.274281i \(-0.0884397\pi\)
\(168\) 0 0
\(169\) −27.8646 −2.14343
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −10.1123 −0.768827 −0.384414 0.923161i \(-0.625596\pi\)
−0.384414 + 0.923161i \(0.625596\pi\)
\(174\) 0 0
\(175\) 9.30651i 0.703506i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 2.38313i 0.178124i −0.996026 0.0890618i \(-0.971613\pi\)
0.996026 0.0890618i \(-0.0283869\pi\)
\(180\) 0 0
\(181\) −10.5481 −0.784038 −0.392019 0.919957i \(-0.628223\pi\)
−0.392019 + 0.919957i \(0.628223\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −16.5244 −1.21490
\(186\) 0 0
\(187\) 0.940230 0.878969i 0.0687565 0.0642765i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −16.9179 −1.22414 −0.612069 0.790804i \(-0.709662\pi\)
−0.612069 + 0.790804i \(0.709662\pi\)
\(192\) 0 0
\(193\) 3.08185i 0.221836i 0.993830 + 0.110918i \(0.0353791\pi\)
−0.993830 + 0.110918i \(0.964621\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −22.7820 −1.62315 −0.811577 0.584246i \(-0.801390\pi\)
−0.811577 + 0.584246i \(0.801390\pi\)
\(198\) 0 0
\(199\) 14.9021i 1.05638i −0.849126 0.528190i \(-0.822871\pi\)
0.849126 0.528190i \(-0.177129\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 17.5801i 1.23388i
\(204\) 0 0
\(205\) 7.86175i 0.549088i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0.700357i 0.0484447i
\(210\) 0 0
\(211\) −11.1308 −0.766278 −0.383139 0.923691i \(-0.625157\pi\)
−0.383139 + 0.923691i \(0.625157\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 11.0029i 0.750394i
\(216\) 0 0
\(217\) −1.97863 −0.134318
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 17.9995 + 19.2540i 1.21078 + 1.29516i
\(222\) 0 0
\(223\) 0.320676 0.0214741 0.0107370 0.999942i \(-0.496582\pi\)
0.0107370 + 0.999942i \(0.496582\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −26.1137 −1.73323 −0.866613 0.498980i \(-0.833708\pi\)
−0.866613 + 0.498980i \(0.833708\pi\)
\(228\) 0 0
\(229\) 14.6905i 0.970772i 0.874300 + 0.485386i \(0.161321\pi\)
−0.874300 + 0.485386i \(0.838679\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 27.5228i 1.80308i −0.432694 0.901541i \(-0.642437\pi\)
0.432694 0.901541i \(-0.357563\pi\)
\(234\) 0 0
\(235\) 6.21219 0.405239
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 5.80155 0.375271 0.187636 0.982239i \(-0.439918\pi\)
0.187636 + 0.982239i \(0.439918\pi\)
\(240\) 0 0
\(241\) 17.1627i 1.10554i −0.833333 0.552772i \(-0.813570\pi\)
0.833333 0.552772i \(-0.186430\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 5.31509 0.339569
\(246\) 0 0
\(247\) −14.3419 −0.912552
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 6.91981i 0.436774i −0.975862 0.218387i \(-0.929920\pi\)
0.975862 0.218387i \(-0.0700796\pi\)
\(252\) 0 0
\(253\) 2.29327i 0.144177i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 0.288958 0.0180247 0.00901234 0.999959i \(-0.497131\pi\)
0.00901234 + 0.999959i \(0.497131\pi\)
\(258\) 0 0
\(259\) 36.7801i 2.28540i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −1.38062 −0.0851326 −0.0425663 0.999094i \(-0.513553\pi\)
−0.0425663 + 0.999094i \(0.513553\pi\)
\(264\) 0 0
\(265\) 13.0616i 0.802365i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 17.5243 1.06847 0.534237 0.845335i \(-0.320599\pi\)
0.534237 + 0.845335i \(0.320599\pi\)
\(270\) 0 0
\(271\) −0.927991 −0.0563715 −0.0281857 0.999603i \(-0.508973\pi\)
−0.0281857 + 0.999603i \(0.508973\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −0.891113 −0.0537361
\(276\) 0 0
\(277\) 9.97435 0.599301 0.299650 0.954049i \(-0.403130\pi\)
0.299650 + 0.954049i \(0.403130\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 19.4670 1.16131 0.580653 0.814151i \(-0.302797\pi\)
0.580653 + 0.814151i \(0.302797\pi\)
\(282\) 0 0
\(283\) −2.02405 −0.120317 −0.0601587 0.998189i \(-0.519161\pi\)
−0.0601587 + 0.998189i \(0.519161\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 17.4987 1.03292
\(288\) 0 0
\(289\) 1.14366 16.9615i 0.0672742 0.997735i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 1.29056i 0.0753952i 0.999289 + 0.0376976i \(0.0120024\pi\)
−0.999289 + 0.0376976i \(0.987998\pi\)
\(294\) 0 0
\(295\) 7.55177i 0.439681i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 46.9616 2.71586
\(300\) 0 0
\(301\) −24.4904 −1.41160
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −9.39773 −0.538112
\(306\) 0 0
\(307\) 7.42682i 0.423871i −0.977284 0.211936i \(-0.932023\pi\)
0.977284 0.211936i \(-0.0679767\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 3.73279i 0.211667i −0.994384 0.105834i \(-0.966249\pi\)
0.994384 0.105834i \(-0.0337511\pi\)
\(312\) 0 0
\(313\) 1.09676i 0.0619925i 0.999520 + 0.0309963i \(0.00986800\pi\)
−0.999520 + 0.0309963i \(0.990132\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 19.9349 1.11965 0.559827 0.828610i \(-0.310868\pi\)
0.559827 + 0.828610i \(0.310868\pi\)
\(318\) 0 0
\(319\) −1.68332 −0.0942477
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 6.31712 + 6.75741i 0.351494 + 0.375992i
\(324\) 0 0
\(325\) 18.2482i 1.01223i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 13.8271i 0.762314i
\(330\) 0 0
\(331\) 26.9222i 1.47978i 0.672728 + 0.739890i \(0.265122\pi\)
−0.672728 + 0.739890i \(0.734878\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 17.3462i 0.947724i
\(336\) 0 0
\(337\) 12.2109i 0.665170i −0.943073 0.332585i \(-0.892079\pi\)
0.943073 0.332585i \(-0.107921\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0.189457i 0.0102597i
\(342\) 0 0
\(343\) 10.9909i 0.593451i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 14.2507 0.765018 0.382509 0.923952i \(-0.375060\pi\)
0.382509 + 0.923952i \(0.375060\pi\)
\(348\) 0 0
\(349\) 18.5830i 0.994725i −0.867543 0.497363i \(-0.834302\pi\)
0.867543 0.497363i \(-0.165698\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 3.89576 0.207350 0.103675 0.994611i \(-0.466940\pi\)
0.103675 + 0.994611i \(0.466940\pi\)
\(354\) 0 0
\(355\) 9.70074i 0.514862i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 8.66787 0.457472 0.228736 0.973488i \(-0.426541\pi\)
0.228736 + 0.973488i \(0.426541\pi\)
\(360\) 0 0
\(361\) 13.9666 0.735082
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 7.05015i 0.369022i
\(366\) 0 0
\(367\) 32.3753i 1.68998i −0.534785 0.844988i \(-0.679608\pi\)
0.534785 0.844988i \(-0.320392\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −29.0725 −1.50937
\(372\) 0 0
\(373\) 11.7221i 0.606947i 0.952840 + 0.303473i \(0.0981464\pi\)
−0.952840 + 0.303473i \(0.901854\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 34.4709i 1.77534i
\(378\) 0 0
\(379\) −27.7442 −1.42512 −0.712562 0.701609i \(-0.752465\pi\)
−0.712562 + 0.701609i \(0.752465\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −25.2288 −1.28913 −0.644566 0.764549i \(-0.722962\pi\)
−0.644566 + 0.764549i \(0.722962\pi\)
\(384\) 0 0
\(385\) 1.49067i 0.0759716i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 26.3923i 1.33814i −0.743198 0.669072i \(-0.766692\pi\)
0.743198 0.669072i \(-0.233308\pi\)
\(390\) 0 0
\(391\) −20.6850 22.1267i −1.04608 1.11899i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 16.8542i 0.848025i
\(396\) 0 0
\(397\) −21.2037 −1.06418 −0.532091 0.846687i \(-0.678594\pi\)
−0.532091 + 0.846687i \(0.678594\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 7.21971i 0.360535i 0.983618 + 0.180268i \(0.0576964\pi\)
−0.983618 + 0.180268i \(0.942304\pi\)
\(402\) 0 0
\(403\) 3.87970 0.193262
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 3.52175 0.174567
\(408\) 0 0
\(409\) 24.5533 1.21408 0.607042 0.794670i \(-0.292356\pi\)
0.607042 + 0.794670i \(0.292356\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −16.8088 −0.827106
\(414\) 0 0
\(415\) 19.6045i 0.962345i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 39.0863 1.90949 0.954745 0.297426i \(-0.0961283\pi\)
0.954745 + 0.297426i \(0.0961283\pi\)
\(420\) 0 0
\(421\) 9.66214i 0.470904i 0.971886 + 0.235452i \(0.0756570\pi\)
−0.971886 + 0.235452i \(0.924343\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −8.59792 + 8.03771i −0.417060 + 0.389886i
\(426\) 0 0
\(427\) 20.9175i 1.01227i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 6.07054i 0.292408i −0.989254 0.146204i \(-0.953294\pi\)
0.989254 0.146204i \(-0.0467055\pi\)
\(432\) 0 0
\(433\) 20.5097 0.985634 0.492817 0.870133i \(-0.335967\pi\)
0.492817 + 0.870133i \(0.335967\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 16.4817 0.788426
\(438\) 0 0
\(439\) 7.36907i 0.351706i −0.984416 0.175853i \(-0.943732\pi\)
0.984416 0.175853i \(-0.0562684\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 18.9079i 0.898342i 0.893446 + 0.449171i \(0.148281\pi\)
−0.893446 + 0.449171i \(0.851719\pi\)
\(444\) 0 0
\(445\) 13.9842 0.662916
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 19.0187i 0.897550i −0.893645 0.448775i \(-0.851861\pi\)
0.893645 0.448775i \(-0.148139\pi\)
\(450\) 0 0
\(451\) 1.67553i 0.0788976i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −30.5259 −1.43108
\(456\) 0 0
\(457\) −20.5126 −0.959539 −0.479769 0.877395i \(-0.659280\pi\)
−0.479769 + 0.877395i \(0.659280\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 8.07937i 0.376294i 0.982141 + 0.188147i \(0.0602481\pi\)
−0.982141 + 0.188147i \(0.939752\pi\)
\(462\) 0 0
\(463\) −12.6813 −0.589350 −0.294675 0.955597i \(-0.595211\pi\)
−0.294675 + 0.955597i \(0.595211\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 32.1472i 1.48760i 0.668405 + 0.743798i \(0.266977\pi\)
−0.668405 + 0.743798i \(0.733023\pi\)
\(468\) 0 0
\(469\) 38.6093 1.78281
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 2.34499i 0.107823i
\(474\) 0 0
\(475\) 6.40440i 0.293854i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 25.4835i 1.16437i −0.813056 0.582185i \(-0.802198\pi\)
0.813056 0.582185i \(-0.197802\pi\)
\(480\) 0 0
\(481\) 72.1183i 3.28831i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 19.0721i 0.866017i
\(486\) 0 0
\(487\) 3.09673i 0.140326i 0.997536 + 0.0701630i \(0.0223520\pi\)
−0.997536 + 0.0701630i \(0.977648\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 37.4349i 1.68941i 0.535231 + 0.844706i \(0.320225\pi\)
−0.535231 + 0.844706i \(0.679775\pi\)
\(492\) 0 0
\(493\) −16.2415 + 15.1833i −0.731481 + 0.683820i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 21.5920 0.968532
\(498\) 0 0
\(499\) 19.7963 0.886204 0.443102 0.896471i \(-0.353878\pi\)
0.443102 + 0.896471i \(0.353878\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 10.8162i 0.482268i −0.970492 0.241134i \(-0.922481\pi\)
0.970492 0.241134i \(-0.0775194\pi\)
\(504\) 0 0
\(505\) 2.84663i 0.126674i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 2.63717i 0.116890i −0.998291 0.0584452i \(-0.981386\pi\)
0.998291 0.0584452i \(-0.0186143\pi\)
\(510\) 0 0
\(511\) −15.6923 −0.694185
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 10.2103 0.449919
\(516\) 0 0
\(517\) −1.32397 −0.0582281
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 38.5194i 1.68757i 0.536684 + 0.843783i \(0.319677\pi\)
−0.536684 + 0.843783i \(0.680323\pi\)
\(522\) 0 0
\(523\) 0.305975i 0.0133793i −0.999978 0.00668967i \(-0.997871\pi\)
0.999978 0.00668967i \(-0.00212940\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −1.70888 1.82798i −0.0744399 0.0796281i
\(528\) 0 0
\(529\) −30.9682 −1.34644
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −34.3114 −1.48619
\(534\) 0 0
\(535\) 10.8381 0.468573
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −1.13278 −0.0487921
\(540\) 0 0
\(541\) 1.50556 0.0647292 0.0323646 0.999476i \(-0.489696\pi\)
0.0323646 + 0.999476i \(0.489696\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 15.5927 0.667916
\(546\) 0 0
\(547\) 3.68763 0.157672 0.0788358 0.996888i \(-0.474880\pi\)
0.0788358 + 0.996888i \(0.474880\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 12.0979i 0.515390i
\(552\) 0 0
\(553\) 37.5141 1.59526
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 29.3032i 1.24162i 0.783962 + 0.620809i \(0.213196\pi\)
−0.783962 + 0.620809i \(0.786804\pi\)
\(558\) 0 0
\(559\) 48.0207 2.03106
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 27.2285i 1.14754i −0.819015 0.573772i \(-0.805480\pi\)
0.819015 0.573772i \(-0.194520\pi\)
\(564\) 0 0
\(565\) 16.2417i 0.683296i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −8.50233 −0.356436 −0.178218 0.983991i \(-0.557033\pi\)
−0.178218 + 0.983991i \(0.557033\pi\)
\(570\) 0 0
\(571\) −3.89571 −0.163030 −0.0815151 0.996672i \(-0.525976\pi\)
−0.0815151 + 0.996672i \(0.525976\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 20.9708i 0.874542i
\(576\) 0 0
\(577\) 3.69131 0.153671 0.0768355 0.997044i \(-0.475518\pi\)
0.0768355 + 0.997044i \(0.475518\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −43.6357 −1.81032
\(582\) 0 0
\(583\) 2.78374i 0.115291i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 18.6727i 0.770704i −0.922770 0.385352i \(-0.874080\pi\)
0.922770 0.385352i \(-0.125920\pi\)
\(588\) 0 0
\(589\) 1.36162 0.0561047
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −18.0541 −0.741393 −0.370697 0.928754i \(-0.620881\pi\)
−0.370697 + 0.928754i \(0.620881\pi\)
\(594\) 0 0
\(595\) 13.4456 + 14.3828i 0.551217 + 0.589636i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −43.6498 −1.78348 −0.891741 0.452546i \(-0.850516\pi\)
−0.891741 + 0.452546i \(0.850516\pi\)
\(600\) 0 0
\(601\) 10.1680i 0.414760i 0.978260 + 0.207380i \(0.0664937\pi\)
−0.978260 + 0.207380i \(0.933506\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 15.9692 0.649239
\(606\) 0 0
\(607\) 10.9378i 0.443952i 0.975052 + 0.221976i \(0.0712506\pi\)
−0.975052 + 0.221976i \(0.928749\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 27.1122i 1.09684i
\(612\) 0 0
\(613\) 35.0085i 1.41398i 0.707224 + 0.706990i \(0.249947\pi\)
−0.707224 + 0.706990i \(0.750053\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 24.5518i 0.988419i 0.869343 + 0.494209i \(0.164542\pi\)
−0.869343 + 0.494209i \(0.835458\pi\)
\(618\) 0 0
\(619\) −37.2040 −1.49536 −0.747678 0.664061i \(-0.768832\pi\)
−0.747678 + 0.664061i \(0.768832\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 31.1262i 1.24704i
\(624\) 0 0
\(625\) −2.57822 −0.103129
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 33.9797 31.7657i 1.35486 1.26658i
\(630\) 0 0
\(631\) −12.3656 −0.492266 −0.246133 0.969236i \(-0.579160\pi\)
−0.246133 + 0.969236i \(0.579160\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −24.8647 −0.986726
\(636\) 0 0
\(637\) 23.1969i 0.919096i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 37.6527i 1.48719i 0.668629 + 0.743596i \(0.266882\pi\)
−0.668629 + 0.743596i \(0.733118\pi\)
\(642\) 0 0
\(643\) 29.1814 1.15080 0.575400 0.817872i \(-0.304846\pi\)
0.575400 + 0.817872i \(0.304846\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 32.6928 1.28529 0.642643 0.766166i \(-0.277838\pi\)
0.642643 + 0.766166i \(0.277838\pi\)
\(648\) 0 0
\(649\) 1.60947i 0.0631771i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 5.75472 0.225200 0.112600 0.993640i \(-0.464082\pi\)
0.112600 + 0.993640i \(0.464082\pi\)
\(654\) 0 0
\(655\) 0.246814 0.00964382
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 16.3764i 0.637933i 0.947766 + 0.318966i \(0.103336\pi\)
−0.947766 + 0.318966i \(0.896664\pi\)
\(660\) 0 0
\(661\) 26.9352i 1.04766i −0.851823 0.523829i \(-0.824503\pi\)
0.851823 0.523829i \(-0.175497\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −10.7134 −0.415448
\(666\) 0 0
\(667\) 39.6139i 1.53386i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 2.00288 0.0773205
\(672\) 0 0
\(673\) 48.5604i 1.87187i −0.352179 0.935933i \(-0.614559\pi\)
0.352179 0.935933i \(-0.385441\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −18.4217 −0.708002 −0.354001 0.935245i \(-0.615179\pi\)
−0.354001 + 0.935245i \(0.615179\pi\)
\(678\) 0 0
\(679\) −42.4507 −1.62911
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −35.1819 −1.34620 −0.673099 0.739552i \(-0.735037\pi\)
−0.673099 + 0.739552i \(0.735037\pi\)
\(684\) 0 0
\(685\) 8.82862 0.337324
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 57.0052 2.17173
\(690\) 0 0
\(691\) −16.9759 −0.645792 −0.322896 0.946434i \(-0.604656\pi\)
−0.322896 + 0.946434i \(0.604656\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 5.21996 0.198004
\(696\) 0 0
\(697\) 15.1130 + 16.1664i 0.572447 + 0.612345i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 25.1119i 0.948462i −0.880400 0.474231i \(-0.842726\pi\)
0.880400 0.474231i \(-0.157274\pi\)
\(702\) 0 0
\(703\) 25.3107i 0.954611i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 6.33606 0.238292
\(708\) 0 0
\(709\) −32.3694 −1.21566 −0.607830 0.794067i \(-0.707960\pi\)
−0.607830 + 0.794067i \(0.707960\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −4.45855 −0.166974
\(714\) 0 0
\(715\) 2.92290i 0.109310i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 14.6515i 0.546410i 0.961956 + 0.273205i \(0.0880838\pi\)
−0.961956 + 0.273205i \(0.911916\pi\)
\(720\) 0 0
\(721\) 22.7261i 0.846366i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 15.3931 0.571684
\(726\) 0 0
\(727\) −5.77315 −0.214114 −0.107057 0.994253i \(-0.534143\pi\)
−0.107057 + 0.994253i \(0.534143\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −21.1515 22.6257i −0.782317 0.836842i
\(732\) 0 0
\(733\) 9.97415i 0.368403i −0.982888 0.184202i \(-0.941030\pi\)
0.982888 0.184202i \(-0.0589700\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 3.69690i 0.136177i
\(738\) 0 0
\(739\) 31.2897i 1.15101i −0.817798 0.575506i \(-0.804805\pi\)
0.817798 0.575506i \(-0.195195\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0.432434i 0.0158645i −0.999969 0.00793223i \(-0.997475\pi\)
0.999969 0.00793223i \(-0.00252493\pi\)
\(744\) 0 0
\(745\) 8.06151i 0.295351i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 24.1236i 0.881455i
\(750\) 0 0
\(751\) 44.0064i 1.60582i −0.596103 0.802908i \(-0.703285\pi\)
0.596103 0.802908i \(-0.296715\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0.907721 0.0330354
\(756\) 0 0
\(757\) 48.4044i 1.75929i 0.475634 + 0.879643i \(0.342219\pi\)
−0.475634 + 0.879643i \(0.657781\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 37.9787 1.37673 0.688363 0.725366i \(-0.258329\pi\)
0.688363 + 0.725366i \(0.258329\pi\)
\(762\) 0 0
\(763\) 34.7062i 1.25645i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 32.9586 1.19007
\(768\) 0 0
\(769\) −3.04684 −0.109872 −0.0549358 0.998490i \(-0.517495\pi\)
−0.0549358 + 0.998490i \(0.517495\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 21.3814i 0.769036i −0.923118 0.384518i \(-0.874368\pi\)
0.923118 0.384518i \(-0.125632\pi\)
\(774\) 0 0
\(775\) 1.73249i 0.0622328i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −12.0420 −0.431449
\(780\) 0 0
\(781\) 2.06746i 0.0739797i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 27.4827i 0.980899i
\(786\) 0 0
\(787\) 38.9140 1.38713 0.693567 0.720392i \(-0.256038\pi\)
0.693567 + 0.720392i \(0.256038\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −36.1510 −1.28538
\(792\) 0 0
\(793\) 41.0150i 1.45649i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 18.6530i 0.660722i 0.943855 + 0.330361i \(0.107171\pi\)
−0.943855 + 0.330361i \(0.892829\pi\)
\(798\) 0 0
\(799\) −12.7743 + 11.9420i −0.451924 + 0.422478i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 1.50256i 0.0530241i
\(804\) 0 0
\(805\) 35.0803 1.23642
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 32.7083i 1.14996i −0.818166 0.574982i \(-0.805009\pi\)
0.818166 0.574982i \(-0.194991\pi\)
\(810\) 0 0
\(811\) 31.1576 1.09409 0.547045 0.837103i \(-0.315753\pi\)
0.547045 + 0.837103i \(0.315753\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 23.3215 0.816916
\(816\) 0 0
\(817\) 16.8534 0.589626
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −28.5075 −0.994917 −0.497459 0.867488i \(-0.665733\pi\)
−0.497459 + 0.867488i \(0.665733\pi\)
\(822\) 0 0
\(823\) 23.6353i 0.823876i −0.911212 0.411938i \(-0.864852\pi\)
0.911212 0.411938i \(-0.135148\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 33.1756 1.15363 0.576814 0.816875i \(-0.304296\pi\)
0.576814 + 0.816875i \(0.304296\pi\)
\(828\) 0 0
\(829\) 24.0031i 0.833662i −0.908984 0.416831i \(-0.863141\pi\)
0.908984 0.416831i \(-0.136859\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −10.9296 + 10.2175i −0.378688 + 0.354014i
\(834\) 0 0
\(835\) 10.3833i 0.359330i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 27.2563i 0.940993i 0.882402 + 0.470496i \(0.155925\pi\)
−0.882402 + 0.470496i \(0.844075\pi\)
\(840\) 0 0
\(841\) 0.0775701 0.00267483
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 40.8138 1.40404
\(846\) 0 0
\(847\) 35.5442i 1.22131i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 82.8782i 2.84103i
\(852\) 0 0
\(853\) 35.1320 1.20290 0.601449 0.798911i \(-0.294590\pi\)
0.601449 + 0.798911i \(0.294590\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 27.2840i 0.932005i 0.884783 + 0.466002i \(0.154306\pi\)
−0.884783 + 0.466002i \(0.845694\pi\)
\(858\) 0 0
\(859\) 3.90819i 0.133346i −0.997775 0.0666728i \(-0.978762\pi\)
0.997775 0.0666728i \(-0.0212384\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 30.8940 1.05164 0.525821 0.850595i \(-0.323758\pi\)
0.525821 + 0.850595i \(0.323758\pi\)
\(864\) 0 0
\(865\) 14.8117 0.503614
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 3.59203i 0.121851i
\(870\) 0 0
\(871\) −75.7049 −2.56516
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 37.5076i 1.26799i
\(876\) 0 0
\(877\) −17.7726 −0.600137 −0.300068 0.953918i \(-0.597010\pi\)
−0.300068 + 0.953918i \(0.597010\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 34.8223i 1.17319i 0.809879 + 0.586597i \(0.199533\pi\)
−0.809879 + 0.586597i \(0.800467\pi\)
\(882\) 0 0
\(883\) 7.89791i 0.265786i 0.991130 + 0.132893i \(0.0424266\pi\)
−0.991130 + 0.132893i \(0.957573\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 21.4557i 0.720412i −0.932873 0.360206i \(-0.882706\pi\)
0.932873 0.360206i \(-0.117294\pi\)
\(888\) 0 0
\(889\) 55.3440i 1.85618i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 9.51532i 0.318418i
\(894\) 0 0
\(895\) 3.49061i 0.116678i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 3.27268i 0.109150i
\(900\) 0 0
\(901\) −25.1089 26.8589i −0.836499 0.894800i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 15.4501 0.513577
\(906\) 0 0
\(907\) 46.9549 1.55911 0.779557 0.626332i \(-0.215444\pi\)
0.779557 + 0.626332i \(0.215444\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 20.5297i 0.680181i 0.940393 + 0.340090i \(0.110458\pi\)
−0.940393 + 0.340090i \(0.889542\pi\)
\(912\) 0 0
\(913\) 4.17819i 0.138278i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0.549360i 0.0181415i
\(918\) 0 0
\(919\) 53.2755 1.75740 0.878698 0.477379i \(-0.158413\pi\)
0.878698 + 0.477379i \(0.158413\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −42.3375 −1.39355
\(924\) 0 0
\(925\) −32.2046 −1.05888
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 40.7355i 1.33649i −0.743942 0.668244i \(-0.767046\pi\)
0.743942 0.668244i \(-0.232954\pi\)
\(930\) 0 0
\(931\) 8.14122i 0.266818i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −1.37717 + 1.28744i −0.0450383 + 0.0421038i
\(936\) 0 0
\(937\) −21.3186 −0.696449 −0.348225 0.937411i \(-0.613215\pi\)
−0.348225 + 0.937411i \(0.613215\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −27.9682 −0.911738 −0.455869 0.890047i \(-0.650671\pi\)
−0.455869 + 0.890047i \(0.650671\pi\)
\(942\) 0 0
\(943\) 39.4307 1.28404
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −50.2968 −1.63443 −0.817214 0.576335i \(-0.804482\pi\)
−0.817214 + 0.576335i \(0.804482\pi\)
\(948\) 0 0
\(949\) 30.7693 0.998815
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 15.4664 0.501006 0.250503 0.968116i \(-0.419404\pi\)
0.250503 + 0.968116i \(0.419404\pi\)
\(954\) 0 0
\(955\) 24.7800 0.801861
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 19.6508i 0.634557i
\(960\) 0 0
\(961\) 30.6317 0.988118
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 4.51403i 0.145312i
\(966\) 0 0
\(967\) 50.1822 1.61375 0.806876 0.590721i \(-0.201157\pi\)
0.806876 + 0.590721i \(0.201157\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 30.8673i 0.990579i 0.868728 + 0.495290i \(0.164938\pi\)
−0.868728 + 0.495290i \(0.835062\pi\)
\(972\) 0 0
\(973\) 11.6186i 0.372476i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 31.1825 0.997617 0.498809 0.866712i \(-0.333771\pi\)
0.498809 + 0.866712i \(0.333771\pi\)
\(978\) 0 0
\(979\) −2.98038 −0.0952533
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 2.61279i 0.0833350i −0.999132 0.0416675i \(-0.986733\pi\)
0.999132 0.0416675i \(-0.0132670\pi\)
\(984\) 0 0
\(985\) 33.3693 1.06323
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −55.1853 −1.75479
\(990\) 0 0
\(991\) 35.6087i 1.13115i 0.824698 + 0.565573i \(0.191345\pi\)
−0.824698 + 0.565573i \(0.808655\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 21.8273i 0.691973i
\(996\) 0 0
\(997\) −4.13227 −0.130870 −0.0654351 0.997857i \(-0.520844\pi\)
−0.0654351 + 0.997857i \(0.520844\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4896.2.l.d.3025.5 18
3.2 odd 2 1632.2.l.a.1393.13 18
4.3 odd 2 1224.2.l.d.1189.17 18
8.3 odd 2 1224.2.l.c.1189.18 18
8.5 even 2 4896.2.l.c.3025.13 18
12.11 even 2 408.2.l.b.373.2 yes 18
17.16 even 2 4896.2.l.c.3025.14 18
24.5 odd 2 1632.2.l.b.1393.5 18
24.11 even 2 408.2.l.a.373.1 18
51.50 odd 2 1632.2.l.b.1393.6 18
68.67 odd 2 1224.2.l.c.1189.17 18
136.67 odd 2 1224.2.l.d.1189.18 18
136.101 even 2 inner 4896.2.l.d.3025.6 18
204.203 even 2 408.2.l.a.373.2 yes 18
408.101 odd 2 1632.2.l.a.1393.14 18
408.203 even 2 408.2.l.b.373.1 yes 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
408.2.l.a.373.1 18 24.11 even 2
408.2.l.a.373.2 yes 18 204.203 even 2
408.2.l.b.373.1 yes 18 408.203 even 2
408.2.l.b.373.2 yes 18 12.11 even 2
1224.2.l.c.1189.17 18 68.67 odd 2
1224.2.l.c.1189.18 18 8.3 odd 2
1224.2.l.d.1189.17 18 4.3 odd 2
1224.2.l.d.1189.18 18 136.67 odd 2
1632.2.l.a.1393.13 18 3.2 odd 2
1632.2.l.a.1393.14 18 408.101 odd 2
1632.2.l.b.1393.5 18 24.5 odd 2
1632.2.l.b.1393.6 18 51.50 odd 2
4896.2.l.c.3025.13 18 8.5 even 2
4896.2.l.c.3025.14 18 17.16 even 2
4896.2.l.d.3025.5 18 1.1 even 1 trivial
4896.2.l.d.3025.6 18 136.101 even 2 inner