Properties

Label 490.2.l.a.423.3
Level $490$
Weight $2$
Character 490.423
Analytic conductor $3.913$
Analytic rank $0$
Dimension $16$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [490,2,Mod(117,490)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(490, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([3, 10]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("490.117");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 490 = 2 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 490.l (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.91266969904\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\Q(\zeta_{48})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - x^{8} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 70)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 423.3
Root \(0.608761 - 0.793353i\) of defining polynomial
Character \(\chi\) \(=\) 490.423
Dual form 490.2.l.a.117.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.965926 + 0.258819i) q^{2} +(-0.478235 - 1.78480i) q^{3} +(0.866025 + 0.500000i) q^{4} +(2.01088 - 0.977945i) q^{5} -1.84776i q^{6} +(0.707107 + 0.707107i) q^{8} +(-0.358719 + 0.207107i) q^{9} +(2.19547 - 0.424170i) q^{10} +(-1.41421 + 2.44949i) q^{11} +(0.478235 - 1.78480i) q^{12} +(4.23671 - 4.23671i) q^{13} +(-2.70711 - 3.12132i) q^{15} +(0.500000 + 0.866025i) q^{16} +(-5.04817 + 1.35265i) q^{17} +(-0.400100 + 0.107206i) q^{18} +(0.699709 + 1.21193i) q^{19} +(2.23044 + 0.158513i) q^{20} +(-2.00000 + 2.00000i) q^{22} +(0.151613 - 0.565826i) q^{23} +(0.923880 - 1.60021i) q^{24} +(3.08725 - 3.93305i) q^{25} +(5.18889 - 2.99581i) q^{26} +(-3.37849 - 3.37849i) q^{27} +0.828427i q^{29} +(-1.80701 - 3.71561i) q^{30} +(-1.32565 - 0.765367i) q^{31} +(0.258819 + 0.965926i) q^{32} +(5.04817 + 1.35265i) q^{33} -5.22625 q^{34} -0.414214 q^{36} +(-3.53225 - 0.946464i) q^{37} +(0.362196 + 1.35173i) q^{38} +(-9.58783 - 5.53553i) q^{39} +(2.11342 + 0.730392i) q^{40} +3.69552i q^{41} +(4.00000 + 4.00000i) q^{43} +(-2.44949 + 1.41421i) q^{44} +(-0.518801 + 0.767274i) q^{45} +(0.292893 - 0.507306i) q^{46} +(-0.396183 + 1.47858i) q^{47} +(1.30656 - 1.30656i) q^{48} +(4.00000 - 3.00000i) q^{50} +(4.82843 + 8.36308i) q^{51} +(5.78746 - 1.55075i) q^{52} +(11.2597 - 3.01702i) q^{53} +(-2.38896 - 4.13779i) q^{54} +(-0.448342 + 6.30864i) q^{55} +(1.82843 - 1.82843i) q^{57} +(-0.214413 + 0.800199i) q^{58} +(-4.61940 + 8.00103i) q^{59} +(-0.783763 - 4.05670i) q^{60} +(-5.57717 + 3.21998i) q^{61} +(-1.08239 - 1.08239i) q^{62} +1.00000i q^{64} +(4.37623 - 12.6628i) q^{65} +(4.52607 + 2.61313i) q^{66} +(3.83788 + 14.3232i) q^{67} +(-5.04817 - 1.35265i) q^{68} -1.08239 q^{69} -0.585786 q^{71} +(-0.400100 - 0.107206i) q^{72} +(-1.51676 - 5.66062i) q^{73} +(-3.16693 - 1.82843i) q^{74} +(-8.49614 - 3.62919i) q^{75} +1.39942i q^{76} +(-7.82843 - 7.82843i) q^{78} +(-4.39167 + 2.53553i) q^{79} +(1.85236 + 1.25250i) q^{80} +(-5.03553 + 8.72180i) q^{81} +(-0.956470 + 3.56960i) q^{82} +(-5.31911 + 5.31911i) q^{83} +(-8.82843 + 7.65685i) q^{85} +(2.82843 + 4.89898i) q^{86} +(1.47858 - 0.396183i) q^{87} +(-2.73205 + 0.732051i) q^{88} +(5.67459 + 9.82868i) q^{89} +(-0.699709 + 0.606854i) q^{90} +(0.414214 - 0.414214i) q^{92} +(-0.732051 + 2.73205i) q^{93} +(-0.765367 + 1.32565i) q^{94} +(2.59223 + 1.75277i) q^{95} +(1.60021 - 0.923880i) q^{96} +(4.59220 + 4.59220i) q^{97} -1.17157i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 32 q^{15} + 8 q^{16} - 8 q^{18} - 32 q^{22} + 8 q^{23} - 16 q^{30} + 16 q^{36} - 32 q^{37} + 64 q^{43} + 16 q^{46} + 64 q^{50} + 32 q^{51} + 32 q^{53} - 16 q^{57} + 16 q^{58} + 8 q^{60} - 8 q^{65}+ \cdots - 64 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/490\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(197\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.965926 + 0.258819i 0.683013 + 0.183013i
\(3\) −0.478235 1.78480i −0.276109 1.03045i −0.955094 0.296302i \(-0.904247\pi\)
0.678985 0.734152i \(-0.262420\pi\)
\(4\) 0.866025 + 0.500000i 0.433013 + 0.250000i
\(5\) 2.01088 0.977945i 0.899291 0.437350i
\(6\) 1.84776i 0.754344i
\(7\) 0 0
\(8\) 0.707107 + 0.707107i 0.250000 + 0.250000i
\(9\) −0.358719 + 0.207107i −0.119573 + 0.0690356i
\(10\) 2.19547 0.424170i 0.694268 0.134134i
\(11\) −1.41421 + 2.44949i −0.426401 + 0.738549i −0.996550 0.0829925i \(-0.973552\pi\)
0.570149 + 0.821541i \(0.306886\pi\)
\(12\) 0.478235 1.78480i 0.138055 0.515227i
\(13\) 4.23671 4.23671i 1.17505 1.17505i 0.194064 0.980989i \(-0.437833\pi\)
0.980989 0.194064i \(-0.0621670\pi\)
\(14\) 0 0
\(15\) −2.70711 3.12132i −0.698972 0.805921i
\(16\) 0.500000 + 0.866025i 0.125000 + 0.216506i
\(17\) −5.04817 + 1.35265i −1.22436 + 0.328067i −0.812382 0.583126i \(-0.801829\pi\)
−0.411980 + 0.911193i \(0.635163\pi\)
\(18\) −0.400100 + 0.107206i −0.0943044 + 0.0252688i
\(19\) 0.699709 + 1.21193i 0.160524 + 0.278036i 0.935057 0.354498i \(-0.115348\pi\)
−0.774533 + 0.632534i \(0.782015\pi\)
\(20\) 2.23044 + 0.158513i 0.498742 + 0.0354445i
\(21\) 0 0
\(22\) −2.00000 + 2.00000i −0.426401 + 0.426401i
\(23\) 0.151613 0.565826i 0.0316134 0.117983i −0.948316 0.317327i \(-0.897215\pi\)
0.979929 + 0.199344i \(0.0638813\pi\)
\(24\) 0.923880 1.60021i 0.188586 0.326641i
\(25\) 3.08725 3.93305i 0.617449 0.786611i
\(26\) 5.18889 2.99581i 1.01763 0.587527i
\(27\) −3.37849 3.37849i −0.650191 0.650191i
\(28\) 0 0
\(29\) 0.828427i 0.153835i 0.997037 + 0.0769175i \(0.0245078\pi\)
−0.997037 + 0.0769175i \(0.975492\pi\)
\(30\) −1.80701 3.71561i −0.329913 0.678375i
\(31\) −1.32565 0.765367i −0.238095 0.137464i 0.376206 0.926536i \(-0.377228\pi\)
−0.614301 + 0.789072i \(0.710562\pi\)
\(32\) 0.258819 + 0.965926i 0.0457532 + 0.170753i
\(33\) 5.04817 + 1.35265i 0.878774 + 0.235467i
\(34\) −5.22625 −0.896295
\(35\) 0 0
\(36\) −0.414214 −0.0690356
\(37\) −3.53225 0.946464i −0.580698 0.155598i −0.0434997 0.999053i \(-0.513851\pi\)
−0.537199 + 0.843456i \(0.680517\pi\)
\(38\) 0.362196 + 1.35173i 0.0587559 + 0.219280i
\(39\) −9.58783 5.53553i −1.53528 0.886395i
\(40\) 2.11342 + 0.730392i 0.334160 + 0.115485i
\(41\) 3.69552i 0.577143i 0.957458 + 0.288571i \(0.0931803\pi\)
−0.957458 + 0.288571i \(0.906820\pi\)
\(42\) 0 0
\(43\) 4.00000 + 4.00000i 0.609994 + 0.609994i 0.942944 0.332950i \(-0.108044\pi\)
−0.332950 + 0.942944i \(0.608044\pi\)
\(44\) −2.44949 + 1.41421i −0.369274 + 0.213201i
\(45\) −0.518801 + 0.767274i −0.0773383 + 0.114378i
\(46\) 0.292893 0.507306i 0.0431847 0.0747982i
\(47\) −0.396183 + 1.47858i −0.0577892 + 0.215672i −0.988782 0.149365i \(-0.952277\pi\)
0.930993 + 0.365037i \(0.118944\pi\)
\(48\) 1.30656 1.30656i 0.188586 0.188586i
\(49\) 0 0
\(50\) 4.00000 3.00000i 0.565685 0.424264i
\(51\) 4.82843 + 8.36308i 0.676115 + 1.17107i
\(52\) 5.78746 1.55075i 0.802576 0.215050i
\(53\) 11.2597 3.01702i 1.54663 0.414419i 0.618231 0.785997i \(-0.287850\pi\)
0.928402 + 0.371578i \(0.121183\pi\)
\(54\) −2.38896 4.13779i −0.325096 0.563082i
\(55\) −0.448342 + 6.30864i −0.0604544 + 0.850657i
\(56\) 0 0
\(57\) 1.82843 1.82843i 0.242181 0.242181i
\(58\) −0.214413 + 0.800199i −0.0281538 + 0.105071i
\(59\) −4.61940 + 8.00103i −0.601394 + 1.04165i 0.391216 + 0.920299i \(0.372055\pi\)
−0.992610 + 0.121347i \(0.961279\pi\)
\(60\) −0.783763 4.05670i −0.101183 0.523717i
\(61\) −5.57717 + 3.21998i −0.714083 + 0.412276i −0.812571 0.582862i \(-0.801933\pi\)
0.0984878 + 0.995138i \(0.468599\pi\)
\(62\) −1.08239 1.08239i −0.137464 0.137464i
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) 4.37623 12.6628i 0.542805 1.57062i
\(66\) 4.52607 + 2.61313i 0.557120 + 0.321654i
\(67\) 3.83788 + 14.3232i 0.468872 + 1.74985i 0.643724 + 0.765258i \(0.277389\pi\)
−0.174852 + 0.984595i \(0.555945\pi\)
\(68\) −5.04817 1.35265i −0.612181 0.164033i
\(69\) −1.08239 −0.130305
\(70\) 0 0
\(71\) −0.585786 −0.0695201 −0.0347600 0.999396i \(-0.511067\pi\)
−0.0347600 + 0.999396i \(0.511067\pi\)
\(72\) −0.400100 0.107206i −0.0471522 0.0126344i
\(73\) −1.51676 5.66062i −0.177523 0.662525i −0.996108 0.0881398i \(-0.971908\pi\)
0.818585 0.574385i \(-0.194759\pi\)
\(74\) −3.16693 1.82843i −0.368148 0.212550i
\(75\) −8.49614 3.62919i −0.981049 0.419062i
\(76\) 1.39942i 0.160524i
\(77\) 0 0
\(78\) −7.82843 7.82843i −0.886395 0.886395i
\(79\) −4.39167 + 2.53553i −0.494102 + 0.285270i −0.726275 0.687405i \(-0.758750\pi\)
0.232173 + 0.972675i \(0.425417\pi\)
\(80\) 1.85236 + 1.25250i 0.207101 + 0.140033i
\(81\) −5.03553 + 8.72180i −0.559504 + 0.969089i
\(82\) −0.956470 + 3.56960i −0.105624 + 0.394196i
\(83\) −5.31911 + 5.31911i −0.583848 + 0.583848i −0.935958 0.352111i \(-0.885464\pi\)
0.352111 + 0.935958i \(0.385464\pi\)
\(84\) 0 0
\(85\) −8.82843 + 7.65685i −0.957577 + 0.830502i
\(86\) 2.82843 + 4.89898i 0.304997 + 0.528271i
\(87\) 1.47858 0.396183i 0.158520 0.0424753i
\(88\) −2.73205 + 0.732051i −0.291238 + 0.0780369i
\(89\) 5.67459 + 9.82868i 0.601506 + 1.04184i 0.992593 + 0.121485i \(0.0387656\pi\)
−0.391088 + 0.920353i \(0.627901\pi\)
\(90\) −0.699709 + 0.606854i −0.0737558 + 0.0639680i
\(91\) 0 0
\(92\) 0.414214 0.414214i 0.0431847 0.0431847i
\(93\) −0.732051 + 2.73205i −0.0759101 + 0.283300i
\(94\) −0.765367 + 1.32565i −0.0789416 + 0.136731i
\(95\) 2.59223 + 1.75277i 0.265957 + 0.179830i
\(96\) 1.60021 0.923880i 0.163320 0.0942931i
\(97\) 4.59220 + 4.59220i 0.466267 + 0.466267i 0.900703 0.434436i \(-0.143052\pi\)
−0.434436 + 0.900703i \(0.643052\pi\)
\(98\) 0 0
\(99\) 1.17157i 0.117748i
\(100\) 4.64016 1.86250i 0.464016 0.186250i
\(101\) 2.37676 + 1.37222i 0.236496 + 0.136541i 0.613565 0.789644i \(-0.289735\pi\)
−0.377069 + 0.926185i \(0.623068\pi\)
\(102\) 2.49938 + 9.32780i 0.247475 + 0.923590i
\(103\) −13.6659 3.66178i −1.34655 0.360806i −0.487687 0.873019i \(-0.662159\pi\)
−0.858858 + 0.512213i \(0.828826\pi\)
\(104\) 5.99162 0.587527
\(105\) 0 0
\(106\) 11.6569 1.13221
\(107\) 4.99536 + 1.33850i 0.482919 + 0.129398i 0.492062 0.870560i \(-0.336243\pi\)
−0.00914234 + 0.999958i \(0.502910\pi\)
\(108\) −1.23661 4.61511i −0.118993 0.444089i
\(109\) −10.5154 6.07107i −1.00719 0.581503i −0.0968240 0.995302i \(-0.530868\pi\)
−0.910368 + 0.413799i \(0.864202\pi\)
\(110\) −2.06586 + 5.97764i −0.196972 + 0.569946i
\(111\) 6.75699i 0.641345i
\(112\) 0 0
\(113\) 1.17157 + 1.17157i 0.110212 + 0.110212i 0.760062 0.649850i \(-0.225168\pi\)
−0.649850 + 0.760062i \(0.725168\pi\)
\(114\) 2.23936 1.29289i 0.209735 0.121091i
\(115\) −0.248473 1.28608i −0.0231702 0.119927i
\(116\) −0.414214 + 0.717439i −0.0384588 + 0.0666125i
\(117\) −0.642340 + 2.39724i −0.0593843 + 0.221625i
\(118\) −6.53281 + 6.53281i −0.601394 + 0.601394i
\(119\) 0 0
\(120\) 0.292893 4.12132i 0.0267374 0.376223i
\(121\) 1.50000 + 2.59808i 0.136364 + 0.236189i
\(122\) −6.22052 + 1.66678i −0.563180 + 0.150904i
\(123\) 6.59575 1.76733i 0.594719 0.159355i
\(124\) −0.765367 1.32565i −0.0687320 0.119047i
\(125\) 2.36176 10.9280i 0.211242 0.977434i
\(126\) 0 0
\(127\) 3.58579 3.58579i 0.318187 0.318187i −0.529883 0.848071i \(-0.677764\pi\)
0.848071 + 0.529883i \(0.177764\pi\)
\(128\) −0.258819 + 0.965926i −0.0228766 + 0.0853766i
\(129\) 5.22625 9.05213i 0.460146 0.796996i
\(130\) 7.50449 11.0987i 0.658187 0.973417i
\(131\) −12.6879 + 7.32538i −1.10855 + 0.640021i −0.938453 0.345406i \(-0.887741\pi\)
−0.170096 + 0.985427i \(0.554408\pi\)
\(132\) 3.69552 + 3.69552i 0.321654 + 0.321654i
\(133\) 0 0
\(134\) 14.8284i 1.28098i
\(135\) −10.0977 3.48975i −0.869073 0.300350i
\(136\) −4.52607 2.61313i −0.388107 0.224074i
\(137\) −2.99100 11.1626i −0.255539 0.953683i −0.967790 0.251759i \(-0.918991\pi\)
0.712251 0.701924i \(-0.247676\pi\)
\(138\) −1.04551 0.280144i −0.0889998 0.0238474i
\(139\) 8.60474 0.729845 0.364922 0.931038i \(-0.381095\pi\)
0.364922 + 0.931038i \(0.381095\pi\)
\(140\) 0 0
\(141\) 2.82843 0.238197
\(142\) −0.565826 0.151613i −0.0474831 0.0127231i
\(143\) 4.38617 + 16.3694i 0.366790 + 1.36888i
\(144\) −0.358719 0.207107i −0.0298933 0.0172589i
\(145\) 0.810156 + 1.66586i 0.0672798 + 0.138343i
\(146\) 5.86030i 0.485002i
\(147\) 0 0
\(148\) −2.58579 2.58579i −0.212550 0.212550i
\(149\) −14.9941 + 8.65685i −1.22837 + 0.709197i −0.966688 0.255958i \(-0.917609\pi\)
−0.261678 + 0.965155i \(0.584276\pi\)
\(150\) −7.26734 5.70449i −0.593375 0.465769i
\(151\) 4.41421 7.64564i 0.359224 0.622194i −0.628608 0.777723i \(-0.716375\pi\)
0.987831 + 0.155529i \(0.0497082\pi\)
\(152\) −0.362196 + 1.35173i −0.0293780 + 0.109640i
\(153\) 1.53073 1.53073i 0.123752 0.123752i
\(154\) 0 0
\(155\) −3.41421 0.242641i −0.274236 0.0194894i
\(156\) −5.53553 9.58783i −0.443197 0.767640i
\(157\) 13.9722 3.74383i 1.11510 0.298790i 0.346201 0.938160i \(-0.387472\pi\)
0.768899 + 0.639370i \(0.220805\pi\)
\(158\) −4.89828 + 1.31249i −0.389686 + 0.104416i
\(159\) −10.7695 18.6534i −0.854079 1.47931i
\(160\) 1.46508 + 1.68925i 0.115824 + 0.133547i
\(161\) 0 0
\(162\) −7.12132 + 7.12132i −0.559504 + 0.559504i
\(163\) 4.99876 18.6556i 0.391533 1.46122i −0.436073 0.899911i \(-0.643631\pi\)
0.827606 0.561309i \(-0.189702\pi\)
\(164\) −1.84776 + 3.20041i −0.144286 + 0.249910i
\(165\) 11.4741 2.21682i 0.893255 0.172579i
\(166\) −6.51455 + 3.76118i −0.505627 + 0.291924i
\(167\) 1.71644 + 1.71644i 0.132822 + 0.132822i 0.770392 0.637570i \(-0.220060\pi\)
−0.637570 + 0.770392i \(0.720060\pi\)
\(168\) 0 0
\(169\) 22.8995i 1.76150i
\(170\) −10.5093 + 5.11099i −0.806030 + 0.391995i
\(171\) −0.501998 0.289829i −0.0383888 0.0221638i
\(172\) 1.46410 + 5.46410i 0.111637 + 0.416634i
\(173\) 18.1542 + 4.86440i 1.38024 + 0.369834i 0.871208 0.490914i \(-0.163337\pi\)
0.509031 + 0.860748i \(0.330004\pi\)
\(174\) 1.53073 0.116045
\(175\) 0 0
\(176\) −2.82843 −0.213201
\(177\) 16.4894 + 4.41832i 1.23942 + 0.332101i
\(178\) 2.93739 + 10.9625i 0.220166 + 0.821672i
\(179\) −11.8272 6.82843i −0.884005 0.510381i −0.0120283 0.999928i \(-0.503829\pi\)
−0.871977 + 0.489547i \(0.837162\pi\)
\(180\) −0.832932 + 0.405078i −0.0620831 + 0.0301927i
\(181\) 8.79045i 0.653389i −0.945130 0.326695i \(-0.894065\pi\)
0.945130 0.326695i \(-0.105935\pi\)
\(182\) 0 0
\(183\) 8.41421 + 8.41421i 0.621997 + 0.621997i
\(184\) 0.507306 0.292893i 0.0373991 0.0215924i
\(185\) −8.02851 + 1.55113i −0.590268 + 0.114041i
\(186\) −1.41421 + 2.44949i −0.103695 + 0.179605i
\(187\) 3.82588 14.2784i 0.279776 1.04414i
\(188\) −1.08239 + 1.08239i −0.0789416 + 0.0789416i
\(189\) 0 0
\(190\) 2.05025 + 2.36396i 0.148741 + 0.171500i
\(191\) −0.878680 1.52192i −0.0635790 0.110122i 0.832484 0.554049i \(-0.186918\pi\)
−0.896063 + 0.443927i \(0.853585\pi\)
\(192\) 1.78480 0.478235i 0.128807 0.0345137i
\(193\) −11.2597 + 3.01702i −0.810488 + 0.217170i −0.640184 0.768222i \(-0.721142\pi\)
−0.170304 + 0.985392i \(0.554475\pi\)
\(194\) 3.24718 + 5.62427i 0.233134 + 0.403799i
\(195\) −24.6934 1.75490i −1.76833 0.125671i
\(196\) 0 0
\(197\) 0.585786 0.585786i 0.0417356 0.0417356i −0.685931 0.727667i \(-0.740605\pi\)
0.727667 + 0.685931i \(0.240605\pi\)
\(198\) 0.303225 1.13165i 0.0215493 0.0804230i
\(199\) 14.0167 24.2776i 0.993618 1.72100i 0.399123 0.916897i \(-0.369315\pi\)
0.594495 0.804099i \(-0.297352\pi\)
\(200\) 4.96410 0.598076i 0.351015 0.0422904i
\(201\) 23.7285 13.6997i 1.67368 0.966301i
\(202\) 1.94061 + 1.94061i 0.136541 + 0.136541i
\(203\) 0 0
\(204\) 9.65685i 0.676115i
\(205\) 3.61401 + 7.43123i 0.252414 + 0.519020i
\(206\) −12.2525 7.07401i −0.853675 0.492870i
\(207\) 0.0628000 + 0.234373i 0.00436490 + 0.0162900i
\(208\) 5.78746 + 1.55075i 0.401288 + 0.107525i
\(209\) −3.95815 −0.273791
\(210\) 0 0
\(211\) −10.3431 −0.712052 −0.356026 0.934476i \(-0.615868\pi\)
−0.356026 + 0.934476i \(0.615868\pi\)
\(212\) 11.2597 + 3.01702i 0.773316 + 0.207210i
\(213\) 0.280144 + 1.04551i 0.0191951 + 0.0716372i
\(214\) 4.47871 + 2.58579i 0.306159 + 0.176761i
\(215\) 11.9553 + 4.13172i 0.815344 + 0.281781i
\(216\) 4.77791i 0.325096i
\(217\) 0 0
\(218\) −8.58579 8.58579i −0.581503 0.581503i
\(219\) −9.37769 + 5.41421i −0.633686 + 0.365859i
\(220\) −3.54260 + 5.23928i −0.238842 + 0.353232i
\(221\) −15.6569 + 27.1185i −1.05319 + 1.82419i
\(222\) −1.74884 + 6.52675i −0.117374 + 0.438047i
\(223\) −6.75699 + 6.75699i −0.452481 + 0.452481i −0.896177 0.443696i \(-0.853667\pi\)
0.443696 + 0.896177i \(0.353667\pi\)
\(224\) 0 0
\(225\) −0.292893 + 2.05025i −0.0195262 + 0.136684i
\(226\) 0.828427 + 1.43488i 0.0551062 + 0.0954467i
\(227\) −11.4481 + 3.06750i −0.759836 + 0.203597i −0.617876 0.786275i \(-0.712007\pi\)
−0.141959 + 0.989873i \(0.545340\pi\)
\(228\) 2.49768 0.669251i 0.165413 0.0443222i
\(229\) 3.85403 + 6.67538i 0.254682 + 0.441121i 0.964809 0.262952i \(-0.0846960\pi\)
−0.710127 + 0.704073i \(0.751363\pi\)
\(230\) 0.0928546 1.30656i 0.00612265 0.0861522i
\(231\) 0 0
\(232\) −0.585786 + 0.585786i −0.0384588 + 0.0384588i
\(233\) 1.09808 4.09808i 0.0719374 0.268474i −0.920584 0.390544i \(-0.872287\pi\)
0.992521 + 0.122071i \(0.0389534\pi\)
\(234\) −1.24090 + 2.14931i −0.0811205 + 0.140505i
\(235\) 0.649291 + 3.36068i 0.0423550 + 0.219226i
\(236\) −8.00103 + 4.61940i −0.520823 + 0.300697i
\(237\) 6.62567 + 6.62567i 0.430383 + 0.430383i
\(238\) 0 0
\(239\) 6.48528i 0.419498i 0.977755 + 0.209749i \(0.0672647\pi\)
−0.977755 + 0.209749i \(0.932735\pi\)
\(240\) 1.34959 3.90508i 0.0871156 0.252072i
\(241\) 5.85172 + 3.37849i 0.376942 + 0.217628i 0.676487 0.736454i \(-0.263501\pi\)
−0.299545 + 0.954082i \(0.596835\pi\)
\(242\) 0.776457 + 2.89778i 0.0499126 + 0.186276i
\(243\) 4.12950 + 1.10650i 0.264908 + 0.0709818i
\(244\) −6.43996 −0.412276
\(245\) 0 0
\(246\) 6.82843 0.435365
\(247\) 8.09907 + 2.17014i 0.515332 + 0.138083i
\(248\) −0.396183 1.47858i −0.0251576 0.0938896i
\(249\) 12.0373 + 6.94975i 0.762834 + 0.440422i
\(250\) 5.10967 9.94441i 0.323164 0.628940i
\(251\) 14.0936i 0.889582i −0.895634 0.444791i \(-0.853278\pi\)
0.895634 0.444791i \(-0.146722\pi\)
\(252\) 0 0
\(253\) 1.17157 + 1.17157i 0.0736562 + 0.0736562i
\(254\) 4.39167 2.53553i 0.275558 0.159094i
\(255\) 17.8880 + 12.0952i 1.12019 + 0.757430i
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 2.86941 10.7088i 0.178989 0.667996i −0.816849 0.576852i \(-0.804281\pi\)
0.995838 0.0911440i \(-0.0290524\pi\)
\(258\) 7.39104 7.39104i 0.460146 0.460146i
\(259\) 0 0
\(260\) 10.1213 8.77817i 0.627698 0.544399i
\(261\) −0.171573 0.297173i −0.0106201 0.0183945i
\(262\) −14.1515 + 3.79189i −0.874285 + 0.234264i
\(263\) 26.5203 7.10610i 1.63531 0.438181i 0.679864 0.733338i \(-0.262039\pi\)
0.955449 + 0.295158i \(0.0953722\pi\)
\(264\) 2.61313 + 4.52607i 0.160827 + 0.278560i
\(265\) 19.6913 17.0782i 1.20963 1.04910i
\(266\) 0 0
\(267\) 14.8284 14.8284i 0.907485 0.907485i
\(268\) −3.83788 + 14.3232i −0.234436 + 0.874926i
\(269\) −13.4483 + 23.2932i −0.819958 + 1.42021i 0.0857542 + 0.996316i \(0.472670\pi\)
−0.905712 + 0.423893i \(0.860663\pi\)
\(270\) −8.85043 5.98432i −0.538620 0.364194i
\(271\) 16.2295 9.37011i 0.985872 0.569194i 0.0818345 0.996646i \(-0.473922\pi\)
0.904038 + 0.427452i \(0.140589\pi\)
\(272\) −3.69552 3.69552i −0.224074 0.224074i
\(273\) 0 0
\(274\) 11.5563i 0.698145i
\(275\) 5.26795 + 13.1244i 0.317669 + 0.791428i
\(276\) −0.937379 0.541196i −0.0564236 0.0325762i
\(277\) −0.643238 2.40060i −0.0386484 0.144238i 0.943906 0.330216i \(-0.107121\pi\)
−0.982554 + 0.185978i \(0.940455\pi\)
\(278\) 8.31155 + 2.22707i 0.498493 + 0.133571i
\(279\) 0.634051 0.0379596
\(280\) 0 0
\(281\) −5.65685 −0.337460 −0.168730 0.985662i \(-0.553967\pi\)
−0.168730 + 0.985662i \(0.553967\pi\)
\(282\) 2.73205 + 0.732051i 0.162691 + 0.0435930i
\(283\) −1.15456 4.30888i −0.0686316 0.256137i 0.923082 0.384602i \(-0.125661\pi\)
−0.991714 + 0.128466i \(0.958995\pi\)
\(284\) −0.507306 0.292893i −0.0301031 0.0173800i
\(285\) 1.88864 5.46484i 0.111873 0.323709i
\(286\) 16.9469i 1.00209i
\(287\) 0 0
\(288\) −0.292893 0.292893i −0.0172589 0.0172589i
\(289\) 8.93193 5.15685i 0.525408 0.303344i
\(290\) 0.351394 + 1.81879i 0.0206345 + 0.106803i
\(291\) 6.00000 10.3923i 0.351726 0.609208i
\(292\) 1.51676 5.66062i 0.0887615 0.331263i
\(293\) 2.38896 2.38896i 0.139564 0.139564i −0.633873 0.773437i \(-0.718536\pi\)
0.773437 + 0.633873i \(0.218536\pi\)
\(294\) 0 0
\(295\) −1.46447 + 20.6066i −0.0852645 + 1.19976i
\(296\) −1.82843 3.16693i −0.106275 0.184074i
\(297\) 13.0535 3.49767i 0.757441 0.202956i
\(298\) −16.7238 + 4.48112i −0.968781 + 0.259584i
\(299\) −1.75490 3.03958i −0.101489 0.175784i
\(300\) −5.54328 7.39104i −0.320041 0.426722i
\(301\) 0 0
\(302\) 6.24264 6.24264i 0.359224 0.359224i
\(303\) 1.31249 4.89828i 0.0754005 0.281399i
\(304\) −0.699709 + 1.21193i −0.0401311 + 0.0695090i
\(305\) −8.06603 + 11.9291i −0.461860 + 0.683061i
\(306\) 1.87476 1.08239i 0.107173 0.0618762i
\(307\) −23.1626 23.1626i −1.32196 1.32196i −0.912186 0.409776i \(-0.865607\pi\)
−0.409776 0.912186i \(-0.634393\pi\)
\(308\) 0 0
\(309\) 26.1421i 1.48717i
\(310\) −3.23508 1.11804i −0.183740 0.0635002i
\(311\) −2.97297 1.71644i −0.168581 0.0973305i 0.413335 0.910579i \(-0.364364\pi\)
−0.581917 + 0.813248i \(0.697697\pi\)
\(312\) −2.86540 10.6938i −0.162222 0.605419i
\(313\) −9.23021 2.47323i −0.521723 0.139795i −0.0116593 0.999932i \(-0.503711\pi\)
−0.510063 + 0.860137i \(0.670378\pi\)
\(314\) 14.4650 0.816310
\(315\) 0 0
\(316\) −5.07107 −0.285270
\(317\) −29.9153 8.01577i −1.68021 0.450211i −0.712375 0.701799i \(-0.752380\pi\)
−0.967834 + 0.251589i \(0.919047\pi\)
\(318\) −5.57472 20.8051i −0.312615 1.16669i
\(319\) −2.02922 1.17157i −0.113615 0.0655955i
\(320\) 0.977945 + 2.01088i 0.0546688 + 0.112411i
\(321\) 9.55582i 0.533354i
\(322\) 0 0
\(323\) −5.17157 5.17157i −0.287754 0.287754i
\(324\) −8.72180 + 5.03553i −0.484544 + 0.279752i
\(325\) −3.58344 29.7430i −0.198774 1.64985i
\(326\) 9.65685 16.7262i 0.534844 0.926376i
\(327\) −5.80680 + 21.6713i −0.321117 + 1.19842i
\(328\) −2.61313 + 2.61313i −0.144286 + 0.144286i
\(329\) 0 0
\(330\) 11.6569 + 0.828427i 0.641689 + 0.0456034i
\(331\) −11.6569 20.1903i −0.640719 1.10976i −0.985273 0.170991i \(-0.945303\pi\)
0.344554 0.938767i \(-0.388030\pi\)
\(332\) −7.26603 + 1.94693i −0.398775 + 0.106852i
\(333\) 1.46311 0.392038i 0.0801777 0.0214836i
\(334\) 1.21371 + 2.10220i 0.0664112 + 0.115028i
\(335\) 21.7248 + 25.0489i 1.18695 + 1.36857i
\(336\) 0 0
\(337\) 3.75736 3.75736i 0.204676 0.204676i −0.597324 0.802000i \(-0.703769\pi\)
0.802000 + 0.597324i \(0.203769\pi\)
\(338\) 5.92683 22.1192i 0.322377 1.20313i
\(339\) 1.53073 2.65131i 0.0831380 0.143999i
\(340\) −11.4741 + 2.21682i −0.622269 + 0.120224i
\(341\) 3.74952 2.16478i 0.203048 0.117230i
\(342\) −0.409880 0.409880i −0.0221638 0.0221638i
\(343\) 0 0
\(344\) 5.65685i 0.304997i
\(345\) −2.17656 + 1.05852i −0.117182 + 0.0569888i
\(346\) 16.2766 + 9.39731i 0.875036 + 0.505202i
\(347\) −1.94495 7.25866i −0.104411 0.389665i 0.893867 0.448332i \(-0.147982\pi\)
−0.998278 + 0.0586667i \(0.981315\pi\)
\(348\) 1.47858 + 0.396183i 0.0792600 + 0.0212376i
\(349\) −2.66752 −0.142789 −0.0713945 0.997448i \(-0.522745\pi\)
−0.0713945 + 0.997448i \(0.522745\pi\)
\(350\) 0 0
\(351\) −28.6274 −1.52802
\(352\) −2.73205 0.732051i −0.145619 0.0390184i
\(353\) −3.10149 11.5749i −0.165076 0.616071i −0.998031 0.0627298i \(-0.980019\pi\)
0.832955 0.553341i \(-0.186647\pi\)
\(354\) 14.7840 + 8.53553i 0.785760 + 0.453659i
\(355\) −1.17794 + 0.572867i −0.0625188 + 0.0304046i
\(356\) 11.3492i 0.601506i
\(357\) 0 0
\(358\) −9.65685 9.65685i −0.510381 0.510381i
\(359\) 14.6969 8.48528i 0.775675 0.447836i −0.0592205 0.998245i \(-0.518862\pi\)
0.834895 + 0.550409i \(0.185528\pi\)
\(360\) −0.909393 + 0.175697i −0.0479292 + 0.00926003i
\(361\) 8.52082 14.7585i 0.448464 0.776762i
\(362\) 2.27514 8.49093i 0.119579 0.446273i
\(363\) 3.91969 3.91969i 0.205730 0.205730i
\(364\) 0 0
\(365\) −8.58579 9.89949i −0.449401 0.518163i
\(366\) 5.94975 + 10.3053i 0.310998 + 0.538665i
\(367\) 4.18204 1.12057i 0.218301 0.0584935i −0.148011 0.988986i \(-0.547287\pi\)
0.366312 + 0.930492i \(0.380620\pi\)
\(368\) 0.565826 0.151613i 0.0294957 0.00790336i
\(369\) −0.765367 1.32565i −0.0398434 0.0690108i
\(370\) −8.15640 0.579658i −0.424031 0.0301350i
\(371\) 0 0
\(372\) −2.00000 + 2.00000i −0.103695 + 0.103695i
\(373\) −5.51639 + 20.5875i −0.285628 + 1.06598i 0.662751 + 0.748840i \(0.269389\pi\)
−0.948379 + 0.317139i \(0.897278\pi\)
\(374\) 7.39104 12.8017i 0.382181 0.661958i
\(375\) −20.6338 + 1.01091i −1.06553 + 0.0522033i
\(376\) −1.32565 + 0.765367i −0.0683654 + 0.0394708i
\(377\) 3.50981 + 3.50981i 0.180764 + 0.180764i
\(378\) 0 0
\(379\) 6.14214i 0.315500i −0.987479 0.157750i \(-0.949576\pi\)
0.987479 0.157750i \(-0.0504241\pi\)
\(380\) 1.36855 + 2.81406i 0.0702053 + 0.144358i
\(381\) −8.11475 4.68506i −0.415731 0.240023i
\(382\) −0.454838 1.69748i −0.0232715 0.0868506i
\(383\) −14.5321 3.89386i −0.742554 0.198967i −0.132341 0.991204i \(-0.542249\pi\)
−0.610213 + 0.792237i \(0.708916\pi\)
\(384\) 1.84776 0.0942931
\(385\) 0 0
\(386\) −11.6569 −0.593318
\(387\) −2.26330 0.606451i −0.115050 0.0308276i
\(388\) 1.68086 + 6.27306i 0.0853329 + 0.318467i
\(389\) 0.123093 + 0.0710678i 0.00624107 + 0.00360328i 0.503117 0.864218i \(-0.332186\pi\)
−0.496876 + 0.867821i \(0.665520\pi\)
\(390\) −23.3978 8.08622i −1.18479 0.409462i
\(391\) 3.06147i 0.154825i
\(392\) 0 0
\(393\) 19.1421 + 19.1421i 0.965593 + 0.965593i
\(394\) 0.717439 0.414214i 0.0361441 0.0208678i
\(395\) −6.35150 + 9.39346i −0.319579 + 0.472636i
\(396\) 0.585786 1.01461i 0.0294369 0.0509862i
\(397\) −0.410261 + 1.53111i −0.0205904 + 0.0768444i −0.975457 0.220192i \(-0.929332\pi\)
0.954866 + 0.297036i \(0.0959983\pi\)
\(398\) 19.8226 19.8226i 0.993618 0.993618i
\(399\) 0 0
\(400\) 4.94975 + 0.707107i 0.247487 + 0.0353553i
\(401\) 9.87868 + 17.1104i 0.493318 + 0.854451i 0.999970 0.00769892i \(-0.00245067\pi\)
−0.506653 + 0.862150i \(0.669117\pi\)
\(402\) 26.4658 7.09148i 1.31999 0.353691i
\(403\) −8.85906 + 2.37378i −0.441301 + 0.118246i
\(404\) 1.37222 + 2.37676i 0.0682705 + 0.118248i
\(405\) −1.59639 + 22.4629i −0.0793253 + 1.11619i
\(406\) 0 0
\(407\) 7.31371 7.31371i 0.362527 0.362527i
\(408\) −2.49938 + 9.32780i −0.123738 + 0.461795i
\(409\) −12.4860 + 21.6263i −0.617392 + 1.06935i 0.372568 + 0.928005i \(0.378477\pi\)
−0.989960 + 0.141349i \(0.954856\pi\)
\(410\) 1.56753 + 8.11339i 0.0774146 + 0.400692i
\(411\) −18.4925 + 10.6767i −0.912170 + 0.526642i
\(412\) −10.0042 10.0042i −0.492870 0.492870i
\(413\) 0 0
\(414\) 0.242641i 0.0119251i
\(415\) −5.49427 + 15.8979i −0.269703 + 0.780395i
\(416\) 5.18889 + 2.99581i 0.254406 + 0.146882i
\(417\) −4.11509 15.3577i −0.201517 0.752071i
\(418\) −3.82328 1.02444i −0.187003 0.0501072i
\(419\) −11.5893 −0.566174 −0.283087 0.959094i \(-0.591358\pi\)
−0.283087 + 0.959094i \(0.591358\pi\)
\(420\) 0 0
\(421\) 17.7990 0.867470 0.433735 0.901041i \(-0.357195\pi\)
0.433735 + 0.901041i \(0.357195\pi\)
\(422\) −9.99071 2.67700i −0.486340 0.130314i
\(423\) −0.164104 0.612446i −0.00797903 0.0297781i
\(424\) 10.0951 + 5.82843i 0.490263 + 0.283053i
\(425\) −10.2649 + 24.0307i −0.497920 + 1.16566i
\(426\) 1.08239i 0.0524421i
\(427\) 0 0
\(428\) 3.65685 + 3.65685i 0.176761 + 0.176761i
\(429\) 27.1185 15.6569i 1.30929 0.755920i
\(430\) 10.4786 + 7.08519i 0.505321 + 0.341678i
\(431\) −2.82843 + 4.89898i −0.136241 + 0.235976i −0.926071 0.377350i \(-0.876835\pi\)
0.789830 + 0.613326i \(0.210169\pi\)
\(432\) 1.23661 4.61511i 0.0594966 0.222044i
\(433\) 10.4525 10.4525i 0.502315 0.502315i −0.409841 0.912157i \(-0.634416\pi\)
0.912157 + 0.409841i \(0.134416\pi\)
\(434\) 0 0
\(435\) 2.58579 2.24264i 0.123979 0.107526i
\(436\) −6.07107 10.5154i −0.290751 0.503596i
\(437\) 0.791827 0.212169i 0.0378782 0.0101494i
\(438\) −10.4595 + 2.80260i −0.499772 + 0.133914i
\(439\) −6.94269 12.0251i −0.331357 0.573927i 0.651421 0.758716i \(-0.274173\pi\)
−0.982778 + 0.184789i \(0.940840\pi\)
\(440\) −4.77791 + 4.14386i −0.227778 + 0.197551i
\(441\) 0 0
\(442\) −22.1421 + 22.1421i −1.05319 + 1.05319i
\(443\) −1.51613 + 5.65826i −0.0720334 + 0.268832i −0.992544 0.121885i \(-0.961106\pi\)
0.920511 + 0.390717i \(0.127773\pi\)
\(444\) −3.37849 + 5.85172i −0.160336 + 0.277710i
\(445\) 21.0228 + 14.2148i 0.996577 + 0.673847i
\(446\) −8.27558 + 4.77791i −0.391860 + 0.226241i
\(447\) 22.6215 + 22.6215i 1.06996 + 1.06996i
\(448\) 0 0
\(449\) 25.6569i 1.21082i −0.795913 0.605411i \(-0.793009\pi\)
0.795913 0.605411i \(-0.206991\pi\)
\(450\) −0.813558 + 1.90459i −0.0383515 + 0.0897830i
\(451\) −9.05213 5.22625i −0.426248 0.246095i
\(452\) 0.428825 + 1.60040i 0.0201703 + 0.0752764i
\(453\) −15.7570 4.22206i −0.740327 0.198370i
\(454\) −11.8519 −0.556238
\(455\) 0 0
\(456\) 2.58579 0.121091
\(457\) 2.26330 + 0.606451i 0.105873 + 0.0283686i 0.311367 0.950290i \(-0.399213\pi\)
−0.205494 + 0.978658i \(0.565880\pi\)
\(458\) 1.99499 + 7.44542i 0.0932199 + 0.347901i
\(459\) 21.6251 + 12.4853i 1.00938 + 0.582763i
\(460\) 0.427854 1.23801i 0.0199488 0.0577225i
\(461\) 34.0250i 1.58470i 0.610064 + 0.792352i \(0.291144\pi\)
−0.610064 + 0.792352i \(0.708856\pi\)
\(462\) 0 0
\(463\) −12.9706 12.9706i −0.602793 0.602793i 0.338260 0.941053i \(-0.390162\pi\)
−0.941053 + 0.338260i \(0.890162\pi\)
\(464\) −0.717439 + 0.414214i −0.0333063 + 0.0192294i
\(465\) 1.19973 + 6.20972i 0.0556363 + 0.287969i
\(466\) 2.12132 3.67423i 0.0982683 0.170206i
\(467\) −6.38116 + 23.8148i −0.295285 + 1.10202i 0.645706 + 0.763586i \(0.276563\pi\)
−0.940991 + 0.338432i \(0.890103\pi\)
\(468\) −1.75490 + 1.75490i −0.0811205 + 0.0811205i
\(469\) 0 0
\(470\) −0.242641 + 3.41421i −0.0111922 + 0.157486i
\(471\) −13.3640 23.1471i −0.615779 1.06656i
\(472\) −8.92399 + 2.39118i −0.410760 + 0.110063i
\(473\) −15.4548 + 4.14110i −0.710613 + 0.190408i
\(474\) 4.68506 + 8.11475i 0.215192 + 0.372723i
\(475\) 6.92676 + 0.989538i 0.317822 + 0.0454031i
\(476\) 0 0
\(477\) −3.41421 + 3.41421i −0.156326 + 0.156326i
\(478\) −1.67851 + 6.26430i −0.0767735 + 0.286522i
\(479\) −5.54328 + 9.60124i −0.253279 + 0.438692i −0.964427 0.264351i \(-0.914842\pi\)
0.711148 + 0.703043i \(0.248176\pi\)
\(480\) 2.31431 3.42272i 0.105633 0.156225i
\(481\) −18.9750 + 10.9552i −0.865187 + 0.499516i
\(482\) 4.77791 + 4.77791i 0.217628 + 0.217628i
\(483\) 0 0
\(484\) 3.00000i 0.136364i
\(485\) 13.7253 + 4.74343i 0.623232 + 0.215388i
\(486\) 3.70241 + 2.13759i 0.167945 + 0.0969630i
\(487\) 0.402813 + 1.50332i 0.0182532 + 0.0681218i 0.974452 0.224597i \(-0.0721066\pi\)
−0.956199 + 0.292719i \(0.905440\pi\)
\(488\) −6.22052 1.66678i −0.281590 0.0754518i
\(489\) −35.6871 −1.61383
\(490\) 0 0
\(491\) 25.1716 1.13598 0.567989 0.823036i \(-0.307722\pi\)
0.567989 + 0.823036i \(0.307722\pi\)
\(492\) 6.59575 + 1.76733i 0.297360 + 0.0796773i
\(493\) −1.12057 4.18204i −0.0504682 0.188350i
\(494\) 7.26143 + 4.19239i 0.326707 + 0.188624i
\(495\) −1.14573 2.35589i −0.0514969 0.105889i
\(496\) 1.53073i 0.0687320i
\(497\) 0 0
\(498\) 9.82843 + 9.82843i 0.440422 + 0.440422i
\(499\) −6.50794 + 3.75736i −0.291335 + 0.168203i −0.638544 0.769585i \(-0.720463\pi\)
0.347209 + 0.937788i \(0.387130\pi\)
\(500\) 7.50936 8.28308i 0.335829 0.370431i
\(501\) 2.24264 3.88437i 0.100194 0.173541i
\(502\) 3.64770 13.6134i 0.162805 0.607596i
\(503\) −18.1062 + 18.1062i −0.807314 + 0.807314i −0.984227 0.176912i \(-0.943389\pi\)
0.176912 + 0.984227i \(0.443389\pi\)
\(504\) 0 0
\(505\) 6.12132 + 0.435029i 0.272395 + 0.0193585i
\(506\) 0.828427 + 1.43488i 0.0368281 + 0.0637881i
\(507\) −40.8710 + 10.9513i −1.81514 + 0.486366i
\(508\) 4.89828 1.31249i 0.217326 0.0582323i
\(509\) 7.23252 + 12.5271i 0.320576 + 0.555254i 0.980607 0.195984i \(-0.0627902\pi\)
−0.660031 + 0.751238i \(0.729457\pi\)
\(510\) 14.1480 + 16.3128i 0.626485 + 0.722343i
\(511\) 0 0
\(512\) −0.707107 + 0.707107i −0.0312500 + 0.0312500i
\(513\) 1.73054 6.45846i 0.0764052 0.285148i
\(514\) 5.54328 9.60124i 0.244503 0.423492i
\(515\) −31.0615 + 6.00116i −1.36873 + 0.264443i
\(516\) 9.05213 5.22625i 0.398498 0.230073i
\(517\) −3.06147 3.06147i −0.134643 0.134643i
\(518\) 0 0
\(519\) 34.7279i 1.52439i
\(520\) 12.0484 5.85948i 0.528357 0.256955i
\(521\) 31.7767 + 18.3463i 1.39216 + 0.803765i 0.993554 0.113357i \(-0.0361603\pi\)
0.398607 + 0.917122i \(0.369494\pi\)
\(522\) −0.0888127 0.331453i −0.00388722 0.0145073i
\(523\) 2.39724 + 0.642340i 0.104824 + 0.0280876i 0.310850 0.950459i \(-0.399386\pi\)
−0.206026 + 0.978547i \(0.566053\pi\)
\(524\) −14.6508 −0.640021
\(525\) 0 0
\(526\) 27.4558 1.19713
\(527\) 7.72741 + 2.07055i 0.336611 + 0.0901947i
\(528\) 1.35265 + 5.04817i 0.0588667 + 0.219693i
\(529\) 19.6214 + 11.3284i 0.853105 + 0.492540i
\(530\) 23.4405 11.3998i 1.01819 0.495174i
\(531\) 3.82683i 0.166070i
\(532\) 0 0
\(533\) 15.6569 + 15.6569i 0.678174 + 0.678174i
\(534\) 18.1610 10.4853i 0.785905 0.453743i
\(535\) 11.3540 2.19362i 0.490877 0.0948386i
\(536\) −7.41421 + 12.8418i −0.320245 + 0.554681i
\(537\) −6.53119 + 24.3747i −0.281842 + 1.05185i
\(538\) −19.0188 + 19.0188i −0.819958 + 0.819958i
\(539\) 0 0
\(540\) −7.00000 8.07107i −0.301232 0.347323i
\(541\) −5.48528 9.50079i −0.235831 0.408471i 0.723683 0.690132i \(-0.242448\pi\)
−0.959514 + 0.281662i \(0.909114\pi\)
\(542\) 18.1017 4.85033i 0.777533 0.208339i
\(543\) −15.6892 + 4.20390i −0.673287 + 0.180407i
\(544\) −2.61313 4.52607i −0.112037 0.194054i
\(545\) −27.0823 1.92468i −1.16008 0.0824443i
\(546\) 0 0
\(547\) −30.6274 + 30.6274i −1.30953 + 1.30953i −0.387783 + 0.921751i \(0.626759\pi\)
−0.921751 + 0.387783i \(0.873241\pi\)
\(548\) 2.99100 11.1626i 0.127769 0.476842i
\(549\) 1.33376 2.31014i 0.0569235 0.0985943i
\(550\) 1.69161 + 14.0406i 0.0721307 + 0.598693i
\(551\) −1.00400 + 0.579658i −0.0427717 + 0.0246942i
\(552\) −0.765367 0.765367i −0.0325762 0.0325762i
\(553\) 0 0
\(554\) 2.48528i 0.105589i
\(555\) 6.60796 + 13.5875i 0.280492 + 0.576756i
\(556\) 7.45193 + 4.30237i 0.316032 + 0.182461i
\(557\) −9.78310 36.5110i −0.414523 1.54702i −0.785789 0.618495i \(-0.787743\pi\)
0.371266 0.928527i \(-0.378924\pi\)
\(558\) 0.612446 + 0.164104i 0.0259269 + 0.00694709i
\(559\) 33.8937 1.43355
\(560\) 0 0
\(561\) −27.3137 −1.15319
\(562\) −5.46410 1.46410i −0.230489 0.0617594i
\(563\) −1.29876 4.84703i −0.0547361 0.204278i 0.933142 0.359507i \(-0.117055\pi\)
−0.987879 + 0.155229i \(0.950388\pi\)
\(564\) 2.44949 + 1.41421i 0.103142 + 0.0595491i
\(565\) 3.50162 + 1.21015i 0.147314 + 0.0509116i
\(566\) 4.46088i 0.187505i
\(567\) 0 0
\(568\) −0.414214 0.414214i −0.0173800 0.0173800i
\(569\) −1.22474 + 0.707107i −0.0513440 + 0.0296435i −0.525452 0.850823i \(-0.676104\pi\)
0.474108 + 0.880467i \(0.342771\pi\)
\(570\) 3.23869 4.78982i 0.135654 0.200623i
\(571\) 12.7279 22.0454i 0.532647 0.922572i −0.466626 0.884455i \(-0.654531\pi\)
0.999273 0.0381170i \(-0.0121360\pi\)
\(572\) −4.38617 + 16.3694i −0.183395 + 0.684439i
\(573\) −2.29610 + 2.29610i −0.0959210 + 0.0959210i
\(574\) 0 0
\(575\) −1.75736 2.34315i −0.0732869 0.0977159i
\(576\) −0.207107 0.358719i −0.00862945 0.0149466i
\(577\) −35.9496 + 9.63268i −1.49660 + 0.401014i −0.911961 0.410277i \(-0.865432\pi\)
−0.584643 + 0.811291i \(0.698765\pi\)
\(578\) 9.96228 2.66938i 0.414376 0.111032i
\(579\) 10.7695 + 18.6534i 0.447566 + 0.775208i
\(580\) −0.131316 + 1.84776i −0.00545261 + 0.0767240i
\(581\) 0 0
\(582\) 8.48528 8.48528i 0.351726 0.351726i
\(583\) −8.53341 + 31.8471i −0.353418 + 1.31897i
\(584\) 2.93015 5.07517i 0.121251 0.210012i
\(585\) 1.05271 + 5.44873i 0.0435241 + 0.225277i
\(586\) 2.92586 1.68925i 0.120866 0.0697821i
\(587\) −16.0886 16.0886i −0.664049 0.664049i 0.292283 0.956332i \(-0.405585\pi\)
−0.956332 + 0.292283i \(0.905585\pi\)
\(588\) 0 0
\(589\) 2.14214i 0.0882652i
\(590\) −6.74795 + 19.5254i −0.277809 + 0.803849i
\(591\) −1.32565 0.765367i −0.0545301 0.0314830i
\(592\) −0.946464 3.53225i −0.0388994 0.145175i
\(593\) −31.2602 8.37616i −1.28370 0.343967i −0.448438 0.893814i \(-0.648020\pi\)
−0.835266 + 0.549846i \(0.814686\pi\)
\(594\) 13.5140 0.554485
\(595\) 0 0
\(596\) −17.3137 −0.709197
\(597\) −50.0340 13.4066i −2.04775 0.548694i
\(598\) −0.908405 3.39022i −0.0371475 0.138636i
\(599\) 16.0448 + 9.26346i 0.655572 + 0.378495i 0.790588 0.612349i \(-0.209775\pi\)
−0.135016 + 0.990843i \(0.543109\pi\)
\(600\) −3.44145 8.57390i −0.140497 0.350028i
\(601\) 16.5754i 0.676126i 0.941123 + 0.338063i \(0.109772\pi\)
−0.941123 + 0.338063i \(0.890228\pi\)
\(602\) 0 0
\(603\) −4.34315 4.34315i −0.176867 0.176867i
\(604\) 7.64564 4.41421i 0.311097 0.179612i
\(605\) 5.55709 + 3.75749i 0.225928 + 0.152764i
\(606\) 2.53553 4.39167i 0.102999 0.178400i
\(607\) 7.88384 29.4229i 0.319995 1.19424i −0.599253 0.800560i \(-0.704536\pi\)
0.919248 0.393679i \(-0.128798\pi\)
\(608\) −0.989538 + 0.989538i −0.0401311 + 0.0401311i
\(609\) 0 0
\(610\) −10.8787 + 9.43503i −0.440465 + 0.382013i
\(611\) 4.58579 + 7.94282i 0.185521 + 0.321332i
\(612\) 2.09102 0.560287i 0.0845245 0.0226483i
\(613\) −27.1832 + 7.28372i −1.09792 + 0.294187i −0.761917 0.647674i \(-0.775742\pi\)
−0.336002 + 0.941861i \(0.609075\pi\)
\(614\) −16.3785 28.3683i −0.660981 1.14485i
\(615\) 11.5349 10.0042i 0.465132 0.403407i
\(616\) 0 0
\(617\) −28.4853 + 28.4853i −1.14677 + 1.14677i −0.159591 + 0.987183i \(0.551018\pi\)
−0.987183 + 0.159591i \(0.948982\pi\)
\(618\) −6.76608 + 25.2514i −0.272172 + 1.01576i
\(619\) −0.344222 + 0.596210i −0.0138354 + 0.0239637i −0.872860 0.487970i \(-0.837737\pi\)
0.859025 + 0.511934i \(0.171071\pi\)
\(620\) −2.83548 1.91724i −0.113875 0.0769982i
\(621\) −2.42386 + 1.39942i −0.0972662 + 0.0561567i
\(622\) −2.42742 2.42742i −0.0973305 0.0973305i
\(623\) 0 0
\(624\) 11.0711i 0.443197i
\(625\) −5.93782 24.2846i −0.237513 0.971384i
\(626\) −8.27558 4.77791i −0.330759 0.190964i
\(627\) 1.89293 + 7.06450i 0.0755962 + 0.282129i
\(628\) 13.9722 + 3.74383i 0.557550 + 0.149395i
\(629\) 19.1116 0.762031
\(630\) 0 0
\(631\) 41.3553 1.64633 0.823165 0.567802i \(-0.192206\pi\)
0.823165 + 0.567802i \(0.192206\pi\)
\(632\) −4.89828 1.31249i −0.194843 0.0522080i
\(633\) 4.94646 + 18.4604i 0.196604 + 0.733736i
\(634\) −26.8213 15.4853i −1.06521 0.614999i
\(635\) 3.70387 10.7173i 0.146984 0.425302i
\(636\) 21.5391i 0.854079i
\(637\) 0 0
\(638\) −1.65685 1.65685i −0.0655955 0.0655955i
\(639\) 0.210133 0.121320i 0.00831273 0.00479936i
\(640\) 0.424170 + 2.19547i 0.0167668 + 0.0867835i
\(641\) 18.6066 32.2276i 0.734917 1.27291i −0.219843 0.975535i \(-0.570555\pi\)
0.954760 0.297378i \(-0.0961120\pi\)
\(642\) 2.47323 9.23021i 0.0976105 0.364287i
\(643\) 20.9435 20.9435i 0.825930 0.825930i −0.161021 0.986951i \(-0.551479\pi\)
0.986951 + 0.161021i \(0.0514787\pi\)
\(644\) 0 0
\(645\) 1.65685 23.3137i 0.0652386 0.917976i
\(646\) −3.65685 6.33386i −0.143877 0.249202i
\(647\) 32.6337 8.74418i 1.28296 0.343769i 0.447980 0.894043i \(-0.352143\pi\)
0.834984 + 0.550274i \(0.185477\pi\)
\(648\) −9.72790 + 2.60658i −0.382148 + 0.102396i
\(649\) −13.0656 22.6303i −0.512871 0.888318i
\(650\) 4.23671 29.6570i 0.166178 1.16324i
\(651\) 0 0
\(652\) 13.6569 13.6569i 0.534844 0.534844i
\(653\) 3.19464 11.9226i 0.125016 0.466566i −0.874824 0.484440i \(-0.839023\pi\)
0.999840 + 0.0178744i \(0.00568992\pi\)
\(654\) −11.2179 + 19.4299i −0.438653 + 0.759770i
\(655\) −18.3500 + 27.1385i −0.716995 + 1.06039i
\(656\) −3.20041 + 1.84776i −0.124955 + 0.0721429i
\(657\) 1.71644 + 1.71644i 0.0669648 + 0.0669648i
\(658\) 0 0
\(659\) 29.6569i 1.15527i 0.816296 + 0.577634i \(0.196024\pi\)
−0.816296 + 0.577634i \(0.803976\pi\)
\(660\) 11.0452 + 3.81722i 0.429936 + 0.148585i
\(661\) −41.1700 23.7695i −1.60133 0.924526i −0.991222 0.132205i \(-0.957794\pi\)
−0.610104 0.792321i \(-0.708873\pi\)
\(662\) −6.03403 22.5193i −0.234519 0.875238i
\(663\) 55.8887 + 14.9753i 2.17054 + 0.581593i
\(664\) −7.52235 −0.291924
\(665\) 0 0
\(666\) 1.51472 0.0586942
\(667\) 0.468746 + 0.125600i 0.0181499 + 0.00486325i
\(668\) 0.628262 + 2.34470i 0.0243082 + 0.0907193i
\(669\) 15.2913 + 8.82843i 0.591195 + 0.341327i
\(670\) 14.5014 + 29.8181i 0.560238 + 1.15197i
\(671\) 18.2150i 0.703181i
\(672\) 0 0
\(673\) −22.7990 22.7990i −0.878836 0.878836i 0.114578 0.993414i \(-0.463448\pi\)
−0.993414 + 0.114578i \(0.963448\pi\)
\(674\) 4.60181 2.65685i 0.177255 0.102338i
\(675\) −23.7180 + 2.85755i −0.912907 + 0.109987i
\(676\) 11.4497 19.8315i 0.440375 0.762752i
\(677\) 8.22613 30.7003i 0.316156 1.17991i −0.606753 0.794891i \(-0.707528\pi\)
0.922909 0.385019i \(-0.125805\pi\)
\(678\) 2.16478 2.16478i 0.0831380 0.0831380i
\(679\) 0 0
\(680\) −11.6569 0.828427i −0.447020 0.0317687i
\(681\) 10.9497 + 18.9655i 0.419595 + 0.726760i
\(682\) 4.18204 1.12057i 0.160139 0.0429090i
\(683\) 34.5792 9.26546i 1.32314 0.354533i 0.472984 0.881071i \(-0.343177\pi\)
0.850151 + 0.526538i \(0.176510\pi\)
\(684\) −0.289829 0.501998i −0.0110819 0.0191944i
\(685\) −16.9309 19.5215i −0.646897 0.745879i
\(686\) 0 0
\(687\) 10.0711 10.0711i 0.384235 0.384235i
\(688\) −1.46410 + 5.46410i −0.0558184 + 0.208317i
\(689\) 34.9217 60.4862i 1.33041 2.30434i
\(690\) −2.37636 + 0.459118i −0.0904664 + 0.0174783i
\(691\) 21.7401 12.5516i 0.827031 0.477487i −0.0258041 0.999667i \(-0.508215\pi\)
0.852835 + 0.522181i \(0.174881\pi\)
\(692\) 13.2898 + 13.2898i 0.505202 + 0.505202i
\(693\) 0 0
\(694\) 7.51472i 0.285255i
\(695\) 17.3031 8.41497i 0.656343 0.319198i
\(696\) 1.32565 + 0.765367i 0.0502488 + 0.0290112i
\(697\) −4.99876 18.6556i −0.189341 0.706632i
\(698\) −2.57663 0.690405i −0.0975267 0.0261322i
\(699\) −7.83938 −0.296512
\(700\) 0 0
\(701\) −13.1127 −0.495260 −0.247630 0.968855i \(-0.579652\pi\)
−0.247630 + 0.968855i \(0.579652\pi\)
\(702\) −27.6520 7.40932i −1.04366 0.279647i
\(703\) −1.32450 4.94309i −0.0499544 0.186432i
\(704\) −2.44949 1.41421i −0.0923186 0.0533002i
\(705\) 5.68762 2.76605i 0.214208 0.104175i
\(706\) 11.9832i 0.450995i
\(707\) 0 0
\(708\) 12.0711 + 12.0711i 0.453659 + 0.453659i
\(709\) 35.7787 20.6569i 1.34370 0.775784i 0.356350 0.934353i \(-0.384021\pi\)
0.987348 + 0.158568i \(0.0506877\pi\)
\(710\) −1.28608 + 0.248473i −0.0482656 + 0.00932502i
\(711\) 1.05025 1.81909i 0.0393875 0.0682212i
\(712\) −2.93739 + 10.9625i −0.110083 + 0.410836i
\(713\) −0.634051 + 0.634051i −0.0237454 + 0.0237454i
\(714\) 0 0
\(715\) 24.8284 + 28.6274i 0.928531 + 1.07060i
\(716\) −6.82843 11.8272i −0.255190 0.442003i
\(717\) 11.5749 3.10149i 0.432273 0.115827i
\(718\) 16.3923 4.39230i 0.611755 0.163919i
\(719\) 21.8561 + 37.8558i 0.815094 + 1.41178i 0.909260 + 0.416228i \(0.136648\pi\)
−0.0941658 + 0.995557i \(0.530018\pi\)
\(720\) −0.923880 0.0656581i −0.0344310 0.00244693i
\(721\) 0 0
\(722\) 12.0503 12.0503i 0.448464 0.448464i
\(723\) 3.23143 12.0599i 0.120178 0.448511i
\(724\) 4.39523 7.61276i 0.163347 0.282926i
\(725\) 3.25825 + 2.55756i 0.121008 + 0.0949853i
\(726\) 4.80062 2.77164i 0.178168 0.102865i
\(727\) 22.8841 + 22.8841i 0.848724 + 0.848724i 0.989974 0.141250i \(-0.0451122\pi\)
−0.141250 + 0.989974i \(0.545112\pi\)
\(728\) 0 0
\(729\) 22.3137i 0.826434i
\(730\) −5.73106 11.7843i −0.212116 0.436158i
\(731\) −25.6033 14.7821i −0.946972 0.546735i
\(732\) 3.07982 + 11.4940i 0.113833 + 0.424832i
\(733\) 29.9828 + 8.03387i 1.10744 + 0.296738i 0.765791 0.643090i \(-0.222348\pi\)
0.341649 + 0.939827i \(0.389014\pi\)
\(734\) 4.32957 0.159807
\(735\) 0 0
\(736\) 0.585786 0.0215924
\(737\) −40.5120 10.8552i −1.49228 0.399855i
\(738\) −0.396183 1.47858i −0.0145837 0.0544271i
\(739\) −8.36308 4.82843i −0.307641 0.177617i 0.338229 0.941064i \(-0.390172\pi\)
−0.645870 + 0.763447i \(0.723505\pi\)
\(740\) −7.72845 2.67094i −0.284104 0.0981857i
\(741\) 15.4930i 0.569151i
\(742\) 0 0
\(743\) 27.0416 + 27.0416i 0.992061 + 0.992061i 0.999969 0.00790753i \(-0.00251707\pi\)
−0.00790753 + 0.999969i \(0.502517\pi\)
\(744\) −2.44949 + 1.41421i −0.0898027 + 0.0518476i
\(745\) −21.6854 + 32.0713i −0.794491 + 1.17500i
\(746\) −10.6569 + 18.4582i −0.390175 + 0.675803i
\(747\) 0.806444 3.00969i 0.0295062 0.110119i
\(748\) 10.4525 10.4525i 0.382181 0.382181i
\(749\) 0 0
\(750\) −20.1924 4.36396i −0.737322 0.159349i
\(751\) 1.24264 + 2.15232i 0.0453446 + 0.0785392i 0.887807 0.460216i \(-0.152228\pi\)
−0.842462 + 0.538755i \(0.818895\pi\)
\(752\) −1.47858 + 0.396183i −0.0539181 + 0.0144473i
\(753\) −25.1543 + 6.74007i −0.916673 + 0.245622i
\(754\) 2.48181 + 4.29862i 0.0903822 + 0.156547i
\(755\) 1.39942 19.6913i 0.0509300 0.716640i
\(756\) 0 0
\(757\) 7.89949 7.89949i 0.287112 0.287112i −0.548825 0.835937i \(-0.684925\pi\)
0.835937 + 0.548825i \(0.184925\pi\)
\(758\) 1.58970 5.93285i 0.0577406 0.215491i
\(759\) 1.53073 2.65131i 0.0555621 0.0962364i
\(760\) 0.593590 + 3.07238i 0.0215318 + 0.111447i
\(761\) 22.8578 13.1969i 0.828594 0.478389i −0.0247771 0.999693i \(-0.507888\pi\)
0.853371 + 0.521304i \(0.174554\pi\)
\(762\) −6.62567 6.62567i −0.240023 0.240023i
\(763\) 0 0
\(764\) 1.75736i 0.0635790i
\(765\) 1.58114 4.57509i 0.0571663 0.165413i
\(766\) −13.0291 7.52235i −0.470760 0.271794i
\(767\) 14.3270 + 53.4692i 0.517319 + 1.93066i
\(768\) 1.78480 + 0.478235i 0.0644034 + 0.0172568i
\(769\) 17.5809 0.633984 0.316992 0.948428i \(-0.397327\pi\)
0.316992 + 0.948428i \(0.397327\pi\)
\(770\) 0 0
\(771\) −20.4853 −0.737759
\(772\) −11.2597 3.01702i −0.405244 0.108585i
\(773\) 5.37663 + 20.0658i 0.193384 + 0.721718i 0.992679 + 0.120780i \(0.0385396\pi\)
−0.799295 + 0.600938i \(0.794794\pi\)
\(774\) −2.02922 1.17157i −0.0729389 0.0421113i
\(775\) −7.10285 + 2.85099i −0.255142 + 0.102411i
\(776\) 6.49435i 0.233134i
\(777\) 0 0
\(778\) 0.100505 + 0.100505i 0.00360328 + 0.00360328i
\(779\) −4.47871 + 2.58579i −0.160467 + 0.0926454i
\(780\) −20.5076 13.8665i −0.734291 0.496500i
\(781\) 0.828427 1.43488i 0.0296435 0.0513440i
\(782\) −0.792366 + 2.95715i −0.0283350 + 0.105747i
\(783\) 2.79884 2.79884i 0.100022 0.100022i
\(784\) 0 0
\(785\) 24.4350 21.1924i 0.872124 0.756389i
\(786\) 13.5355 + 23.4442i 0.482797 + 0.836228i
\(787\) 33.2987 8.92237i 1.18697 0.318048i 0.389283 0.921118i \(-0.372723\pi\)
0.797688 + 0.603070i \(0.206056\pi\)
\(788\) 0.800199 0.214413i 0.0285059 0.00763814i
\(789\) −25.3659 43.9350i −0.903050 1.56413i
\(790\) −8.56628 + 7.42950i −0.304775 + 0.264330i
\(791\) 0 0
\(792\) 0.828427 0.828427i 0.0294369 0.0294369i
\(793\) −9.98674 + 37.2710i −0.354639 + 1.32353i
\(794\) −0.792563 + 1.37276i −0.0281270 + 0.0487174i
\(795\) −39.8982 26.9776i −1.41504 0.956797i
\(796\) 24.2776 14.0167i 0.860498 0.496809i
\(797\) −16.6683 16.6683i −0.590421 0.590421i 0.347324 0.937745i \(-0.387090\pi\)
−0.937745 + 0.347324i \(0.887090\pi\)
\(798\) 0 0
\(799\) 8.00000i 0.283020i
\(800\) 4.59808 + 1.96410i 0.162567 + 0.0694415i
\(801\) −4.07117 2.35049i −0.143848 0.0830506i
\(802\) 5.11358 + 19.0841i 0.180567 + 0.673885i
\(803\) 16.0106 + 4.29004i 0.565003 + 0.151392i
\(804\) 27.3994 0.966301
\(805\) 0 0
\(806\) −9.17157 −0.323055
\(807\) 48.0051 + 12.8629i 1.68986 + 0.452796i
\(808\) 0.710314 + 2.65093i 0.0249888 + 0.0932593i
\(809\) 29.3578 + 16.9497i 1.03217 + 0.595921i 0.917604 0.397495i \(-0.130120\pi\)
0.114562 + 0.993416i \(0.463454\pi\)
\(810\) −7.35583 + 21.2844i −0.258458 + 0.747856i
\(811\) 50.6005i 1.77682i −0.459048 0.888411i \(-0.651809\pi\)
0.459048 0.888411i \(-0.348191\pi\)
\(812\) 0 0
\(813\) −24.4853 24.4853i −0.858736 0.858736i
\(814\) 8.95743 5.17157i 0.313958 0.181264i
\(815\) −8.19229 42.4026i −0.286963 1.48530i
\(816\) −4.82843 + 8.36308i −0.169029 + 0.292766i
\(817\) −2.04889 + 7.64656i −0.0716816 + 0.267519i
\(818\) −17.6578 + 17.6578i −0.617392 + 0.617392i
\(819\) 0 0
\(820\) −0.585786 + 8.24264i −0.0204565 + 0.287845i
\(821\) 17.2426 + 29.8651i 0.601772 + 1.04230i 0.992553 + 0.121816i \(0.0388719\pi\)
−0.390780 + 0.920484i \(0.627795\pi\)
\(822\) −20.6258 + 5.52665i −0.719406 + 0.192764i
\(823\) 3.20080 0.857651i 0.111573 0.0298958i −0.202601 0.979261i \(-0.564939\pi\)
0.314173 + 0.949366i \(0.398273\pi\)
\(824\) −7.07401 12.2525i −0.246435 0.426838i
\(825\) 20.9050 15.6788i 0.727819 0.545864i
\(826\) 0 0
\(827\) −7.51472 + 7.51472i −0.261312 + 0.261312i −0.825587 0.564275i \(-0.809156\pi\)
0.564275 + 0.825587i \(0.309156\pi\)
\(828\) −0.0628000 + 0.234373i −0.00218245 + 0.00814502i
\(829\) −20.4295 + 35.3849i −0.709545 + 1.22897i 0.255481 + 0.966814i \(0.417766\pi\)
−0.965026 + 0.262154i \(0.915567\pi\)
\(830\) −9.42173 + 13.9341i −0.327033 + 0.483661i
\(831\) −3.97696 + 2.29610i −0.137959 + 0.0796508i
\(832\) 4.23671 + 4.23671i 0.146882 + 0.146882i
\(833\) 0 0
\(834\) 15.8995i 0.550554i
\(835\) 5.13014 + 1.77297i 0.177536 + 0.0613561i
\(836\) −3.42786 1.97908i −0.118555 0.0684477i
\(837\) 1.89293 + 7.06450i 0.0654291 + 0.244185i
\(838\) −11.1944 2.99953i −0.386704 0.103617i
\(839\) 20.6424 0.712654 0.356327 0.934361i \(-0.384029\pi\)
0.356327 + 0.934361i \(0.384029\pi\)
\(840\) 0 0
\(841\) 28.3137 0.976335
\(842\) 17.1925 + 4.60672i 0.592493 + 0.158758i
\(843\) 2.70531 + 10.0963i 0.0931757 + 0.347737i
\(844\) −8.95743 5.17157i −0.308327 0.178013i
\(845\) −22.3945 46.0480i −0.770393 1.58410i
\(846\) 0.634051i 0.0217991i
\(847\) 0 0
\(848\) 8.24264 + 8.24264i 0.283053 + 0.283053i
\(849\) −7.13834 + 4.12132i −0.244987 + 0.141443i
\(850\) −16.1347 + 20.5551i −0.553417 + 0.705035i
\(851\) −1.07107 + 1.85514i −0.0367157 + 0.0635935i
\(852\) −0.280144 + 1.04551i −0.00959757 + 0.0358186i
\(853\) −26.7268 + 26.7268i −0.915110 + 0.915110i −0.996669 0.0815587i \(-0.974010\pi\)
0.0815587 + 0.996669i \(0.474010\pi\)
\(854\) 0 0
\(855\) −1.29289 0.0918831i −0.0442160 0.00314234i
\(856\) 2.58579 + 4.47871i 0.0883804 + 0.153079i
\(857\) 15.6519 4.19391i 0.534658 0.143261i 0.0186197 0.999827i \(-0.494073\pi\)
0.516038 + 0.856565i \(0.327406\pi\)
\(858\) 30.2467 8.10458i 1.03261 0.276686i
\(859\) 20.3366 + 35.2241i 0.693876 + 1.20183i 0.970558 + 0.240867i \(0.0774319\pi\)
−0.276682 + 0.960962i \(0.589235\pi\)
\(860\) 8.28772 + 9.55582i 0.282609 + 0.325851i
\(861\) 0 0
\(862\) −4.00000 + 4.00000i −0.136241 + 0.136241i
\(863\) −0.894438 + 3.33809i −0.0304470 + 0.113630i −0.979477 0.201556i \(-0.935400\pi\)
0.949030 + 0.315186i \(0.102067\pi\)
\(864\) 2.38896 4.13779i 0.0812739 0.140771i
\(865\) 41.2630 7.97210i 1.40298 0.271060i
\(866\) 12.8017 7.39104i 0.435018 0.251158i
\(867\) −13.4755 13.4755i −0.457652 0.457652i
\(868\) 0 0
\(869\) 14.3431i 0.486558i
\(870\) 3.07812 1.49697i 0.104358 0.0507522i
\(871\) 76.9431 + 44.4231i 2.60712 + 1.50522i
\(872\) −3.14262 11.7284i −0.106422 0.397174i
\(873\) −2.59839 0.696236i −0.0879421 0.0235640i
\(874\) 0.819760 0.0277288
\(875\) 0 0
\(876\) −10.8284 −0.365859
\(877\) 29.4465 + 7.89017i 0.994338 + 0.266432i 0.719072 0.694936i \(-0.244567\pi\)
0.275267 + 0.961368i \(0.411234\pi\)
\(878\) −3.59380 13.4123i −0.121285 0.452642i
\(879\) −5.40629 3.12132i −0.182349 0.105280i
\(880\) −5.68762 + 2.76605i −0.191730 + 0.0932434i
\(881\) 13.5140i 0.455297i 0.973743 + 0.227649i \(0.0731038\pi\)
−0.973743 + 0.227649i \(0.926896\pi\)
\(882\) 0 0
\(883\) −28.8284 28.8284i −0.970154 0.970154i 0.0294135 0.999567i \(-0.490636\pi\)
−0.999567 + 0.0294135i \(0.990636\pi\)
\(884\) −27.1185 + 15.6569i −0.912093 + 0.526597i
\(885\) 37.4790 7.24103i 1.25984 0.243404i
\(886\) −2.92893 + 5.07306i −0.0983994 + 0.170433i
\(887\) 11.9136 44.4623i 0.400021 1.49290i −0.413036 0.910715i \(-0.635532\pi\)
0.813057 0.582184i \(-0.197802\pi\)
\(888\) −4.77791 + 4.77791i −0.160336 + 0.160336i
\(889\) 0 0
\(890\) 16.6274 + 19.1716i 0.557352 + 0.642633i
\(891\) −14.2426 24.6690i −0.477146 0.826442i
\(892\) −9.23021 + 2.47323i −0.309050 + 0.0828098i
\(893\) −2.06914 + 0.554425i −0.0692413 + 0.0185531i
\(894\) 15.9958 + 27.7055i 0.534979 + 0.926611i
\(895\) −30.4608 2.16478i −1.01819 0.0723608i
\(896\) 0 0
\(897\) −4.58579 + 4.58579i −0.153115 + 0.153115i
\(898\) 6.64048 24.7826i 0.221596 0.827007i
\(899\) 0.634051 1.09821i 0.0211468 0.0366273i
\(900\) −1.27878 + 1.62912i −0.0426260 + 0.0543041i
\(901\) −52.7597 + 30.4608i −1.75768 + 1.01480i
\(902\) −7.39104 7.39104i −0.246095 0.246095i
\(903\) 0 0
\(904\) 1.65685i 0.0551062i
\(905\) −8.59658 17.6765i −0.285760 0.587587i
\(906\) −14.1273 8.15640i −0.469348 0.270978i
\(907\) 4.08908 + 15.2607i 0.135776 + 0.506722i 0.999994 + 0.00360386i \(0.00114715\pi\)
−0.864218 + 0.503118i \(0.832186\pi\)
\(908\) −11.4481 3.06750i −0.379918 0.101799i
\(909\) −1.13679 −0.0377048
\(910\) 0 0
\(911\) −28.1421 −0.932391 −0.466195 0.884682i \(-0.654376\pi\)
−0.466195 + 0.884682i \(0.654376\pi\)
\(912\) 2.49768 + 0.669251i 0.0827064 + 0.0221611i
\(913\) −5.50674 20.5514i −0.182247 0.680154i
\(914\) 2.02922 + 1.17157i 0.0671208 + 0.0387522i
\(915\) 25.1486 + 8.69130i 0.831386 + 0.287326i
\(916\) 7.70806i 0.254682i
\(917\) 0 0
\(918\) 17.6569 + 17.6569i 0.582763 + 0.582763i
\(919\) −7.26143 + 4.19239i −0.239532 + 0.138294i −0.614962 0.788557i \(-0.710829\pi\)
0.375429 + 0.926851i \(0.377495\pi\)
\(920\) 0.733696 1.08509i 0.0241892 0.0357743i
\(921\) −30.2635 + 52.4178i −0.997215 + 1.72723i
\(922\) −8.80633 + 32.8657i −0.290021 + 1.08237i
\(923\) −2.48181 + 2.48181i −0.0816898 + 0.0816898i
\(924\) 0 0
\(925\) −14.6274 + 10.9706i −0.480947 + 0.360710i
\(926\) −9.17157 15.8856i −0.301397 0.522034i
\(927\) 5.66062 1.51676i 0.185919 0.0498169i
\(928\) −0.800199 + 0.214413i −0.0262678 + 0.00703844i
\(929\) −16.6298 28.8037i −0.545607 0.945019i −0.998568 0.0534890i \(-0.982966\pi\)
0.452961 0.891530i \(-0.350368\pi\)
\(930\) −0.448342 + 6.30864i −0.0147017 + 0.206869i
\(931\) 0 0
\(932\) 3.00000 3.00000i 0.0982683 0.0982683i
\(933\) −1.64173 + 6.12701i −0.0537477 + 0.200589i
\(934\) −12.3275 + 21.3518i −0.403367 + 0.698652i
\(935\) −6.27010 32.4536i −0.205054 1.06135i
\(936\) −2.14931 + 1.24090i −0.0702524 + 0.0405602i
\(937\) 17.7666 + 17.7666i 0.580410 + 0.580410i 0.935016 0.354606i \(-0.115385\pi\)
−0.354606 + 0.935016i \(0.615385\pi\)
\(938\) 0 0
\(939\) 17.6569i 0.576210i
\(940\) −1.11804 + 3.23508i −0.0364663 + 0.105517i
\(941\) 20.1870 + 11.6549i 0.658076 + 0.379940i 0.791544 0.611113i \(-0.209278\pi\)
−0.133467 + 0.991053i \(0.542611\pi\)
\(942\) −6.91770 25.8172i −0.225391 0.841170i
\(943\) 2.09102 + 0.560287i 0.0680930 + 0.0182455i
\(944\) −9.23880 −0.300697
\(945\) 0 0
\(946\) −16.0000 −0.520205
\(947\) −31.3784 8.40781i −1.01966 0.273217i −0.290000 0.957027i \(-0.593655\pi\)
−0.729660 + 0.683810i \(0.760322\pi\)
\(948\) 2.42516 + 9.05083i 0.0787656 + 0.293957i
\(949\) −30.4085 17.5563i −0.987101 0.569903i
\(950\) 6.43463 + 2.74860i 0.208767 + 0.0891763i
\(951\) 57.2261i 1.85568i
\(952\) 0 0
\(953\) 23.1421 + 23.1421i 0.749647 + 0.749647i 0.974413 0.224766i \(-0.0721616\pi\)
−0.224766 + 0.974413i \(0.572162\pi\)
\(954\) −4.18154 + 2.41421i −0.135382 + 0.0781631i
\(955\) −3.25527 2.20109i −0.105338 0.0712255i
\(956\) −3.24264 + 5.61642i −0.104874 + 0.181648i
\(957\) −1.12057 + 4.18204i −0.0362230 + 0.135186i
\(958\) −7.83938 + 7.83938i −0.253279 + 0.253279i
\(959\) 0 0
\(960\) 3.12132 2.70711i 0.100740 0.0873715i
\(961\) −14.3284 24.8176i −0.462207 0.800567i
\(962\) −21.1639 + 5.67085i −0.682351 + 0.182835i
\(963\) −2.06914 + 0.554425i −0.0666772 + 0.0178661i
\(964\) 3.37849 + 5.85172i 0.108814 + 0.188471i
\(965\) −19.6913 + 17.0782i −0.633885 + 0.549766i
\(966\) 0 0
\(967\) −2.21320 + 2.21320i −0.0711718 + 0.0711718i −0.741797 0.670625i \(-0.766026\pi\)
0.670625 + 0.741797i \(0.266026\pi\)
\(968\) −0.776457 + 2.89778i −0.0249563 + 0.0931381i
\(969\) −6.75699 + 11.7034i −0.217066 + 0.375969i
\(970\) 12.0299 + 8.13416i 0.386257 + 0.261172i
\(971\) 16.0492 9.26599i 0.515042 0.297360i −0.219862 0.975531i \(-0.570561\pi\)
0.734904 + 0.678171i \(0.237227\pi\)
\(972\) 3.02301 + 3.02301i 0.0969630 + 0.0969630i
\(973\) 0 0
\(974\) 1.55635i 0.0498686i
\(975\) −51.3715 + 20.6199i −1.64521 + 0.660365i
\(976\) −5.57717 3.21998i −0.178521 0.103069i
\(977\) −9.45386 35.2823i −0.302456 1.12878i −0.935113 0.354349i \(-0.884703\pi\)
0.632658 0.774432i \(-0.281964\pi\)
\(978\) −34.4711 9.23650i −1.10226 0.295351i
\(979\) −32.1003 −1.02593
\(980\) 0 0
\(981\) 5.02944 0.160578
\(982\) 24.3139 + 6.51488i 0.775887 + 0.207898i
\(983\) −10.5212 39.2656i −0.335573 1.25238i −0.903246 0.429123i \(-0.858823\pi\)
0.567673 0.823254i \(-0.307844\pi\)
\(984\) 5.91359 + 3.41421i 0.188518 + 0.108841i
\(985\) 0.605077 1.75081i 0.0192794 0.0557855i
\(986\) 4.32957i 0.137882i
\(987\) 0 0
\(988\) 5.92893 + 5.92893i 0.188624 + 0.188624i
\(989\) 2.86976 1.65685i 0.0912529 0.0526849i
\(990\) −0.496946 2.57215i −0.0157940 0.0817483i
\(991\) 16.2929 28.2201i 0.517561 0.896442i −0.482231 0.876044i \(-0.660173\pi\)
0.999792 0.0203976i \(-0.00649321\pi\)
\(992\) 0.396183 1.47858i 0.0125788 0.0469448i
\(993\) −30.4608 + 30.4608i −0.966645 + 0.966645i
\(994\) 0 0
\(995\) 4.44365 62.5269i 0.140873 1.98224i
\(996\) 6.94975 + 12.0373i 0.220211 + 0.381417i
\(997\) −0.634209 + 0.169936i −0.0200856 + 0.00538192i −0.268848 0.963183i \(-0.586643\pi\)
0.248762 + 0.968565i \(0.419976\pi\)
\(998\) −7.25866 + 1.94495i −0.229769 + 0.0615664i
\(999\) 8.73606 + 15.1313i 0.276397 + 0.478733i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 490.2.l.a.423.3 16
5.2 odd 4 inner 490.2.l.a.227.1 16
7.2 even 3 inner 490.2.l.a.313.2 16
7.3 odd 6 70.2.g.a.13.2 yes 8
7.4 even 3 70.2.g.a.13.1 8
7.5 odd 6 inner 490.2.l.a.313.1 16
7.6 odd 2 inner 490.2.l.a.423.4 16
21.11 odd 6 630.2.p.a.433.4 8
21.17 even 6 630.2.p.a.433.3 8
28.3 even 6 560.2.bj.c.433.1 8
28.11 odd 6 560.2.bj.c.433.4 8
35.2 odd 12 inner 490.2.l.a.117.4 16
35.3 even 12 350.2.g.a.307.4 8
35.4 even 6 350.2.g.a.293.4 8
35.12 even 12 inner 490.2.l.a.117.3 16
35.17 even 12 70.2.g.a.27.1 yes 8
35.18 odd 12 350.2.g.a.307.3 8
35.24 odd 6 350.2.g.a.293.3 8
35.27 even 4 inner 490.2.l.a.227.2 16
35.32 odd 12 70.2.g.a.27.2 yes 8
105.17 odd 12 630.2.p.a.307.4 8
105.32 even 12 630.2.p.a.307.3 8
140.67 even 12 560.2.bj.c.97.1 8
140.87 odd 12 560.2.bj.c.97.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
70.2.g.a.13.1 8 7.4 even 3
70.2.g.a.13.2 yes 8 7.3 odd 6
70.2.g.a.27.1 yes 8 35.17 even 12
70.2.g.a.27.2 yes 8 35.32 odd 12
350.2.g.a.293.3 8 35.24 odd 6
350.2.g.a.293.4 8 35.4 even 6
350.2.g.a.307.3 8 35.18 odd 12
350.2.g.a.307.4 8 35.3 even 12
490.2.l.a.117.3 16 35.12 even 12 inner
490.2.l.a.117.4 16 35.2 odd 12 inner
490.2.l.a.227.1 16 5.2 odd 4 inner
490.2.l.a.227.2 16 35.27 even 4 inner
490.2.l.a.313.1 16 7.5 odd 6 inner
490.2.l.a.313.2 16 7.2 even 3 inner
490.2.l.a.423.3 16 1.1 even 1 trivial
490.2.l.a.423.4 16 7.6 odd 2 inner
560.2.bj.c.97.1 8 140.67 even 12
560.2.bj.c.97.4 8 140.87 odd 12
560.2.bj.c.433.1 8 28.3 even 6
560.2.bj.c.433.4 8 28.11 odd 6
630.2.p.a.307.3 8 105.32 even 12
630.2.p.a.307.4 8 105.17 odd 12
630.2.p.a.433.3 8 21.17 even 6
630.2.p.a.433.4 8 21.11 odd 6