Properties

Label 1224.2.l.d.1189.18
Level $1224$
Weight $2$
Character 1224.1189
Analytic conductor $9.774$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1224,2,Mod(1189,1224)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1224, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1224.1189");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1224 = 2^{3} \cdot 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1224.l (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.77368920740\)
Analytic rank: \(0\)
Dimension: \(18\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - x^{16} - 2x^{14} + 2x^{12} - 4x^{11} + 4x^{10} + 8x^{8} - 16x^{7} + 16x^{6} - 64x^{4} - 128x^{2} + 512 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: no (minimal twist has level 408)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1189.18
Root \(1.40931 - 0.117654i\) of defining polynomial
Character \(\chi\) \(=\) 1224.1189
Dual form 1224.2.l.d.1189.17

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.40931 + 0.117654i) q^{2} +(1.97232 + 0.331622i) q^{4} -1.46472 q^{5} -3.26018i q^{7} +(2.74059 + 0.699408i) q^{8} +(-2.06424 - 0.172330i) q^{10} -0.312167 q^{11} -6.39254i q^{13} +(0.383572 - 4.59460i) q^{14} +(3.78005 + 1.30812i) q^{16} +(3.01195 + 2.81570i) q^{17} +2.24353i q^{19} +(-2.88888 - 0.485732i) q^{20} +(-0.439940 - 0.0367276i) q^{22} -7.34630i q^{23} -2.85460 q^{25} +(0.752107 - 9.00908i) q^{26} +(1.08115 - 6.43010i) q^{28} -5.39236 q^{29} -0.606910i q^{31} +(5.17337 + 2.28829i) q^{32} +(3.91349 + 4.32257i) q^{34} +4.77524i q^{35} +11.2816 q^{37} +(-0.263960 + 3.16184i) q^{38} +(-4.01419 - 1.02444i) q^{40} -5.36742i q^{41} -7.51199i q^{43} +(-0.615692 - 0.103521i) q^{44} +(0.864321 - 10.3532i) q^{46} +4.24122 q^{47} -3.62875 q^{49} +(-4.02302 - 0.335855i) q^{50} +(2.11991 - 12.6081i) q^{52} +8.91746i q^{53} +0.457236 q^{55} +(2.28019 - 8.93480i) q^{56} +(-7.59952 - 0.634432i) q^{58} -5.15579i q^{59} +6.41607 q^{61} +(0.0714053 - 0.855325i) q^{62} +(7.02166 + 3.83358i) q^{64} +9.36327i q^{65} +11.8427i q^{67} +(5.00676 + 6.55228i) q^{68} +(-0.561825 + 6.72979i) q^{70} +6.62295i q^{71} +4.81332i q^{73} +(15.8993 + 1.32733i) q^{74} +(-0.744004 + 4.42496i) q^{76} +1.01772i q^{77} +11.5068i q^{79} +(-5.53671 - 1.91603i) q^{80} +(0.631497 - 7.56436i) q^{82} -13.3845i q^{83} +(-4.41165 - 4.12421i) q^{85} +(0.883814 - 10.5867i) q^{86} +(-0.855521 - 0.218332i) q^{88} -9.54739 q^{89} -20.8408 q^{91} +(2.43619 - 14.4892i) q^{92} +(5.97720 + 0.498996i) q^{94} -3.28614i q^{95} +13.0210i q^{97} +(-5.11404 - 0.426936i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q + 2 q^{4} + 4 q^{5} - 8 q^{10} + 6 q^{14} + 10 q^{16} + 2 q^{17} + 2 q^{20} + 2 q^{22} + 22 q^{25} - 2 q^{26} - 10 q^{28} - 12 q^{29} + 6 q^{34} - 16 q^{37} + 34 q^{38} - 10 q^{40} - 12 q^{44} + 32 q^{46}+ \cdots + 60 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1224\mathbb{Z}\right)^\times\).

\(n\) \(137\) \(613\) \(649\) \(919\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.40931 + 0.117654i 0.996533 + 0.0831938i
\(3\) 0 0
\(4\) 1.97232 + 0.331622i 0.986158 + 0.165811i
\(5\) −1.46472 −0.655041 −0.327521 0.944844i \(-0.606213\pi\)
−0.327521 + 0.944844i \(0.606213\pi\)
\(6\) 0 0
\(7\) 3.26018i 1.23223i −0.787656 0.616115i \(-0.788705\pi\)
0.787656 0.616115i \(-0.211295\pi\)
\(8\) 2.74059 + 0.699408i 0.968945 + 0.247278i
\(9\) 0 0
\(10\) −2.06424 0.172330i −0.652771 0.0544954i
\(11\) −0.312167 −0.0941219 −0.0470609 0.998892i \(-0.514985\pi\)
−0.0470609 + 0.998892i \(0.514985\pi\)
\(12\) 0 0
\(13\) 6.39254i 1.77297i −0.462755 0.886486i \(-0.653139\pi\)
0.462755 0.886486i \(-0.346861\pi\)
\(14\) 0.383572 4.59460i 0.102514 1.22796i
\(15\) 0 0
\(16\) 3.78005 + 1.30812i 0.945014 + 0.327031i
\(17\) 3.01195 + 2.81570i 0.730505 + 0.682908i
\(18\) 0 0
\(19\) 2.24353i 0.514702i 0.966318 + 0.257351i \(0.0828496\pi\)
−0.966318 + 0.257351i \(0.917150\pi\)
\(20\) −2.88888 0.485732i −0.645974 0.108613i
\(21\) 0 0
\(22\) −0.439940 0.0367276i −0.0937956 0.00783036i
\(23\) 7.34630i 1.53181i −0.642954 0.765905i \(-0.722291\pi\)
0.642954 0.765905i \(-0.277709\pi\)
\(24\) 0 0
\(25\) −2.85460 −0.570921
\(26\) 0.752107 9.00908i 0.147500 1.76683i
\(27\) 0 0
\(28\) 1.08115 6.43010i 0.204317 1.21517i
\(29\) −5.39236 −1.00134 −0.500668 0.865639i \(-0.666912\pi\)
−0.500668 + 0.865639i \(0.666912\pi\)
\(30\) 0 0
\(31\) 0.606910i 0.109004i −0.998514 0.0545021i \(-0.982643\pi\)
0.998514 0.0545021i \(-0.0173572\pi\)
\(32\) 5.17337 + 2.28829i 0.914531 + 0.404517i
\(33\) 0 0
\(34\) 3.91349 + 4.32257i 0.671159 + 0.741314i
\(35\) 4.77524i 0.807162i
\(36\) 0 0
\(37\) 11.2816 1.85469 0.927344 0.374211i \(-0.122086\pi\)
0.927344 + 0.374211i \(0.122086\pi\)
\(38\) −0.263960 + 3.16184i −0.0428200 + 0.512918i
\(39\) 0 0
\(40\) −4.01419 1.02444i −0.634699 0.161977i
\(41\) 5.36742i 0.838249i −0.907929 0.419125i \(-0.862337\pi\)
0.907929 0.419125i \(-0.137663\pi\)
\(42\) 0 0
\(43\) 7.51199i 1.14557i −0.819707 0.572784i \(-0.805863\pi\)
0.819707 0.572784i \(-0.194137\pi\)
\(44\) −0.615692 0.103521i −0.0928190 0.0156064i
\(45\) 0 0
\(46\) 0.864321 10.3532i 0.127437 1.52650i
\(47\) 4.24122 0.618646 0.309323 0.950957i \(-0.399898\pi\)
0.309323 + 0.950957i \(0.399898\pi\)
\(48\) 0 0
\(49\) −3.62875 −0.518393
\(50\) −4.02302 0.335855i −0.568942 0.0474971i
\(51\) 0 0
\(52\) 2.11991 12.6081i 0.293978 1.74843i
\(53\) 8.91746i 1.22491i 0.790507 + 0.612454i \(0.209817\pi\)
−0.790507 + 0.612454i \(0.790183\pi\)
\(54\) 0 0
\(55\) 0.457236 0.0616537
\(56\) 2.28019 8.93480i 0.304704 1.19396i
\(57\) 0 0
\(58\) −7.59952 0.634432i −0.997865 0.0833050i
\(59\) 5.15579i 0.671226i −0.942000 0.335613i \(-0.891057\pi\)
0.942000 0.335613i \(-0.108943\pi\)
\(60\) 0 0
\(61\) 6.41607 0.821493 0.410747 0.911750i \(-0.365268\pi\)
0.410747 + 0.911750i \(0.365268\pi\)
\(62\) 0.0714053 0.855325i 0.00906848 0.108626i
\(63\) 0 0
\(64\) 7.02166 + 3.83358i 0.877707 + 0.479198i
\(65\) 9.36327i 1.16137i
\(66\) 0 0
\(67\) 11.8427i 1.44682i 0.690421 + 0.723408i \(0.257425\pi\)
−0.690421 + 0.723408i \(0.742575\pi\)
\(68\) 5.00676 + 6.55228i 0.607159 + 0.794580i
\(69\) 0 0
\(70\) −0.561825 + 6.72979i −0.0671509 + 0.804364i
\(71\) 6.62295i 0.785999i 0.919539 + 0.393000i \(0.128563\pi\)
−0.919539 + 0.393000i \(0.871437\pi\)
\(72\) 0 0
\(73\) 4.81332i 0.563356i 0.959509 + 0.281678i \(0.0908910\pi\)
−0.959509 + 0.281678i \(0.909109\pi\)
\(74\) 15.8993 + 1.32733i 1.84826 + 0.154299i
\(75\) 0 0
\(76\) −0.744004 + 4.42496i −0.0853432 + 0.507577i
\(77\) 1.01772i 0.115980i
\(78\) 0 0
\(79\) 11.5068i 1.29461i 0.762230 + 0.647306i \(0.224104\pi\)
−0.762230 + 0.647306i \(0.775896\pi\)
\(80\) −5.53671 1.91603i −0.619023 0.214219i
\(81\) 0 0
\(82\) 0.631497 7.56436i 0.0697372 0.835344i
\(83\) 13.3845i 1.46914i −0.678535 0.734568i \(-0.737385\pi\)
0.678535 0.734568i \(-0.262615\pi\)
\(84\) 0 0
\(85\) −4.41165 4.12421i −0.478511 0.447333i
\(86\) 0.883814 10.5867i 0.0953041 1.14160i
\(87\) 0 0
\(88\) −0.855521 0.218332i −0.0911989 0.0232743i
\(89\) −9.54739 −1.01202 −0.506011 0.862527i \(-0.668880\pi\)
−0.506011 + 0.862527i \(0.668880\pi\)
\(90\) 0 0
\(91\) −20.8408 −2.18471
\(92\) 2.43619 14.4892i 0.253991 1.51061i
\(93\) 0 0
\(94\) 5.97720 + 0.498996i 0.616501 + 0.0514675i
\(95\) 3.28614i 0.337151i
\(96\) 0 0
\(97\) 13.0210i 1.32208i 0.750351 + 0.661040i \(0.229885\pi\)
−0.750351 + 0.661040i \(0.770115\pi\)
\(98\) −5.11404 0.426936i −0.516596 0.0431271i
\(99\) 0 0
\(100\) −5.63018 0.946648i −0.563018 0.0946648i
\(101\) 1.94347i 0.193383i −0.995314 0.0966913i \(-0.969174\pi\)
0.995314 0.0966913i \(-0.0308259\pi\)
\(102\) 0 0
\(103\) 6.97083 0.686856 0.343428 0.939179i \(-0.388412\pi\)
0.343428 + 0.939179i \(0.388412\pi\)
\(104\) 4.47100 17.5193i 0.438418 1.71791i
\(105\) 0 0
\(106\) −1.04917 + 12.5675i −0.101905 + 1.22066i
\(107\) 7.39946 0.715333 0.357667 0.933849i \(-0.383572\pi\)
0.357667 + 0.933849i \(0.383572\pi\)
\(108\) 0 0
\(109\) −10.6455 −1.01966 −0.509828 0.860277i \(-0.670291\pi\)
−0.509828 + 0.860277i \(0.670291\pi\)
\(110\) 0.644388 + 0.0537956i 0.0614400 + 0.00512921i
\(111\) 0 0
\(112\) 4.26472 12.3236i 0.402978 1.16447i
\(113\) 11.0887i 1.04313i 0.853211 + 0.521567i \(0.174652\pi\)
−0.853211 + 0.521567i \(0.825348\pi\)
\(114\) 0 0
\(115\) 10.7603i 1.00340i
\(116\) −10.6354 1.78822i −0.987476 0.166032i
\(117\) 0 0
\(118\) 0.606598 7.26611i 0.0558419 0.668899i
\(119\) 9.17968 9.81948i 0.841500 0.900150i
\(120\) 0 0
\(121\) −10.9026 −0.991141
\(122\) 9.04224 + 0.754875i 0.818646 + 0.0683432i
\(123\) 0 0
\(124\) 0.201265 1.19702i 0.0180741 0.107495i
\(125\) 11.5048 1.02902
\(126\) 0 0
\(127\) −16.9758 −1.50636 −0.753179 0.657816i \(-0.771480\pi\)
−0.753179 + 0.657816i \(0.771480\pi\)
\(128\) 9.44466 + 6.22883i 0.834798 + 0.550556i
\(129\) 0 0
\(130\) −1.10162 + 13.1958i −0.0966189 + 1.15734i
\(131\) 0.168506 0.0147225 0.00736123 0.999973i \(-0.497657\pi\)
0.00736123 + 0.999973i \(0.497657\pi\)
\(132\) 0 0
\(133\) 7.31432 0.634232
\(134\) −1.39334 + 16.6900i −0.120366 + 1.44180i
\(135\) 0 0
\(136\) 6.28519 + 9.82326i 0.538950 + 0.842338i
\(137\) −6.02753 −0.514966 −0.257483 0.966283i \(-0.582893\pi\)
−0.257483 + 0.966283i \(0.582893\pi\)
\(138\) 0 0
\(139\) 3.56380 0.302278 0.151139 0.988513i \(-0.451706\pi\)
0.151139 + 0.988513i \(0.451706\pi\)
\(140\) −1.58357 + 9.41827i −0.133836 + 0.795989i
\(141\) 0 0
\(142\) −0.779215 + 9.33379i −0.0653903 + 0.783274i
\(143\) 1.99554i 0.166875i
\(144\) 0 0
\(145\) 7.89829 0.655917
\(146\) −0.566305 + 6.78346i −0.0468677 + 0.561403i
\(147\) 0 0
\(148\) 22.2509 + 3.74123i 1.82901 + 0.307527i
\(149\) 5.50380i 0.450889i 0.974256 + 0.225444i \(0.0723834\pi\)
−0.974256 + 0.225444i \(0.927617\pi\)
\(150\) 0 0
\(151\) 0.619725 0.0504325 0.0252162 0.999682i \(-0.491973\pi\)
0.0252162 + 0.999682i \(0.491973\pi\)
\(152\) −1.56915 + 6.14860i −0.127275 + 0.498718i
\(153\) 0 0
\(154\) −0.119739 + 1.43428i −0.00964881 + 0.115578i
\(155\) 0.888952i 0.0714023i
\(156\) 0 0
\(157\) 18.7631i 1.49746i 0.662875 + 0.748730i \(0.269336\pi\)
−0.662875 + 0.748730i \(0.730664\pi\)
\(158\) −1.35381 + 16.2166i −0.107704 + 1.29012i
\(159\) 0 0
\(160\) −7.57752 3.35170i −0.599055 0.264975i
\(161\) −23.9502 −1.88754
\(162\) 0 0
\(163\) 15.9222 1.24712 0.623561 0.781775i \(-0.285685\pi\)
0.623561 + 0.781775i \(0.285685\pi\)
\(164\) 1.77995 10.5862i 0.138991 0.826646i
\(165\) 0 0
\(166\) 1.57473 18.8629i 0.122223 1.46404i
\(167\) 7.08898i 0.548561i −0.961650 0.274281i \(-0.911560\pi\)
0.961650 0.274281i \(-0.0884397\pi\)
\(168\) 0 0
\(169\) −27.8646 −2.14343
\(170\) −5.73216 6.33134i −0.439637 0.485591i
\(171\) 0 0
\(172\) 2.49114 14.8160i 0.189947 1.12971i
\(173\) −10.1123 −0.768827 −0.384414 0.923161i \(-0.625596\pi\)
−0.384414 + 0.923161i \(0.625596\pi\)
\(174\) 0 0
\(175\) 9.30651i 0.703506i
\(176\) −1.18001 0.408353i −0.0889464 0.0307808i
\(177\) 0 0
\(178\) −13.4552 1.12329i −1.00851 0.0841939i
\(179\) 2.38313i 0.178124i −0.996026 0.0890618i \(-0.971613\pi\)
0.996026 0.0890618i \(-0.0283869\pi\)
\(180\) 0 0
\(181\) −10.5481 −0.784038 −0.392019 0.919957i \(-0.628223\pi\)
−0.392019 + 0.919957i \(0.628223\pi\)
\(182\) −29.3712 2.45200i −2.17714 0.181754i
\(183\) 0 0
\(184\) 5.13807 20.1332i 0.378783 1.48424i
\(185\) −16.5244 −1.21490
\(186\) 0 0
\(187\) −0.940230 0.878969i −0.0687565 0.0642765i
\(188\) 8.36502 + 1.40648i 0.610082 + 0.102578i
\(189\) 0 0
\(190\) 0.386627 4.63120i 0.0280489 0.335982i
\(191\) 16.9179 1.22414 0.612069 0.790804i \(-0.290338\pi\)
0.612069 + 0.790804i \(0.290338\pi\)
\(192\) 0 0
\(193\) 3.08185i 0.221836i −0.993830 0.110918i \(-0.964621\pi\)
0.993830 0.110918i \(-0.0353791\pi\)
\(194\) −1.53197 + 18.3506i −0.109989 + 1.31750i
\(195\) 0 0
\(196\) −7.15704 1.20337i −0.511217 0.0859551i
\(197\) −22.7820 −1.62315 −0.811577 0.584246i \(-0.801390\pi\)
−0.811577 + 0.584246i \(0.801390\pi\)
\(198\) 0 0
\(199\) 14.9021i 1.05638i −0.849126 0.528190i \(-0.822871\pi\)
0.849126 0.528190i \(-0.177129\pi\)
\(200\) −7.82329 1.99653i −0.553190 0.141176i
\(201\) 0 0
\(202\) 0.228657 2.73895i 0.0160882 0.192712i
\(203\) 17.5801i 1.23388i
\(204\) 0 0
\(205\) 7.86175i 0.549088i
\(206\) 9.82407 + 0.820145i 0.684475 + 0.0571422i
\(207\) 0 0
\(208\) 8.36225 24.1642i 0.579817 1.67548i
\(209\) 0.700357i 0.0484447i
\(210\) 0 0
\(211\) 11.1308 0.766278 0.383139 0.923691i \(-0.374843\pi\)
0.383139 + 0.923691i \(0.374843\pi\)
\(212\) −2.95722 + 17.5880i −0.203103 + 1.20795i
\(213\) 0 0
\(214\) 10.4281 + 0.870575i 0.712853 + 0.0595113i
\(215\) 11.0029i 0.750394i
\(216\) 0 0
\(217\) −1.97863 −0.134318
\(218\) −15.0028 1.25249i −1.01612 0.0848290i
\(219\) 0 0
\(220\) 0.901814 + 0.151629i 0.0608003 + 0.0102229i
\(221\) 17.9995 19.2540i 1.21078 1.29516i
\(222\) 0 0
\(223\) −0.320676 −0.0214741 −0.0107370 0.999942i \(-0.503418\pi\)
−0.0107370 + 0.999942i \(0.503418\pi\)
\(224\) 7.46024 16.8661i 0.498458 1.12691i
\(225\) 0 0
\(226\) −1.30462 + 15.6274i −0.0867822 + 1.03952i
\(227\) 26.1137 1.73323 0.866613 0.498980i \(-0.166292\pi\)
0.866613 + 0.498980i \(0.166292\pi\)
\(228\) 0 0
\(229\) 14.6905i 0.970772i −0.874300 0.485386i \(-0.838679\pi\)
0.874300 0.485386i \(-0.161321\pi\)
\(230\) −1.26599 + 15.1645i −0.0834766 + 0.999921i
\(231\) 0 0
\(232\) −14.7782 3.77146i −0.970240 0.247609i
\(233\) 27.5228i 1.80308i 0.432694 + 0.901541i \(0.357563\pi\)
−0.432694 + 0.901541i \(0.642437\pi\)
\(234\) 0 0
\(235\) −6.21219 −0.405239
\(236\) 1.70977 10.1688i 0.111297 0.661935i
\(237\) 0 0
\(238\) 14.0923 12.7587i 0.913470 0.827022i
\(239\) −5.80155 −0.375271 −0.187636 0.982239i \(-0.560082\pi\)
−0.187636 + 0.982239i \(0.560082\pi\)
\(240\) 0 0
\(241\) 17.1627i 1.10554i 0.833333 + 0.552772i \(0.186430\pi\)
−0.833333 + 0.552772i \(0.813570\pi\)
\(242\) −15.3651 1.28273i −0.987705 0.0824568i
\(243\) 0 0
\(244\) 12.6545 + 2.12771i 0.810122 + 0.136212i
\(245\) 5.31509 0.339569
\(246\) 0 0
\(247\) 14.3419 0.912552
\(248\) 0.424478 1.66329i 0.0269544 0.105619i
\(249\) 0 0
\(250\) 16.2138 + 1.35358i 1.02545 + 0.0856079i
\(251\) 6.91981i 0.436774i −0.975862 0.218387i \(-0.929920\pi\)
0.975862 0.218387i \(-0.0700796\pi\)
\(252\) 0 0
\(253\) 2.29327i 0.144177i
\(254\) −23.9242 1.99727i −1.50114 0.125320i
\(255\) 0 0
\(256\) 12.5776 + 9.88957i 0.786101 + 0.618098i
\(257\) 0.288958 0.0180247 0.00901234 0.999959i \(-0.497131\pi\)
0.00901234 + 0.999959i \(0.497131\pi\)
\(258\) 0 0
\(259\) 36.7801i 2.28540i
\(260\) −3.10506 + 18.4673i −0.192568 + 1.14529i
\(261\) 0 0
\(262\) 0.237478 + 0.0198254i 0.0146714 + 0.00122482i
\(263\) 1.38062 0.0851326 0.0425663 0.999094i \(-0.486447\pi\)
0.0425663 + 0.999094i \(0.486447\pi\)
\(264\) 0 0
\(265\) 13.0616i 0.802365i
\(266\) 10.3081 + 0.860557i 0.632033 + 0.0527641i
\(267\) 0 0
\(268\) −3.92729 + 23.3575i −0.239898 + 1.42679i
\(269\) 17.5243 1.06847 0.534237 0.845335i \(-0.320599\pi\)
0.534237 + 0.845335i \(0.320599\pi\)
\(270\) 0 0
\(271\) 0.927991 0.0563715 0.0281857 0.999603i \(-0.491027\pi\)
0.0281857 + 0.999603i \(0.491027\pi\)
\(272\) 7.70204 + 14.5835i 0.467005 + 0.884255i
\(273\) 0 0
\(274\) −8.49466 0.709161i −0.513181 0.0428420i
\(275\) 0.891113 0.0537361
\(276\) 0 0
\(277\) 9.97435 0.599301 0.299650 0.954049i \(-0.403130\pi\)
0.299650 + 0.954049i \(0.403130\pi\)
\(278\) 5.02251 + 0.419295i 0.301230 + 0.0251476i
\(279\) 0 0
\(280\) −3.33984 + 13.0870i −0.199594 + 0.782096i
\(281\) 19.4670 1.16131 0.580653 0.814151i \(-0.302797\pi\)
0.580653 + 0.814151i \(0.302797\pi\)
\(282\) 0 0
\(283\) 2.02405 0.120317 0.0601587 0.998189i \(-0.480839\pi\)
0.0601587 + 0.998189i \(0.480839\pi\)
\(284\) −2.19631 + 13.0625i −0.130327 + 0.775119i
\(285\) 0 0
\(286\) −0.234783 + 2.81234i −0.0138830 + 0.166297i
\(287\) −17.4987 −1.03292
\(288\) 0 0
\(289\) 1.14366 + 16.9615i 0.0672742 + 0.997735i
\(290\) 11.1311 + 0.929264i 0.653643 + 0.0545682i
\(291\) 0 0
\(292\) −1.59620 + 9.49337i −0.0934105 + 0.555558i
\(293\) 1.29056i 0.0753952i −0.999289 0.0376976i \(-0.987998\pi\)
0.999289 0.0376976i \(-0.0120024\pi\)
\(294\) 0 0
\(295\) 7.55177i 0.439681i
\(296\) 30.9183 + 7.89046i 1.79709 + 0.458624i
\(297\) 0 0
\(298\) −0.647543 + 7.75657i −0.0375112 + 0.449326i
\(299\) −46.9616 −2.71586
\(300\) 0 0
\(301\) −24.4904 −1.41160
\(302\) 0.873385 + 0.0729130i 0.0502577 + 0.00419567i
\(303\) 0 0
\(304\) −2.93482 + 8.48068i −0.168324 + 0.486400i
\(305\) −9.39773 −0.538112
\(306\) 0 0
\(307\) 7.42682i 0.423871i −0.977284 0.211936i \(-0.932023\pi\)
0.977284 0.211936i \(-0.0679767\pi\)
\(308\) −0.337498 + 2.00726i −0.0192307 + 0.114374i
\(309\) 0 0
\(310\) −0.104589 + 1.25281i −0.00594023 + 0.0711548i
\(311\) 3.73279i 0.211667i −0.994384 0.105834i \(-0.966249\pi\)
0.994384 0.105834i \(-0.0337511\pi\)
\(312\) 0 0
\(313\) 1.09676i 0.0619925i −0.999520 0.0309963i \(-0.990132\pi\)
0.999520 0.0309963i \(-0.00986800\pi\)
\(314\) −2.20755 + 26.4431i −0.124579 + 1.49227i
\(315\) 0 0
\(316\) −3.81589 + 22.6950i −0.214661 + 1.27669i
\(317\) 19.9349 1.11965 0.559827 0.828610i \(-0.310868\pi\)
0.559827 + 0.828610i \(0.310868\pi\)
\(318\) 0 0
\(319\) 1.68332 0.0942477
\(320\) −10.2847 5.61511i −0.574934 0.313894i
\(321\) 0 0
\(322\) −33.7533 2.81784i −1.88100 0.157032i
\(323\) −6.31712 + 6.75741i −0.351494 + 0.375992i
\(324\) 0 0
\(325\) 18.2482i 1.01223i
\(326\) 22.4393 + 1.87331i 1.24280 + 0.103753i
\(327\) 0 0
\(328\) 3.75402 14.7099i 0.207281 0.812217i
\(329\) 13.8271i 0.762314i
\(330\) 0 0
\(331\) 26.9222i 1.47978i 0.672728 + 0.739890i \(0.265122\pi\)
−0.672728 + 0.739890i \(0.734878\pi\)
\(332\) 4.43858 26.3984i 0.243599 1.44880i
\(333\) 0 0
\(334\) 0.834045 9.99057i 0.0456369 0.546660i
\(335\) 17.3462i 0.947724i
\(336\) 0 0
\(337\) 12.2109i 0.665170i 0.943073 + 0.332585i \(0.107921\pi\)
−0.943073 + 0.332585i \(0.892079\pi\)
\(338\) −39.2699 3.27838i −2.13600 0.178320i
\(339\) 0 0
\(340\) −7.33349 9.59723i −0.397714 0.520483i
\(341\) 0.189457i 0.0102597i
\(342\) 0 0
\(343\) 10.9909i 0.593451i
\(344\) 5.25395 20.5873i 0.283274 1.10999i
\(345\) 0 0
\(346\) −14.2514 1.18976i −0.766162 0.0639617i
\(347\) −14.2507 −0.765018 −0.382509 0.923952i \(-0.624940\pi\)
−0.382509 + 0.923952i \(0.624940\pi\)
\(348\) 0 0
\(349\) 18.5830i 0.994725i 0.867543 + 0.497363i \(0.165698\pi\)
−0.867543 + 0.497363i \(0.834302\pi\)
\(350\) −1.09495 + 13.1158i −0.0585274 + 0.701067i
\(351\) 0 0
\(352\) −1.61495 0.714329i −0.0860773 0.0380739i
\(353\) 3.89576 0.207350 0.103675 0.994611i \(-0.466940\pi\)
0.103675 + 0.994611i \(0.466940\pi\)
\(354\) 0 0
\(355\) 9.70074i 0.514862i
\(356\) −18.8305 3.16612i −0.998012 0.167804i
\(357\) 0 0
\(358\) 0.280385 3.35857i 0.0148188 0.177506i
\(359\) −8.66787 −0.457472 −0.228736 0.973488i \(-0.573459\pi\)
−0.228736 + 0.973488i \(0.573459\pi\)
\(360\) 0 0
\(361\) 13.9666 0.735082
\(362\) −14.8656 1.24103i −0.781320 0.0652271i
\(363\) 0 0
\(364\) −41.1047 6.91127i −2.15447 0.362249i
\(365\) 7.05015i 0.369022i
\(366\) 0 0
\(367\) 32.3753i 1.68998i −0.534785 0.844988i \(-0.679608\pi\)
0.534785 0.844988i \(-0.320392\pi\)
\(368\) 9.60988 27.7694i 0.500950 1.44758i
\(369\) 0 0
\(370\) −23.2880 1.94416i −1.21069 0.101072i
\(371\) 29.0725 1.50937
\(372\) 0 0
\(373\) 11.7221i 0.606947i −0.952840 0.303473i \(-0.901854\pi\)
0.952840 0.303473i \(-0.0981464\pi\)
\(374\) −1.22166 1.34936i −0.0631707 0.0697738i
\(375\) 0 0
\(376\) 11.6234 + 2.96635i 0.599433 + 0.152978i
\(377\) 34.4709i 1.77534i
\(378\) 0 0
\(379\) 27.7442 1.42512 0.712562 0.701609i \(-0.247535\pi\)
0.712562 + 0.701609i \(0.247535\pi\)
\(380\) 1.08976 6.48131i 0.0559033 0.332484i
\(381\) 0 0
\(382\) 23.8426 + 1.99046i 1.21989 + 0.101841i
\(383\) 25.2288 1.28913 0.644566 0.764549i \(-0.277038\pi\)
0.644566 + 0.764549i \(0.277038\pi\)
\(384\) 0 0
\(385\) 1.49067i 0.0759716i
\(386\) 0.362591 4.34328i 0.0184554 0.221067i
\(387\) 0 0
\(388\) −4.31804 + 25.6815i −0.219215 + 1.30378i
\(389\) 26.3923i 1.33814i 0.743198 + 0.669072i \(0.233308\pi\)
−0.743198 + 0.669072i \(0.766692\pi\)
\(390\) 0 0
\(391\) 20.6850 22.1267i 1.04608 1.11899i
\(392\) −9.94491 2.53798i −0.502294 0.128187i
\(393\) 0 0
\(394\) −32.1070 2.68039i −1.61753 0.135036i
\(395\) 16.8542i 0.848025i
\(396\) 0 0
\(397\) −21.2037 −1.06418 −0.532091 0.846687i \(-0.678594\pi\)
−0.532091 + 0.846687i \(0.678594\pi\)
\(398\) 1.75329 21.0017i 0.0878843 1.05272i
\(399\) 0 0
\(400\) −10.7906 3.73418i −0.539528 0.186709i
\(401\) 7.21971i 0.360535i −0.983618 0.180268i \(-0.942304\pi\)
0.983618 0.180268i \(-0.0576964\pi\)
\(402\) 0 0
\(403\) −3.87970 −0.193262
\(404\) 0.644497 3.83314i 0.0320649 0.190706i
\(405\) 0 0
\(406\) −2.06836 + 24.7758i −0.102651 + 1.22960i
\(407\) −3.52175 −0.174567
\(408\) 0 0
\(409\) 24.5533 1.21408 0.607042 0.794670i \(-0.292356\pi\)
0.607042 + 0.794670i \(0.292356\pi\)
\(410\) −0.924964 + 11.0796i −0.0456807 + 0.547185i
\(411\) 0 0
\(412\) 13.7487 + 2.31168i 0.677349 + 0.113888i
\(413\) −16.8088 −0.827106
\(414\) 0 0
\(415\) 19.6045i 0.962345i
\(416\) 14.6280 33.0710i 0.717197 1.62144i
\(417\) 0 0
\(418\) 0.0823997 0.987021i 0.00403030 0.0482768i
\(419\) −39.0863 −1.90949 −0.954745 0.297426i \(-0.903872\pi\)
−0.954745 + 0.297426i \(0.903872\pi\)
\(420\) 0 0
\(421\) 9.66214i 0.470904i −0.971886 0.235452i \(-0.924343\pi\)
0.971886 0.235452i \(-0.0756570\pi\)
\(422\) 15.6868 + 1.30958i 0.763621 + 0.0637496i
\(423\) 0 0
\(424\) −6.23695 + 24.4391i −0.302893 + 1.18687i
\(425\) −8.59792 8.03771i −0.417060 0.389886i
\(426\) 0 0
\(427\) 20.9175i 1.01227i
\(428\) 14.5941 + 2.45382i 0.705431 + 0.118610i
\(429\) 0 0
\(430\) −1.29454 + 15.5066i −0.0624282 + 0.747793i
\(431\) 6.07054i 0.292408i −0.989254 0.146204i \(-0.953294\pi\)
0.989254 0.146204i \(-0.0467055\pi\)
\(432\) 0 0
\(433\) 20.5097 0.985634 0.492817 0.870133i \(-0.335967\pi\)
0.492817 + 0.870133i \(0.335967\pi\)
\(434\) −2.78851 0.232794i −0.133853 0.0111745i
\(435\) 0 0
\(436\) −20.9963 3.53028i −1.00554 0.169070i
\(437\) 16.4817 0.788426
\(438\) 0 0
\(439\) 7.36907i 0.351706i −0.984416 0.175853i \(-0.943732\pi\)
0.984416 0.175853i \(-0.0562684\pi\)
\(440\) 1.25310 + 0.319795i 0.0597390 + 0.0152456i
\(441\) 0 0
\(442\) 27.6322 25.0172i 1.31433 1.18995i
\(443\) 18.9079i 0.898342i 0.893446 + 0.449171i \(0.148281\pi\)
−0.893446 + 0.449171i \(0.851719\pi\)
\(444\) 0 0
\(445\) 13.9842 0.662916
\(446\) −0.451933 0.0377288i −0.0213996 0.00178651i
\(447\) 0 0
\(448\) 12.4982 22.8918i 0.590482 1.08154i
\(449\) 19.0187i 0.897550i 0.893645 + 0.448775i \(0.148139\pi\)
−0.893645 + 0.448775i \(0.851861\pi\)
\(450\) 0 0
\(451\) 1.67553i 0.0788976i
\(452\) −3.67724 + 21.8703i −0.172963 + 1.02869i
\(453\) 0 0
\(454\) 36.8023 + 3.07238i 1.72722 + 0.144194i
\(455\) 30.5259 1.43108
\(456\) 0 0
\(457\) −20.5126 −0.959539 −0.479769 0.877395i \(-0.659280\pi\)
−0.479769 + 0.877395i \(0.659280\pi\)
\(458\) 1.72839 20.7034i 0.0807623 0.967407i
\(459\) 0 0
\(460\) −3.56833 + 21.2226i −0.166374 + 0.989510i
\(461\) 8.07937i 0.376294i −0.982141 0.188147i \(-0.939752\pi\)
0.982141 0.188147i \(-0.0602481\pi\)
\(462\) 0 0
\(463\) 12.6813 0.589350 0.294675 0.955597i \(-0.404789\pi\)
0.294675 + 0.955597i \(0.404789\pi\)
\(464\) −20.3834 7.05388i −0.946277 0.327468i
\(465\) 0 0
\(466\) −3.23817 + 38.7883i −0.150005 + 1.79683i
\(467\) 32.1472i 1.48760i 0.668405 + 0.743798i \(0.266977\pi\)
−0.668405 + 0.743798i \(0.733023\pi\)
\(468\) 0 0
\(469\) 38.6093 1.78281
\(470\) −8.75491 0.730888i −0.403834 0.0337133i
\(471\) 0 0
\(472\) 3.60600 14.1299i 0.165980 0.650381i
\(473\) 2.34499i 0.107823i
\(474\) 0 0
\(475\) 6.40440i 0.293854i
\(476\) 21.3616 16.3229i 0.979106 0.748160i
\(477\) 0 0
\(478\) −8.17619 0.682574i −0.373970 0.0312202i
\(479\) 25.4835i 1.16437i −0.813056 0.582185i \(-0.802198\pi\)
0.813056 0.582185i \(-0.197802\pi\)
\(480\) 0 0
\(481\) 72.1183i 3.28831i
\(482\) −2.01925 + 24.1875i −0.0919744 + 1.10171i
\(483\) 0 0
\(484\) −21.5033 3.61552i −0.977421 0.164342i
\(485\) 19.0721i 0.866017i
\(486\) 0 0
\(487\) 3.09673i 0.140326i 0.997536 + 0.0701630i \(0.0223520\pi\)
−0.997536 + 0.0701630i \(0.977648\pi\)
\(488\) 17.5838 + 4.48745i 0.795982 + 0.203137i
\(489\) 0 0
\(490\) 7.49062 + 0.625341i 0.338392 + 0.0282500i
\(491\) 37.4349i 1.68941i 0.535231 + 0.844706i \(0.320225\pi\)
−0.535231 + 0.844706i \(0.679775\pi\)
\(492\) 0 0
\(493\) −16.2415 15.1833i −0.731481 0.683820i
\(494\) 20.2122 + 1.68738i 0.909389 + 0.0759187i
\(495\) 0 0
\(496\) 0.793914 2.29415i 0.0356478 0.103011i
\(497\) 21.5920 0.968532
\(498\) 0 0
\(499\) −19.7963 −0.886204 −0.443102 0.896471i \(-0.646122\pi\)
−0.443102 + 0.896471i \(0.646122\pi\)
\(500\) 22.6910 + 3.81523i 1.01477 + 0.170622i
\(501\) 0 0
\(502\) 0.814142 9.75216i 0.0363369 0.435260i
\(503\) 10.8162i 0.482268i −0.970492 0.241134i \(-0.922481\pi\)
0.970492 0.241134i \(-0.0775194\pi\)
\(504\) 0 0
\(505\) 2.84663i 0.126674i
\(506\) −0.269812 + 3.23193i −0.0119946 + 0.143677i
\(507\) 0 0
\(508\) −33.4816 5.62954i −1.48551 0.249770i
\(509\) 2.63717i 0.116890i 0.998291 + 0.0584452i \(0.0186143\pi\)
−0.998291 + 0.0584452i \(0.981386\pi\)
\(510\) 0 0
\(511\) 15.6923 0.694185
\(512\) 16.5622 + 15.4173i 0.731954 + 0.681354i
\(513\) 0 0
\(514\) 0.407231 + 0.0339970i 0.0179622 + 0.00149954i
\(515\) −10.2103 −0.449919
\(516\) 0 0
\(517\) −1.32397 −0.0582281
\(518\) 4.32732 51.8346i 0.190131 2.27748i
\(519\) 0 0
\(520\) −6.54875 + 25.6609i −0.287182 + 1.12530i
\(521\) 38.5194i 1.68757i −0.536684 0.843783i \(-0.680323\pi\)
0.536684 0.843783i \(-0.319677\pi\)
\(522\) 0 0
\(523\) 0.305975i 0.0133793i −0.999978 0.00668967i \(-0.997871\pi\)
0.999978 0.00668967i \(-0.00212940\pi\)
\(524\) 0.332347 + 0.0558803i 0.0145187 + 0.00244114i
\(525\) 0 0
\(526\) 1.94572 + 0.162435i 0.0848375 + 0.00708250i
\(527\) 1.70888 1.82798i 0.0744399 0.0796281i
\(528\) 0 0
\(529\) −30.9682 −1.34644
\(530\) 1.53674 18.4078i 0.0667518 0.799584i
\(531\) 0 0
\(532\) 14.4261 + 2.42559i 0.625452 + 0.105162i
\(533\) −34.3114 −1.48619
\(534\) 0 0
\(535\) −10.8381 −0.468573
\(536\) −8.28288 + 32.4560i −0.357766 + 1.40188i
\(537\) 0 0
\(538\) 24.6972 + 2.06180i 1.06477 + 0.0888905i
\(539\) 1.13278 0.0487921
\(540\) 0 0
\(541\) 1.50556 0.0647292 0.0323646 0.999476i \(-0.489696\pi\)
0.0323646 + 0.999476i \(0.489696\pi\)
\(542\) 1.30783 + 0.109182i 0.0561760 + 0.00468976i
\(543\) 0 0
\(544\) 9.13876 + 21.4589i 0.391821 + 0.920041i
\(545\) 15.5927 0.667916
\(546\) 0 0
\(547\) −3.68763 −0.157672 −0.0788358 0.996888i \(-0.525120\pi\)
−0.0788358 + 0.996888i \(0.525120\pi\)
\(548\) −11.8882 1.99886i −0.507838 0.0853870i
\(549\) 0 0
\(550\) 1.25585 + 0.104843i 0.0535498 + 0.00447051i
\(551\) 12.0979i 0.515390i
\(552\) 0 0
\(553\) 37.5141 1.59526
\(554\) 14.0570 + 1.17352i 0.597223 + 0.0498581i
\(555\) 0 0
\(556\) 7.02894 + 1.18183i 0.298094 + 0.0501209i
\(557\) 29.3032i 1.24162i −0.783962 0.620809i \(-0.786804\pi\)
0.783962 0.620809i \(-0.213196\pi\)
\(558\) 0 0
\(559\) −48.0207 −2.03106
\(560\) −6.24661 + 18.0507i −0.263967 + 0.762779i
\(561\) 0 0
\(562\) 27.4351 + 2.29037i 1.15728 + 0.0966135i
\(563\) 27.2285i 1.14754i −0.819015 0.573772i \(-0.805480\pi\)
0.819015 0.573772i \(-0.194520\pi\)
\(564\) 0 0
\(565\) 16.2417i 0.683296i
\(566\) 2.85252 + 0.238138i 0.119900 + 0.0100097i
\(567\) 0 0
\(568\) −4.63214 + 18.1508i −0.194360 + 0.761589i
\(569\) −8.50233 −0.356436 −0.178218 0.983991i \(-0.557033\pi\)
−0.178218 + 0.983991i \(0.557033\pi\)
\(570\) 0 0
\(571\) 3.89571 0.163030 0.0815151 0.996672i \(-0.474024\pi\)
0.0815151 + 0.996672i \(0.474024\pi\)
\(572\) −0.661764 + 3.93584i −0.0276698 + 0.164566i
\(573\) 0 0
\(574\) −24.6611 2.05879i −1.02934 0.0859323i
\(575\) 20.9708i 0.874542i
\(576\) 0 0
\(577\) 3.69131 0.153671 0.0768355 0.997044i \(-0.475518\pi\)
0.0768355 + 0.997044i \(0.475518\pi\)
\(578\) −0.383810 + 24.0386i −0.0159644 + 0.999873i
\(579\) 0 0
\(580\) 15.5779 + 2.61924i 0.646837 + 0.108758i
\(581\) −43.6357 −1.81032
\(582\) 0 0
\(583\) 2.78374i 0.115291i
\(584\) −3.36647 + 13.1913i −0.139306 + 0.545861i
\(585\) 0 0
\(586\) 0.151839 1.81880i 0.00627241 0.0751338i
\(587\) 18.6727i 0.770704i −0.922770 0.385352i \(-0.874080\pi\)
0.922770 0.385352i \(-0.125920\pi\)
\(588\) 0 0
\(589\) 1.36162 0.0561047
\(590\) −0.888495 + 10.6428i −0.0365787 + 0.438157i
\(591\) 0 0
\(592\) 42.6451 + 14.7578i 1.75270 + 0.606541i
\(593\) −18.0541 −0.741393 −0.370697 0.928754i \(-0.620881\pi\)
−0.370697 + 0.928754i \(0.620881\pi\)
\(594\) 0 0
\(595\) −13.4456 + 14.3828i −0.551217 + 0.589636i
\(596\) −1.82518 + 10.8552i −0.0747623 + 0.444648i
\(597\) 0 0
\(598\) −66.1835 5.52521i −2.70644 0.225943i
\(599\) 43.6498 1.78348 0.891741 0.452546i \(-0.149484\pi\)
0.891741 + 0.452546i \(0.149484\pi\)
\(600\) 0 0
\(601\) 10.1680i 0.414760i −0.978260 0.207380i \(-0.933506\pi\)
0.978260 0.207380i \(-0.0664937\pi\)
\(602\) −34.5146 2.88139i −1.40671 0.117437i
\(603\) 0 0
\(604\) 1.22229 + 0.205514i 0.0497344 + 0.00836225i
\(605\) 15.9692 0.649239
\(606\) 0 0
\(607\) 10.9378i 0.443952i 0.975052 + 0.221976i \(0.0712506\pi\)
−0.975052 + 0.221976i \(0.928749\pi\)
\(608\) −5.13386 + 11.6066i −0.208206 + 0.470711i
\(609\) 0 0
\(610\) −13.2443 1.10568i −0.536247 0.0447676i
\(611\) 27.1122i 1.09684i
\(612\) 0 0
\(613\) 35.0085i 1.41398i −0.707224 0.706990i \(-0.750053\pi\)
0.707224 0.706990i \(-0.249947\pi\)
\(614\) 0.873794 10.4667i 0.0352635 0.422402i
\(615\) 0 0
\(616\) −0.711801 + 2.78915i −0.0286793 + 0.112378i
\(617\) 24.5518i 0.988419i −0.869343 0.494209i \(-0.835458\pi\)
0.869343 0.494209i \(-0.164542\pi\)
\(618\) 0 0
\(619\) 37.2040 1.49536 0.747678 0.664061i \(-0.231168\pi\)
0.747678 + 0.664061i \(0.231168\pi\)
\(620\) −0.294796 + 1.75329i −0.0118393 + 0.0704139i
\(621\) 0 0
\(622\) 0.439177 5.26067i 0.0176094 0.210933i
\(623\) 31.1262i 1.24704i
\(624\) 0 0
\(625\) −2.57822 −0.103129
\(626\) 0.129038 1.54568i 0.00515740 0.0617776i
\(627\) 0 0
\(628\) −6.22226 + 37.0068i −0.248295 + 1.47673i
\(629\) 33.9797 + 31.7657i 1.35486 + 1.26658i
\(630\) 0 0
\(631\) 12.3656 0.492266 0.246133 0.969236i \(-0.420840\pi\)
0.246133 + 0.969236i \(0.420840\pi\)
\(632\) −8.04793 + 31.5353i −0.320129 + 1.25441i
\(633\) 0 0
\(634\) 28.0944 + 2.34541i 1.11577 + 0.0931483i
\(635\) 24.8647 0.986726
\(636\) 0 0
\(637\) 23.1969i 0.919096i
\(638\) 2.37232 + 0.198049i 0.0939209 + 0.00784082i
\(639\) 0 0
\(640\) −13.8338 9.12348i −0.546827 0.360637i
\(641\) 37.6527i 1.48719i −0.668629 0.743596i \(-0.733118\pi\)
0.668629 0.743596i \(-0.266882\pi\)
\(642\) 0 0
\(643\) −29.1814 −1.15080 −0.575400 0.817872i \(-0.695154\pi\)
−0.575400 + 0.817872i \(0.695154\pi\)
\(644\) −47.2374 7.94242i −1.86142 0.312975i
\(645\) 0 0
\(646\) −9.69782 + 8.78005i −0.381556 + 0.345447i
\(647\) −32.6928 −1.28529 −0.642643 0.766166i \(-0.722162\pi\)
−0.642643 + 0.766166i \(0.722162\pi\)
\(648\) 0 0
\(649\) 1.60947i 0.0631771i
\(650\) −2.14697 + 25.7174i −0.0842110 + 1.00872i
\(651\) 0 0
\(652\) 31.4036 + 5.28014i 1.22986 + 0.206786i
\(653\) 5.75472 0.225200 0.112600 0.993640i \(-0.464082\pi\)
0.112600 + 0.993640i \(0.464082\pi\)
\(654\) 0 0
\(655\) −0.246814 −0.00964382
\(656\) 7.02125 20.2891i 0.274134 0.792157i
\(657\) 0 0
\(658\) 1.62681 19.4867i 0.0634198 0.759672i
\(659\) 16.3764i 0.637933i 0.947766 + 0.318966i \(0.103336\pi\)
−0.947766 + 0.318966i \(0.896664\pi\)
\(660\) 0 0
\(661\) 26.9352i 1.04766i 0.851823 + 0.523829i \(0.175497\pi\)
−0.851823 + 0.523829i \(0.824503\pi\)
\(662\) −3.16750 + 37.9418i −0.123108 + 1.47465i
\(663\) 0 0
\(664\) 9.36121 36.6813i 0.363285 1.42351i
\(665\) −10.7134 −0.415448
\(666\) 0 0
\(667\) 39.6139i 1.53386i
\(668\) 2.35086 13.9817i 0.0909574 0.540968i
\(669\) 0 0
\(670\) 2.04085 24.4462i 0.0788448 0.944439i
\(671\) −2.00288 −0.0773205
\(672\) 0 0
\(673\) 48.5604i 1.87187i 0.352179 + 0.935933i \(0.385441\pi\)
−0.352179 + 0.935933i \(0.614559\pi\)
\(674\) −1.43666 + 17.2089i −0.0553380 + 0.662864i
\(675\) 0 0
\(676\) −54.9578 9.24051i −2.11376 0.355404i
\(677\) −18.4217 −0.708002 −0.354001 0.935245i \(-0.615179\pi\)
−0.354001 + 0.935245i \(0.615179\pi\)
\(678\) 0 0
\(679\) 42.4507 1.62911
\(680\) −9.20602 14.3883i −0.353035 0.551766i
\(681\) 0 0
\(682\) −0.0222904 + 0.267004i −0.000853542 + 0.0102241i
\(683\) 35.1819 1.34620 0.673099 0.739552i \(-0.264963\pi\)
0.673099 + 0.739552i \(0.264963\pi\)
\(684\) 0 0
\(685\) 8.82862 0.337324
\(686\) 1.29312 15.4896i 0.0493715 0.591394i
\(687\) 0 0
\(688\) 9.82662 28.3957i 0.374636 1.08258i
\(689\) 57.0052 2.17173
\(690\) 0 0
\(691\) 16.9759 0.645792 0.322896 0.946434i \(-0.395344\pi\)
0.322896 + 0.946434i \(0.395344\pi\)
\(692\) −19.9447 3.35347i −0.758185 0.127480i
\(693\) 0 0
\(694\) −20.0837 1.67665i −0.762366 0.0636447i
\(695\) −5.21996 −0.198004
\(696\) 0 0
\(697\) 15.1130 16.1664i 0.572447 0.612345i
\(698\) −2.18636 + 26.1892i −0.0827550 + 0.991277i
\(699\) 0 0
\(700\) −3.08624 + 18.3554i −0.116649 + 0.693768i
\(701\) 25.1119i 0.948462i 0.880400 + 0.474231i \(0.157274\pi\)
−0.880400 + 0.474231i \(0.842726\pi\)
\(702\) 0 0
\(703\) 25.3107i 0.954611i
\(704\) −2.19193 1.19672i −0.0826114 0.0451030i
\(705\) 0 0
\(706\) 5.49033 + 0.458351i 0.206631 + 0.0172503i
\(707\) −6.33606 −0.238292
\(708\) 0 0
\(709\) −32.3694 −1.21566 −0.607830 0.794067i \(-0.707960\pi\)
−0.607830 + 0.794067i \(0.707960\pi\)
\(710\) 1.14133 13.6714i 0.0428333 0.513077i
\(711\) 0 0
\(712\) −26.1655 6.67752i −0.980592 0.250251i
\(713\) −4.45855 −0.166974
\(714\) 0 0
\(715\) 2.92290i 0.109310i
\(716\) 0.790298 4.70029i 0.0295348 0.175658i
\(717\) 0 0
\(718\) −12.2157 1.01981i −0.455887 0.0380589i
\(719\) 14.6515i 0.546410i 0.961956 + 0.273205i \(0.0880838\pi\)
−0.961956 + 0.273205i \(0.911916\pi\)
\(720\) 0 0
\(721\) 22.7261i 0.846366i
\(722\) 19.6832 + 1.64322i 0.732534 + 0.0611543i
\(723\) 0 0
\(724\) −20.8043 3.49799i −0.773185 0.130002i
\(725\) 15.3931 0.571684
\(726\) 0 0
\(727\) 5.77315 0.214114 0.107057 0.994253i \(-0.465857\pi\)
0.107057 + 0.994253i \(0.465857\pi\)
\(728\) −57.1161 14.5762i −2.11686 0.540232i
\(729\) 0 0
\(730\) 0.829477 9.93585i 0.0307003 0.367742i
\(731\) 21.1515 22.6257i 0.782317 0.836842i
\(732\) 0 0
\(733\) 9.97415i 0.368403i 0.982888 + 0.184202i \(0.0589700\pi\)
−0.982888 + 0.184202i \(0.941030\pi\)
\(734\) 3.80907 45.6268i 0.140596 1.68412i
\(735\) 0 0
\(736\) 16.8105 38.0051i 0.619643 1.40089i
\(737\) 3.69690i 0.136177i
\(738\) 0 0
\(739\) 31.2897i 1.15101i −0.817798 0.575506i \(-0.804805\pi\)
0.817798 0.575506i \(-0.195195\pi\)
\(740\) −32.5913 5.47984i −1.19808 0.201443i
\(741\) 0 0
\(742\) 40.9722 + 3.42049i 1.50414 + 0.125570i
\(743\) 0.432434i 0.0158645i −0.999969 0.00793223i \(-0.997475\pi\)
0.999969 0.00793223i \(-0.00252493\pi\)
\(744\) 0 0
\(745\) 8.06151i 0.295351i
\(746\) 1.37915 16.5201i 0.0504942 0.604843i
\(747\) 0 0
\(748\) −1.56295 2.04540i −0.0571470 0.0747874i
\(749\) 24.1236i 0.881455i
\(750\) 0 0
\(751\) 44.0064i 1.60582i −0.596103 0.802908i \(-0.703285\pi\)
0.596103 0.802908i \(-0.296715\pi\)
\(752\) 16.0320 + 5.54805i 0.584628 + 0.202316i
\(753\) 0 0
\(754\) −4.05563 + 48.5802i −0.147697 + 1.76919i
\(755\) −0.907721 −0.0330354
\(756\) 0 0
\(757\) 48.4044i 1.75929i −0.475634 0.879643i \(-0.657781\pi\)
0.475634 0.879643i \(-0.342219\pi\)
\(758\) 39.1002 + 3.26421i 1.42018 + 0.118562i
\(759\) 0 0
\(760\) 2.29836 9.00597i 0.0833701 0.326681i
\(761\) 37.9787 1.37673 0.688363 0.725366i \(-0.258329\pi\)
0.688363 + 0.725366i \(0.258329\pi\)
\(762\) 0 0
\(763\) 34.7062i 1.25645i
\(764\) 33.3675 + 5.61035i 1.20719 + 0.202975i
\(765\) 0 0
\(766\) 35.5552 + 2.96826i 1.28466 + 0.107248i
\(767\) −32.9586 −1.19007
\(768\) 0 0
\(769\) −3.04684 −0.109872 −0.0549358 0.998490i \(-0.517495\pi\)
−0.0549358 + 0.998490i \(0.517495\pi\)
\(770\) 0.175383 2.10082i 0.00632037 0.0757083i
\(771\) 0 0
\(772\) 1.02201 6.07837i 0.0367828 0.218765i
\(773\) 21.3814i 0.769036i 0.923118 + 0.384518i \(0.125632\pi\)
−0.923118 + 0.384518i \(0.874368\pi\)
\(774\) 0 0
\(775\) 1.73249i 0.0622328i
\(776\) −9.10698 + 35.6851i −0.326922 + 1.28102i
\(777\) 0 0
\(778\) −3.10516 + 37.1950i −0.111325 + 1.33351i
\(779\) 12.0420 0.431449
\(780\) 0 0
\(781\) 2.06746i 0.0739797i
\(782\) 31.7549 28.7497i 1.13555 1.02809i
\(783\) 0 0
\(784\) −13.7169 4.74686i −0.489888 0.169531i
\(785\) 27.4827i 0.980899i
\(786\) 0 0
\(787\) −38.9140 −1.38713 −0.693567 0.720392i \(-0.743962\pi\)
−0.693567 + 0.720392i \(0.743962\pi\)
\(788\) −44.9334 7.55502i −1.60069 0.269136i
\(789\) 0 0
\(790\) 1.98296 23.7528i 0.0705504 0.845085i
\(791\) 36.1510 1.28538
\(792\) 0 0
\(793\) 41.0150i 1.45649i
\(794\) −29.8826 2.49469i −1.06049 0.0885334i
\(795\) 0 0
\(796\) 4.94185 29.3916i 0.175159 1.04176i
\(797\) 18.6530i 0.660722i −0.943855 0.330361i \(-0.892829\pi\)
0.943855 0.330361i \(-0.107171\pi\)
\(798\) 0 0
\(799\) 12.7743 + 11.9420i 0.451924 + 0.422478i
\(800\) −14.7679 6.53217i −0.522124 0.230947i
\(801\) 0 0
\(802\) 0.849427 10.1748i 0.0299943 0.359285i
\(803\) 1.50256i 0.0530241i
\(804\) 0 0
\(805\) 35.0803 1.23642
\(806\) −5.46770 0.456461i −0.192592 0.0160782i
\(807\) 0 0
\(808\) 1.35928 5.32625i 0.0478193 0.187377i
\(809\) 32.7083i 1.14996i 0.818166 + 0.574982i \(0.194991\pi\)
−0.818166 + 0.574982i \(0.805009\pi\)
\(810\) 0 0
\(811\) −31.1576 −1.09409 −0.547045 0.837103i \(-0.684247\pi\)
−0.547045 + 0.837103i \(0.684247\pi\)
\(812\) −5.82993 + 34.6734i −0.204590 + 1.21680i
\(813\) 0 0
\(814\) −4.96324 0.414347i −0.173961 0.0145229i
\(815\) −23.3215 −0.816916
\(816\) 0 0
\(817\) 16.8534 0.589626
\(818\) 34.6033 + 2.88879i 1.20987 + 0.101004i
\(819\) 0 0
\(820\) −2.60713 + 15.5058i −0.0910448 + 0.541487i
\(821\) −28.5075 −0.994917 −0.497459 0.867488i \(-0.665733\pi\)
−0.497459 + 0.867488i \(0.665733\pi\)
\(822\) 0 0
\(823\) 23.6353i 0.823876i −0.911212 0.411938i \(-0.864852\pi\)
0.911212 0.411938i \(-0.135148\pi\)
\(824\) 19.1042 + 4.87546i 0.665526 + 0.169845i
\(825\) 0 0
\(826\) −23.6888 1.97762i −0.824239 0.0688101i
\(827\) −33.1756 −1.15363 −0.576814 0.816875i \(-0.695704\pi\)
−0.576814 + 0.816875i \(0.695704\pi\)
\(828\) 0 0
\(829\) 24.0031i 0.833662i 0.908984 + 0.416831i \(0.136859\pi\)
−0.908984 + 0.416831i \(0.863141\pi\)
\(830\) −2.30654 + 27.6288i −0.0800612 + 0.959009i
\(831\) 0 0
\(832\) 24.5063 44.8862i 0.849605 1.55615i
\(833\) −10.9296 10.2175i −0.378688 0.354014i
\(834\) 0 0
\(835\) 10.3833i 0.359330i
\(836\) 0.232254 1.38132i 0.00803266 0.0477741i
\(837\) 0 0
\(838\) −55.0847 4.59865i −1.90287 0.158858i
\(839\) 27.2563i 0.940993i 0.882402 + 0.470496i \(0.155925\pi\)
−0.882402 + 0.470496i \(0.844075\pi\)
\(840\) 0 0
\(841\) 0.0775701 0.00267483
\(842\) 1.13679 13.6170i 0.0391763 0.469271i
\(843\) 0 0
\(844\) 21.9535 + 3.69122i 0.755671 + 0.127057i
\(845\) 40.8138 1.40404
\(846\) 0 0
\(847\) 35.5442i 1.22131i
\(848\) −11.6651 + 33.7085i −0.400583 + 1.15755i
\(849\) 0 0
\(850\) −11.1715 12.3392i −0.383178 0.423231i
\(851\) 82.8782i 2.84103i
\(852\) 0 0
\(853\) 35.1320 1.20290 0.601449 0.798911i \(-0.294590\pi\)
0.601449 + 0.798911i \(0.294590\pi\)
\(854\) 2.46103 29.4793i 0.0842146 1.00876i
\(855\) 0 0
\(856\) 20.2789 + 5.17525i 0.693118 + 0.176886i
\(857\) 27.2840i 0.932005i −0.884783 0.466002i \(-0.845694\pi\)
0.884783 0.466002i \(-0.154306\pi\)
\(858\) 0 0
\(859\) 3.90819i 0.133346i −0.997775 0.0666728i \(-0.978762\pi\)
0.997775 0.0666728i \(-0.0212384\pi\)
\(860\) −3.64881 + 21.7013i −0.124423 + 0.740007i
\(861\) 0 0
\(862\) 0.714222 8.55528i 0.0243265 0.291394i
\(863\) −30.8940 −1.05164 −0.525821 0.850595i \(-0.676242\pi\)
−0.525821 + 0.850595i \(0.676242\pi\)
\(864\) 0 0
\(865\) 14.8117 0.503614
\(866\) 28.9046 + 2.41305i 0.982217 + 0.0819986i
\(867\) 0 0
\(868\) −3.90249 0.656158i −0.132459 0.0222714i
\(869\) 3.59203i 0.121851i
\(870\) 0 0
\(871\) 75.7049 2.56516
\(872\) −29.1750 7.44556i −0.987989 0.252139i
\(873\) 0 0
\(874\) 23.2278 + 1.93913i 0.785692 + 0.0655921i
\(875\) 37.5076i 1.26799i
\(876\) 0 0
\(877\) −17.7726 −0.600137 −0.300068 0.953918i \(-0.597010\pi\)
−0.300068 + 0.953918i \(0.597010\pi\)
\(878\) 0.866999 10.3853i 0.0292598 0.350487i
\(879\) 0 0
\(880\) 1.72838 + 0.598122i 0.0582636 + 0.0201627i
\(881\) 34.8223i 1.17319i −0.809879 0.586597i \(-0.800467\pi\)
0.809879 0.586597i \(-0.199533\pi\)
\(882\) 0 0
\(883\) 7.89791i 0.265786i 0.991130 + 0.132893i \(0.0424266\pi\)
−0.991130 + 0.132893i \(0.957573\pi\)
\(884\) 41.8857 32.0060i 1.40877 1.07648i
\(885\) 0 0
\(886\) −2.22459 + 26.6471i −0.0747365 + 0.895228i
\(887\) 21.4557i 0.720412i −0.932873 0.360206i \(-0.882706\pi\)
0.932873 0.360206i \(-0.117294\pi\)
\(888\) 0 0
\(889\) 55.3440i 1.85618i
\(890\) 19.7081 + 1.64530i 0.660618 + 0.0551505i
\(891\) 0 0
\(892\) −0.632475 0.106343i −0.0211768 0.00356063i
\(893\) 9.51532i 0.318418i
\(894\) 0 0
\(895\) 3.49061i 0.116678i
\(896\) 20.3071 30.7913i 0.678413 1.02866i
\(897\) 0 0
\(898\) −2.23763 + 26.8033i −0.0746706 + 0.894438i
\(899\) 3.27268i 0.109150i
\(900\) 0 0
\(901\) −25.1089 + 26.8589i −0.836499 + 0.894800i
\(902\) −0.197132 + 2.36134i −0.00656379 + 0.0786241i
\(903\) 0 0
\(904\) −7.75550 + 30.3895i −0.257944 + 1.01074i
\(905\) 15.4501 0.513577
\(906\) 0 0
\(907\) −46.9549 −1.55911 −0.779557 0.626332i \(-0.784556\pi\)
−0.779557 + 0.626332i \(0.784556\pi\)
\(908\) 51.5044 + 8.65987i 1.70923 + 0.287388i
\(909\) 0 0
\(910\) 43.0205 + 3.59149i 1.42612 + 0.119057i
\(911\) 20.5297i 0.680181i 0.940393 + 0.340090i \(0.110458\pi\)
−0.940393 + 0.340090i \(0.889542\pi\)
\(912\) 0 0
\(913\) 4.17819i 0.138278i
\(914\) −28.9086 2.41339i −0.956212 0.0798277i
\(915\) 0 0
\(916\) 4.87167 28.9742i 0.160965 0.957335i
\(917\) 0.549360i 0.0181415i
\(918\) 0 0
\(919\) −53.2755 −1.75740 −0.878698 0.477379i \(-0.841587\pi\)
−0.878698 + 0.477379i \(0.841587\pi\)
\(920\) −7.52581 + 29.4894i −0.248119 + 0.972238i
\(921\) 0 0
\(922\) 0.950569 11.3863i 0.0313053 0.374989i
\(923\) 42.3375 1.39355
\(924\) 0 0
\(925\) −32.2046 −1.05888
\(926\) 17.8719 + 1.49200i 0.587307 + 0.0490303i
\(927\) 0 0
\(928\) −27.8967 12.3393i −0.915753 0.405057i
\(929\) 40.7355i 1.33649i 0.743942 + 0.668244i \(0.232954\pi\)
−0.743942 + 0.668244i \(0.767046\pi\)
\(930\) 0 0
\(931\) 8.14122i 0.266818i
\(932\) −9.12717 + 54.2837i −0.298970 + 1.77812i
\(933\) 0 0
\(934\) −3.78224 + 45.3054i −0.123759 + 1.48244i
\(935\) 1.37717 + 1.28744i 0.0450383 + 0.0421038i
\(936\) 0 0
\(937\) −21.3186 −0.696449 −0.348225 0.937411i \(-0.613215\pi\)
−0.348225 + 0.937411i \(0.613215\pi\)
\(938\) 54.4125 + 4.54253i 1.77663 + 0.148319i
\(939\) 0 0
\(940\) −12.2524 2.06010i −0.399629 0.0671929i
\(941\) −27.9682 −0.911738 −0.455869 0.890047i \(-0.650671\pi\)
−0.455869 + 0.890047i \(0.650671\pi\)
\(942\) 0 0
\(943\) −39.4307 −1.28404
\(944\) 6.74441 19.4892i 0.219512 0.634318i
\(945\) 0 0
\(946\) −0.275898 + 3.30483i −0.00897020 + 0.107449i
\(947\) 50.2968 1.63443 0.817214 0.576335i \(-0.195518\pi\)
0.817214 + 0.576335i \(0.195518\pi\)
\(948\) 0 0
\(949\) 30.7693 0.998815
\(950\) 0.753502 9.02579i 0.0244468 0.292835i
\(951\) 0 0
\(952\) 32.0256 20.4908i 1.03795 0.664111i
\(953\) 15.4664 0.501006 0.250503 0.968116i \(-0.419404\pi\)
0.250503 + 0.968116i \(0.419404\pi\)
\(954\) 0 0
\(955\) −24.7800 −0.801861
\(956\) −11.4425 1.92392i −0.370076 0.0622240i
\(957\) 0 0
\(958\) 2.99823 35.9142i 0.0968684 1.16033i
\(959\) 19.6508i 0.634557i
\(960\) 0 0
\(961\) 30.6317 0.988118
\(962\) 8.48499 101.637i 0.273567 3.27691i
\(963\) 0 0
\(964\) −5.69151 + 33.8502i −0.183311 + 1.09024i
\(965\) 4.51403i 0.145312i
\(966\) 0 0
\(967\) −50.1822 −1.61375 −0.806876 0.590721i \(-0.798843\pi\)
−0.806876 + 0.590721i \(0.798843\pi\)
\(968\) −29.8794 7.62534i −0.960361 0.245088i
\(969\) 0 0
\(970\) 2.24390 26.8785i 0.0720473 0.863015i
\(971\) 30.8673i 0.990579i 0.868728 + 0.495290i \(0.164938\pi\)
−0.868728 + 0.495290i \(0.835062\pi\)
\(972\) 0 0
\(973\) 11.6186i 0.372476i
\(974\) −0.364342 + 4.36425i −0.0116743 + 0.139840i
\(975\) 0 0
\(976\) 24.2531 + 8.39302i 0.776322 + 0.268654i
\(977\) 31.1825 0.997617 0.498809 0.866712i \(-0.333771\pi\)
0.498809 + 0.866712i \(0.333771\pi\)
\(978\) 0 0
\(979\) 2.98038 0.0952533
\(980\) 10.4830 + 1.76260i 0.334868 + 0.0563042i
\(981\) 0 0
\(982\) −4.40435 + 52.7574i −0.140549 + 1.68356i
\(983\) 2.61279i 0.0833350i −0.999132 0.0416675i \(-0.986733\pi\)
0.999132 0.0416675i \(-0.0132670\pi\)
\(984\) 0 0
\(985\) 33.3693 1.06323
\(986\) −21.1030 23.3088i −0.672056 0.742305i
\(987\) 0 0
\(988\) 28.2867 + 4.75608i 0.899921 + 0.151311i
\(989\) −55.1853 −1.75479
\(990\) 0 0
\(991\) 35.6087i 1.13115i 0.824698 + 0.565573i \(0.191345\pi\)
−0.824698 + 0.565573i \(0.808655\pi\)
\(992\) 1.38879 3.13977i 0.0440941 0.0996877i
\(993\) 0 0
\(994\) 30.4298 + 2.54038i 0.965175 + 0.0805759i
\(995\) 21.8273i 0.691973i
\(996\) 0 0
\(997\) −4.13227 −0.130870 −0.0654351 0.997857i \(-0.520844\pi\)
−0.0654351 + 0.997857i \(0.520844\pi\)
\(998\) −27.8991 2.32911i −0.883132 0.0737267i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1224.2.l.d.1189.18 18
3.2 odd 2 408.2.l.b.373.1 yes 18
4.3 odd 2 4896.2.l.d.3025.6 18
8.3 odd 2 4896.2.l.c.3025.14 18
8.5 even 2 1224.2.l.c.1189.17 18
12.11 even 2 1632.2.l.a.1393.14 18
17.16 even 2 1224.2.l.c.1189.18 18
24.5 odd 2 408.2.l.a.373.2 yes 18
24.11 even 2 1632.2.l.b.1393.6 18
51.50 odd 2 408.2.l.a.373.1 18
68.67 odd 2 4896.2.l.c.3025.13 18
136.67 odd 2 4896.2.l.d.3025.5 18
136.101 even 2 inner 1224.2.l.d.1189.17 18
204.203 even 2 1632.2.l.b.1393.5 18
408.101 odd 2 408.2.l.b.373.2 yes 18
408.203 even 2 1632.2.l.a.1393.13 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
408.2.l.a.373.1 18 51.50 odd 2
408.2.l.a.373.2 yes 18 24.5 odd 2
408.2.l.b.373.1 yes 18 3.2 odd 2
408.2.l.b.373.2 yes 18 408.101 odd 2
1224.2.l.c.1189.17 18 8.5 even 2
1224.2.l.c.1189.18 18 17.16 even 2
1224.2.l.d.1189.17 18 136.101 even 2 inner
1224.2.l.d.1189.18 18 1.1 even 1 trivial
1632.2.l.a.1393.13 18 408.203 even 2
1632.2.l.a.1393.14 18 12.11 even 2
1632.2.l.b.1393.5 18 204.203 even 2
1632.2.l.b.1393.6 18 24.11 even 2
4896.2.l.c.3025.13 18 68.67 odd 2
4896.2.l.c.3025.14 18 8.3 odd 2
4896.2.l.d.3025.5 18 136.67 odd 2
4896.2.l.d.3025.6 18 4.3 odd 2