Properties

Label 630.4.a.b.1.1
Level $630$
Weight $4$
Character 630.1
Self dual yes
Analytic conductor $37.171$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [630,4,Mod(1,630)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(630, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("630.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 630 = 2 \cdot 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 630.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(37.1712033036\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 70)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 630.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} +4.00000 q^{4} -5.00000 q^{5} -7.00000 q^{7} -8.00000 q^{8} +10.0000 q^{10} +1.00000 q^{11} +7.00000 q^{13} +14.0000 q^{14} +16.0000 q^{16} +51.0000 q^{17} +30.0000 q^{19} -20.0000 q^{20} -2.00000 q^{22} +50.0000 q^{23} +25.0000 q^{25} -14.0000 q^{26} -28.0000 q^{28} -79.0000 q^{29} -212.000 q^{31} -32.0000 q^{32} -102.000 q^{34} +35.0000 q^{35} -190.000 q^{37} -60.0000 q^{38} +40.0000 q^{40} +308.000 q^{41} +422.000 q^{43} +4.00000 q^{44} -100.000 q^{46} -121.000 q^{47} +49.0000 q^{49} -50.0000 q^{50} +28.0000 q^{52} -664.000 q^{53} -5.00000 q^{55} +56.0000 q^{56} +158.000 q^{58} -628.000 q^{59} -684.000 q^{61} +424.000 q^{62} +64.0000 q^{64} -35.0000 q^{65} +1056.00 q^{67} +204.000 q^{68} -70.0000 q^{70} -744.000 q^{71} +726.000 q^{73} +380.000 q^{74} +120.000 q^{76} -7.00000 q^{77} -407.000 q^{79} -80.0000 q^{80} -616.000 q^{82} -644.000 q^{83} -255.000 q^{85} -844.000 q^{86} -8.00000 q^{88} +880.000 q^{89} -49.0000 q^{91} +200.000 q^{92} +242.000 q^{94} -150.000 q^{95} -1351.00 q^{97} -98.0000 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −0.707107
\(3\) 0 0
\(4\) 4.00000 0.500000
\(5\) −5.00000 −0.447214
\(6\) 0 0
\(7\) −7.00000 −0.377964
\(8\) −8.00000 −0.353553
\(9\) 0 0
\(10\) 10.0000 0.316228
\(11\) 1.00000 0.0274101 0.0137051 0.999906i \(-0.495637\pi\)
0.0137051 + 0.999906i \(0.495637\pi\)
\(12\) 0 0
\(13\) 7.00000 0.149342 0.0746712 0.997208i \(-0.476209\pi\)
0.0746712 + 0.997208i \(0.476209\pi\)
\(14\) 14.0000 0.267261
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) 51.0000 0.727607 0.363803 0.931476i \(-0.381478\pi\)
0.363803 + 0.931476i \(0.381478\pi\)
\(18\) 0 0
\(19\) 30.0000 0.362235 0.181118 0.983461i \(-0.442029\pi\)
0.181118 + 0.983461i \(0.442029\pi\)
\(20\) −20.0000 −0.223607
\(21\) 0 0
\(22\) −2.00000 −0.0193819
\(23\) 50.0000 0.453292 0.226646 0.973977i \(-0.427224\pi\)
0.226646 + 0.973977i \(0.427224\pi\)
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) −14.0000 −0.105601
\(27\) 0 0
\(28\) −28.0000 −0.188982
\(29\) −79.0000 −0.505860 −0.252930 0.967485i \(-0.581394\pi\)
−0.252930 + 0.967485i \(0.581394\pi\)
\(30\) 0 0
\(31\) −212.000 −1.22827 −0.614134 0.789202i \(-0.710495\pi\)
−0.614134 + 0.789202i \(0.710495\pi\)
\(32\) −32.0000 −0.176777
\(33\) 0 0
\(34\) −102.000 −0.514496
\(35\) 35.0000 0.169031
\(36\) 0 0
\(37\) −190.000 −0.844211 −0.422106 0.906547i \(-0.638709\pi\)
−0.422106 + 0.906547i \(0.638709\pi\)
\(38\) −60.0000 −0.256139
\(39\) 0 0
\(40\) 40.0000 0.158114
\(41\) 308.000 1.17321 0.586604 0.809874i \(-0.300465\pi\)
0.586604 + 0.809874i \(0.300465\pi\)
\(42\) 0 0
\(43\) 422.000 1.49661 0.748307 0.663353i \(-0.230867\pi\)
0.748307 + 0.663353i \(0.230867\pi\)
\(44\) 4.00000 0.0137051
\(45\) 0 0
\(46\) −100.000 −0.320526
\(47\) −121.000 −0.375525 −0.187762 0.982214i \(-0.560123\pi\)
−0.187762 + 0.982214i \(0.560123\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) −50.0000 −0.141421
\(51\) 0 0
\(52\) 28.0000 0.0746712
\(53\) −664.000 −1.72089 −0.860447 0.509539i \(-0.829816\pi\)
−0.860447 + 0.509539i \(0.829816\pi\)
\(54\) 0 0
\(55\) −5.00000 −0.0122582
\(56\) 56.0000 0.133631
\(57\) 0 0
\(58\) 158.000 0.357697
\(59\) −628.000 −1.38574 −0.692870 0.721063i \(-0.743654\pi\)
−0.692870 + 0.721063i \(0.743654\pi\)
\(60\) 0 0
\(61\) −684.000 −1.43569 −0.717846 0.696202i \(-0.754872\pi\)
−0.717846 + 0.696202i \(0.754872\pi\)
\(62\) 424.000 0.868517
\(63\) 0 0
\(64\) 64.0000 0.125000
\(65\) −35.0000 −0.0667879
\(66\) 0 0
\(67\) 1056.00 1.92554 0.962768 0.270328i \(-0.0871323\pi\)
0.962768 + 0.270328i \(0.0871323\pi\)
\(68\) 204.000 0.363803
\(69\) 0 0
\(70\) −70.0000 −0.119523
\(71\) −744.000 −1.24361 −0.621807 0.783171i \(-0.713601\pi\)
−0.621807 + 0.783171i \(0.713601\pi\)
\(72\) 0 0
\(73\) 726.000 1.16400 0.581999 0.813189i \(-0.302271\pi\)
0.581999 + 0.813189i \(0.302271\pi\)
\(74\) 380.000 0.596947
\(75\) 0 0
\(76\) 120.000 0.181118
\(77\) −7.00000 −0.0103601
\(78\) 0 0
\(79\) −407.000 −0.579634 −0.289817 0.957082i \(-0.593594\pi\)
−0.289817 + 0.957082i \(0.593594\pi\)
\(80\) −80.0000 −0.111803
\(81\) 0 0
\(82\) −616.000 −0.829583
\(83\) −644.000 −0.851665 −0.425832 0.904802i \(-0.640019\pi\)
−0.425832 + 0.904802i \(0.640019\pi\)
\(84\) 0 0
\(85\) −255.000 −0.325396
\(86\) −844.000 −1.05827
\(87\) 0 0
\(88\) −8.00000 −0.00969094
\(89\) 880.000 1.04809 0.524044 0.851691i \(-0.324423\pi\)
0.524044 + 0.851691i \(0.324423\pi\)
\(90\) 0 0
\(91\) −49.0000 −0.0564461
\(92\) 200.000 0.226646
\(93\) 0 0
\(94\) 242.000 0.265536
\(95\) −150.000 −0.161997
\(96\) 0 0
\(97\) −1351.00 −1.41416 −0.707079 0.707135i \(-0.749987\pi\)
−0.707079 + 0.707135i \(0.749987\pi\)
\(98\) −98.0000 −0.101015
\(99\) 0 0
\(100\) 100.000 0.100000
\(101\) −54.0000 −0.0532000 −0.0266000 0.999646i \(-0.508468\pi\)
−0.0266000 + 0.999646i \(0.508468\pi\)
\(102\) 0 0
\(103\) −1027.00 −0.982459 −0.491230 0.871030i \(-0.663452\pi\)
−0.491230 + 0.871030i \(0.663452\pi\)
\(104\) −56.0000 −0.0528005
\(105\) 0 0
\(106\) 1328.00 1.21686
\(107\) −314.000 −0.283697 −0.141848 0.989888i \(-0.545305\pi\)
−0.141848 + 0.989888i \(0.545305\pi\)
\(108\) 0 0
\(109\) −1611.00 −1.41565 −0.707825 0.706388i \(-0.750323\pi\)
−0.707825 + 0.706388i \(0.750323\pi\)
\(110\) 10.0000 0.00866784
\(111\) 0 0
\(112\) −112.000 −0.0944911
\(113\) −366.000 −0.304694 −0.152347 0.988327i \(-0.548683\pi\)
−0.152347 + 0.988327i \(0.548683\pi\)
\(114\) 0 0
\(115\) −250.000 −0.202718
\(116\) −316.000 −0.252930
\(117\) 0 0
\(118\) 1256.00 0.979866
\(119\) −357.000 −0.275010
\(120\) 0 0
\(121\) −1330.00 −0.999249
\(122\) 1368.00 1.01519
\(123\) 0 0
\(124\) −848.000 −0.614134
\(125\) −125.000 −0.0894427
\(126\) 0 0
\(127\) 604.000 0.422018 0.211009 0.977484i \(-0.432325\pi\)
0.211009 + 0.977484i \(0.432325\pi\)
\(128\) −128.000 −0.0883883
\(129\) 0 0
\(130\) 70.0000 0.0472262
\(131\) −2914.00 −1.94349 −0.971746 0.236030i \(-0.924153\pi\)
−0.971746 + 0.236030i \(0.924153\pi\)
\(132\) 0 0
\(133\) −210.000 −0.136912
\(134\) −2112.00 −1.36156
\(135\) 0 0
\(136\) −408.000 −0.257248
\(137\) −2568.00 −1.60145 −0.800726 0.599030i \(-0.795553\pi\)
−0.800726 + 0.599030i \(0.795553\pi\)
\(138\) 0 0
\(139\) 1274.00 0.777405 0.388702 0.921363i \(-0.372923\pi\)
0.388702 + 0.921363i \(0.372923\pi\)
\(140\) 140.000 0.0845154
\(141\) 0 0
\(142\) 1488.00 0.879368
\(143\) 7.00000 0.00409349
\(144\) 0 0
\(145\) 395.000 0.226227
\(146\) −1452.00 −0.823071
\(147\) 0 0
\(148\) −760.000 −0.422106
\(149\) −594.000 −0.326593 −0.163297 0.986577i \(-0.552213\pi\)
−0.163297 + 0.986577i \(0.552213\pi\)
\(150\) 0 0
\(151\) −1527.00 −0.822950 −0.411475 0.911421i \(-0.634986\pi\)
−0.411475 + 0.911421i \(0.634986\pi\)
\(152\) −240.000 −0.128070
\(153\) 0 0
\(154\) 14.0000 0.00732566
\(155\) 1060.00 0.549298
\(156\) 0 0
\(157\) 530.000 0.269418 0.134709 0.990885i \(-0.456990\pi\)
0.134709 + 0.990885i \(0.456990\pi\)
\(158\) 814.000 0.409863
\(159\) 0 0
\(160\) 160.000 0.0790569
\(161\) −350.000 −0.171328
\(162\) 0 0
\(163\) −3662.00 −1.75969 −0.879847 0.475258i \(-0.842355\pi\)
−0.879847 + 0.475258i \(0.842355\pi\)
\(164\) 1232.00 0.586604
\(165\) 0 0
\(166\) 1288.00 0.602218
\(167\) 315.000 0.145961 0.0729803 0.997333i \(-0.476749\pi\)
0.0729803 + 0.997333i \(0.476749\pi\)
\(168\) 0 0
\(169\) −2148.00 −0.977697
\(170\) 510.000 0.230089
\(171\) 0 0
\(172\) 1688.00 0.748307
\(173\) 1251.00 0.549779 0.274890 0.961476i \(-0.411359\pi\)
0.274890 + 0.961476i \(0.411359\pi\)
\(174\) 0 0
\(175\) −175.000 −0.0755929
\(176\) 16.0000 0.00685253
\(177\) 0 0
\(178\) −1760.00 −0.741110
\(179\) 148.000 0.0617991 0.0308996 0.999522i \(-0.490163\pi\)
0.0308996 + 0.999522i \(0.490163\pi\)
\(180\) 0 0
\(181\) −1344.00 −0.551927 −0.275963 0.961168i \(-0.588997\pi\)
−0.275963 + 0.961168i \(0.588997\pi\)
\(182\) 98.0000 0.0399134
\(183\) 0 0
\(184\) −400.000 −0.160263
\(185\) 950.000 0.377543
\(186\) 0 0
\(187\) 51.0000 0.0199438
\(188\) −484.000 −0.187762
\(189\) 0 0
\(190\) 300.000 0.114549
\(191\) 561.000 0.212526 0.106263 0.994338i \(-0.466111\pi\)
0.106263 + 0.994338i \(0.466111\pi\)
\(192\) 0 0
\(193\) 3016.00 1.12485 0.562426 0.826848i \(-0.309868\pi\)
0.562426 + 0.826848i \(0.309868\pi\)
\(194\) 2702.00 0.999960
\(195\) 0 0
\(196\) 196.000 0.0714286
\(197\) 3232.00 1.16889 0.584443 0.811435i \(-0.301313\pi\)
0.584443 + 0.811435i \(0.301313\pi\)
\(198\) 0 0
\(199\) −1164.00 −0.414642 −0.207321 0.978273i \(-0.566474\pi\)
−0.207321 + 0.978273i \(0.566474\pi\)
\(200\) −200.000 −0.0707107
\(201\) 0 0
\(202\) 108.000 0.0376181
\(203\) 553.000 0.191197
\(204\) 0 0
\(205\) −1540.00 −0.524674
\(206\) 2054.00 0.694704
\(207\) 0 0
\(208\) 112.000 0.0373356
\(209\) 30.0000 0.00992892
\(210\) 0 0
\(211\) 569.000 0.185647 0.0928236 0.995683i \(-0.470411\pi\)
0.0928236 + 0.995683i \(0.470411\pi\)
\(212\) −2656.00 −0.860447
\(213\) 0 0
\(214\) 628.000 0.200604
\(215\) −2110.00 −0.669306
\(216\) 0 0
\(217\) 1484.00 0.464242
\(218\) 3222.00 1.00102
\(219\) 0 0
\(220\) −20.0000 −0.00612909
\(221\) 357.000 0.108663
\(222\) 0 0
\(223\) 693.000 0.208102 0.104051 0.994572i \(-0.466820\pi\)
0.104051 + 0.994572i \(0.466820\pi\)
\(224\) 224.000 0.0668153
\(225\) 0 0
\(226\) 732.000 0.215451
\(227\) 4279.00 1.25113 0.625567 0.780171i \(-0.284868\pi\)
0.625567 + 0.780171i \(0.284868\pi\)
\(228\) 0 0
\(229\) −3316.00 −0.956888 −0.478444 0.878118i \(-0.658799\pi\)
−0.478444 + 0.878118i \(0.658799\pi\)
\(230\) 500.000 0.143344
\(231\) 0 0
\(232\) 632.000 0.178848
\(233\) −3912.00 −1.09993 −0.549965 0.835188i \(-0.685359\pi\)
−0.549965 + 0.835188i \(0.685359\pi\)
\(234\) 0 0
\(235\) 605.000 0.167940
\(236\) −2512.00 −0.692870
\(237\) 0 0
\(238\) 714.000 0.194461
\(239\) 5451.00 1.47530 0.737648 0.675185i \(-0.235936\pi\)
0.737648 + 0.675185i \(0.235936\pi\)
\(240\) 0 0
\(241\) 250.000 0.0668212 0.0334106 0.999442i \(-0.489363\pi\)
0.0334106 + 0.999442i \(0.489363\pi\)
\(242\) 2660.00 0.706576
\(243\) 0 0
\(244\) −2736.00 −0.717846
\(245\) −245.000 −0.0638877
\(246\) 0 0
\(247\) 210.000 0.0540971
\(248\) 1696.00 0.434258
\(249\) 0 0
\(250\) 250.000 0.0632456
\(251\) −910.000 −0.228839 −0.114420 0.993432i \(-0.536501\pi\)
−0.114420 + 0.993432i \(0.536501\pi\)
\(252\) 0 0
\(253\) 50.0000 0.0124248
\(254\) −1208.00 −0.298412
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) 6494.00 1.57620 0.788102 0.615544i \(-0.211064\pi\)
0.788102 + 0.615544i \(0.211064\pi\)
\(258\) 0 0
\(259\) 1330.00 0.319082
\(260\) −140.000 −0.0333940
\(261\) 0 0
\(262\) 5828.00 1.37426
\(263\) −1434.00 −0.336214 −0.168107 0.985769i \(-0.553765\pi\)
−0.168107 + 0.985769i \(0.553765\pi\)
\(264\) 0 0
\(265\) 3320.00 0.769607
\(266\) 420.000 0.0968115
\(267\) 0 0
\(268\) 4224.00 0.962768
\(269\) 5014.00 1.13646 0.568232 0.822868i \(-0.307627\pi\)
0.568232 + 0.822868i \(0.307627\pi\)
\(270\) 0 0
\(271\) 5420.00 1.21491 0.607457 0.794353i \(-0.292190\pi\)
0.607457 + 0.794353i \(0.292190\pi\)
\(272\) 816.000 0.181902
\(273\) 0 0
\(274\) 5136.00 1.13240
\(275\) 25.0000 0.00548202
\(276\) 0 0
\(277\) 3674.00 0.796929 0.398464 0.917184i \(-0.369543\pi\)
0.398464 + 0.917184i \(0.369543\pi\)
\(278\) −2548.00 −0.549708
\(279\) 0 0
\(280\) −280.000 −0.0597614
\(281\) −7331.00 −1.55634 −0.778169 0.628055i \(-0.783851\pi\)
−0.778169 + 0.628055i \(0.783851\pi\)
\(282\) 0 0
\(283\) 271.000 0.0569232 0.0284616 0.999595i \(-0.490939\pi\)
0.0284616 + 0.999595i \(0.490939\pi\)
\(284\) −2976.00 −0.621807
\(285\) 0 0
\(286\) −14.0000 −0.00289454
\(287\) −2156.00 −0.443431
\(288\) 0 0
\(289\) −2312.00 −0.470588
\(290\) −790.000 −0.159967
\(291\) 0 0
\(292\) 2904.00 0.581999
\(293\) −4305.00 −0.858364 −0.429182 0.903218i \(-0.641198\pi\)
−0.429182 + 0.903218i \(0.641198\pi\)
\(294\) 0 0
\(295\) 3140.00 0.619722
\(296\) 1520.00 0.298474
\(297\) 0 0
\(298\) 1188.00 0.230936
\(299\) 350.000 0.0676957
\(300\) 0 0
\(301\) −2954.00 −0.565667
\(302\) 3054.00 0.581914
\(303\) 0 0
\(304\) 480.000 0.0905588
\(305\) 3420.00 0.642061
\(306\) 0 0
\(307\) 2639.00 0.490605 0.245302 0.969447i \(-0.421113\pi\)
0.245302 + 0.969447i \(0.421113\pi\)
\(308\) −28.0000 −0.00518003
\(309\) 0 0
\(310\) −2120.00 −0.388413
\(311\) 8514.00 1.55236 0.776181 0.630510i \(-0.217154\pi\)
0.776181 + 0.630510i \(0.217154\pi\)
\(312\) 0 0
\(313\) 219.000 0.0395483 0.0197741 0.999804i \(-0.493705\pi\)
0.0197741 + 0.999804i \(0.493705\pi\)
\(314\) −1060.00 −0.190507
\(315\) 0 0
\(316\) −1628.00 −0.289817
\(317\) 4026.00 0.713321 0.356660 0.934234i \(-0.383915\pi\)
0.356660 + 0.934234i \(0.383915\pi\)
\(318\) 0 0
\(319\) −79.0000 −0.0138657
\(320\) −320.000 −0.0559017
\(321\) 0 0
\(322\) 700.000 0.121147
\(323\) 1530.00 0.263565
\(324\) 0 0
\(325\) 175.000 0.0298685
\(326\) 7324.00 1.24429
\(327\) 0 0
\(328\) −2464.00 −0.414792
\(329\) 847.000 0.141935
\(330\) 0 0
\(331\) −7036.00 −1.16838 −0.584190 0.811617i \(-0.698588\pi\)
−0.584190 + 0.811617i \(0.698588\pi\)
\(332\) −2576.00 −0.425832
\(333\) 0 0
\(334\) −630.000 −0.103210
\(335\) −5280.00 −0.861126
\(336\) 0 0
\(337\) 10362.0 1.67494 0.837469 0.546485i \(-0.184034\pi\)
0.837469 + 0.546485i \(0.184034\pi\)
\(338\) 4296.00 0.691336
\(339\) 0 0
\(340\) −1020.00 −0.162698
\(341\) −212.000 −0.0336670
\(342\) 0 0
\(343\) −343.000 −0.0539949
\(344\) −3376.00 −0.529133
\(345\) 0 0
\(346\) −2502.00 −0.388752
\(347\) 8422.00 1.30293 0.651465 0.758679i \(-0.274155\pi\)
0.651465 + 0.758679i \(0.274155\pi\)
\(348\) 0 0
\(349\) −7350.00 −1.12733 −0.563663 0.826005i \(-0.690608\pi\)
−0.563663 + 0.826005i \(0.690608\pi\)
\(350\) 350.000 0.0534522
\(351\) 0 0
\(352\) −32.0000 −0.00484547
\(353\) −3057.00 −0.460928 −0.230464 0.973081i \(-0.574024\pi\)
−0.230464 + 0.973081i \(0.574024\pi\)
\(354\) 0 0
\(355\) 3720.00 0.556161
\(356\) 3520.00 0.524044
\(357\) 0 0
\(358\) −296.000 −0.0436986
\(359\) −8392.00 −1.23374 −0.616870 0.787065i \(-0.711600\pi\)
−0.616870 + 0.787065i \(0.711600\pi\)
\(360\) 0 0
\(361\) −5959.00 −0.868786
\(362\) 2688.00 0.390271
\(363\) 0 0
\(364\) −196.000 −0.0282231
\(365\) −3630.00 −0.520556
\(366\) 0 0
\(367\) 8377.00 1.19149 0.595744 0.803175i \(-0.296857\pi\)
0.595744 + 0.803175i \(0.296857\pi\)
\(368\) 800.000 0.113323
\(369\) 0 0
\(370\) −1900.00 −0.266963
\(371\) 4648.00 0.650437
\(372\) 0 0
\(373\) −1968.00 −0.273188 −0.136594 0.990627i \(-0.543616\pi\)
−0.136594 + 0.990627i \(0.543616\pi\)
\(374\) −102.000 −0.0141024
\(375\) 0 0
\(376\) 968.000 0.132768
\(377\) −553.000 −0.0755463
\(378\) 0 0
\(379\) 1052.00 0.142579 0.0712897 0.997456i \(-0.477289\pi\)
0.0712897 + 0.997456i \(0.477289\pi\)
\(380\) −600.000 −0.0809983
\(381\) 0 0
\(382\) −1122.00 −0.150279
\(383\) 2308.00 0.307920 0.153960 0.988077i \(-0.450797\pi\)
0.153960 + 0.988077i \(0.450797\pi\)
\(384\) 0 0
\(385\) 35.0000 0.00463316
\(386\) −6032.00 −0.795390
\(387\) 0 0
\(388\) −5404.00 −0.707079
\(389\) −2281.00 −0.297304 −0.148652 0.988890i \(-0.547493\pi\)
−0.148652 + 0.988890i \(0.547493\pi\)
\(390\) 0 0
\(391\) 2550.00 0.329819
\(392\) −392.000 −0.0505076
\(393\) 0 0
\(394\) −6464.00 −0.826527
\(395\) 2035.00 0.259220
\(396\) 0 0
\(397\) −14635.0 −1.85015 −0.925075 0.379784i \(-0.875998\pi\)
−0.925075 + 0.379784i \(0.875998\pi\)
\(398\) 2328.00 0.293196
\(399\) 0 0
\(400\) 400.000 0.0500000
\(401\) −5641.00 −0.702489 −0.351245 0.936284i \(-0.614241\pi\)
−0.351245 + 0.936284i \(0.614241\pi\)
\(402\) 0 0
\(403\) −1484.00 −0.183433
\(404\) −216.000 −0.0266000
\(405\) 0 0
\(406\) −1106.00 −0.135197
\(407\) −190.000 −0.0231399
\(408\) 0 0
\(409\) 6410.00 0.774949 0.387474 0.921880i \(-0.373348\pi\)
0.387474 + 0.921880i \(0.373348\pi\)
\(410\) 3080.00 0.371001
\(411\) 0 0
\(412\) −4108.00 −0.491230
\(413\) 4396.00 0.523760
\(414\) 0 0
\(415\) 3220.00 0.380876
\(416\) −224.000 −0.0264002
\(417\) 0 0
\(418\) −60.0000 −0.00702080
\(419\) −4816.00 −0.561520 −0.280760 0.959778i \(-0.590587\pi\)
−0.280760 + 0.959778i \(0.590587\pi\)
\(420\) 0 0
\(421\) 15325.0 1.77410 0.887048 0.461676i \(-0.152752\pi\)
0.887048 + 0.461676i \(0.152752\pi\)
\(422\) −1138.00 −0.131272
\(423\) 0 0
\(424\) 5312.00 0.608428
\(425\) 1275.00 0.145521
\(426\) 0 0
\(427\) 4788.00 0.542641
\(428\) −1256.00 −0.141848
\(429\) 0 0
\(430\) 4220.00 0.473271
\(431\) −1875.00 −0.209549 −0.104774 0.994496i \(-0.533412\pi\)
−0.104774 + 0.994496i \(0.533412\pi\)
\(432\) 0 0
\(433\) −13874.0 −1.53982 −0.769910 0.638153i \(-0.779699\pi\)
−0.769910 + 0.638153i \(0.779699\pi\)
\(434\) −2968.00 −0.328269
\(435\) 0 0
\(436\) −6444.00 −0.707825
\(437\) 1500.00 0.164198
\(438\) 0 0
\(439\) −3442.00 −0.374209 −0.187104 0.982340i \(-0.559910\pi\)
−0.187104 + 0.982340i \(0.559910\pi\)
\(440\) 40.0000 0.00433392
\(441\) 0 0
\(442\) −714.000 −0.0768360
\(443\) −16750.0 −1.79643 −0.898213 0.439561i \(-0.855134\pi\)
−0.898213 + 0.439561i \(0.855134\pi\)
\(444\) 0 0
\(445\) −4400.00 −0.468719
\(446\) −1386.00 −0.147150
\(447\) 0 0
\(448\) −448.000 −0.0472456
\(449\) −695.000 −0.0730492 −0.0365246 0.999333i \(-0.511629\pi\)
−0.0365246 + 0.999333i \(0.511629\pi\)
\(450\) 0 0
\(451\) 308.000 0.0321578
\(452\) −1464.00 −0.152347
\(453\) 0 0
\(454\) −8558.00 −0.884685
\(455\) 245.000 0.0252435
\(456\) 0 0
\(457\) 5760.00 0.589587 0.294794 0.955561i \(-0.404749\pi\)
0.294794 + 0.955561i \(0.404749\pi\)
\(458\) 6632.00 0.676622
\(459\) 0 0
\(460\) −1000.00 −0.101359
\(461\) −13440.0 −1.35784 −0.678919 0.734213i \(-0.737551\pi\)
−0.678919 + 0.734213i \(0.737551\pi\)
\(462\) 0 0
\(463\) −7348.00 −0.737561 −0.368780 0.929517i \(-0.620225\pi\)
−0.368780 + 0.929517i \(0.620225\pi\)
\(464\) −1264.00 −0.126465
\(465\) 0 0
\(466\) 7824.00 0.777768
\(467\) 17925.0 1.77617 0.888084 0.459682i \(-0.152037\pi\)
0.888084 + 0.459682i \(0.152037\pi\)
\(468\) 0 0
\(469\) −7392.00 −0.727784
\(470\) −1210.00 −0.118751
\(471\) 0 0
\(472\) 5024.00 0.489933
\(473\) 422.000 0.0410224
\(474\) 0 0
\(475\) 750.000 0.0724471
\(476\) −1428.00 −0.137505
\(477\) 0 0
\(478\) −10902.0 −1.04319
\(479\) −12346.0 −1.17767 −0.588834 0.808254i \(-0.700413\pi\)
−0.588834 + 0.808254i \(0.700413\pi\)
\(480\) 0 0
\(481\) −1330.00 −0.126076
\(482\) −500.000 −0.0472497
\(483\) 0 0
\(484\) −5320.00 −0.499624
\(485\) 6755.00 0.632430
\(486\) 0 0
\(487\) 15014.0 1.39702 0.698511 0.715600i \(-0.253847\pi\)
0.698511 + 0.715600i \(0.253847\pi\)
\(488\) 5472.00 0.507594
\(489\) 0 0
\(490\) 490.000 0.0451754
\(491\) 4723.00 0.434106 0.217053 0.976160i \(-0.430356\pi\)
0.217053 + 0.976160i \(0.430356\pi\)
\(492\) 0 0
\(493\) −4029.00 −0.368067
\(494\) −420.000 −0.0382524
\(495\) 0 0
\(496\) −3392.00 −0.307067
\(497\) 5208.00 0.470042
\(498\) 0 0
\(499\) 11227.0 1.00719 0.503597 0.863939i \(-0.332010\pi\)
0.503597 + 0.863939i \(0.332010\pi\)
\(500\) −500.000 −0.0447214
\(501\) 0 0
\(502\) 1820.00 0.161814
\(503\) 4557.00 0.403949 0.201975 0.979391i \(-0.435264\pi\)
0.201975 + 0.979391i \(0.435264\pi\)
\(504\) 0 0
\(505\) 270.000 0.0237918
\(506\) −100.000 −0.00878566
\(507\) 0 0
\(508\) 2416.00 0.211009
\(509\) 14110.0 1.22871 0.614356 0.789029i \(-0.289416\pi\)
0.614356 + 0.789029i \(0.289416\pi\)
\(510\) 0 0
\(511\) −5082.00 −0.439950
\(512\) −512.000 −0.0441942
\(513\) 0 0
\(514\) −12988.0 −1.11454
\(515\) 5135.00 0.439369
\(516\) 0 0
\(517\) −121.000 −0.0102932
\(518\) −2660.00 −0.225625
\(519\) 0 0
\(520\) 280.000 0.0236131
\(521\) −1902.00 −0.159939 −0.0799694 0.996797i \(-0.525482\pi\)
−0.0799694 + 0.996797i \(0.525482\pi\)
\(522\) 0 0
\(523\) −1972.00 −0.164875 −0.0824374 0.996596i \(-0.526270\pi\)
−0.0824374 + 0.996596i \(0.526270\pi\)
\(524\) −11656.0 −0.971746
\(525\) 0 0
\(526\) 2868.00 0.237739
\(527\) −10812.0 −0.893697
\(528\) 0 0
\(529\) −9667.00 −0.794526
\(530\) −6640.00 −0.544195
\(531\) 0 0
\(532\) −840.000 −0.0684561
\(533\) 2156.00 0.175210
\(534\) 0 0
\(535\) 1570.00 0.126873
\(536\) −8448.00 −0.680780
\(537\) 0 0
\(538\) −10028.0 −0.803602
\(539\) 49.0000 0.00391573
\(540\) 0 0
\(541\) −25033.0 −1.98938 −0.994688 0.102933i \(-0.967177\pi\)
−0.994688 + 0.102933i \(0.967177\pi\)
\(542\) −10840.0 −0.859074
\(543\) 0 0
\(544\) −1632.00 −0.128624
\(545\) 8055.00 0.633098
\(546\) 0 0
\(547\) −236.000 −0.0184472 −0.00922361 0.999957i \(-0.502936\pi\)
−0.00922361 + 0.999957i \(0.502936\pi\)
\(548\) −10272.0 −0.800726
\(549\) 0 0
\(550\) −50.0000 −0.00387638
\(551\) −2370.00 −0.183240
\(552\) 0 0
\(553\) 2849.00 0.219081
\(554\) −7348.00 −0.563514
\(555\) 0 0
\(556\) 5096.00 0.388702
\(557\) −15504.0 −1.17940 −0.589700 0.807623i \(-0.700754\pi\)
−0.589700 + 0.807623i \(0.700754\pi\)
\(558\) 0 0
\(559\) 2954.00 0.223508
\(560\) 560.000 0.0422577
\(561\) 0 0
\(562\) 14662.0 1.10050
\(563\) 8948.00 0.669828 0.334914 0.942249i \(-0.391293\pi\)
0.334914 + 0.942249i \(0.391293\pi\)
\(564\) 0 0
\(565\) 1830.00 0.136263
\(566\) −542.000 −0.0402508
\(567\) 0 0
\(568\) 5952.00 0.439684
\(569\) −13866.0 −1.02160 −0.510802 0.859698i \(-0.670652\pi\)
−0.510802 + 0.859698i \(0.670652\pi\)
\(570\) 0 0
\(571\) 9988.00 0.732022 0.366011 0.930610i \(-0.380723\pi\)
0.366011 + 0.930610i \(0.380723\pi\)
\(572\) 28.0000 0.00204675
\(573\) 0 0
\(574\) 4312.00 0.313553
\(575\) 1250.00 0.0906584
\(576\) 0 0
\(577\) −2585.00 −0.186508 −0.0932539 0.995642i \(-0.529727\pi\)
−0.0932539 + 0.995642i \(0.529727\pi\)
\(578\) 4624.00 0.332756
\(579\) 0 0
\(580\) 1580.00 0.113114
\(581\) 4508.00 0.321899
\(582\) 0 0
\(583\) −664.000 −0.0471699
\(584\) −5808.00 −0.411536
\(585\) 0 0
\(586\) 8610.00 0.606955
\(587\) −19656.0 −1.38210 −0.691048 0.722809i \(-0.742851\pi\)
−0.691048 + 0.722809i \(0.742851\pi\)
\(588\) 0 0
\(589\) −6360.00 −0.444922
\(590\) −6280.00 −0.438209
\(591\) 0 0
\(592\) −3040.00 −0.211053
\(593\) −21247.0 −1.47135 −0.735674 0.677335i \(-0.763135\pi\)
−0.735674 + 0.677335i \(0.763135\pi\)
\(594\) 0 0
\(595\) 1785.00 0.122988
\(596\) −2376.00 −0.163297
\(597\) 0 0
\(598\) −700.000 −0.0478681
\(599\) 9325.00 0.636075 0.318038 0.948078i \(-0.396976\pi\)
0.318038 + 0.948078i \(0.396976\pi\)
\(600\) 0 0
\(601\) 5362.00 0.363928 0.181964 0.983305i \(-0.441755\pi\)
0.181964 + 0.983305i \(0.441755\pi\)
\(602\) 5908.00 0.399987
\(603\) 0 0
\(604\) −6108.00 −0.411475
\(605\) 6650.00 0.446878
\(606\) 0 0
\(607\) 15731.0 1.05190 0.525949 0.850516i \(-0.323710\pi\)
0.525949 + 0.850516i \(0.323710\pi\)
\(608\) −960.000 −0.0640348
\(609\) 0 0
\(610\) −6840.00 −0.454006
\(611\) −847.000 −0.0560818
\(612\) 0 0
\(613\) −13742.0 −0.905439 −0.452720 0.891653i \(-0.649546\pi\)
−0.452720 + 0.891653i \(0.649546\pi\)
\(614\) −5278.00 −0.346910
\(615\) 0 0
\(616\) 56.0000 0.00366283
\(617\) −18286.0 −1.19314 −0.596569 0.802561i \(-0.703470\pi\)
−0.596569 + 0.802561i \(0.703470\pi\)
\(618\) 0 0
\(619\) 24722.0 1.60527 0.802634 0.596472i \(-0.203431\pi\)
0.802634 + 0.596472i \(0.203431\pi\)
\(620\) 4240.00 0.274649
\(621\) 0 0
\(622\) −17028.0 −1.09769
\(623\) −6160.00 −0.396140
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) −438.000 −0.0279649
\(627\) 0 0
\(628\) 2120.00 0.134709
\(629\) −9690.00 −0.614254
\(630\) 0 0
\(631\) −22181.0 −1.39938 −0.699692 0.714444i \(-0.746680\pi\)
−0.699692 + 0.714444i \(0.746680\pi\)
\(632\) 3256.00 0.204932
\(633\) 0 0
\(634\) −8052.00 −0.504394
\(635\) −3020.00 −0.188732
\(636\) 0 0
\(637\) 343.000 0.0213346
\(638\) 158.000 0.00980451
\(639\) 0 0
\(640\) 640.000 0.0395285
\(641\) 23598.0 1.45408 0.727040 0.686595i \(-0.240896\pi\)
0.727040 + 0.686595i \(0.240896\pi\)
\(642\) 0 0
\(643\) 13349.0 0.818714 0.409357 0.912374i \(-0.365753\pi\)
0.409357 + 0.912374i \(0.365753\pi\)
\(644\) −1400.00 −0.0856642
\(645\) 0 0
\(646\) −3060.00 −0.186369
\(647\) 24488.0 1.48798 0.743990 0.668191i \(-0.232931\pi\)
0.743990 + 0.668191i \(0.232931\pi\)
\(648\) 0 0
\(649\) −628.000 −0.0379833
\(650\) −350.000 −0.0211202
\(651\) 0 0
\(652\) −14648.0 −0.879847
\(653\) −21622.0 −1.29576 −0.647882 0.761740i \(-0.724345\pi\)
−0.647882 + 0.761740i \(0.724345\pi\)
\(654\) 0 0
\(655\) 14570.0 0.869156
\(656\) 4928.00 0.293302
\(657\) 0 0
\(658\) −1694.00 −0.100363
\(659\) 2973.00 0.175738 0.0878692 0.996132i \(-0.471994\pi\)
0.0878692 + 0.996132i \(0.471994\pi\)
\(660\) 0 0
\(661\) 18912.0 1.11285 0.556423 0.830899i \(-0.312173\pi\)
0.556423 + 0.830899i \(0.312173\pi\)
\(662\) 14072.0 0.826169
\(663\) 0 0
\(664\) 5152.00 0.301109
\(665\) 1050.00 0.0612290
\(666\) 0 0
\(667\) −3950.00 −0.229302
\(668\) 1260.00 0.0729803
\(669\) 0 0
\(670\) 10560.0 0.608908
\(671\) −684.000 −0.0393525
\(672\) 0 0
\(673\) 688.000 0.0394063 0.0197032 0.999806i \(-0.493728\pi\)
0.0197032 + 0.999806i \(0.493728\pi\)
\(674\) −20724.0 −1.18436
\(675\) 0 0
\(676\) −8592.00 −0.488848
\(677\) −12791.0 −0.726142 −0.363071 0.931761i \(-0.618272\pi\)
−0.363071 + 0.931761i \(0.618272\pi\)
\(678\) 0 0
\(679\) 9457.00 0.534501
\(680\) 2040.00 0.115045
\(681\) 0 0
\(682\) 424.000 0.0238062
\(683\) 7652.00 0.428691 0.214345 0.976758i \(-0.431238\pi\)
0.214345 + 0.976758i \(0.431238\pi\)
\(684\) 0 0
\(685\) 12840.0 0.716192
\(686\) 686.000 0.0381802
\(687\) 0 0
\(688\) 6752.00 0.374153
\(689\) −4648.00 −0.257002
\(690\) 0 0
\(691\) −2532.00 −0.139395 −0.0696974 0.997568i \(-0.522203\pi\)
−0.0696974 + 0.997568i \(0.522203\pi\)
\(692\) 5004.00 0.274890
\(693\) 0 0
\(694\) −16844.0 −0.921311
\(695\) −6370.00 −0.347666
\(696\) 0 0
\(697\) 15708.0 0.853634
\(698\) 14700.0 0.797139
\(699\) 0 0
\(700\) −700.000 −0.0377964
\(701\) 2133.00 0.114925 0.0574624 0.998348i \(-0.481699\pi\)
0.0574624 + 0.998348i \(0.481699\pi\)
\(702\) 0 0
\(703\) −5700.00 −0.305803
\(704\) 64.0000 0.00342627
\(705\) 0 0
\(706\) 6114.00 0.325926
\(707\) 378.000 0.0201077
\(708\) 0 0
\(709\) −19153.0 −1.01454 −0.507268 0.861788i \(-0.669345\pi\)
−0.507268 + 0.861788i \(0.669345\pi\)
\(710\) −7440.00 −0.393265
\(711\) 0 0
\(712\) −7040.00 −0.370555
\(713\) −10600.0 −0.556765
\(714\) 0 0
\(715\) −35.0000 −0.00183067
\(716\) 592.000 0.0308996
\(717\) 0 0
\(718\) 16784.0 0.872386
\(719\) 21334.0 1.10657 0.553285 0.832992i \(-0.313374\pi\)
0.553285 + 0.832992i \(0.313374\pi\)
\(720\) 0 0
\(721\) 7189.00 0.371335
\(722\) 11918.0 0.614324
\(723\) 0 0
\(724\) −5376.00 −0.275963
\(725\) −1975.00 −0.101172
\(726\) 0 0
\(727\) 11480.0 0.585653 0.292826 0.956166i \(-0.405404\pi\)
0.292826 + 0.956166i \(0.405404\pi\)
\(728\) 392.000 0.0199567
\(729\) 0 0
\(730\) 7260.00 0.368089
\(731\) 21522.0 1.08895
\(732\) 0 0
\(733\) 19763.0 0.995857 0.497928 0.867218i \(-0.334094\pi\)
0.497928 + 0.867218i \(0.334094\pi\)
\(734\) −16754.0 −0.842509
\(735\) 0 0
\(736\) −1600.00 −0.0801315
\(737\) 1056.00 0.0527792
\(738\) 0 0
\(739\) −40153.0 −1.99872 −0.999359 0.0358110i \(-0.988599\pi\)
−0.999359 + 0.0358110i \(0.988599\pi\)
\(740\) 3800.00 0.188771
\(741\) 0 0
\(742\) −9296.00 −0.459928
\(743\) 30896.0 1.52552 0.762762 0.646679i \(-0.223843\pi\)
0.762762 + 0.646679i \(0.223843\pi\)
\(744\) 0 0
\(745\) 2970.00 0.146057
\(746\) 3936.00 0.193173
\(747\) 0 0
\(748\) 204.000 0.00997190
\(749\) 2198.00 0.107227
\(750\) 0 0
\(751\) 11969.0 0.581565 0.290782 0.956789i \(-0.406084\pi\)
0.290782 + 0.956789i \(0.406084\pi\)
\(752\) −1936.00 −0.0938812
\(753\) 0 0
\(754\) 1106.00 0.0534193
\(755\) 7635.00 0.368035
\(756\) 0 0
\(757\) −10456.0 −0.502021 −0.251010 0.967984i \(-0.580763\pi\)
−0.251010 + 0.967984i \(0.580763\pi\)
\(758\) −2104.00 −0.100819
\(759\) 0 0
\(760\) 1200.00 0.0572744
\(761\) 28782.0 1.37102 0.685510 0.728063i \(-0.259579\pi\)
0.685510 + 0.728063i \(0.259579\pi\)
\(762\) 0 0
\(763\) 11277.0 0.535065
\(764\) 2244.00 0.106263
\(765\) 0 0
\(766\) −4616.00 −0.217732
\(767\) −4396.00 −0.206950
\(768\) 0 0
\(769\) −14630.0 −0.686048 −0.343024 0.939327i \(-0.611451\pi\)
−0.343024 + 0.939327i \(0.611451\pi\)
\(770\) −70.0000 −0.00327614
\(771\) 0 0
\(772\) 12064.0 0.562426
\(773\) −24351.0 −1.13305 −0.566523 0.824046i \(-0.691712\pi\)
−0.566523 + 0.824046i \(0.691712\pi\)
\(774\) 0 0
\(775\) −5300.00 −0.245654
\(776\) 10808.0 0.499980
\(777\) 0 0
\(778\) 4562.00 0.210226
\(779\) 9240.00 0.424977
\(780\) 0 0
\(781\) −744.000 −0.0340876
\(782\) −5100.00 −0.233217
\(783\) 0 0
\(784\) 784.000 0.0357143
\(785\) −2650.00 −0.120487
\(786\) 0 0
\(787\) 2329.00 0.105489 0.0527445 0.998608i \(-0.483203\pi\)
0.0527445 + 0.998608i \(0.483203\pi\)
\(788\) 12928.0 0.584443
\(789\) 0 0
\(790\) −4070.00 −0.183296
\(791\) 2562.00 0.115163
\(792\) 0 0
\(793\) −4788.00 −0.214410
\(794\) 29270.0 1.30825
\(795\) 0 0
\(796\) −4656.00 −0.207321
\(797\) 11067.0 0.491861 0.245931 0.969287i \(-0.420906\pi\)
0.245931 + 0.969287i \(0.420906\pi\)
\(798\) 0 0
\(799\) −6171.00 −0.273234
\(800\) −800.000 −0.0353553
\(801\) 0 0
\(802\) 11282.0 0.496735
\(803\) 726.000 0.0319053
\(804\) 0 0
\(805\) 1750.00 0.0766204
\(806\) 2968.00 0.129706
\(807\) 0 0
\(808\) 432.000 0.0188090
\(809\) 3879.00 0.168576 0.0842882 0.996441i \(-0.473138\pi\)
0.0842882 + 0.996441i \(0.473138\pi\)
\(810\) 0 0
\(811\) 7518.00 0.325515 0.162758 0.986666i \(-0.447961\pi\)
0.162758 + 0.986666i \(0.447961\pi\)
\(812\) 2212.00 0.0955985
\(813\) 0 0
\(814\) 380.000 0.0163624
\(815\) 18310.0 0.786959
\(816\) 0 0
\(817\) 12660.0 0.542126
\(818\) −12820.0 −0.547972
\(819\) 0 0
\(820\) −6160.00 −0.262337
\(821\) −39801.0 −1.69192 −0.845959 0.533248i \(-0.820971\pi\)
−0.845959 + 0.533248i \(0.820971\pi\)
\(822\) 0 0
\(823\) −3564.00 −0.150952 −0.0754758 0.997148i \(-0.524048\pi\)
−0.0754758 + 0.997148i \(0.524048\pi\)
\(824\) 8216.00 0.347352
\(825\) 0 0
\(826\) −8792.00 −0.370354
\(827\) −10838.0 −0.455712 −0.227856 0.973695i \(-0.573172\pi\)
−0.227856 + 0.973695i \(0.573172\pi\)
\(828\) 0 0
\(829\) 41956.0 1.75777 0.878885 0.477033i \(-0.158288\pi\)
0.878885 + 0.477033i \(0.158288\pi\)
\(830\) −6440.00 −0.269320
\(831\) 0 0
\(832\) 448.000 0.0186678
\(833\) 2499.00 0.103944
\(834\) 0 0
\(835\) −1575.00 −0.0652756
\(836\) 120.000 0.00496446
\(837\) 0 0
\(838\) 9632.00 0.397055
\(839\) 28714.0 1.18155 0.590773 0.806838i \(-0.298823\pi\)
0.590773 + 0.806838i \(0.298823\pi\)
\(840\) 0 0
\(841\) −18148.0 −0.744106
\(842\) −30650.0 −1.25448
\(843\) 0 0
\(844\) 2276.00 0.0928236
\(845\) 10740.0 0.437239
\(846\) 0 0
\(847\) 9310.00 0.377681
\(848\) −10624.0 −0.430224
\(849\) 0 0
\(850\) −2550.00 −0.102899
\(851\) −9500.00 −0.382674
\(852\) 0 0
\(853\) 15442.0 0.619841 0.309920 0.950763i \(-0.399698\pi\)
0.309920 + 0.950763i \(0.399698\pi\)
\(854\) −9576.00 −0.383705
\(855\) 0 0
\(856\) 2512.00 0.100302
\(857\) 17978.0 0.716589 0.358295 0.933609i \(-0.383358\pi\)
0.358295 + 0.933609i \(0.383358\pi\)
\(858\) 0 0
\(859\) 19308.0 0.766916 0.383458 0.923558i \(-0.374733\pi\)
0.383458 + 0.923558i \(0.374733\pi\)
\(860\) −8440.00 −0.334653
\(861\) 0 0
\(862\) 3750.00 0.148173
\(863\) −17464.0 −0.688855 −0.344427 0.938813i \(-0.611927\pi\)
−0.344427 + 0.938813i \(0.611927\pi\)
\(864\) 0 0
\(865\) −6255.00 −0.245869
\(866\) 27748.0 1.08882
\(867\) 0 0
\(868\) 5936.00 0.232121
\(869\) −407.000 −0.0158878
\(870\) 0 0
\(871\) 7392.00 0.287564
\(872\) 12888.0 0.500508
\(873\) 0 0
\(874\) −3000.00 −0.116106
\(875\) 875.000 0.0338062
\(876\) 0 0
\(877\) −23962.0 −0.922622 −0.461311 0.887239i \(-0.652621\pi\)
−0.461311 + 0.887239i \(0.652621\pi\)
\(878\) 6884.00 0.264606
\(879\) 0 0
\(880\) −80.0000 −0.00306454
\(881\) 35168.0 1.34488 0.672440 0.740151i \(-0.265246\pi\)
0.672440 + 0.740151i \(0.265246\pi\)
\(882\) 0 0
\(883\) −37896.0 −1.44428 −0.722142 0.691745i \(-0.756842\pi\)
−0.722142 + 0.691745i \(0.756842\pi\)
\(884\) 1428.00 0.0543313
\(885\) 0 0
\(886\) 33500.0 1.27026
\(887\) −30368.0 −1.14956 −0.574779 0.818309i \(-0.694912\pi\)
−0.574779 + 0.818309i \(0.694912\pi\)
\(888\) 0 0
\(889\) −4228.00 −0.159508
\(890\) 8800.00 0.331434
\(891\) 0 0
\(892\) 2772.00 0.104051
\(893\) −3630.00 −0.136028
\(894\) 0 0
\(895\) −740.000 −0.0276374
\(896\) 896.000 0.0334077
\(897\) 0 0
\(898\) 1390.00 0.0516536
\(899\) 16748.0 0.621332
\(900\) 0 0
\(901\) −33864.0 −1.25213
\(902\) −616.000 −0.0227390
\(903\) 0 0
\(904\) 2928.00 0.107725
\(905\) 6720.00 0.246829
\(906\) 0 0
\(907\) −33874.0 −1.24010 −0.620048 0.784564i \(-0.712887\pi\)
−0.620048 + 0.784564i \(0.712887\pi\)
\(908\) 17116.0 0.625567
\(909\) 0 0
\(910\) −490.000 −0.0178498
\(911\) −24880.0 −0.904842 −0.452421 0.891804i \(-0.649440\pi\)
−0.452421 + 0.891804i \(0.649440\pi\)
\(912\) 0 0
\(913\) −644.000 −0.0233442
\(914\) −11520.0 −0.416901
\(915\) 0 0
\(916\) −13264.0 −0.478444
\(917\) 20398.0 0.734571
\(918\) 0 0
\(919\) −25299.0 −0.908092 −0.454046 0.890978i \(-0.650020\pi\)
−0.454046 + 0.890978i \(0.650020\pi\)
\(920\) 2000.00 0.0716718
\(921\) 0 0
\(922\) 26880.0 0.960136
\(923\) −5208.00 −0.185724
\(924\) 0 0
\(925\) −4750.00 −0.168842
\(926\) 14696.0 0.521534
\(927\) 0 0
\(928\) 2528.00 0.0894242
\(929\) −6792.00 −0.239869 −0.119934 0.992782i \(-0.538268\pi\)
−0.119934 + 0.992782i \(0.538268\pi\)
\(930\) 0 0
\(931\) 1470.00 0.0517479
\(932\) −15648.0 −0.549965
\(933\) 0 0
\(934\) −35850.0 −1.25594
\(935\) −255.000 −0.00891914
\(936\) 0 0
\(937\) −43575.0 −1.51925 −0.759623 0.650364i \(-0.774616\pi\)
−0.759623 + 0.650364i \(0.774616\pi\)
\(938\) 14784.0 0.514621
\(939\) 0 0
\(940\) 2420.00 0.0839699
\(941\) −45372.0 −1.57182 −0.785911 0.618339i \(-0.787806\pi\)
−0.785911 + 0.618339i \(0.787806\pi\)
\(942\) 0 0
\(943\) 15400.0 0.531806
\(944\) −10048.0 −0.346435
\(945\) 0 0
\(946\) −844.000 −0.0290072
\(947\) 39152.0 1.34347 0.671737 0.740790i \(-0.265549\pi\)
0.671737 + 0.740790i \(0.265549\pi\)
\(948\) 0 0
\(949\) 5082.00 0.173834
\(950\) −1500.00 −0.0512278
\(951\) 0 0
\(952\) 2856.00 0.0972306
\(953\) 18632.0 0.633316 0.316658 0.948540i \(-0.397439\pi\)
0.316658 + 0.948540i \(0.397439\pi\)
\(954\) 0 0
\(955\) −2805.00 −0.0950447
\(956\) 21804.0 0.737648
\(957\) 0 0
\(958\) 24692.0 0.832737
\(959\) 17976.0 0.605292
\(960\) 0 0
\(961\) 15153.0 0.508644
\(962\) 2660.00 0.0891495
\(963\) 0 0
\(964\) 1000.00 0.0334106
\(965\) −15080.0 −0.503049
\(966\) 0 0
\(967\) 48862.0 1.62492 0.812459 0.583018i \(-0.198128\pi\)
0.812459 + 0.583018i \(0.198128\pi\)
\(968\) 10640.0 0.353288
\(969\) 0 0
\(970\) −13510.0 −0.447196
\(971\) −19896.0 −0.657562 −0.328781 0.944406i \(-0.606638\pi\)
−0.328781 + 0.944406i \(0.606638\pi\)
\(972\) 0 0
\(973\) −8918.00 −0.293831
\(974\) −30028.0 −0.987843
\(975\) 0 0
\(976\) −10944.0 −0.358923
\(977\) −5130.00 −0.167987 −0.0839935 0.996466i \(-0.526767\pi\)
−0.0839935 + 0.996466i \(0.526767\pi\)
\(978\) 0 0
\(979\) 880.000 0.0287282
\(980\) −980.000 −0.0319438
\(981\) 0 0
\(982\) −9446.00 −0.306959
\(983\) 11573.0 0.375505 0.187752 0.982216i \(-0.439880\pi\)
0.187752 + 0.982216i \(0.439880\pi\)
\(984\) 0 0
\(985\) −16160.0 −0.522742
\(986\) 8058.00 0.260263
\(987\) 0 0
\(988\) 840.000 0.0270485
\(989\) 21100.0 0.678403
\(990\) 0 0
\(991\) 34600.0 1.10909 0.554544 0.832155i \(-0.312893\pi\)
0.554544 + 0.832155i \(0.312893\pi\)
\(992\) 6784.00 0.217129
\(993\) 0 0
\(994\) −10416.0 −0.332370
\(995\) 5820.00 0.185434
\(996\) 0 0
\(997\) −15199.0 −0.482806 −0.241403 0.970425i \(-0.577607\pi\)
−0.241403 + 0.970425i \(0.577607\pi\)
\(998\) −22454.0 −0.712193
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 630.4.a.b.1.1 1
3.2 odd 2 70.4.a.e.1.1 1
12.11 even 2 560.4.a.f.1.1 1
15.2 even 4 350.4.c.k.99.2 2
15.8 even 4 350.4.c.k.99.1 2
15.14 odd 2 350.4.a.c.1.1 1
21.2 odd 6 490.4.e.c.361.1 2
21.5 even 6 490.4.e.g.361.1 2
21.11 odd 6 490.4.e.c.471.1 2
21.17 even 6 490.4.e.g.471.1 2
21.20 even 2 490.4.a.j.1.1 1
24.5 odd 2 2240.4.a.h.1.1 1
24.11 even 2 2240.4.a.bc.1.1 1
105.104 even 2 2450.4.a.r.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
70.4.a.e.1.1 1 3.2 odd 2
350.4.a.c.1.1 1 15.14 odd 2
350.4.c.k.99.1 2 15.8 even 4
350.4.c.k.99.2 2 15.2 even 4
490.4.a.j.1.1 1 21.20 even 2
490.4.e.c.361.1 2 21.2 odd 6
490.4.e.c.471.1 2 21.11 odd 6
490.4.e.g.361.1 2 21.5 even 6
490.4.e.g.471.1 2 21.17 even 6
560.4.a.f.1.1 1 12.11 even 2
630.4.a.b.1.1 1 1.1 even 1 trivial
2240.4.a.h.1.1 1 24.5 odd 2
2240.4.a.bc.1.1 1 24.11 even 2
2450.4.a.r.1.1 1 105.104 even 2