Properties

Label 490.4.a.j.1.1
Level $490$
Weight $4$
Character 490.1
Self dual yes
Analytic conductor $28.911$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [490,4,Mod(1,490)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(490, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("490.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 490 = 2 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 490.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(28.9109359028\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 70)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 490.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000 q^{2} -5.00000 q^{3} +4.00000 q^{4} -5.00000 q^{5} -10.0000 q^{6} +8.00000 q^{8} -2.00000 q^{9} -10.0000 q^{10} -1.00000 q^{11} -20.0000 q^{12} -7.00000 q^{13} +25.0000 q^{15} +16.0000 q^{16} +51.0000 q^{17} -4.00000 q^{18} -30.0000 q^{19} -20.0000 q^{20} -2.00000 q^{22} -50.0000 q^{23} -40.0000 q^{24} +25.0000 q^{25} -14.0000 q^{26} +145.000 q^{27} +79.0000 q^{29} +50.0000 q^{30} +212.000 q^{31} +32.0000 q^{32} +5.00000 q^{33} +102.000 q^{34} -8.00000 q^{36} -190.000 q^{37} -60.0000 q^{38} +35.0000 q^{39} -40.0000 q^{40} +308.000 q^{41} +422.000 q^{43} -4.00000 q^{44} +10.0000 q^{45} -100.000 q^{46} -121.000 q^{47} -80.0000 q^{48} +50.0000 q^{50} -255.000 q^{51} -28.0000 q^{52} +664.000 q^{53} +290.000 q^{54} +5.00000 q^{55} +150.000 q^{57} +158.000 q^{58} -628.000 q^{59} +100.000 q^{60} +684.000 q^{61} +424.000 q^{62} +64.0000 q^{64} +35.0000 q^{65} +10.0000 q^{66} +1056.00 q^{67} +204.000 q^{68} +250.000 q^{69} +744.000 q^{71} -16.0000 q^{72} -726.000 q^{73} -380.000 q^{74} -125.000 q^{75} -120.000 q^{76} +70.0000 q^{78} -407.000 q^{79} -80.0000 q^{80} -671.000 q^{81} +616.000 q^{82} -644.000 q^{83} -255.000 q^{85} +844.000 q^{86} -395.000 q^{87} -8.00000 q^{88} +880.000 q^{89} +20.0000 q^{90} -200.000 q^{92} -1060.00 q^{93} -242.000 q^{94} +150.000 q^{95} -160.000 q^{96} +1351.00 q^{97} +2.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 0.707107
\(3\) −5.00000 −0.962250 −0.481125 0.876652i \(-0.659772\pi\)
−0.481125 + 0.876652i \(0.659772\pi\)
\(4\) 4.00000 0.500000
\(5\) −5.00000 −0.447214
\(6\) −10.0000 −0.680414
\(7\) 0 0
\(8\) 8.00000 0.353553
\(9\) −2.00000 −0.0740741
\(10\) −10.0000 −0.316228
\(11\) −1.00000 −0.0274101 −0.0137051 0.999906i \(-0.504363\pi\)
−0.0137051 + 0.999906i \(0.504363\pi\)
\(12\) −20.0000 −0.481125
\(13\) −7.00000 −0.149342 −0.0746712 0.997208i \(-0.523791\pi\)
−0.0746712 + 0.997208i \(0.523791\pi\)
\(14\) 0 0
\(15\) 25.0000 0.430331
\(16\) 16.0000 0.250000
\(17\) 51.0000 0.727607 0.363803 0.931476i \(-0.381478\pi\)
0.363803 + 0.931476i \(0.381478\pi\)
\(18\) −4.00000 −0.0523783
\(19\) −30.0000 −0.362235 −0.181118 0.983461i \(-0.557971\pi\)
−0.181118 + 0.983461i \(0.557971\pi\)
\(20\) −20.0000 −0.223607
\(21\) 0 0
\(22\) −2.00000 −0.0193819
\(23\) −50.0000 −0.453292 −0.226646 0.973977i \(-0.572776\pi\)
−0.226646 + 0.973977i \(0.572776\pi\)
\(24\) −40.0000 −0.340207
\(25\) 25.0000 0.200000
\(26\) −14.0000 −0.105601
\(27\) 145.000 1.03353
\(28\) 0 0
\(29\) 79.0000 0.505860 0.252930 0.967485i \(-0.418606\pi\)
0.252930 + 0.967485i \(0.418606\pi\)
\(30\) 50.0000 0.304290
\(31\) 212.000 1.22827 0.614134 0.789202i \(-0.289505\pi\)
0.614134 + 0.789202i \(0.289505\pi\)
\(32\) 32.0000 0.176777
\(33\) 5.00000 0.0263754
\(34\) 102.000 0.514496
\(35\) 0 0
\(36\) −8.00000 −0.0370370
\(37\) −190.000 −0.844211 −0.422106 0.906547i \(-0.638709\pi\)
−0.422106 + 0.906547i \(0.638709\pi\)
\(38\) −60.0000 −0.256139
\(39\) 35.0000 0.143705
\(40\) −40.0000 −0.158114
\(41\) 308.000 1.17321 0.586604 0.809874i \(-0.300465\pi\)
0.586604 + 0.809874i \(0.300465\pi\)
\(42\) 0 0
\(43\) 422.000 1.49661 0.748307 0.663353i \(-0.230867\pi\)
0.748307 + 0.663353i \(0.230867\pi\)
\(44\) −4.00000 −0.0137051
\(45\) 10.0000 0.0331269
\(46\) −100.000 −0.320526
\(47\) −121.000 −0.375525 −0.187762 0.982214i \(-0.560123\pi\)
−0.187762 + 0.982214i \(0.560123\pi\)
\(48\) −80.0000 −0.240563
\(49\) 0 0
\(50\) 50.0000 0.141421
\(51\) −255.000 −0.700140
\(52\) −28.0000 −0.0746712
\(53\) 664.000 1.72089 0.860447 0.509539i \(-0.170184\pi\)
0.860447 + 0.509539i \(0.170184\pi\)
\(54\) 290.000 0.730815
\(55\) 5.00000 0.0122582
\(56\) 0 0
\(57\) 150.000 0.348561
\(58\) 158.000 0.357697
\(59\) −628.000 −1.38574 −0.692870 0.721063i \(-0.743654\pi\)
−0.692870 + 0.721063i \(0.743654\pi\)
\(60\) 100.000 0.215166
\(61\) 684.000 1.43569 0.717846 0.696202i \(-0.245128\pi\)
0.717846 + 0.696202i \(0.245128\pi\)
\(62\) 424.000 0.868517
\(63\) 0 0
\(64\) 64.0000 0.125000
\(65\) 35.0000 0.0667879
\(66\) 10.0000 0.0186502
\(67\) 1056.00 1.92554 0.962768 0.270328i \(-0.0871323\pi\)
0.962768 + 0.270328i \(0.0871323\pi\)
\(68\) 204.000 0.363803
\(69\) 250.000 0.436181
\(70\) 0 0
\(71\) 744.000 1.24361 0.621807 0.783171i \(-0.286399\pi\)
0.621807 + 0.783171i \(0.286399\pi\)
\(72\) −16.0000 −0.0261891
\(73\) −726.000 −1.16400 −0.581999 0.813189i \(-0.697729\pi\)
−0.581999 + 0.813189i \(0.697729\pi\)
\(74\) −380.000 −0.596947
\(75\) −125.000 −0.192450
\(76\) −120.000 −0.181118
\(77\) 0 0
\(78\) 70.0000 0.101615
\(79\) −407.000 −0.579634 −0.289817 0.957082i \(-0.593594\pi\)
−0.289817 + 0.957082i \(0.593594\pi\)
\(80\) −80.0000 −0.111803
\(81\) −671.000 −0.920439
\(82\) 616.000 0.829583
\(83\) −644.000 −0.851665 −0.425832 0.904802i \(-0.640019\pi\)
−0.425832 + 0.904802i \(0.640019\pi\)
\(84\) 0 0
\(85\) −255.000 −0.325396
\(86\) 844.000 1.05827
\(87\) −395.000 −0.486764
\(88\) −8.00000 −0.00969094
\(89\) 880.000 1.04809 0.524044 0.851691i \(-0.324423\pi\)
0.524044 + 0.851691i \(0.324423\pi\)
\(90\) 20.0000 0.0234243
\(91\) 0 0
\(92\) −200.000 −0.226646
\(93\) −1060.00 −1.18190
\(94\) −242.000 −0.265536
\(95\) 150.000 0.161997
\(96\) −160.000 −0.170103
\(97\) 1351.00 1.41416 0.707079 0.707135i \(-0.250013\pi\)
0.707079 + 0.707135i \(0.250013\pi\)
\(98\) 0 0
\(99\) 2.00000 0.00203038
\(100\) 100.000 0.100000
\(101\) −54.0000 −0.0532000 −0.0266000 0.999646i \(-0.508468\pi\)
−0.0266000 + 0.999646i \(0.508468\pi\)
\(102\) −510.000 −0.495074
\(103\) 1027.00 0.982459 0.491230 0.871030i \(-0.336548\pi\)
0.491230 + 0.871030i \(0.336548\pi\)
\(104\) −56.0000 −0.0528005
\(105\) 0 0
\(106\) 1328.00 1.21686
\(107\) 314.000 0.283697 0.141848 0.989888i \(-0.454695\pi\)
0.141848 + 0.989888i \(0.454695\pi\)
\(108\) 580.000 0.516764
\(109\) −1611.00 −1.41565 −0.707825 0.706388i \(-0.750323\pi\)
−0.707825 + 0.706388i \(0.750323\pi\)
\(110\) 10.0000 0.00866784
\(111\) 950.000 0.812342
\(112\) 0 0
\(113\) 366.000 0.304694 0.152347 0.988327i \(-0.451317\pi\)
0.152347 + 0.988327i \(0.451317\pi\)
\(114\) 300.000 0.246470
\(115\) 250.000 0.202718
\(116\) 316.000 0.252930
\(117\) 14.0000 0.0110624
\(118\) −1256.00 −0.979866
\(119\) 0 0
\(120\) 200.000 0.152145
\(121\) −1330.00 −0.999249
\(122\) 1368.00 1.01519
\(123\) −1540.00 −1.12892
\(124\) 848.000 0.614134
\(125\) −125.000 −0.0894427
\(126\) 0 0
\(127\) 604.000 0.422018 0.211009 0.977484i \(-0.432325\pi\)
0.211009 + 0.977484i \(0.432325\pi\)
\(128\) 128.000 0.0883883
\(129\) −2110.00 −1.44012
\(130\) 70.0000 0.0472262
\(131\) −2914.00 −1.94349 −0.971746 0.236030i \(-0.924153\pi\)
−0.971746 + 0.236030i \(0.924153\pi\)
\(132\) 20.0000 0.0131877
\(133\) 0 0
\(134\) 2112.00 1.36156
\(135\) −725.000 −0.462208
\(136\) 408.000 0.257248
\(137\) 2568.00 1.60145 0.800726 0.599030i \(-0.204447\pi\)
0.800726 + 0.599030i \(0.204447\pi\)
\(138\) 500.000 0.308426
\(139\) −1274.00 −0.777405 −0.388702 0.921363i \(-0.627077\pi\)
−0.388702 + 0.921363i \(0.627077\pi\)
\(140\) 0 0
\(141\) 605.000 0.361349
\(142\) 1488.00 0.879368
\(143\) 7.00000 0.00409349
\(144\) −32.0000 −0.0185185
\(145\) −395.000 −0.226227
\(146\) −1452.00 −0.823071
\(147\) 0 0
\(148\) −760.000 −0.422106
\(149\) 594.000 0.326593 0.163297 0.986577i \(-0.447787\pi\)
0.163297 + 0.986577i \(0.447787\pi\)
\(150\) −250.000 −0.136083
\(151\) −1527.00 −0.822950 −0.411475 0.911421i \(-0.634986\pi\)
−0.411475 + 0.911421i \(0.634986\pi\)
\(152\) −240.000 −0.128070
\(153\) −102.000 −0.0538968
\(154\) 0 0
\(155\) −1060.00 −0.549298
\(156\) 140.000 0.0718524
\(157\) −530.000 −0.269418 −0.134709 0.990885i \(-0.543010\pi\)
−0.134709 + 0.990885i \(0.543010\pi\)
\(158\) −814.000 −0.409863
\(159\) −3320.00 −1.65593
\(160\) −160.000 −0.0790569
\(161\) 0 0
\(162\) −1342.00 −0.650849
\(163\) −3662.00 −1.75969 −0.879847 0.475258i \(-0.842355\pi\)
−0.879847 + 0.475258i \(0.842355\pi\)
\(164\) 1232.00 0.586604
\(165\) −25.0000 −0.0117954
\(166\) −1288.00 −0.602218
\(167\) 315.000 0.145961 0.0729803 0.997333i \(-0.476749\pi\)
0.0729803 + 0.997333i \(0.476749\pi\)
\(168\) 0 0
\(169\) −2148.00 −0.977697
\(170\) −510.000 −0.230089
\(171\) 60.0000 0.0268322
\(172\) 1688.00 0.748307
\(173\) 1251.00 0.549779 0.274890 0.961476i \(-0.411359\pi\)
0.274890 + 0.961476i \(0.411359\pi\)
\(174\) −790.000 −0.344194
\(175\) 0 0
\(176\) −16.0000 −0.00685253
\(177\) 3140.00 1.33343
\(178\) 1760.00 0.741110
\(179\) −148.000 −0.0617991 −0.0308996 0.999522i \(-0.509837\pi\)
−0.0308996 + 0.999522i \(0.509837\pi\)
\(180\) 40.0000 0.0165635
\(181\) 1344.00 0.551927 0.275963 0.961168i \(-0.411003\pi\)
0.275963 + 0.961168i \(0.411003\pi\)
\(182\) 0 0
\(183\) −3420.00 −1.38150
\(184\) −400.000 −0.160263
\(185\) 950.000 0.377543
\(186\) −2120.00 −0.835731
\(187\) −51.0000 −0.0199438
\(188\) −484.000 −0.187762
\(189\) 0 0
\(190\) 300.000 0.114549
\(191\) −561.000 −0.212526 −0.106263 0.994338i \(-0.533889\pi\)
−0.106263 + 0.994338i \(0.533889\pi\)
\(192\) −320.000 −0.120281
\(193\) 3016.00 1.12485 0.562426 0.826848i \(-0.309868\pi\)
0.562426 + 0.826848i \(0.309868\pi\)
\(194\) 2702.00 0.999960
\(195\) −175.000 −0.0642667
\(196\) 0 0
\(197\) −3232.00 −1.16889 −0.584443 0.811435i \(-0.698687\pi\)
−0.584443 + 0.811435i \(0.698687\pi\)
\(198\) 4.00000 0.00143570
\(199\) 1164.00 0.414642 0.207321 0.978273i \(-0.433526\pi\)
0.207321 + 0.978273i \(0.433526\pi\)
\(200\) 200.000 0.0707107
\(201\) −5280.00 −1.85285
\(202\) −108.000 −0.0376181
\(203\) 0 0
\(204\) −1020.00 −0.350070
\(205\) −1540.00 −0.524674
\(206\) 2054.00 0.694704
\(207\) 100.000 0.0335772
\(208\) −112.000 −0.0373356
\(209\) 30.0000 0.00992892
\(210\) 0 0
\(211\) 569.000 0.185647 0.0928236 0.995683i \(-0.470411\pi\)
0.0928236 + 0.995683i \(0.470411\pi\)
\(212\) 2656.00 0.860447
\(213\) −3720.00 −1.19667
\(214\) 628.000 0.200604
\(215\) −2110.00 −0.669306
\(216\) 1160.00 0.365407
\(217\) 0 0
\(218\) −3222.00 −1.00102
\(219\) 3630.00 1.12006
\(220\) 20.0000 0.00612909
\(221\) −357.000 −0.108663
\(222\) 1900.00 0.574413
\(223\) −693.000 −0.208102 −0.104051 0.994572i \(-0.533180\pi\)
−0.104051 + 0.994572i \(0.533180\pi\)
\(224\) 0 0
\(225\) −50.0000 −0.0148148
\(226\) 732.000 0.215451
\(227\) 4279.00 1.25113 0.625567 0.780171i \(-0.284868\pi\)
0.625567 + 0.780171i \(0.284868\pi\)
\(228\) 600.000 0.174281
\(229\) 3316.00 0.956888 0.478444 0.878118i \(-0.341201\pi\)
0.478444 + 0.878118i \(0.341201\pi\)
\(230\) 500.000 0.143344
\(231\) 0 0
\(232\) 632.000 0.178848
\(233\) 3912.00 1.09993 0.549965 0.835188i \(-0.314641\pi\)
0.549965 + 0.835188i \(0.314641\pi\)
\(234\) 28.0000 0.00782230
\(235\) 605.000 0.167940
\(236\) −2512.00 −0.692870
\(237\) 2035.00 0.557753
\(238\) 0 0
\(239\) −5451.00 −1.47530 −0.737648 0.675185i \(-0.764064\pi\)
−0.737648 + 0.675185i \(0.764064\pi\)
\(240\) 400.000 0.107583
\(241\) −250.000 −0.0668212 −0.0334106 0.999442i \(-0.510637\pi\)
−0.0334106 + 0.999442i \(0.510637\pi\)
\(242\) −2660.00 −0.706576
\(243\) −560.000 −0.147835
\(244\) 2736.00 0.717846
\(245\) 0 0
\(246\) −3080.00 −0.798267
\(247\) 210.000 0.0540971
\(248\) 1696.00 0.434258
\(249\) 3220.00 0.819515
\(250\) −250.000 −0.0632456
\(251\) −910.000 −0.228839 −0.114420 0.993432i \(-0.536501\pi\)
−0.114420 + 0.993432i \(0.536501\pi\)
\(252\) 0 0
\(253\) 50.0000 0.0124248
\(254\) 1208.00 0.298412
\(255\) 1275.00 0.313112
\(256\) 256.000 0.0625000
\(257\) 6494.00 1.57620 0.788102 0.615544i \(-0.211064\pi\)
0.788102 + 0.615544i \(0.211064\pi\)
\(258\) −4220.00 −1.01832
\(259\) 0 0
\(260\) 140.000 0.0333940
\(261\) −158.000 −0.0374711
\(262\) −5828.00 −1.37426
\(263\) 1434.00 0.336214 0.168107 0.985769i \(-0.446235\pi\)
0.168107 + 0.985769i \(0.446235\pi\)
\(264\) 40.0000 0.00932511
\(265\) −3320.00 −0.769607
\(266\) 0 0
\(267\) −4400.00 −1.00852
\(268\) 4224.00 0.962768
\(269\) 5014.00 1.13646 0.568232 0.822868i \(-0.307627\pi\)
0.568232 + 0.822868i \(0.307627\pi\)
\(270\) −1450.00 −0.326830
\(271\) −5420.00 −1.21491 −0.607457 0.794353i \(-0.707810\pi\)
−0.607457 + 0.794353i \(0.707810\pi\)
\(272\) 816.000 0.181902
\(273\) 0 0
\(274\) 5136.00 1.13240
\(275\) −25.0000 −0.00548202
\(276\) 1000.00 0.218090
\(277\) 3674.00 0.796929 0.398464 0.917184i \(-0.369543\pi\)
0.398464 + 0.917184i \(0.369543\pi\)
\(278\) −2548.00 −0.549708
\(279\) −424.000 −0.0909829
\(280\) 0 0
\(281\) 7331.00 1.55634 0.778169 0.628055i \(-0.216149\pi\)
0.778169 + 0.628055i \(0.216149\pi\)
\(282\) 1210.00 0.255512
\(283\) −271.000 −0.0569232 −0.0284616 0.999595i \(-0.509061\pi\)
−0.0284616 + 0.999595i \(0.509061\pi\)
\(284\) 2976.00 0.621807
\(285\) −750.000 −0.155881
\(286\) 14.0000 0.00289454
\(287\) 0 0
\(288\) −64.0000 −0.0130946
\(289\) −2312.00 −0.470588
\(290\) −790.000 −0.159967
\(291\) −6755.00 −1.36077
\(292\) −2904.00 −0.581999
\(293\) −4305.00 −0.858364 −0.429182 0.903218i \(-0.641198\pi\)
−0.429182 + 0.903218i \(0.641198\pi\)
\(294\) 0 0
\(295\) 3140.00 0.619722
\(296\) −1520.00 −0.298474
\(297\) −145.000 −0.0283291
\(298\) 1188.00 0.230936
\(299\) 350.000 0.0676957
\(300\) −500.000 −0.0962250
\(301\) 0 0
\(302\) −3054.00 −0.581914
\(303\) 270.000 0.0511917
\(304\) −480.000 −0.0905588
\(305\) −3420.00 −0.642061
\(306\) −204.000 −0.0381108
\(307\) −2639.00 −0.490605 −0.245302 0.969447i \(-0.578887\pi\)
−0.245302 + 0.969447i \(0.578887\pi\)
\(308\) 0 0
\(309\) −5135.00 −0.945372
\(310\) −2120.00 −0.388413
\(311\) 8514.00 1.55236 0.776181 0.630510i \(-0.217154\pi\)
0.776181 + 0.630510i \(0.217154\pi\)
\(312\) 280.000 0.0508073
\(313\) −219.000 −0.0395483 −0.0197741 0.999804i \(-0.506295\pi\)
−0.0197741 + 0.999804i \(0.506295\pi\)
\(314\) −1060.00 −0.190507
\(315\) 0 0
\(316\) −1628.00 −0.289817
\(317\) −4026.00 −0.713321 −0.356660 0.934234i \(-0.616085\pi\)
−0.356660 + 0.934234i \(0.616085\pi\)
\(318\) −6640.00 −1.17092
\(319\) −79.0000 −0.0138657
\(320\) −320.000 −0.0559017
\(321\) −1570.00 −0.272987
\(322\) 0 0
\(323\) −1530.00 −0.263565
\(324\) −2684.00 −0.460219
\(325\) −175.000 −0.0298685
\(326\) −7324.00 −1.24429
\(327\) 8055.00 1.36221
\(328\) 2464.00 0.414792
\(329\) 0 0
\(330\) −50.0000 −0.00834063
\(331\) −7036.00 −1.16838 −0.584190 0.811617i \(-0.698588\pi\)
−0.584190 + 0.811617i \(0.698588\pi\)
\(332\) −2576.00 −0.425832
\(333\) 380.000 0.0625341
\(334\) 630.000 0.103210
\(335\) −5280.00 −0.861126
\(336\) 0 0
\(337\) 10362.0 1.67494 0.837469 0.546485i \(-0.184034\pi\)
0.837469 + 0.546485i \(0.184034\pi\)
\(338\) −4296.00 −0.691336
\(339\) −1830.00 −0.293192
\(340\) −1020.00 −0.162698
\(341\) −212.000 −0.0336670
\(342\) 120.000 0.0189733
\(343\) 0 0
\(344\) 3376.00 0.529133
\(345\) −1250.00 −0.195066
\(346\) 2502.00 0.388752
\(347\) −8422.00 −1.30293 −0.651465 0.758679i \(-0.725845\pi\)
−0.651465 + 0.758679i \(0.725845\pi\)
\(348\) −1580.00 −0.243382
\(349\) 7350.00 1.12733 0.563663 0.826005i \(-0.309392\pi\)
0.563663 + 0.826005i \(0.309392\pi\)
\(350\) 0 0
\(351\) −1015.00 −0.154350
\(352\) −32.0000 −0.00484547
\(353\) −3057.00 −0.460928 −0.230464 0.973081i \(-0.574024\pi\)
−0.230464 + 0.973081i \(0.574024\pi\)
\(354\) 6280.00 0.942876
\(355\) −3720.00 −0.556161
\(356\) 3520.00 0.524044
\(357\) 0 0
\(358\) −296.000 −0.0436986
\(359\) 8392.00 1.23374 0.616870 0.787065i \(-0.288400\pi\)
0.616870 + 0.787065i \(0.288400\pi\)
\(360\) 80.0000 0.0117121
\(361\) −5959.00 −0.868786
\(362\) 2688.00 0.390271
\(363\) 6650.00 0.961527
\(364\) 0 0
\(365\) 3630.00 0.520556
\(366\) −6840.00 −0.976865
\(367\) −8377.00 −1.19149 −0.595744 0.803175i \(-0.703143\pi\)
−0.595744 + 0.803175i \(0.703143\pi\)
\(368\) −800.000 −0.113323
\(369\) −616.000 −0.0869043
\(370\) 1900.00 0.266963
\(371\) 0 0
\(372\) −4240.00 −0.590951
\(373\) −1968.00 −0.273188 −0.136594 0.990627i \(-0.543616\pi\)
−0.136594 + 0.990627i \(0.543616\pi\)
\(374\) −102.000 −0.0141024
\(375\) 625.000 0.0860663
\(376\) −968.000 −0.132768
\(377\) −553.000 −0.0755463
\(378\) 0 0
\(379\) 1052.00 0.142579 0.0712897 0.997456i \(-0.477289\pi\)
0.0712897 + 0.997456i \(0.477289\pi\)
\(380\) 600.000 0.0809983
\(381\) −3020.00 −0.406087
\(382\) −1122.00 −0.150279
\(383\) 2308.00 0.307920 0.153960 0.988077i \(-0.450797\pi\)
0.153960 + 0.988077i \(0.450797\pi\)
\(384\) −640.000 −0.0850517
\(385\) 0 0
\(386\) 6032.00 0.795390
\(387\) −844.000 −0.110860
\(388\) 5404.00 0.707079
\(389\) 2281.00 0.297304 0.148652 0.988890i \(-0.452507\pi\)
0.148652 + 0.988890i \(0.452507\pi\)
\(390\) −350.000 −0.0454434
\(391\) −2550.00 −0.329819
\(392\) 0 0
\(393\) 14570.0 1.87013
\(394\) −6464.00 −0.826527
\(395\) 2035.00 0.259220
\(396\) 8.00000 0.00101519
\(397\) 14635.0 1.85015 0.925075 0.379784i \(-0.124002\pi\)
0.925075 + 0.379784i \(0.124002\pi\)
\(398\) 2328.00 0.293196
\(399\) 0 0
\(400\) 400.000 0.0500000
\(401\) 5641.00 0.702489 0.351245 0.936284i \(-0.385759\pi\)
0.351245 + 0.936284i \(0.385759\pi\)
\(402\) −10560.0 −1.31016
\(403\) −1484.00 −0.183433
\(404\) −216.000 −0.0266000
\(405\) 3355.00 0.411633
\(406\) 0 0
\(407\) 190.000 0.0231399
\(408\) −2040.00 −0.247537
\(409\) −6410.00 −0.774949 −0.387474 0.921880i \(-0.626652\pi\)
−0.387474 + 0.921880i \(0.626652\pi\)
\(410\) −3080.00 −0.371001
\(411\) −12840.0 −1.54100
\(412\) 4108.00 0.491230
\(413\) 0 0
\(414\) 200.000 0.0237427
\(415\) 3220.00 0.380876
\(416\) −224.000 −0.0264002
\(417\) 6370.00 0.748058
\(418\) 60.0000 0.00702080
\(419\) −4816.00 −0.561520 −0.280760 0.959778i \(-0.590587\pi\)
−0.280760 + 0.959778i \(0.590587\pi\)
\(420\) 0 0
\(421\) 15325.0 1.77410 0.887048 0.461676i \(-0.152752\pi\)
0.887048 + 0.461676i \(0.152752\pi\)
\(422\) 1138.00 0.131272
\(423\) 242.000 0.0278166
\(424\) 5312.00 0.608428
\(425\) 1275.00 0.145521
\(426\) −7440.00 −0.846172
\(427\) 0 0
\(428\) 1256.00 0.141848
\(429\) −35.0000 −0.00393896
\(430\) −4220.00 −0.473271
\(431\) 1875.00 0.209549 0.104774 0.994496i \(-0.466588\pi\)
0.104774 + 0.994496i \(0.466588\pi\)
\(432\) 2320.00 0.258382
\(433\) 13874.0 1.53982 0.769910 0.638153i \(-0.220301\pi\)
0.769910 + 0.638153i \(0.220301\pi\)
\(434\) 0 0
\(435\) 1975.00 0.217687
\(436\) −6444.00 −0.707825
\(437\) 1500.00 0.164198
\(438\) 7260.00 0.792000
\(439\) 3442.00 0.374209 0.187104 0.982340i \(-0.440090\pi\)
0.187104 + 0.982340i \(0.440090\pi\)
\(440\) 40.0000 0.00433392
\(441\) 0 0
\(442\) −714.000 −0.0768360
\(443\) 16750.0 1.79643 0.898213 0.439561i \(-0.144866\pi\)
0.898213 + 0.439561i \(0.144866\pi\)
\(444\) 3800.00 0.406171
\(445\) −4400.00 −0.468719
\(446\) −1386.00 −0.147150
\(447\) −2970.00 −0.314264
\(448\) 0 0
\(449\) 695.000 0.0730492 0.0365246 0.999333i \(-0.488371\pi\)
0.0365246 + 0.999333i \(0.488371\pi\)
\(450\) −100.000 −0.0104757
\(451\) −308.000 −0.0321578
\(452\) 1464.00 0.152347
\(453\) 7635.00 0.791884
\(454\) 8558.00 0.884685
\(455\) 0 0
\(456\) 1200.00 0.123235
\(457\) 5760.00 0.589587 0.294794 0.955561i \(-0.404749\pi\)
0.294794 + 0.955561i \(0.404749\pi\)
\(458\) 6632.00 0.676622
\(459\) 7395.00 0.752002
\(460\) 1000.00 0.101359
\(461\) −13440.0 −1.35784 −0.678919 0.734213i \(-0.737551\pi\)
−0.678919 + 0.734213i \(0.737551\pi\)
\(462\) 0 0
\(463\) −7348.00 −0.737561 −0.368780 0.929517i \(-0.620225\pi\)
−0.368780 + 0.929517i \(0.620225\pi\)
\(464\) 1264.00 0.126465
\(465\) 5300.00 0.528563
\(466\) 7824.00 0.777768
\(467\) 17925.0 1.77617 0.888084 0.459682i \(-0.152037\pi\)
0.888084 + 0.459682i \(0.152037\pi\)
\(468\) 56.0000 0.00553120
\(469\) 0 0
\(470\) 1210.00 0.118751
\(471\) 2650.00 0.259247
\(472\) −5024.00 −0.489933
\(473\) −422.000 −0.0410224
\(474\) 4070.00 0.394391
\(475\) −750.000 −0.0724471
\(476\) 0 0
\(477\) −1328.00 −0.127474
\(478\) −10902.0 −1.04319
\(479\) −12346.0 −1.17767 −0.588834 0.808254i \(-0.700413\pi\)
−0.588834 + 0.808254i \(0.700413\pi\)
\(480\) 800.000 0.0760726
\(481\) 1330.00 0.126076
\(482\) −500.000 −0.0472497
\(483\) 0 0
\(484\) −5320.00 −0.499624
\(485\) −6755.00 −0.632430
\(486\) −1120.00 −0.104535
\(487\) 15014.0 1.39702 0.698511 0.715600i \(-0.253847\pi\)
0.698511 + 0.715600i \(0.253847\pi\)
\(488\) 5472.00 0.507594
\(489\) 18310.0 1.69327
\(490\) 0 0
\(491\) −4723.00 −0.434106 −0.217053 0.976160i \(-0.569644\pi\)
−0.217053 + 0.976160i \(0.569644\pi\)
\(492\) −6160.00 −0.564460
\(493\) 4029.00 0.368067
\(494\) 420.000 0.0382524
\(495\) −10.0000 −0.000908013 0
\(496\) 3392.00 0.307067
\(497\) 0 0
\(498\) 6440.00 0.579485
\(499\) 11227.0 1.00719 0.503597 0.863939i \(-0.332010\pi\)
0.503597 + 0.863939i \(0.332010\pi\)
\(500\) −500.000 −0.0447214
\(501\) −1575.00 −0.140451
\(502\) −1820.00 −0.161814
\(503\) 4557.00 0.403949 0.201975 0.979391i \(-0.435264\pi\)
0.201975 + 0.979391i \(0.435264\pi\)
\(504\) 0 0
\(505\) 270.000 0.0237918
\(506\) 100.000 0.00878566
\(507\) 10740.0 0.940789
\(508\) 2416.00 0.211009
\(509\) 14110.0 1.22871 0.614356 0.789029i \(-0.289416\pi\)
0.614356 + 0.789029i \(0.289416\pi\)
\(510\) 2550.00 0.221404
\(511\) 0 0
\(512\) 512.000 0.0441942
\(513\) −4350.00 −0.374380
\(514\) 12988.0 1.11454
\(515\) −5135.00 −0.439369
\(516\) −8440.00 −0.720059
\(517\) 121.000 0.0102932
\(518\) 0 0
\(519\) −6255.00 −0.529025
\(520\) 280.000 0.0236131
\(521\) −1902.00 −0.159939 −0.0799694 0.996797i \(-0.525482\pi\)
−0.0799694 + 0.996797i \(0.525482\pi\)
\(522\) −316.000 −0.0264961
\(523\) 1972.00 0.164875 0.0824374 0.996596i \(-0.473730\pi\)
0.0824374 + 0.996596i \(0.473730\pi\)
\(524\) −11656.0 −0.971746
\(525\) 0 0
\(526\) 2868.00 0.237739
\(527\) 10812.0 0.893697
\(528\) 80.0000 0.00659385
\(529\) −9667.00 −0.794526
\(530\) −6640.00 −0.544195
\(531\) 1256.00 0.102647
\(532\) 0 0
\(533\) −2156.00 −0.175210
\(534\) −8800.00 −0.713133
\(535\) −1570.00 −0.126873
\(536\) 8448.00 0.680780
\(537\) 740.000 0.0594662
\(538\) 10028.0 0.803602
\(539\) 0 0
\(540\) −2900.00 −0.231104
\(541\) −25033.0 −1.98938 −0.994688 0.102933i \(-0.967177\pi\)
−0.994688 + 0.102933i \(0.967177\pi\)
\(542\) −10840.0 −0.859074
\(543\) −6720.00 −0.531092
\(544\) 1632.00 0.128624
\(545\) 8055.00 0.633098
\(546\) 0 0
\(547\) −236.000 −0.0184472 −0.00922361 0.999957i \(-0.502936\pi\)
−0.00922361 + 0.999957i \(0.502936\pi\)
\(548\) 10272.0 0.800726
\(549\) −1368.00 −0.106348
\(550\) −50.0000 −0.00387638
\(551\) −2370.00 −0.183240
\(552\) 2000.00 0.154213
\(553\) 0 0
\(554\) 7348.00 0.563514
\(555\) −4750.00 −0.363291
\(556\) −5096.00 −0.388702
\(557\) 15504.0 1.17940 0.589700 0.807623i \(-0.299246\pi\)
0.589700 + 0.807623i \(0.299246\pi\)
\(558\) −848.000 −0.0643346
\(559\) −2954.00 −0.223508
\(560\) 0 0
\(561\) 255.000 0.0191909
\(562\) 14662.0 1.10050
\(563\) 8948.00 0.669828 0.334914 0.942249i \(-0.391293\pi\)
0.334914 + 0.942249i \(0.391293\pi\)
\(564\) 2420.00 0.180674
\(565\) −1830.00 −0.136263
\(566\) −542.000 −0.0402508
\(567\) 0 0
\(568\) 5952.00 0.439684
\(569\) 13866.0 1.02160 0.510802 0.859698i \(-0.329348\pi\)
0.510802 + 0.859698i \(0.329348\pi\)
\(570\) −1500.00 −0.110225
\(571\) 9988.00 0.732022 0.366011 0.930610i \(-0.380723\pi\)
0.366011 + 0.930610i \(0.380723\pi\)
\(572\) 28.0000 0.00204675
\(573\) 2805.00 0.204504
\(574\) 0 0
\(575\) −1250.00 −0.0906584
\(576\) −128.000 −0.00925926
\(577\) 2585.00 0.186508 0.0932539 0.995642i \(-0.470273\pi\)
0.0932539 + 0.995642i \(0.470273\pi\)
\(578\) −4624.00 −0.332756
\(579\) −15080.0 −1.08239
\(580\) −1580.00 −0.113114
\(581\) 0 0
\(582\) −13510.0 −0.962212
\(583\) −664.000 −0.0471699
\(584\) −5808.00 −0.411536
\(585\) −70.0000 −0.00494725
\(586\) −8610.00 −0.606955
\(587\) −19656.0 −1.38210 −0.691048 0.722809i \(-0.742851\pi\)
−0.691048 + 0.722809i \(0.742851\pi\)
\(588\) 0 0
\(589\) −6360.00 −0.444922
\(590\) 6280.00 0.438209
\(591\) 16160.0 1.12476
\(592\) −3040.00 −0.211053
\(593\) −21247.0 −1.47135 −0.735674 0.677335i \(-0.763135\pi\)
−0.735674 + 0.677335i \(0.763135\pi\)
\(594\) −290.000 −0.0200317
\(595\) 0 0
\(596\) 2376.00 0.163297
\(597\) −5820.00 −0.398990
\(598\) 700.000 0.0478681
\(599\) −9325.00 −0.636075 −0.318038 0.948078i \(-0.603024\pi\)
−0.318038 + 0.948078i \(0.603024\pi\)
\(600\) −1000.00 −0.0680414
\(601\) −5362.00 −0.363928 −0.181964 0.983305i \(-0.558245\pi\)
−0.181964 + 0.983305i \(0.558245\pi\)
\(602\) 0 0
\(603\) −2112.00 −0.142632
\(604\) −6108.00 −0.411475
\(605\) 6650.00 0.446878
\(606\) 540.000 0.0361980
\(607\) −15731.0 −1.05190 −0.525949 0.850516i \(-0.676290\pi\)
−0.525949 + 0.850516i \(0.676290\pi\)
\(608\) −960.000 −0.0640348
\(609\) 0 0
\(610\) −6840.00 −0.454006
\(611\) 847.000 0.0560818
\(612\) −408.000 −0.0269484
\(613\) −13742.0 −0.905439 −0.452720 0.891653i \(-0.649546\pi\)
−0.452720 + 0.891653i \(0.649546\pi\)
\(614\) −5278.00 −0.346910
\(615\) 7700.00 0.504868
\(616\) 0 0
\(617\) 18286.0 1.19314 0.596569 0.802561i \(-0.296530\pi\)
0.596569 + 0.802561i \(0.296530\pi\)
\(618\) −10270.0 −0.668479
\(619\) −24722.0 −1.60527 −0.802634 0.596472i \(-0.796569\pi\)
−0.802634 + 0.596472i \(0.796569\pi\)
\(620\) −4240.00 −0.274649
\(621\) −7250.00 −0.468490
\(622\) 17028.0 1.09769
\(623\) 0 0
\(624\) 560.000 0.0359262
\(625\) 625.000 0.0400000
\(626\) −438.000 −0.0279649
\(627\) −150.000 −0.00955410
\(628\) −2120.00 −0.134709
\(629\) −9690.00 −0.614254
\(630\) 0 0
\(631\) −22181.0 −1.39938 −0.699692 0.714444i \(-0.746680\pi\)
−0.699692 + 0.714444i \(0.746680\pi\)
\(632\) −3256.00 −0.204932
\(633\) −2845.00 −0.178639
\(634\) −8052.00 −0.504394
\(635\) −3020.00 −0.188732
\(636\) −13280.0 −0.827966
\(637\) 0 0
\(638\) −158.000 −0.00980451
\(639\) −1488.00 −0.0921195
\(640\) −640.000 −0.0395285
\(641\) −23598.0 −1.45408 −0.727040 0.686595i \(-0.759104\pi\)
−0.727040 + 0.686595i \(0.759104\pi\)
\(642\) −3140.00 −0.193031
\(643\) −13349.0 −0.818714 −0.409357 0.912374i \(-0.634247\pi\)
−0.409357 + 0.912374i \(0.634247\pi\)
\(644\) 0 0
\(645\) 10550.0 0.644040
\(646\) −3060.00 −0.186369
\(647\) 24488.0 1.48798 0.743990 0.668191i \(-0.232931\pi\)
0.743990 + 0.668191i \(0.232931\pi\)
\(648\) −5368.00 −0.325424
\(649\) 628.000 0.0379833
\(650\) −350.000 −0.0211202
\(651\) 0 0
\(652\) −14648.0 −0.879847
\(653\) 21622.0 1.29576 0.647882 0.761740i \(-0.275655\pi\)
0.647882 + 0.761740i \(0.275655\pi\)
\(654\) 16110.0 0.963228
\(655\) 14570.0 0.869156
\(656\) 4928.00 0.293302
\(657\) 1452.00 0.0862221
\(658\) 0 0
\(659\) −2973.00 −0.175738 −0.0878692 0.996132i \(-0.528006\pi\)
−0.0878692 + 0.996132i \(0.528006\pi\)
\(660\) −100.000 −0.00589772
\(661\) −18912.0 −1.11285 −0.556423 0.830899i \(-0.687827\pi\)
−0.556423 + 0.830899i \(0.687827\pi\)
\(662\) −14072.0 −0.826169
\(663\) 1785.00 0.104561
\(664\) −5152.00 −0.301109
\(665\) 0 0
\(666\) 760.000 0.0442183
\(667\) −3950.00 −0.229302
\(668\) 1260.00 0.0729803
\(669\) 3465.00 0.200246
\(670\) −10560.0 −0.608908
\(671\) −684.000 −0.0393525
\(672\) 0 0
\(673\) 688.000 0.0394063 0.0197032 0.999806i \(-0.493728\pi\)
0.0197032 + 0.999806i \(0.493728\pi\)
\(674\) 20724.0 1.18436
\(675\) 3625.00 0.206706
\(676\) −8592.00 −0.488848
\(677\) −12791.0 −0.726142 −0.363071 0.931761i \(-0.618272\pi\)
−0.363071 + 0.931761i \(0.618272\pi\)
\(678\) −3660.00 −0.207318
\(679\) 0 0
\(680\) −2040.00 −0.115045
\(681\) −21395.0 −1.20390
\(682\) −424.000 −0.0238062
\(683\) −7652.00 −0.428691 −0.214345 0.976758i \(-0.568762\pi\)
−0.214345 + 0.976758i \(0.568762\pi\)
\(684\) 240.000 0.0134161
\(685\) −12840.0 −0.716192
\(686\) 0 0
\(687\) −16580.0 −0.920766
\(688\) 6752.00 0.374153
\(689\) −4648.00 −0.257002
\(690\) −2500.00 −0.137932
\(691\) 2532.00 0.139395 0.0696974 0.997568i \(-0.477797\pi\)
0.0696974 + 0.997568i \(0.477797\pi\)
\(692\) 5004.00 0.274890
\(693\) 0 0
\(694\) −16844.0 −0.921311
\(695\) 6370.00 0.347666
\(696\) −3160.00 −0.172097
\(697\) 15708.0 0.853634
\(698\) 14700.0 0.797139
\(699\) −19560.0 −1.05841
\(700\) 0 0
\(701\) −2133.00 −0.114925 −0.0574624 0.998348i \(-0.518301\pi\)
−0.0574624 + 0.998348i \(0.518301\pi\)
\(702\) −2030.00 −0.109142
\(703\) 5700.00 0.305803
\(704\) −64.0000 −0.00342627
\(705\) −3025.00 −0.161600
\(706\) −6114.00 −0.325926
\(707\) 0 0
\(708\) 12560.0 0.666714
\(709\) −19153.0 −1.01454 −0.507268 0.861788i \(-0.669345\pi\)
−0.507268 + 0.861788i \(0.669345\pi\)
\(710\) −7440.00 −0.393265
\(711\) 814.000 0.0429358
\(712\) 7040.00 0.370555
\(713\) −10600.0 −0.556765
\(714\) 0 0
\(715\) −35.0000 −0.00183067
\(716\) −592.000 −0.0308996
\(717\) 27255.0 1.41960
\(718\) 16784.0 0.872386
\(719\) 21334.0 1.10657 0.553285 0.832992i \(-0.313374\pi\)
0.553285 + 0.832992i \(0.313374\pi\)
\(720\) 160.000 0.00828173
\(721\) 0 0
\(722\) −11918.0 −0.614324
\(723\) 1250.00 0.0642988
\(724\) 5376.00 0.275963
\(725\) 1975.00 0.101172
\(726\) 13300.0 0.679903
\(727\) −11480.0 −0.585653 −0.292826 0.956166i \(-0.594596\pi\)
−0.292826 + 0.956166i \(0.594596\pi\)
\(728\) 0 0
\(729\) 20917.0 1.06269
\(730\) 7260.00 0.368089
\(731\) 21522.0 1.08895
\(732\) −13680.0 −0.690748
\(733\) −19763.0 −0.995857 −0.497928 0.867218i \(-0.665906\pi\)
−0.497928 + 0.867218i \(0.665906\pi\)
\(734\) −16754.0 −0.842509
\(735\) 0 0
\(736\) −1600.00 −0.0801315
\(737\) −1056.00 −0.0527792
\(738\) −1232.00 −0.0614506
\(739\) −40153.0 −1.99872 −0.999359 0.0358110i \(-0.988599\pi\)
−0.999359 + 0.0358110i \(0.988599\pi\)
\(740\) 3800.00 0.188771
\(741\) −1050.00 −0.0520549
\(742\) 0 0
\(743\) −30896.0 −1.52552 −0.762762 0.646679i \(-0.776157\pi\)
−0.762762 + 0.646679i \(0.776157\pi\)
\(744\) −8480.00 −0.417865
\(745\) −2970.00 −0.146057
\(746\) −3936.00 −0.193173
\(747\) 1288.00 0.0630863
\(748\) −204.000 −0.00997190
\(749\) 0 0
\(750\) 1250.00 0.0608581
\(751\) 11969.0 0.581565 0.290782 0.956789i \(-0.406084\pi\)
0.290782 + 0.956789i \(0.406084\pi\)
\(752\) −1936.00 −0.0938812
\(753\) 4550.00 0.220201
\(754\) −1106.00 −0.0534193
\(755\) 7635.00 0.368035
\(756\) 0 0
\(757\) −10456.0 −0.502021 −0.251010 0.967984i \(-0.580763\pi\)
−0.251010 + 0.967984i \(0.580763\pi\)
\(758\) 2104.00 0.100819
\(759\) −250.000 −0.0119558
\(760\) 1200.00 0.0572744
\(761\) 28782.0 1.37102 0.685510 0.728063i \(-0.259579\pi\)
0.685510 + 0.728063i \(0.259579\pi\)
\(762\) −6040.00 −0.287147
\(763\) 0 0
\(764\) −2244.00 −0.106263
\(765\) 510.000 0.0241034
\(766\) 4616.00 0.217732
\(767\) 4396.00 0.206950
\(768\) −1280.00 −0.0601407
\(769\) 14630.0 0.686048 0.343024 0.939327i \(-0.388549\pi\)
0.343024 + 0.939327i \(0.388549\pi\)
\(770\) 0 0
\(771\) −32470.0 −1.51670
\(772\) 12064.0 0.562426
\(773\) −24351.0 −1.13305 −0.566523 0.824046i \(-0.691712\pi\)
−0.566523 + 0.824046i \(0.691712\pi\)
\(774\) −1688.00 −0.0783901
\(775\) 5300.00 0.245654
\(776\) 10808.0 0.499980
\(777\) 0 0
\(778\) 4562.00 0.210226
\(779\) −9240.00 −0.424977
\(780\) −700.000 −0.0321334
\(781\) −744.000 −0.0340876
\(782\) −5100.00 −0.233217
\(783\) 11455.0 0.522820
\(784\) 0 0
\(785\) 2650.00 0.120487
\(786\) 29140.0 1.32238
\(787\) −2329.00 −0.105489 −0.0527445 0.998608i \(-0.516797\pi\)
−0.0527445 + 0.998608i \(0.516797\pi\)
\(788\) −12928.0 −0.584443
\(789\) −7170.00 −0.323522
\(790\) 4070.00 0.183296
\(791\) 0 0
\(792\) 16.0000 0.000717848 0
\(793\) −4788.00 −0.214410
\(794\) 29270.0 1.30825
\(795\) 16600.0 0.740555
\(796\) 4656.00 0.207321
\(797\) 11067.0 0.491861 0.245931 0.969287i \(-0.420906\pi\)
0.245931 + 0.969287i \(0.420906\pi\)
\(798\) 0 0
\(799\) −6171.00 −0.273234
\(800\) 800.000 0.0353553
\(801\) −1760.00 −0.0776361
\(802\) 11282.0 0.496735
\(803\) 726.000 0.0319053
\(804\) −21120.0 −0.926424
\(805\) 0 0
\(806\) −2968.00 −0.129706
\(807\) −25070.0 −1.09356
\(808\) −432.000 −0.0188090
\(809\) −3879.00 −0.168576 −0.0842882 0.996441i \(-0.526862\pi\)
−0.0842882 + 0.996441i \(0.526862\pi\)
\(810\) 6710.00 0.291068
\(811\) −7518.00 −0.325515 −0.162758 0.986666i \(-0.552039\pi\)
−0.162758 + 0.986666i \(0.552039\pi\)
\(812\) 0 0
\(813\) 27100.0 1.16905
\(814\) 380.000 0.0163624
\(815\) 18310.0 0.786959
\(816\) −4080.00 −0.175035
\(817\) −12660.0 −0.542126
\(818\) −12820.0 −0.547972
\(819\) 0 0
\(820\) −6160.00 −0.262337
\(821\) 39801.0 1.69192 0.845959 0.533248i \(-0.179029\pi\)
0.845959 + 0.533248i \(0.179029\pi\)
\(822\) −25680.0 −1.08965
\(823\) −3564.00 −0.150952 −0.0754758 0.997148i \(-0.524048\pi\)
−0.0754758 + 0.997148i \(0.524048\pi\)
\(824\) 8216.00 0.347352
\(825\) 125.000 0.00527508
\(826\) 0 0
\(827\) 10838.0 0.455712 0.227856 0.973695i \(-0.426828\pi\)
0.227856 + 0.973695i \(0.426828\pi\)
\(828\) 400.000 0.0167886
\(829\) −41956.0 −1.75777 −0.878885 0.477033i \(-0.841712\pi\)
−0.878885 + 0.477033i \(0.841712\pi\)
\(830\) 6440.00 0.269320
\(831\) −18370.0 −0.766845
\(832\) −448.000 −0.0186678
\(833\) 0 0
\(834\) 12740.0 0.528957
\(835\) −1575.00 −0.0652756
\(836\) 120.000 0.00496446
\(837\) 30740.0 1.26945
\(838\) −9632.00 −0.397055
\(839\) 28714.0 1.18155 0.590773 0.806838i \(-0.298823\pi\)
0.590773 + 0.806838i \(0.298823\pi\)
\(840\) 0 0
\(841\) −18148.0 −0.744106
\(842\) 30650.0 1.25448
\(843\) −36655.0 −1.49759
\(844\) 2276.00 0.0928236
\(845\) 10740.0 0.437239
\(846\) 484.000 0.0196693
\(847\) 0 0
\(848\) 10624.0 0.430224
\(849\) 1355.00 0.0547744
\(850\) 2550.00 0.102899
\(851\) 9500.00 0.382674
\(852\) −14880.0 −0.598334
\(853\) −15442.0 −0.619841 −0.309920 0.950763i \(-0.600302\pi\)
−0.309920 + 0.950763i \(0.600302\pi\)
\(854\) 0 0
\(855\) −300.000 −0.0119997
\(856\) 2512.00 0.100302
\(857\) 17978.0 0.716589 0.358295 0.933609i \(-0.383358\pi\)
0.358295 + 0.933609i \(0.383358\pi\)
\(858\) −70.0000 −0.00278527
\(859\) −19308.0 −0.766916 −0.383458 0.923558i \(-0.625267\pi\)
−0.383458 + 0.923558i \(0.625267\pi\)
\(860\) −8440.00 −0.334653
\(861\) 0 0
\(862\) 3750.00 0.148173
\(863\) 17464.0 0.688855 0.344427 0.938813i \(-0.388073\pi\)
0.344427 + 0.938813i \(0.388073\pi\)
\(864\) 4640.00 0.182704
\(865\) −6255.00 −0.245869
\(866\) 27748.0 1.08882
\(867\) 11560.0 0.452824
\(868\) 0 0
\(869\) 407.000 0.0158878
\(870\) 3950.00 0.153928
\(871\) −7392.00 −0.287564
\(872\) −12888.0 −0.500508
\(873\) −2702.00 −0.104752
\(874\) 3000.00 0.116106
\(875\) 0 0
\(876\) 14520.0 0.560029
\(877\) −23962.0 −0.922622 −0.461311 0.887239i \(-0.652621\pi\)
−0.461311 + 0.887239i \(0.652621\pi\)
\(878\) 6884.00 0.264606
\(879\) 21525.0 0.825962
\(880\) 80.0000 0.00306454
\(881\) 35168.0 1.34488 0.672440 0.740151i \(-0.265246\pi\)
0.672440 + 0.740151i \(0.265246\pi\)
\(882\) 0 0
\(883\) −37896.0 −1.44428 −0.722142 0.691745i \(-0.756842\pi\)
−0.722142 + 0.691745i \(0.756842\pi\)
\(884\) −1428.00 −0.0543313
\(885\) −15700.0 −0.596327
\(886\) 33500.0 1.27026
\(887\) −30368.0 −1.14956 −0.574779 0.818309i \(-0.694912\pi\)
−0.574779 + 0.818309i \(0.694912\pi\)
\(888\) 7600.00 0.287206
\(889\) 0 0
\(890\) −8800.00 −0.331434
\(891\) 671.000 0.0252293
\(892\) −2772.00 −0.104051
\(893\) 3630.00 0.136028
\(894\) −5940.00 −0.222218
\(895\) 740.000 0.0276374
\(896\) 0 0
\(897\) −1750.00 −0.0651402
\(898\) 1390.00 0.0516536
\(899\) 16748.0 0.621332
\(900\) −200.000 −0.00740741
\(901\) 33864.0 1.25213
\(902\) −616.000 −0.0227390
\(903\) 0 0
\(904\) 2928.00 0.107725
\(905\) −6720.00 −0.246829
\(906\) 15270.0 0.559947
\(907\) −33874.0 −1.24010 −0.620048 0.784564i \(-0.712887\pi\)
−0.620048 + 0.784564i \(0.712887\pi\)
\(908\) 17116.0 0.625567
\(909\) 108.000 0.00394074
\(910\) 0 0
\(911\) 24880.0 0.904842 0.452421 0.891804i \(-0.350560\pi\)
0.452421 + 0.891804i \(0.350560\pi\)
\(912\) 2400.00 0.0871403
\(913\) 644.000 0.0233442
\(914\) 11520.0 0.416901
\(915\) 17100.0 0.617824
\(916\) 13264.0 0.478444
\(917\) 0 0
\(918\) 14790.0 0.531746
\(919\) −25299.0 −0.908092 −0.454046 0.890978i \(-0.650020\pi\)
−0.454046 + 0.890978i \(0.650020\pi\)
\(920\) 2000.00 0.0716718
\(921\) 13195.0 0.472085
\(922\) −26880.0 −0.960136
\(923\) −5208.00 −0.185724
\(924\) 0 0
\(925\) −4750.00 −0.168842
\(926\) −14696.0 −0.521534
\(927\) −2054.00 −0.0727748
\(928\) 2528.00 0.0894242
\(929\) −6792.00 −0.239869 −0.119934 0.992782i \(-0.538268\pi\)
−0.119934 + 0.992782i \(0.538268\pi\)
\(930\) 10600.0 0.373750
\(931\) 0 0
\(932\) 15648.0 0.549965
\(933\) −42570.0 −1.49376
\(934\) 35850.0 1.25594
\(935\) 255.000 0.00891914
\(936\) 112.000 0.00391115
\(937\) 43575.0 1.51925 0.759623 0.650364i \(-0.225384\pi\)
0.759623 + 0.650364i \(0.225384\pi\)
\(938\) 0 0
\(939\) 1095.00 0.0380554
\(940\) 2420.00 0.0839699
\(941\) −45372.0 −1.57182 −0.785911 0.618339i \(-0.787806\pi\)
−0.785911 + 0.618339i \(0.787806\pi\)
\(942\) 5300.00 0.183316
\(943\) −15400.0 −0.531806
\(944\) −10048.0 −0.346435
\(945\) 0 0
\(946\) −844.000 −0.0290072
\(947\) −39152.0 −1.34347 −0.671737 0.740790i \(-0.734451\pi\)
−0.671737 + 0.740790i \(0.734451\pi\)
\(948\) 8140.00 0.278876
\(949\) 5082.00 0.173834
\(950\) −1500.00 −0.0512278
\(951\) 20130.0 0.686393
\(952\) 0 0
\(953\) −18632.0 −0.633316 −0.316658 0.948540i \(-0.602561\pi\)
−0.316658 + 0.948540i \(0.602561\pi\)
\(954\) −2656.00 −0.0901375
\(955\) 2805.00 0.0950447
\(956\) −21804.0 −0.737648
\(957\) 395.000 0.0133423
\(958\) −24692.0 −0.832737
\(959\) 0 0
\(960\) 1600.00 0.0537914
\(961\) 15153.0 0.508644
\(962\) 2660.00 0.0891495
\(963\) −628.000 −0.0210146
\(964\) −1000.00 −0.0334106
\(965\) −15080.0 −0.503049
\(966\) 0 0
\(967\) 48862.0 1.62492 0.812459 0.583018i \(-0.198128\pi\)
0.812459 + 0.583018i \(0.198128\pi\)
\(968\) −10640.0 −0.353288
\(969\) 7650.00 0.253615
\(970\) −13510.0 −0.447196
\(971\) −19896.0 −0.657562 −0.328781 0.944406i \(-0.606638\pi\)
−0.328781 + 0.944406i \(0.606638\pi\)
\(972\) −2240.00 −0.0739177
\(973\) 0 0
\(974\) 30028.0 0.987843
\(975\) 875.000 0.0287410
\(976\) 10944.0 0.358923
\(977\) 5130.00 0.167987 0.0839935 0.996466i \(-0.473233\pi\)
0.0839935 + 0.996466i \(0.473233\pi\)
\(978\) 36620.0 1.19732
\(979\) −880.000 −0.0287282
\(980\) 0 0
\(981\) 3222.00 0.104863
\(982\) −9446.00 −0.306959
\(983\) 11573.0 0.375505 0.187752 0.982216i \(-0.439880\pi\)
0.187752 + 0.982216i \(0.439880\pi\)
\(984\) −12320.0 −0.399133
\(985\) 16160.0 0.522742
\(986\) 8058.00 0.260263
\(987\) 0 0
\(988\) 840.000 0.0270485
\(989\) −21100.0 −0.678403
\(990\) −20.0000 −0.000642062 0
\(991\) 34600.0 1.10909 0.554544 0.832155i \(-0.312893\pi\)
0.554544 + 0.832155i \(0.312893\pi\)
\(992\) 6784.00 0.217129
\(993\) 35180.0 1.12427
\(994\) 0 0
\(995\) −5820.00 −0.185434
\(996\) 12880.0 0.409757
\(997\) 15199.0 0.482806 0.241403 0.970425i \(-0.422393\pi\)
0.241403 + 0.970425i \(0.422393\pi\)
\(998\) 22454.0 0.712193
\(999\) −27550.0 −0.872516
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 490.4.a.j.1.1 1
5.4 even 2 2450.4.a.r.1.1 1
7.2 even 3 490.4.e.g.361.1 2
7.3 odd 6 490.4.e.c.471.1 2
7.4 even 3 490.4.e.g.471.1 2
7.5 odd 6 490.4.e.c.361.1 2
7.6 odd 2 70.4.a.e.1.1 1
21.20 even 2 630.4.a.b.1.1 1
28.27 even 2 560.4.a.f.1.1 1
35.13 even 4 350.4.c.k.99.1 2
35.27 even 4 350.4.c.k.99.2 2
35.34 odd 2 350.4.a.c.1.1 1
56.13 odd 2 2240.4.a.h.1.1 1
56.27 even 2 2240.4.a.bc.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
70.4.a.e.1.1 1 7.6 odd 2
350.4.a.c.1.1 1 35.34 odd 2
350.4.c.k.99.1 2 35.13 even 4
350.4.c.k.99.2 2 35.27 even 4
490.4.a.j.1.1 1 1.1 even 1 trivial
490.4.e.c.361.1 2 7.5 odd 6
490.4.e.c.471.1 2 7.3 odd 6
490.4.e.g.361.1 2 7.2 even 3
490.4.e.g.471.1 2 7.4 even 3
560.4.a.f.1.1 1 28.27 even 2
630.4.a.b.1.1 1 21.20 even 2
2240.4.a.h.1.1 1 56.13 odd 2
2240.4.a.bc.1.1 1 56.27 even 2
2450.4.a.r.1.1 1 5.4 even 2