Properties

Label 490.4.e.p.471.1
Level $490$
Weight $4$
Character 490.471
Analytic conductor $28.911$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [490,4,Mod(361,490)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(490, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("490.361");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 490 = 2 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 490.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(28.9109359028\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 70)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 471.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 490.471
Dual form 490.4.e.p.361.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.00000 - 1.73205i) q^{2} +(1.50000 + 2.59808i) q^{3} +(-2.00000 - 3.46410i) q^{4} +(-2.50000 + 4.33013i) q^{5} +6.00000 q^{6} -8.00000 q^{8} +(9.00000 - 15.5885i) q^{9} +(5.00000 + 8.66025i) q^{10} +(8.50000 + 14.7224i) q^{11} +(6.00000 - 10.3923i) q^{12} -81.0000 q^{13} -15.0000 q^{15} +(-8.00000 + 13.8564i) q^{16} +(45.5000 + 78.8083i) q^{17} +(-18.0000 - 31.1769i) q^{18} +(-51.0000 + 88.3346i) q^{19} +20.0000 q^{20} +34.0000 q^{22} +(45.0000 - 77.9423i) q^{23} +(-12.0000 - 20.7846i) q^{24} +(-12.5000 - 21.6506i) q^{25} +(-81.0000 + 140.296i) q^{26} +135.000 q^{27} -129.000 q^{29} +(-15.0000 + 25.9808i) q^{30} +(-58.0000 - 100.459i) q^{31} +(16.0000 + 27.7128i) q^{32} +(-25.5000 + 44.1673i) q^{33} +182.000 q^{34} -72.0000 q^{36} +(-157.000 + 271.932i) q^{37} +(102.000 + 176.669i) q^{38} +(-121.500 - 210.444i) q^{39} +(20.0000 - 34.6410i) q^{40} -124.000 q^{41} -434.000 q^{43} +(34.0000 - 58.8897i) q^{44} +(45.0000 + 77.9423i) q^{45} +(-90.0000 - 155.885i) q^{46} +(-248.500 + 430.415i) q^{47} -48.0000 q^{48} -50.0000 q^{50} +(-136.500 + 236.425i) q^{51} +(162.000 + 280.592i) q^{52} +(292.000 + 505.759i) q^{53} +(135.000 - 233.827i) q^{54} -85.0000 q^{55} -306.000 q^{57} +(-129.000 + 223.435i) q^{58} +(166.000 + 287.520i) q^{59} +(30.0000 + 51.9615i) q^{60} +(-110.000 + 190.526i) q^{61} -232.000 q^{62} +64.0000 q^{64} +(202.500 - 350.740i) q^{65} +(51.0000 + 88.3346i) q^{66} +(-192.000 - 332.554i) q^{67} +(182.000 - 315.233i) q^{68} +270.000 q^{69} -664.000 q^{71} +(-72.0000 + 124.708i) q^{72} +(-115.000 - 199.186i) q^{73} +(314.000 + 543.864i) q^{74} +(37.5000 - 64.9519i) q^{75} +408.000 q^{76} -486.000 q^{78} +(-180.500 + 312.635i) q^{79} +(-40.0000 - 69.2820i) q^{80} +(-40.5000 - 70.1481i) q^{81} +(-124.000 + 214.774i) q^{82} +1172.00 q^{83} -455.000 q^{85} +(-434.000 + 751.710i) q^{86} +(-193.500 - 335.152i) q^{87} +(-68.0000 - 117.779i) q^{88} +(-20.0000 + 34.6410i) q^{89} +180.000 q^{90} -360.000 q^{92} +(174.000 - 301.377i) q^{93} +(497.000 + 860.829i) q^{94} +(-255.000 - 441.673i) q^{95} +(-48.0000 + 83.1384i) q^{96} -175.000 q^{97} +306.000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} + 3 q^{3} - 4 q^{4} - 5 q^{5} + 12 q^{6} - 16 q^{8} + 18 q^{9} + 10 q^{10} + 17 q^{11} + 12 q^{12} - 162 q^{13} - 30 q^{15} - 16 q^{16} + 91 q^{17} - 36 q^{18} - 102 q^{19} + 40 q^{20} + 68 q^{22}+ \cdots + 612 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/490\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(197\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 1.73205i 0.353553 0.612372i
\(3\) 1.50000 + 2.59808i 0.288675 + 0.500000i 0.973494 0.228714i \(-0.0734519\pi\)
−0.684819 + 0.728714i \(0.740119\pi\)
\(4\) −2.00000 3.46410i −0.250000 0.433013i
\(5\) −2.50000 + 4.33013i −0.223607 + 0.387298i
\(6\) 6.00000 0.408248
\(7\) 0 0
\(8\) −8.00000 −0.353553
\(9\) 9.00000 15.5885i 0.333333 0.577350i
\(10\) 5.00000 + 8.66025i 0.158114 + 0.273861i
\(11\) 8.50000 + 14.7224i 0.232986 + 0.403544i 0.958685 0.284468i \(-0.0918170\pi\)
−0.725699 + 0.688012i \(0.758484\pi\)
\(12\) 6.00000 10.3923i 0.144338 0.250000i
\(13\) −81.0000 −1.72810 −0.864052 0.503402i \(-0.832081\pi\)
−0.864052 + 0.503402i \(0.832081\pi\)
\(14\) 0 0
\(15\) −15.0000 −0.258199
\(16\) −8.00000 + 13.8564i −0.125000 + 0.216506i
\(17\) 45.5000 + 78.8083i 0.649139 + 1.12434i 0.983329 + 0.181837i \(0.0582042\pi\)
−0.334189 + 0.942506i \(0.608462\pi\)
\(18\) −18.0000 31.1769i −0.235702 0.408248i
\(19\) −51.0000 + 88.3346i −0.615800 + 1.06660i 0.374443 + 0.927250i \(0.377834\pi\)
−0.990244 + 0.139347i \(0.955500\pi\)
\(20\) 20.0000 0.223607
\(21\) 0 0
\(22\) 34.0000 0.329492
\(23\) 45.0000 77.9423i 0.407963 0.706613i −0.586698 0.809806i \(-0.699573\pi\)
0.994661 + 0.103193i \(0.0329059\pi\)
\(24\) −12.0000 20.7846i −0.102062 0.176777i
\(25\) −12.5000 21.6506i −0.100000 0.173205i
\(26\) −81.0000 + 140.296i −0.610977 + 1.05824i
\(27\) 135.000 0.962250
\(28\) 0 0
\(29\) −129.000 −0.826024 −0.413012 0.910726i \(-0.635523\pi\)
−0.413012 + 0.910726i \(0.635523\pi\)
\(30\) −15.0000 + 25.9808i −0.0912871 + 0.158114i
\(31\) −58.0000 100.459i −0.336036 0.582031i 0.647648 0.761940i \(-0.275753\pi\)
−0.983683 + 0.179909i \(0.942420\pi\)
\(32\) 16.0000 + 27.7128i 0.0883883 + 0.153093i
\(33\) −25.5000 + 44.1673i −0.134515 + 0.232986i
\(34\) 182.000 0.918022
\(35\) 0 0
\(36\) −72.0000 −0.333333
\(37\) −157.000 + 271.932i −0.697585 + 1.20825i 0.271717 + 0.962377i \(0.412409\pi\)
−0.969302 + 0.245875i \(0.920925\pi\)
\(38\) 102.000 + 176.669i 0.435436 + 0.754198i
\(39\) −121.500 210.444i −0.498861 0.864052i
\(40\) 20.0000 34.6410i 0.0790569 0.136931i
\(41\) −124.000 −0.472330 −0.236165 0.971713i \(-0.575891\pi\)
−0.236165 + 0.971713i \(0.575891\pi\)
\(42\) 0 0
\(43\) −434.000 −1.53917 −0.769586 0.638543i \(-0.779537\pi\)
−0.769586 + 0.638543i \(0.779537\pi\)
\(44\) 34.0000 58.8897i 0.116493 0.201772i
\(45\) 45.0000 + 77.9423i 0.149071 + 0.258199i
\(46\) −90.0000 155.885i −0.288473 0.499651i
\(47\) −248.500 + 430.415i −0.771222 + 1.33580i 0.165671 + 0.986181i \(0.447021\pi\)
−0.936893 + 0.349615i \(0.886312\pi\)
\(48\) −48.0000 −0.144338
\(49\) 0 0
\(50\) −50.0000 −0.141421
\(51\) −136.500 + 236.425i −0.374781 + 0.649139i
\(52\) 162.000 + 280.592i 0.432026 + 0.748291i
\(53\) 292.000 + 505.759i 0.756779 + 1.31078i 0.944485 + 0.328554i \(0.106561\pi\)
−0.187706 + 0.982225i \(0.560105\pi\)
\(54\) 135.000 233.827i 0.340207 0.589256i
\(55\) −85.0000 −0.208389
\(56\) 0 0
\(57\) −306.000 −0.711065
\(58\) −129.000 + 223.435i −0.292044 + 0.505834i
\(59\) 166.000 + 287.520i 0.366294 + 0.634440i 0.988983 0.148029i \(-0.0472930\pi\)
−0.622689 + 0.782470i \(0.713960\pi\)
\(60\) 30.0000 + 51.9615i 0.0645497 + 0.111803i
\(61\) −110.000 + 190.526i −0.230886 + 0.399907i −0.958069 0.286537i \(-0.907496\pi\)
0.727183 + 0.686444i \(0.240829\pi\)
\(62\) −232.000 −0.475226
\(63\) 0 0
\(64\) 64.0000 0.125000
\(65\) 202.500 350.740i 0.386416 0.669292i
\(66\) 51.0000 + 88.3346i 0.0951162 + 0.164746i
\(67\) −192.000 332.554i −0.350098 0.606387i 0.636169 0.771550i \(-0.280518\pi\)
−0.986266 + 0.165163i \(0.947185\pi\)
\(68\) 182.000 315.233i 0.324570 0.562171i
\(69\) 270.000 0.471075
\(70\) 0 0
\(71\) −664.000 −1.10989 −0.554946 0.831887i \(-0.687261\pi\)
−0.554946 + 0.831887i \(0.687261\pi\)
\(72\) −72.0000 + 124.708i −0.117851 + 0.204124i
\(73\) −115.000 199.186i −0.184380 0.319355i 0.758987 0.651105i \(-0.225694\pi\)
−0.943367 + 0.331750i \(0.892361\pi\)
\(74\) 314.000 + 543.864i 0.493267 + 0.854364i
\(75\) 37.5000 64.9519i 0.0577350 0.100000i
\(76\) 408.000 0.615800
\(77\) 0 0
\(78\) −486.000 −0.705496
\(79\) −180.500 + 312.635i −0.257061 + 0.445243i −0.965453 0.260576i \(-0.916088\pi\)
0.708392 + 0.705819i \(0.249421\pi\)
\(80\) −40.0000 69.2820i −0.0559017 0.0968246i
\(81\) −40.5000 70.1481i −0.0555556 0.0962250i
\(82\) −124.000 + 214.774i −0.166994 + 0.289242i
\(83\) 1172.00 1.54992 0.774962 0.632008i \(-0.217769\pi\)
0.774962 + 0.632008i \(0.217769\pi\)
\(84\) 0 0
\(85\) −455.000 −0.580608
\(86\) −434.000 + 751.710i −0.544179 + 0.942546i
\(87\) −193.500 335.152i −0.238453 0.413012i
\(88\) −68.0000 117.779i −0.0823730 0.142674i
\(89\) −20.0000 + 34.6410i −0.0238202 + 0.0412578i −0.877690 0.479229i \(-0.840916\pi\)
0.853870 + 0.520487i \(0.174250\pi\)
\(90\) 180.000 0.210819
\(91\) 0 0
\(92\) −360.000 −0.407963
\(93\) 174.000 301.377i 0.194010 0.336036i
\(94\) 497.000 + 860.829i 0.545337 + 0.944551i
\(95\) −255.000 441.673i −0.275394 0.476997i
\(96\) −48.0000 + 83.1384i −0.0510310 + 0.0883883i
\(97\) −175.000 −0.183181 −0.0915905 0.995797i \(-0.529195\pi\)
−0.0915905 + 0.995797i \(0.529195\pi\)
\(98\) 0 0
\(99\) 306.000 0.310648
\(100\) −50.0000 + 86.6025i −0.0500000 + 0.0866025i
\(101\) −135.000 233.827i −0.133000 0.230363i 0.791832 0.610739i \(-0.209128\pi\)
−0.924832 + 0.380377i \(0.875794\pi\)
\(102\) 273.000 + 472.850i 0.265010 + 0.459011i
\(103\) −282.500 + 489.304i −0.270248 + 0.468083i −0.968925 0.247354i \(-0.920439\pi\)
0.698677 + 0.715437i \(0.253772\pi\)
\(104\) 648.000 0.610977
\(105\) 0 0
\(106\) 1168.00 1.07025
\(107\) 603.000 1044.43i 0.544806 0.943631i −0.453813 0.891097i \(-0.649937\pi\)
0.998619 0.0525344i \(-0.0167299\pi\)
\(108\) −270.000 467.654i −0.240563 0.416667i
\(109\) 709.500 + 1228.89i 0.623466 + 1.07987i 0.988835 + 0.149012i \(0.0476093\pi\)
−0.365370 + 0.930863i \(0.619057\pi\)
\(110\) −85.0000 + 147.224i −0.0736767 + 0.127612i
\(111\) −942.000 −0.805502
\(112\) 0 0
\(113\) −778.000 −0.647682 −0.323841 0.946111i \(-0.604974\pi\)
−0.323841 + 0.946111i \(0.604974\pi\)
\(114\) −306.000 + 530.008i −0.251399 + 0.435436i
\(115\) 225.000 + 389.711i 0.182447 + 0.316007i
\(116\) 258.000 + 446.869i 0.206506 + 0.357679i
\(117\) −729.000 + 1262.67i −0.576035 + 0.997722i
\(118\) 664.000 0.518018
\(119\) 0 0
\(120\) 120.000 0.0912871
\(121\) 521.000 902.398i 0.391435 0.677985i
\(122\) 220.000 + 381.051i 0.163261 + 0.282777i
\(123\) −186.000 322.161i −0.136350 0.236165i
\(124\) −232.000 + 401.836i −0.168018 + 0.291015i
\(125\) 125.000 0.0894427
\(126\) 0 0
\(127\) 316.000 0.220791 0.110396 0.993888i \(-0.464788\pi\)
0.110396 + 0.993888i \(0.464788\pi\)
\(128\) 64.0000 110.851i 0.0441942 0.0765466i
\(129\) −651.000 1127.57i −0.444321 0.769586i
\(130\) −405.000 701.481i −0.273237 0.473261i
\(131\) 875.000 1515.54i 0.583581 1.01079i −0.411470 0.911423i \(-0.634984\pi\)
0.995051 0.0993684i \(-0.0316822\pi\)
\(132\) 204.000 0.134515
\(133\) 0 0
\(134\) −768.000 −0.495113
\(135\) −337.500 + 584.567i −0.215166 + 0.372678i
\(136\) −364.000 630.466i −0.229505 0.397515i
\(137\) −24.0000 41.5692i −0.0149668 0.0259233i 0.858445 0.512906i \(-0.171431\pi\)
−0.873412 + 0.486982i \(0.838098\pi\)
\(138\) 270.000 467.654i 0.166550 0.288473i
\(139\) −38.0000 −0.0231879 −0.0115939 0.999933i \(-0.503691\pi\)
−0.0115939 + 0.999933i \(0.503691\pi\)
\(140\) 0 0
\(141\) −1491.00 −0.890531
\(142\) −664.000 + 1150.08i −0.392406 + 0.679667i
\(143\) −688.500 1192.52i −0.402624 0.697366i
\(144\) 144.000 + 249.415i 0.0833333 + 0.144338i
\(145\) 322.500 558.586i 0.184705 0.319918i
\(146\) −460.000 −0.260753
\(147\) 0 0
\(148\) 1256.00 0.697585
\(149\) 1791.00 3102.10i 0.984728 1.70560i 0.341588 0.939850i \(-0.389035\pi\)
0.643140 0.765749i \(-0.277631\pi\)
\(150\) −75.0000 129.904i −0.0408248 0.0707107i
\(151\) 963.500 + 1668.83i 0.519262 + 0.899388i 0.999749 + 0.0223862i \(0.00712634\pi\)
−0.480488 + 0.877001i \(0.659540\pi\)
\(152\) 408.000 706.677i 0.217718 0.377099i
\(153\) 1638.00 0.865519
\(154\) 0 0
\(155\) 580.000 0.300559
\(156\) −486.000 + 841.777i −0.249430 + 0.432026i
\(157\) 1255.00 + 2173.72i 0.637961 + 1.10498i 0.985879 + 0.167456i \(0.0535553\pi\)
−0.347918 + 0.937525i \(0.613111\pi\)
\(158\) 361.000 + 625.270i 0.181770 + 0.314834i
\(159\) −876.000 + 1517.28i −0.436927 + 0.756779i
\(160\) −160.000 −0.0790569
\(161\) 0 0
\(162\) −162.000 −0.0785674
\(163\) 935.000 1619.47i 0.449294 0.778199i −0.549047 0.835792i \(-0.685009\pi\)
0.998340 + 0.0575924i \(0.0183424\pi\)
\(164\) 248.000 + 429.549i 0.118083 + 0.204525i
\(165\) −127.500 220.836i −0.0601567 0.104195i
\(166\) 1172.00 2029.96i 0.547981 0.949131i
\(167\) −2019.00 −0.935538 −0.467769 0.883851i \(-0.654942\pi\)
−0.467769 + 0.883851i \(0.654942\pi\)
\(168\) 0 0
\(169\) 4364.00 1.98635
\(170\) −455.000 + 788.083i −0.205276 + 0.355548i
\(171\) 918.000 + 1590.02i 0.410533 + 0.711065i
\(172\) 868.000 + 1503.42i 0.384793 + 0.666481i
\(173\) −626.500 + 1085.13i −0.275329 + 0.476884i −0.970218 0.242233i \(-0.922120\pi\)
0.694889 + 0.719117i \(0.255453\pi\)
\(174\) −774.000 −0.337223
\(175\) 0 0
\(176\) −272.000 −0.116493
\(177\) −498.000 + 862.561i −0.211480 + 0.366294i
\(178\) 40.0000 + 69.2820i 0.0168434 + 0.0291736i
\(179\) −246.000 426.084i −0.102720 0.177916i 0.810084 0.586313i \(-0.199421\pi\)
−0.912804 + 0.408397i \(0.866088\pi\)
\(180\) 180.000 311.769i 0.0745356 0.129099i
\(181\) −4448.00 −1.82661 −0.913307 0.407271i \(-0.866480\pi\)
−0.913307 + 0.407271i \(0.866480\pi\)
\(182\) 0 0
\(183\) −660.000 −0.266604
\(184\) −360.000 + 623.538i −0.144237 + 0.249825i
\(185\) −785.000 1359.66i −0.311969 0.540347i
\(186\) −348.000 602.754i −0.137186 0.237613i
\(187\) −773.500 + 1339.74i −0.302481 + 0.523912i
\(188\) 1988.00 0.771222
\(189\) 0 0
\(190\) −1020.00 −0.389466
\(191\) −1999.50 + 3463.24i −0.757480 + 1.31199i 0.186651 + 0.982426i \(0.440236\pi\)
−0.944132 + 0.329568i \(0.893097\pi\)
\(192\) 96.0000 + 166.277i 0.0360844 + 0.0625000i
\(193\) −2440.00 4226.20i −0.910026 1.57621i −0.814025 0.580830i \(-0.802728\pi\)
−0.0960015 0.995381i \(-0.530605\pi\)
\(194\) −175.000 + 303.109i −0.0647643 + 0.112175i
\(195\) 1215.00 0.446195
\(196\) 0 0
\(197\) 4712.00 1.70414 0.852071 0.523426i \(-0.175346\pi\)
0.852071 + 0.523426i \(0.175346\pi\)
\(198\) 306.000 530.008i 0.109831 0.190232i
\(199\) −1378.00 2386.77i −0.490874 0.850218i 0.509071 0.860724i \(-0.329989\pi\)
−0.999945 + 0.0105065i \(0.996656\pi\)
\(200\) 100.000 + 173.205i 0.0353553 + 0.0612372i
\(201\) 576.000 997.661i 0.202129 0.350098i
\(202\) −540.000 −0.188090
\(203\) 0 0
\(204\) 1092.00 0.374781
\(205\) 310.000 536.936i 0.105616 0.182933i
\(206\) 565.000 + 978.609i 0.191094 + 0.330985i
\(207\) −810.000 1402.96i −0.271975 0.471075i
\(208\) 648.000 1122.37i 0.216013 0.374146i
\(209\) −1734.00 −0.573891
\(210\) 0 0
\(211\) 697.000 0.227410 0.113705 0.993515i \(-0.463728\pi\)
0.113705 + 0.993515i \(0.463728\pi\)
\(212\) 1168.00 2023.04i 0.378389 0.655390i
\(213\) −996.000 1725.12i −0.320398 0.554946i
\(214\) −1206.00 2088.85i −0.385236 0.667248i
\(215\) 1085.00 1879.28i 0.344169 0.596119i
\(216\) −1080.00 −0.340207
\(217\) 0 0
\(218\) 2838.00 0.881714
\(219\) 345.000 597.558i 0.106452 0.184380i
\(220\) 170.000 + 294.449i 0.0520973 + 0.0902351i
\(221\) −3685.50 6383.47i −1.12178 1.94298i
\(222\) −942.000 + 1631.59i −0.284788 + 0.493267i
\(223\) −707.000 −0.212306 −0.106153 0.994350i \(-0.533853\pi\)
−0.106153 + 0.994350i \(0.533853\pi\)
\(224\) 0 0
\(225\) −450.000 −0.133333
\(226\) −778.000 + 1347.54i −0.228990 + 0.396623i
\(227\) 279.500 + 484.108i 0.0817228 + 0.141548i 0.903990 0.427554i \(-0.140624\pi\)
−0.822267 + 0.569102i \(0.807291\pi\)
\(228\) 612.000 + 1060.02i 0.177766 + 0.307900i
\(229\) 1918.00 3322.07i 0.553472 0.958641i −0.444549 0.895755i \(-0.646636\pi\)
0.998021 0.0628865i \(-0.0200306\pi\)
\(230\) 900.000 0.258018
\(231\) 0 0
\(232\) 1032.00 0.292044
\(233\) 684.000 1184.72i 0.192319 0.333106i −0.753699 0.657219i \(-0.771732\pi\)
0.946018 + 0.324113i \(0.105066\pi\)
\(234\) 1458.00 + 2525.33i 0.407318 + 0.705496i
\(235\) −1242.50 2152.07i −0.344901 0.597386i
\(236\) 664.000 1150.08i 0.183147 0.317220i
\(237\) −1083.00 −0.296829
\(238\) 0 0
\(239\) −3803.00 −1.02927 −0.514635 0.857409i \(-0.672073\pi\)
−0.514635 + 0.857409i \(0.672073\pi\)
\(240\) 120.000 207.846i 0.0322749 0.0559017i
\(241\) −2825.00 4893.04i −0.755080 1.30784i −0.945335 0.326102i \(-0.894265\pi\)
0.190255 0.981735i \(-0.439069\pi\)
\(242\) −1042.00 1804.80i −0.276786 0.479408i
\(243\) 1944.00 3367.11i 0.513200 0.888889i
\(244\) 880.000 0.230886
\(245\) 0 0
\(246\) −744.000 −0.192828
\(247\) 4131.00 7155.10i 1.06417 1.84319i
\(248\) 464.000 + 803.672i 0.118807 + 0.205779i
\(249\) 1758.00 + 3044.95i 0.447425 + 0.774962i
\(250\) 125.000 216.506i 0.0316228 0.0547723i
\(251\) −1650.00 −0.414929 −0.207464 0.978243i \(-0.566521\pi\)
−0.207464 + 0.978243i \(0.566521\pi\)
\(252\) 0 0
\(253\) 1530.00 0.380199
\(254\) 316.000 547.328i 0.0780614 0.135206i
\(255\) −682.500 1182.12i −0.167607 0.290304i
\(256\) −128.000 221.703i −0.0312500 0.0541266i
\(257\) −2905.00 + 5031.61i −0.705093 + 1.22126i 0.261565 + 0.965186i \(0.415761\pi\)
−0.966658 + 0.256071i \(0.917572\pi\)
\(258\) −2604.00 −0.628364
\(259\) 0 0
\(260\) −1620.00 −0.386416
\(261\) −1161.00 + 2010.91i −0.275341 + 0.476905i
\(262\) −1750.00 3031.09i −0.412654 0.714738i
\(263\) 1379.00 + 2388.50i 0.323319 + 0.560004i 0.981171 0.193143i \(-0.0618681\pi\)
−0.657852 + 0.753147i \(0.728535\pi\)
\(264\) 204.000 353.338i 0.0475581 0.0823730i
\(265\) −2920.00 −0.676884
\(266\) 0 0
\(267\) −120.000 −0.0275052
\(268\) −768.000 + 1330.22i −0.175049 + 0.303193i
\(269\) −93.0000 161.081i −0.0210792 0.0365103i 0.855293 0.518144i \(-0.173377\pi\)
−0.876373 + 0.481634i \(0.840044\pi\)
\(270\) 675.000 + 1169.13i 0.152145 + 0.263523i
\(271\) 3414.00 5913.22i 0.765261 1.32547i −0.174847 0.984596i \(-0.555943\pi\)
0.940108 0.340875i \(-0.110723\pi\)
\(272\) −1456.00 −0.324570
\(273\) 0 0
\(274\) −96.0000 −0.0211663
\(275\) 212.500 368.061i 0.0465972 0.0807087i
\(276\) −540.000 935.307i −0.117769 0.203981i
\(277\) 4107.00 + 7113.53i 0.890851 + 1.54300i 0.838857 + 0.544352i \(0.183224\pi\)
0.0519939 + 0.998647i \(0.483442\pi\)
\(278\) −38.0000 + 65.8179i −0.00819816 + 0.0141996i
\(279\) −2088.00 −0.448048
\(280\) 0 0
\(281\) 6707.00 1.42387 0.711933 0.702248i \(-0.247820\pi\)
0.711933 + 0.702248i \(0.247820\pi\)
\(282\) −1491.00 + 2582.49i −0.314850 + 0.545337i
\(283\) 2748.50 + 4760.54i 0.577319 + 0.999946i 0.995785 + 0.0917140i \(0.0292345\pi\)
−0.418466 + 0.908232i \(0.637432\pi\)
\(284\) 1328.00 + 2300.16i 0.277473 + 0.480597i
\(285\) 765.000 1325.02i 0.158999 0.275394i
\(286\) −2754.00 −0.569397
\(287\) 0 0
\(288\) 576.000 0.117851
\(289\) −1684.00 + 2916.77i −0.342764 + 0.593685i
\(290\) −645.000 1117.17i −0.130606 0.226216i
\(291\) −262.500 454.663i −0.0528798 0.0915905i
\(292\) −460.000 + 796.743i −0.0921899 + 0.159678i
\(293\) 313.000 0.0624084 0.0312042 0.999513i \(-0.490066\pi\)
0.0312042 + 0.999513i \(0.490066\pi\)
\(294\) 0 0
\(295\) −1660.00 −0.327624
\(296\) 1256.00 2175.46i 0.246634 0.427182i
\(297\) 1147.50 + 1987.53i 0.224191 + 0.388310i
\(298\) −3582.00 6204.21i −0.696308 1.20604i
\(299\) −3645.00 + 6313.33i −0.705003 + 1.22110i
\(300\) −300.000 −0.0577350
\(301\) 0 0
\(302\) 3854.00 0.734347
\(303\) 405.000 701.481i 0.0767876 0.133000i
\(304\) −816.000 1413.35i −0.153950 0.266649i
\(305\) −550.000 952.628i −0.103255 0.178844i
\(306\) 1638.00 2837.10i 0.306007 0.530020i
\(307\) 5479.00 1.01858 0.509288 0.860596i \(-0.329909\pi\)
0.509288 + 0.860596i \(0.329909\pi\)
\(308\) 0 0
\(309\) −1695.00 −0.312056
\(310\) 580.000 1004.59i 0.106264 0.184054i
\(311\) −2211.00 3829.56i −0.403133 0.698247i 0.590969 0.806694i \(-0.298745\pi\)
−0.994102 + 0.108447i \(0.965412\pi\)
\(312\) 972.000 + 1683.55i 0.176374 + 0.305489i
\(313\) −137.500 + 238.157i −0.0248305 + 0.0430078i −0.878174 0.478342i \(-0.841238\pi\)
0.853343 + 0.521350i \(0.174571\pi\)
\(314\) 5020.00 0.902213
\(315\) 0 0
\(316\) 1444.00 0.257061
\(317\) 2053.00 3555.90i 0.363748 0.630029i −0.624827 0.780763i \(-0.714830\pi\)
0.988574 + 0.150734i \(0.0481638\pi\)
\(318\) 1752.00 + 3034.55i 0.308954 + 0.535124i
\(319\) −1096.50 1899.19i −0.192452 0.333337i
\(320\) −160.000 + 277.128i −0.0279508 + 0.0484123i
\(321\) 3618.00 0.629087
\(322\) 0 0
\(323\) −9282.00 −1.59896
\(324\) −162.000 + 280.592i −0.0277778 + 0.0481125i
\(325\) 1012.50 + 1753.70i 0.172810 + 0.299316i
\(326\) −1870.00 3238.94i −0.317699 0.550270i
\(327\) −2128.50 + 3686.67i −0.359958 + 0.623466i
\(328\) 992.000 0.166994
\(329\) 0 0
\(330\) −510.000 −0.0850745
\(331\) −4130.00 + 7153.37i −0.685817 + 1.18787i 0.287363 + 0.957822i \(0.407222\pi\)
−0.973179 + 0.230048i \(0.926112\pi\)
\(332\) −2344.00 4059.93i −0.387481 0.671137i
\(333\) 2826.00 + 4894.78i 0.465057 + 0.805502i
\(334\) −2019.00 + 3497.01i −0.330763 + 0.572898i
\(335\) 1920.00 0.313137
\(336\) 0 0
\(337\) 9946.00 1.60769 0.803847 0.594836i \(-0.202783\pi\)
0.803847 + 0.594836i \(0.202783\pi\)
\(338\) 4364.00 7558.67i 0.702279 1.21638i
\(339\) −1167.00 2021.30i −0.186970 0.323841i
\(340\) 910.000 + 1576.17i 0.145152 + 0.251411i
\(341\) 986.000 1707.80i 0.156583 0.271210i
\(342\) 3672.00 0.580582
\(343\) 0 0
\(344\) 3472.00 0.544179
\(345\) −675.000 + 1169.13i −0.105336 + 0.182447i
\(346\) 1253.00 + 2170.26i 0.194687 + 0.337208i
\(347\) 4399.00 + 7619.29i 0.680550 + 1.17875i 0.974813 + 0.223022i \(0.0715922\pi\)
−0.294264 + 0.955724i \(0.595074\pi\)
\(348\) −774.000 + 1340.61i −0.119226 + 0.206506i
\(349\) −1838.00 −0.281908 −0.140954 0.990016i \(-0.545017\pi\)
−0.140954 + 0.990016i \(0.545017\pi\)
\(350\) 0 0
\(351\) −10935.0 −1.66287
\(352\) −272.000 + 471.118i −0.0411865 + 0.0713371i
\(353\) −1132.50 1961.55i −0.170756 0.295758i 0.767928 0.640536i \(-0.221288\pi\)
−0.938684 + 0.344778i \(0.887954\pi\)
\(354\) 996.000 + 1725.12i 0.149539 + 0.259009i
\(355\) 1660.00 2875.20i 0.248179 0.429859i
\(356\) 160.000 0.0238202
\(357\) 0 0
\(358\) −984.000 −0.145268
\(359\) −2068.00 + 3581.88i −0.304025 + 0.526586i −0.977044 0.213039i \(-0.931664\pi\)
0.673019 + 0.739625i \(0.264997\pi\)
\(360\) −360.000 623.538i −0.0527046 0.0912871i
\(361\) −1772.50 3070.06i −0.258420 0.447596i
\(362\) −4448.00 + 7704.16i −0.645806 + 1.11857i
\(363\) 3126.00 0.451990
\(364\) 0 0
\(365\) 1150.00 0.164914
\(366\) −660.000 + 1143.15i −0.0942589 + 0.163261i
\(367\) 5015.50 + 8687.10i 0.713370 + 1.23559i 0.963585 + 0.267403i \(0.0861656\pi\)
−0.250214 + 0.968191i \(0.580501\pi\)
\(368\) 720.000 + 1247.08i 0.101991 + 0.176653i
\(369\) −1116.00 + 1932.97i −0.157443 + 0.272700i
\(370\) −3140.00 −0.441191
\(371\) 0 0
\(372\) −1392.00 −0.194010
\(373\) −1396.00 + 2417.94i −0.193786 + 0.335647i −0.946502 0.322698i \(-0.895410\pi\)
0.752716 + 0.658345i \(0.228743\pi\)
\(374\) 1547.00 + 2679.48i 0.213886 + 0.370462i
\(375\) 187.500 + 324.760i 0.0258199 + 0.0447214i
\(376\) 1988.00 3443.32i 0.272668 0.472275i
\(377\) 10449.0 1.42746
\(378\) 0 0
\(379\) 9948.00 1.34827 0.674135 0.738608i \(-0.264517\pi\)
0.674135 + 0.738608i \(0.264517\pi\)
\(380\) −1020.00 + 1766.69i −0.137697 + 0.238498i
\(381\) 474.000 + 820.992i 0.0637369 + 0.110396i
\(382\) 3999.00 + 6926.47i 0.535619 + 0.927720i
\(383\) −1350.00 + 2338.27i −0.180109 + 0.311958i −0.941918 0.335844i \(-0.890978\pi\)
0.761808 + 0.647802i \(0.224312\pi\)
\(384\) 384.000 0.0510310
\(385\) 0 0
\(386\) −9760.00 −1.28697
\(387\) −3906.00 + 6765.39i −0.513057 + 0.888641i
\(388\) 350.000 + 606.218i 0.0457953 + 0.0793197i
\(389\) 315.500 + 546.462i 0.0411221 + 0.0712255i 0.885854 0.463964i \(-0.153573\pi\)
−0.844732 + 0.535190i \(0.820240\pi\)
\(390\) 1215.00 2104.44i 0.157754 0.273237i
\(391\) 8190.00 1.05930
\(392\) 0 0
\(393\) 5250.00 0.673861
\(394\) 4712.00 8161.42i 0.602505 1.04357i
\(395\) −902.500 1563.18i −0.114961 0.199119i
\(396\) −612.000 1060.02i −0.0776620 0.134515i
\(397\) 6569.50 11378.7i 0.830513 1.43849i −0.0671186 0.997745i \(-0.521381\pi\)
0.897632 0.440746i \(-0.145286\pi\)
\(398\) −5512.00 −0.694200
\(399\) 0 0
\(400\) 400.000 0.0500000
\(401\) 443.500 768.165i 0.0552303 0.0956616i −0.837088 0.547068i \(-0.815744\pi\)
0.892319 + 0.451406i \(0.149077\pi\)
\(402\) −1152.00 1995.32i −0.142927 0.247556i
\(403\) 4698.00 + 8137.17i 0.580705 + 1.00581i
\(404\) −540.000 + 935.307i −0.0665000 + 0.115181i
\(405\) 405.000 0.0496904
\(406\) 0 0
\(407\) −5338.00 −0.650110
\(408\) 1092.00 1891.40i 0.132505 0.229505i
\(409\) 2595.00 + 4494.67i 0.313727 + 0.543392i 0.979166 0.203061i \(-0.0650889\pi\)
−0.665439 + 0.746452i \(0.731756\pi\)
\(410\) −620.000 1073.87i −0.0746820 0.129353i
\(411\) 72.0000 124.708i 0.00864111 0.0149668i
\(412\) 2260.00 0.270248
\(413\) 0 0
\(414\) −3240.00 −0.384631
\(415\) −2930.00 + 5074.91i −0.346574 + 0.600283i
\(416\) −1296.00 2244.74i −0.152744 0.264561i
\(417\) −57.0000 98.7269i −0.00669377 0.0115939i
\(418\) −1734.00 + 3003.38i −0.202901 + 0.351435i
\(419\) −5712.00 −0.665989 −0.332995 0.942929i \(-0.608059\pi\)
−0.332995 + 0.942929i \(0.608059\pi\)
\(420\) 0 0
\(421\) −11155.0 −1.29136 −0.645679 0.763609i \(-0.723425\pi\)
−0.645679 + 0.763609i \(0.723425\pi\)
\(422\) 697.000 1207.24i 0.0804015 0.139259i
\(423\) 4473.00 + 7747.46i 0.514148 + 0.890531i
\(424\) −2336.00 4046.07i −0.267562 0.463431i
\(425\) 1137.50 1970.21i 0.129828 0.224869i
\(426\) −3984.00 −0.453111
\(427\) 0 0
\(428\) −4824.00 −0.544806
\(429\) 2065.50 3577.55i 0.232455 0.402624i
\(430\) −2170.00 3758.55i −0.243364 0.421520i
\(431\) −4249.50 7360.35i −0.474922 0.822588i 0.524666 0.851308i \(-0.324190\pi\)
−0.999587 + 0.0287199i \(0.990857\pi\)
\(432\) −1080.00 + 1870.61i −0.120281 + 0.208333i
\(433\) 5102.00 0.566251 0.283125 0.959083i \(-0.408629\pi\)
0.283125 + 0.959083i \(0.408629\pi\)
\(434\) 0 0
\(435\) 1935.00 0.213279
\(436\) 2838.00 4915.56i 0.311733 0.539937i
\(437\) 4590.00 + 7950.11i 0.502447 + 0.870264i
\(438\) −690.000 1195.12i −0.0752728 0.130376i
\(439\) −7847.00 + 13591.4i −0.853114 + 1.47764i 0.0252705 + 0.999681i \(0.491955\pi\)
−0.878384 + 0.477955i \(0.841378\pi\)
\(440\) 680.000 0.0736767
\(441\) 0 0
\(442\) −14742.0 −1.58644
\(443\) −4571.00 + 7917.20i −0.490236 + 0.849115i −0.999937 0.0112375i \(-0.996423\pi\)
0.509700 + 0.860352i \(0.329756\pi\)
\(444\) 1884.00 + 3263.18i 0.201375 + 0.348792i
\(445\) −100.000 173.205i −0.0106527 0.0184510i
\(446\) −707.000 + 1224.56i −0.0750615 + 0.130010i
\(447\) 10746.0 1.13707
\(448\) 0 0
\(449\) −17145.0 −1.80205 −0.901027 0.433762i \(-0.857186\pi\)
−0.901027 + 0.433762i \(0.857186\pi\)
\(450\) −450.000 + 779.423i −0.0471405 + 0.0816497i
\(451\) −1054.00 1825.58i −0.110046 0.190606i
\(452\) 1556.00 + 2695.07i 0.161921 + 0.280455i
\(453\) −2890.50 + 5006.49i −0.299796 + 0.519262i
\(454\) 1118.00 0.115573
\(455\) 0 0
\(456\) 2448.00 0.251399
\(457\) 5092.00 8819.60i 0.521212 0.902765i −0.478484 0.878096i \(-0.658814\pi\)
0.999696 0.0246688i \(-0.00785311\pi\)
\(458\) −3836.00 6644.15i −0.391364 0.677862i
\(459\) 6142.50 + 10639.1i 0.624635 + 1.08190i
\(460\) 900.000 1558.85i 0.0912233 0.158003i
\(461\) −9152.00 −0.924623 −0.462311 0.886718i \(-0.652980\pi\)
−0.462311 + 0.886718i \(0.652980\pi\)
\(462\) 0 0
\(463\) −1084.00 −0.108807 −0.0544036 0.998519i \(-0.517326\pi\)
−0.0544036 + 0.998519i \(0.517326\pi\)
\(464\) 1032.00 1787.48i 0.103253 0.178839i
\(465\) 870.000 + 1506.88i 0.0867641 + 0.150280i
\(466\) −1368.00 2369.45i −0.135990 0.235542i
\(467\) −9641.50 + 16699.6i −0.955365 + 1.65474i −0.221834 + 0.975084i \(0.571204\pi\)
−0.733531 + 0.679656i \(0.762129\pi\)
\(468\) 5832.00 0.576035
\(469\) 0 0
\(470\) −4970.00 −0.487764
\(471\) −3765.00 + 6521.17i −0.368327 + 0.637961i
\(472\) −1328.00 2300.16i −0.129505 0.224308i
\(473\) −3689.00 6389.54i −0.358605 0.621123i
\(474\) −1083.00 + 1875.81i −0.104945 + 0.181770i
\(475\) 2550.00 0.246320
\(476\) 0 0
\(477\) 10512.0 1.00904
\(478\) −3803.00 + 6586.99i −0.363902 + 0.630297i
\(479\) 2559.00 + 4432.32i 0.244100 + 0.422793i 0.961878 0.273479i \(-0.0881743\pi\)
−0.717779 + 0.696272i \(0.754841\pi\)
\(480\) −240.000 415.692i −0.0228218 0.0395285i
\(481\) 12717.0 22026.5i 1.20550 2.08799i
\(482\) −11300.0 −1.06784
\(483\) 0 0
\(484\) −4168.00 −0.391435
\(485\) 437.500 757.772i 0.0409605 0.0709457i
\(486\) −3888.00 6734.21i −0.362887 0.628539i
\(487\) −1459.00 2527.06i −0.135757 0.235138i 0.790129 0.612940i \(-0.210013\pi\)
−0.925886 + 0.377802i \(0.876680\pi\)
\(488\) 880.000 1524.20i 0.0816306 0.141388i
\(489\) 5610.00 0.518800
\(490\) 0 0
\(491\) −18627.0 −1.71207 −0.856033 0.516921i \(-0.827078\pi\)
−0.856033 + 0.516921i \(0.827078\pi\)
\(492\) −744.000 + 1288.65i −0.0681750 + 0.118083i
\(493\) −5869.50 10166.3i −0.536205 0.928734i
\(494\) −8262.00 14310.2i −0.752480 1.30333i
\(495\) −765.000 + 1325.02i −0.0694630 + 0.120313i
\(496\) 1856.00 0.168018
\(497\) 0 0
\(498\) 7032.00 0.632754
\(499\) −6421.50 + 11122.4i −0.576084 + 0.997806i 0.419839 + 0.907599i \(0.362086\pi\)
−0.995923 + 0.0902079i \(0.971247\pi\)
\(500\) −250.000 433.013i −0.0223607 0.0387298i
\(501\) −3028.50 5245.52i −0.270067 0.467769i
\(502\) −1650.00 + 2857.88i −0.146699 + 0.254091i
\(503\) −18837.0 −1.66978 −0.834891 0.550415i \(-0.814469\pi\)
−0.834891 + 0.550415i \(0.814469\pi\)
\(504\) 0 0
\(505\) 1350.00 0.118959
\(506\) 1530.00 2650.04i 0.134421 0.232823i
\(507\) 6546.00 + 11338.0i 0.573408 + 0.993173i
\(508\) −632.000 1094.66i −0.0551978 0.0956053i
\(509\) 3871.00 6704.77i 0.337090 0.583858i −0.646794 0.762665i \(-0.723891\pi\)
0.983884 + 0.178807i \(0.0572238\pi\)
\(510\) −2730.00 −0.237032
\(511\) 0 0
\(512\) −512.000 −0.0441942
\(513\) −6885.00 + 11925.2i −0.592554 + 1.02633i
\(514\) 5810.00 + 10063.2i 0.498576 + 0.863559i
\(515\) −1412.50 2446.52i −0.120859 0.209333i
\(516\) −2604.00 + 4510.26i −0.222160 + 0.384793i
\(517\) −8449.00 −0.718736
\(518\) 0 0
\(519\) −3759.00 −0.317923
\(520\) −1620.00 + 2805.92i −0.136619 + 0.236630i
\(521\) −307.000 531.740i −0.0258156 0.0447139i 0.852829 0.522190i \(-0.174885\pi\)
−0.878645 + 0.477476i \(0.841552\pi\)
\(522\) 2322.00 + 4021.82i 0.194696 + 0.337223i
\(523\) −8918.00 + 15446.4i −0.745616 + 1.29144i 0.204291 + 0.978910i \(0.434511\pi\)
−0.949907 + 0.312534i \(0.898822\pi\)
\(524\) −7000.00 −0.583581
\(525\) 0 0
\(526\) 5516.00 0.457242
\(527\) 5278.00 9141.76i 0.436268 0.755639i
\(528\) −408.000 706.677i −0.0336286 0.0582465i
\(529\) 2033.50 + 3522.13i 0.167132 + 0.289482i
\(530\) −2920.00 + 5057.59i −0.239315 + 0.414505i
\(531\) 5976.00 0.488392
\(532\) 0 0
\(533\) 10044.0 0.816236
\(534\) −120.000 + 207.846i −0.00972455 + 0.0168434i
\(535\) 3015.00 + 5222.13i 0.243645 + 0.422005i
\(536\) 1536.00 + 2660.43i 0.123778 + 0.214390i
\(537\) 738.000 1278.25i 0.0593055 0.102720i
\(538\) −372.000 −0.0298105
\(539\) 0 0
\(540\) 2700.00 0.215166
\(541\) −11731.5 + 20319.6i −0.932304 + 1.61480i −0.152932 + 0.988237i \(0.548872\pi\)
−0.779372 + 0.626562i \(0.784462\pi\)
\(542\) −6828.00 11826.4i −0.541121 0.937249i
\(543\) −6672.00 11556.2i −0.527298 0.913307i
\(544\) −1456.00 + 2521.87i −0.114753 + 0.198758i
\(545\) −7095.00 −0.557645
\(546\) 0 0
\(547\) −1860.00 −0.145389 −0.0726946 0.997354i \(-0.523160\pi\)
−0.0726946 + 0.997354i \(0.523160\pi\)
\(548\) −96.0000 + 166.277i −0.00748342 + 0.0129617i
\(549\) 1980.00 + 3429.46i 0.153924 + 0.266604i
\(550\) −425.000 736.122i −0.0329492 0.0570697i
\(551\) 6579.00 11395.2i 0.508666 0.881035i
\(552\) −2160.00 −0.166550
\(553\) 0 0
\(554\) 16428.0 1.25985
\(555\) 2355.00 4078.98i 0.180116 0.311969i
\(556\) 76.0000 + 131.636i 0.00579697 + 0.0100407i
\(557\) −5144.00 8909.67i −0.391307 0.677764i 0.601315 0.799012i \(-0.294644\pi\)
−0.992622 + 0.121248i \(0.961310\pi\)
\(558\) −2088.00 + 3616.52i −0.158409 + 0.274372i
\(559\) 35154.0 2.65985
\(560\) 0 0
\(561\) −4641.00 −0.349275
\(562\) 6707.00 11616.9i 0.503412 0.871936i
\(563\) 1178.00 + 2040.36i 0.0881826 + 0.152737i 0.906743 0.421684i \(-0.138561\pi\)
−0.818560 + 0.574421i \(0.805227\pi\)
\(564\) 2982.00 + 5164.98i 0.222633 + 0.385611i
\(565\) 1945.00 3368.84i 0.144826 0.250846i
\(566\) 10994.0 0.816453
\(567\) 0 0
\(568\) 5312.00 0.392406
\(569\) 7659.00 13265.8i 0.564292 0.977382i −0.432823 0.901479i \(-0.642483\pi\)
0.997115 0.0759032i \(-0.0241840\pi\)
\(570\) −1530.00 2650.04i −0.112429 0.194733i
\(571\) 6582.00 + 11400.4i 0.482396 + 0.835534i 0.999796 0.0202094i \(-0.00643329\pi\)
−0.517400 + 0.855744i \(0.673100\pi\)
\(572\) −2754.00 + 4770.07i −0.201312 + 0.348683i
\(573\) −11997.0 −0.874663
\(574\) 0 0
\(575\) −2250.00 −0.163185
\(576\) 576.000 997.661i 0.0416667 0.0721688i
\(577\) −4479.50 7758.72i −0.323196 0.559792i 0.657950 0.753062i \(-0.271424\pi\)
−0.981146 + 0.193270i \(0.938091\pi\)
\(578\) 3368.00 + 5833.55i 0.242371 + 0.419799i
\(579\) 7320.00 12678.6i 0.525404 0.910026i
\(580\) −2580.00 −0.184705
\(581\) 0 0
\(582\) −1050.00 −0.0747833
\(583\) −4964.00 + 8597.90i −0.352638 + 0.610787i
\(584\) 920.000 + 1593.49i 0.0651881 + 0.112909i
\(585\) −3645.00 6313.33i −0.257611 0.446195i
\(586\) 313.000 542.132i 0.0220647 0.0382172i
\(587\) 16952.0 1.19197 0.595983 0.802997i \(-0.296763\pi\)
0.595983 + 0.802997i \(0.296763\pi\)
\(588\) 0 0
\(589\) 11832.0 0.827723
\(590\) −1660.00 + 2875.20i −0.115832 + 0.200628i
\(591\) 7068.00 + 12242.1i 0.491944 + 0.852071i
\(592\) −2512.00 4350.91i −0.174396 0.302063i
\(593\) −5035.50 + 8721.74i −0.348707 + 0.603978i −0.986020 0.166627i \(-0.946712\pi\)
0.637313 + 0.770605i \(0.280046\pi\)
\(594\) 4590.00 0.317054
\(595\) 0 0
\(596\) −14328.0 −0.984728
\(597\) 4134.00 7160.30i 0.283406 0.490874i
\(598\) 7290.00 + 12626.7i 0.498512 + 0.863448i
\(599\) 1414.50 + 2449.99i 0.0964856 + 0.167118i 0.910228 0.414108i \(-0.135906\pi\)
−0.813742 + 0.581226i \(0.802573\pi\)
\(600\) −300.000 + 519.615i −0.0204124 + 0.0353553i
\(601\) −7662.00 −0.520032 −0.260016 0.965604i \(-0.583728\pi\)
−0.260016 + 0.965604i \(0.583728\pi\)
\(602\) 0 0
\(603\) −6912.00 −0.466797
\(604\) 3854.00 6675.32i 0.259631 0.449694i
\(605\) 2605.00 + 4511.99i 0.175055 + 0.303204i
\(606\) −810.000 1402.96i −0.0542970 0.0940452i
\(607\) −453.500 + 785.485i −0.0303245 + 0.0525236i −0.880789 0.473508i \(-0.842987\pi\)
0.850465 + 0.526032i \(0.176321\pi\)
\(608\) −3264.00 −0.217718
\(609\) 0 0
\(610\) −2200.00 −0.146025
\(611\) 20128.5 34863.6i 1.33275 2.30840i
\(612\) −3276.00 5674.20i −0.216380 0.374781i
\(613\) 14823.0 + 25674.2i 0.976664 + 1.69163i 0.674329 + 0.738431i \(0.264433\pi\)
0.302335 + 0.953202i \(0.402234\pi\)
\(614\) 5479.00 9489.91i 0.360121 0.623748i
\(615\) 1860.00 0.121955
\(616\) 0 0
\(617\) 11006.0 0.718128 0.359064 0.933313i \(-0.383096\pi\)
0.359064 + 0.933313i \(0.383096\pi\)
\(618\) −1695.00 + 2935.83i −0.110328 + 0.191094i
\(619\) −10549.0 18271.4i −0.684976 1.18641i −0.973444 0.228924i \(-0.926479\pi\)
0.288468 0.957489i \(-0.406854\pi\)
\(620\) −1160.00 2009.18i −0.0751399 0.130146i
\(621\) 6075.00 10522.2i 0.392563 0.679938i
\(622\) −8844.00 −0.570116
\(623\) 0 0
\(624\) 3888.00 0.249430
\(625\) −312.500 + 541.266i −0.0200000 + 0.0346410i
\(626\) 275.000 + 476.314i 0.0175578 + 0.0304111i
\(627\) −2601.00 4505.06i −0.165668 0.286946i
\(628\) 5020.00 8694.90i 0.318981 0.552491i
\(629\) −28574.0 −1.81132
\(630\) 0 0
\(631\) 21707.0 1.36948 0.684740 0.728787i \(-0.259916\pi\)
0.684740 + 0.728787i \(0.259916\pi\)
\(632\) 1444.00 2501.08i 0.0908849 0.157417i
\(633\) 1045.50 + 1810.86i 0.0656475 + 0.113705i
\(634\) −4106.00 7111.80i −0.257208 0.445498i
\(635\) −790.000 + 1368.32i −0.0493704 + 0.0855120i
\(636\) 7008.00 0.436927
\(637\) 0 0
\(638\) −4386.00 −0.272168
\(639\) −5976.00 + 10350.7i −0.369964 + 0.640796i
\(640\) 320.000 + 554.256i 0.0197642 + 0.0342327i
\(641\) −5545.00 9604.22i −0.341676 0.591800i 0.643068 0.765809i \(-0.277661\pi\)
−0.984744 + 0.174009i \(0.944328\pi\)
\(642\) 3618.00 6266.56i 0.222416 0.385236i
\(643\) −995.000 −0.0610248 −0.0305124 0.999534i \(-0.509714\pi\)
−0.0305124 + 0.999534i \(0.509714\pi\)
\(644\) 0 0
\(645\) 6510.00 0.397412
\(646\) −9282.00 + 16076.9i −0.565318 + 0.979159i
\(647\) 10396.0 + 18006.4i 0.631699 + 1.09413i 0.987204 + 0.159460i \(0.0509753\pi\)
−0.355506 + 0.934674i \(0.615691\pi\)
\(648\) 324.000 + 561.184i 0.0196419 + 0.0340207i
\(649\) −2822.00 + 4887.85i −0.170683 + 0.295631i
\(650\) 4050.00 0.244391
\(651\) 0 0
\(652\) −7480.00 −0.449294
\(653\) 5249.00 9091.53i 0.314562 0.544838i −0.664782 0.747037i \(-0.731476\pi\)
0.979344 + 0.202199i \(0.0648089\pi\)
\(654\) 4257.00 + 7373.34i 0.254529 + 0.440857i
\(655\) 4375.00 + 7577.72i 0.260985 + 0.452040i
\(656\) 992.000 1718.19i 0.0590413 0.102263i
\(657\) −4140.00 −0.245840
\(658\) 0 0
\(659\) −6749.00 −0.398943 −0.199472 0.979904i \(-0.563923\pi\)
−0.199472 + 0.979904i \(0.563923\pi\)
\(660\) −510.000 + 883.346i −0.0300784 + 0.0520973i
\(661\) −6200.00 10738.7i −0.364829 0.631903i 0.623920 0.781489i \(-0.285539\pi\)
−0.988749 + 0.149586i \(0.952206\pi\)
\(662\) 8260.00 + 14306.7i 0.484946 + 0.839950i
\(663\) 11056.5 19150.4i 0.647660 1.12178i
\(664\) −9376.00 −0.547981
\(665\) 0 0
\(666\) 11304.0 0.657689
\(667\) −5805.00 + 10054.6i −0.336987 + 0.583679i
\(668\) 4038.00 + 6994.02i 0.233885 + 0.405100i
\(669\) −1060.50 1836.84i −0.0612874 0.106153i
\(670\) 1920.00 3325.54i 0.110711 0.191756i
\(671\) −3740.00 −0.215173
\(672\) 0 0
\(673\) 16024.0 0.917801 0.458900 0.888488i \(-0.348244\pi\)
0.458900 + 0.888488i \(0.348244\pi\)
\(674\) 9946.00 17227.0i 0.568406 0.984508i
\(675\) −1687.50 2922.84i −0.0962250 0.166667i
\(676\) −8728.00 15117.3i −0.496586 0.860113i
\(677\) −9367.50 + 16225.0i −0.531791 + 0.921088i 0.467521 + 0.883982i \(0.345147\pi\)
−0.999311 + 0.0371063i \(0.988186\pi\)
\(678\) −4668.00 −0.264415
\(679\) 0 0
\(680\) 3640.00 0.205276
\(681\) −838.500 + 1452.32i −0.0471827 + 0.0817228i
\(682\) −1972.00 3415.60i −0.110721 0.191775i
\(683\) 6422.00 + 11123.2i 0.359782 + 0.623160i 0.987924 0.154938i \(-0.0495178\pi\)
−0.628142 + 0.778098i \(0.716184\pi\)
\(684\) 3672.00 6360.09i 0.205267 0.355532i
\(685\) 240.000 0.0133868
\(686\) 0 0
\(687\) 11508.0 0.639094
\(688\) 3472.00 6013.68i 0.192396 0.333240i
\(689\) −23652.0 40966.5i −1.30779 2.26516i
\(690\) 1350.00 + 2338.27i 0.0744835 + 0.129009i
\(691\) −12998.0 + 22513.2i −0.715582 + 1.23942i 0.247153 + 0.968977i \(0.420505\pi\)
−0.962735 + 0.270448i \(0.912828\pi\)
\(692\) 5012.00 0.275329
\(693\) 0 0
\(694\) 17596.0 0.962442
\(695\) 95.0000 164.545i 0.00518497 0.00898063i
\(696\) 1548.00 + 2681.21i 0.0843057 + 0.146022i
\(697\) −5642.00 9772.23i −0.306608 0.531061i
\(698\) −1838.00 + 3183.51i −0.0996695 + 0.172633i
\(699\) 4104.00 0.222071
\(700\) 0 0
\(701\) 25435.0 1.37042 0.685212 0.728344i \(-0.259710\pi\)
0.685212 + 0.728344i \(0.259710\pi\)
\(702\) −10935.0 + 18940.0i −0.587913 + 1.01830i
\(703\) −16014.0 27737.1i −0.859146 1.48808i
\(704\) 544.000 + 942.236i 0.0291233 + 0.0504430i
\(705\) 3727.50 6456.22i 0.199129 0.344901i
\(706\) −4530.00 −0.241486
\(707\) 0 0
\(708\) 3984.00 0.211480
\(709\) −1911.50 + 3310.82i −0.101252 + 0.175374i −0.912201 0.409743i \(-0.865618\pi\)
0.810949 + 0.585117i \(0.198952\pi\)
\(710\) −3320.00 5750.41i −0.175489 0.303956i
\(711\) 3249.00 + 5627.43i 0.171374 + 0.296829i
\(712\) 160.000 277.128i 0.00842170 0.0145868i
\(713\) −10440.0 −0.548361
\(714\) 0 0
\(715\) 6885.00 0.360118
\(716\) −984.000 + 1704.34i −0.0513601 + 0.0889582i
\(717\) −5704.50 9880.48i −0.297125 0.514635i
\(718\) 4136.00 + 7163.76i 0.214978 + 0.372353i
\(719\) −10545.0 + 18264.5i −0.546957 + 0.947357i 0.451524 + 0.892259i \(0.350881\pi\)
−0.998481 + 0.0550984i \(0.982453\pi\)
\(720\) −1440.00 −0.0745356
\(721\) 0 0
\(722\) −7090.00 −0.365460
\(723\) 8475.00 14679.1i 0.435946 0.755080i
\(724\) 8896.00 + 15408.3i 0.456654 + 0.790947i
\(725\) 1612.50 + 2792.93i 0.0826024 + 0.143072i
\(726\) 3126.00 5414.39i 0.159803 0.276786i
\(727\) −7992.00 −0.407712 −0.203856 0.979001i \(-0.565347\pi\)
−0.203856 + 0.979001i \(0.565347\pi\)
\(728\) 0 0
\(729\) 9477.00 0.481481
\(730\) 1150.00 1991.86i 0.0583060 0.100989i
\(731\) −19747.0 34202.8i −0.999137 1.73056i
\(732\) 1320.00 + 2286.31i 0.0666511 + 0.115443i
\(733\) 18482.5 32012.6i 0.931332 1.61312i 0.150286 0.988643i \(-0.451981\pi\)
0.781047 0.624473i \(-0.214686\pi\)
\(734\) 20062.0 1.00886
\(735\) 0 0
\(736\) 2880.00 0.144237
\(737\) 3264.00 5653.41i 0.163136 0.282559i
\(738\) 2232.00 + 3865.94i 0.111329 + 0.192828i
\(739\) 1652.50 + 2862.21i 0.0822574 + 0.142474i 0.904219 0.427069i \(-0.140454\pi\)
−0.821962 + 0.569543i \(0.807120\pi\)
\(740\) −3140.00 + 5438.64i −0.155985 + 0.270173i
\(741\) 24786.0 1.22879
\(742\) 0 0
\(743\) −2208.00 −0.109022 −0.0545112 0.998513i \(-0.517360\pi\)
−0.0545112 + 0.998513i \(0.517360\pi\)
\(744\) −1392.00 + 2411.01i −0.0685930 + 0.118807i
\(745\) 8955.00 + 15510.5i 0.440384 + 0.762767i
\(746\) 2792.00 + 4835.89i 0.137027 + 0.237338i
\(747\) 10548.0 18269.7i 0.516641 0.894849i
\(748\) 6188.00 0.302481
\(749\) 0 0
\(750\) 750.000 0.0365148
\(751\) 5775.50 10003.5i 0.280627 0.486060i −0.690912 0.722939i \(-0.742791\pi\)
0.971539 + 0.236878i \(0.0761242\pi\)
\(752\) −3976.00 6886.63i −0.192806 0.333949i
\(753\) −2475.00 4286.83i −0.119780 0.207464i
\(754\) 10449.0 18098.2i 0.504682 0.874135i
\(755\) −9635.00 −0.464442
\(756\) 0 0
\(757\) 9688.00 0.465147 0.232574 0.972579i \(-0.425285\pi\)
0.232574 + 0.972579i \(0.425285\pi\)
\(758\) 9948.00 17230.4i 0.476686 0.825644i
\(759\) 2295.00 + 3975.06i 0.109754 + 0.190099i
\(760\) 2040.00 + 3533.38i 0.0973665 + 0.168644i
\(761\) 3507.00 6074.30i 0.167055 0.289347i −0.770328 0.637647i \(-0.779908\pi\)
0.937383 + 0.348300i \(0.113241\pi\)
\(762\) 1896.00 0.0901376
\(763\) 0 0
\(764\) 15996.0 0.757480
\(765\) −4095.00 + 7092.75i −0.193536 + 0.335214i
\(766\) 2700.00 + 4676.54i 0.127356 + 0.220588i
\(767\) −13446.0 23289.2i −0.632995 1.09638i
\(768\) 384.000 665.108i 0.0180422 0.0312500i
\(769\) −6278.00 −0.294396 −0.147198 0.989107i \(-0.547025\pi\)
−0.147198 + 0.989107i \(0.547025\pi\)
\(770\) 0 0
\(771\) −17430.0 −0.814171
\(772\) −9760.00 + 16904.8i −0.455013 + 0.788106i
\(773\) −10675.5 18490.5i −0.496728 0.860359i 0.503264 0.864132i \(-0.332132\pi\)
−0.999993 + 0.00377362i \(0.998799\pi\)
\(774\) 7812.00 + 13530.8i 0.362786 + 0.628364i
\(775\) −1450.00 + 2511.47i −0.0672071 + 0.116406i
\(776\) 1400.00 0.0647643
\(777\) 0 0
\(778\) 1262.00 0.0581554
\(779\) 6324.00 10953.5i 0.290861 0.503786i
\(780\) −2430.00 4208.88i −0.111549 0.193208i
\(781\) −5644.00 9775.69i −0.258589 0.447890i
\(782\) 8190.00 14185.5i 0.374519 0.648686i
\(783\) −17415.0 −0.794842
\(784\) 0 0
\(785\) −12550.0 −0.570610
\(786\) 5250.00 9093.27i 0.238246 0.412654i
\(787\) 12983.5 + 22488.1i 0.588071 + 1.01857i 0.994485 + 0.104880i \(0.0334457\pi\)
−0.406414 + 0.913689i \(0.633221\pi\)
\(788\) −9424.00 16322.8i −0.426036 0.737915i
\(789\) −4137.00 + 7165.49i −0.186668 + 0.323319i
\(790\) −3610.00 −0.162580
\(791\) 0 0
\(792\) −2448.00 −0.109831
\(793\) 8910.00 15432.6i 0.398995 0.691080i
\(794\) −13139.0 22757.4i −0.587262 1.01717i
\(795\) −4380.00 7586.38i −0.195399 0.338442i
\(796\) −5512.00 + 9547.06i −0.245437 + 0.425109i
\(797\) −8595.00 −0.381996 −0.190998 0.981590i \(-0.561172\pi\)
−0.190998 + 0.981590i \(0.561172\pi\)
\(798\) 0 0
\(799\) −45227.0 −2.00252
\(800\) 400.000 692.820i 0.0176777 0.0306186i
\(801\) 360.000 + 623.538i 0.0158801 + 0.0275052i
\(802\) −887.000 1536.33i −0.0390537 0.0676430i
\(803\) 1955.00 3386.16i 0.0859159 0.148811i
\(804\) −4608.00 −0.202129
\(805\) 0 0
\(806\) 18792.0 0.821241
\(807\) 279.000 483.242i 0.0121701 0.0210792i
\(808\) 1080.00 + 1870.61i 0.0470226 + 0.0814455i
\(809\) 6835.50 + 11839.4i 0.297062 + 0.514527i 0.975463 0.220166i \(-0.0706598\pi\)
−0.678400 + 0.734693i \(0.737326\pi\)
\(810\) 405.000 701.481i 0.0175682 0.0304290i
\(811\) −11986.0 −0.518971 −0.259485 0.965747i \(-0.583553\pi\)
−0.259485 + 0.965747i \(0.583553\pi\)
\(812\) 0 0
\(813\) 20484.0 0.883647
\(814\) −5338.00 + 9245.69i −0.229849 + 0.398110i
\(815\) 4675.00 + 8097.34i 0.200930 + 0.348021i
\(816\) −2184.00 3782.80i −0.0936952 0.162285i
\(817\) 22134.0 38337.2i 0.947822 1.64168i
\(818\) 10380.0 0.443677
\(819\) 0 0
\(820\) −2480.00 −0.105616
\(821\) 6475.50 11215.9i 0.275270 0.476781i −0.694933 0.719074i \(-0.744566\pi\)
0.970203 + 0.242293i \(0.0778995\pi\)
\(822\) −144.000 249.415i −0.00611019 0.0105832i
\(823\) 6394.00 + 11074.7i 0.270815 + 0.469066i 0.969071 0.246783i \(-0.0793735\pi\)
−0.698256 + 0.715848i \(0.746040\pi\)
\(824\) 2260.00 3914.43i 0.0955471 0.165492i
\(825\) 1275.00 0.0538058
\(826\) 0 0
\(827\) 24662.0 1.03698 0.518490 0.855084i \(-0.326495\pi\)
0.518490 + 0.855084i \(0.326495\pi\)
\(828\) −3240.00 + 5611.84i −0.135988 + 0.235538i
\(829\) −2062.00 3571.49i −0.0863887 0.149630i 0.819593 0.572946i \(-0.194199\pi\)
−0.905982 + 0.423316i \(0.860866\pi\)
\(830\) 5860.00 + 10149.8i 0.245065 + 0.424464i
\(831\) −12321.0 + 21340.6i −0.514333 + 0.890851i
\(832\) −5184.00 −0.216013
\(833\) 0 0
\(834\) −228.000 −0.00946642
\(835\) 5047.50 8742.53i 0.209193 0.362332i
\(836\) 3468.00 + 6006.75i 0.143473 + 0.248502i
\(837\) −7830.00 13562.0i −0.323351 0.560060i
\(838\) −5712.00 + 9893.47i −0.235463 + 0.407833i
\(839\) −33154.0 −1.36425 −0.682123 0.731237i \(-0.738943\pi\)
−0.682123 + 0.731237i \(0.738943\pi\)
\(840\) 0 0
\(841\) −7748.00 −0.317684
\(842\) −11155.0 + 19321.0i −0.456564 + 0.790792i
\(843\) 10060.5 + 17425.3i 0.411034 + 0.711933i
\(844\) −1394.00 2414.48i −0.0568524 0.0984713i
\(845\) −10910.0 + 18896.7i −0.444160 + 0.769308i
\(846\) 17892.0 0.727115
\(847\) 0 0
\(848\) −9344.00 −0.378389
\(849\) −8245.50 + 14281.6i −0.333315 + 0.577319i
\(850\) −2275.00 3940.42i −0.0918022 0.159006i
\(851\) 14130.0 + 24473.9i 0.569178 + 0.985845i
\(852\) −3984.00 + 6900.49i −0.160199 + 0.277473i
\(853\) 12050.0 0.483686 0.241843 0.970315i \(-0.422248\pi\)
0.241843 + 0.970315i \(0.422248\pi\)
\(854\) 0 0
\(855\) −9180.00 −0.367192
\(856\) −4824.00 + 8355.41i −0.192618 + 0.333624i
\(857\) −7635.00 13224.2i −0.304325 0.527107i 0.672786 0.739837i \(-0.265098\pi\)
−0.977111 + 0.212731i \(0.931764\pi\)
\(858\) −4131.00 7155.10i −0.164371 0.284698i
\(859\) 6282.00 10880.7i 0.249522 0.432184i −0.713872 0.700277i \(-0.753060\pi\)
0.963393 + 0.268093i \(0.0863933\pi\)
\(860\) −8680.00 −0.344169
\(861\) 0 0
\(862\) −16998.0 −0.671641
\(863\) −6488.00 + 11237.5i −0.255914 + 0.443257i −0.965143 0.261721i \(-0.915710\pi\)
0.709229 + 0.704978i \(0.249043\pi\)
\(864\) 2160.00 + 3741.23i 0.0850517 + 0.147314i
\(865\) −3132.50 5425.65i −0.123131 0.213269i
\(866\) 5102.00 8836.92i 0.200200 0.346756i
\(867\) −10104.0 −0.395790
\(868\) 0 0
\(869\) −6137.00 −0.239567
\(870\) 1935.00 3351.52i 0.0754053 0.130606i
\(871\) 15552.0 + 26936.9i 0.605005 + 1.04790i
\(872\) −5676.00 9831.12i −0.220428 0.381793i
\(873\) −1575.00 + 2727.98i −0.0610603 + 0.105760i
\(874\) 18360.0 0.710568
\(875\) 0 0
\(876\) −2760.00 −0.106452
\(877\) 7817.00 13539.4i 0.300982 0.521316i −0.675377 0.737473i \(-0.736019\pi\)
0.976359 + 0.216157i \(0.0693522\pi\)
\(878\) 15694.0 + 27182.8i 0.603242 + 1.04485i
\(879\) 469.500 + 813.198i 0.0180157 + 0.0312042i
\(880\) 680.000 1177.79i 0.0260486 0.0451176i
\(881\) −8896.00 −0.340197 −0.170099 0.985427i \(-0.554409\pi\)
−0.170099 + 0.985427i \(0.554409\pi\)
\(882\) 0 0
\(883\) −33456.0 −1.27507 −0.637533 0.770423i \(-0.720045\pi\)
−0.637533 + 0.770423i \(0.720045\pi\)
\(884\) −14742.0 + 25533.9i −0.560890 + 0.971491i
\(885\) −2490.00 4312.81i −0.0945768 0.163812i
\(886\) 9142.00 + 15834.4i 0.346650 + 0.600415i
\(887\) −4144.00 + 7177.62i −0.156868 + 0.271703i −0.933738 0.357958i \(-0.883473\pi\)
0.776870 + 0.629661i \(0.216806\pi\)
\(888\) 7536.00 0.284788
\(889\) 0 0
\(890\) −400.000 −0.0150652
\(891\) 688.500 1192.52i 0.0258873 0.0448382i
\(892\) 1414.00 + 2449.12i 0.0530765 + 0.0919312i
\(893\) −25347.0 43902.3i −0.949838 1.64517i
\(894\) 10746.0 18612.6i 0.402013 0.696308i
\(895\) 2460.00 0.0918757
\(896\) 0 0
\(897\) −21870.0 −0.814067
\(898\) −17145.0 + 29696.0i −0.637123 + 1.10353i
\(899\) 7482.00 + 12959.2i 0.277574 + 0.480772i
\(900\) 900.000 + 1558.85i 0.0333333 + 0.0577350i
\(901\) −26572.0 + 46024.1i −0.982510 + 1.70176i
\(902\) −4216.00 −0.155629
\(903\) 0 0
\(904\) 6224.00 0.228990
\(905\) 11120.0 19260.4i 0.408443 0.707445i
\(906\) 5781.00 + 10013.0i 0.211988 + 0.367173i
\(907\) −7699.00 13335.1i −0.281853 0.488185i 0.689988 0.723821i \(-0.257616\pi\)
−0.971841 + 0.235636i \(0.924283\pi\)
\(908\) 1118.00 1936.43i 0.0408614 0.0707740i
\(909\) −4860.00 −0.177333
\(910\) 0 0
\(911\) 22656.0 0.823959 0.411980 0.911193i \(-0.364838\pi\)
0.411980 + 0.911193i \(0.364838\pi\)
\(912\) 2448.00 4240.06i 0.0888831 0.153950i
\(913\) 9962.00 + 17254.7i 0.361111 + 0.625462i
\(914\) −10184.0 17639.2i −0.368552 0.638351i
\(915\) 1650.00 2857.88i 0.0596146 0.103255i
\(916\) −15344.0 −0.553472
\(917\) 0 0
\(918\) 24570.0 0.883367
\(919\) −4574.50 + 7923.27i −0.164199 + 0.284401i −0.936371 0.351013i \(-0.885837\pi\)
0.772172 + 0.635414i \(0.219171\pi\)
\(920\) −1800.00 3117.69i −0.0645046 0.111725i
\(921\) 8218.50 + 14234.9i 0.294038 + 0.509288i
\(922\) −9152.00 + 15851.7i −0.326904 + 0.566214i
\(923\) 53784.0 1.91801
\(924\) 0 0
\(925\) 7850.00 0.279034
\(926\) −1084.00 + 1877.54i −0.0384692 + 0.0666306i
\(927\) 5085.00 + 8807.48i 0.180165 + 0.312056i
\(928\) −2064.00 3574.95i −0.0730109 0.126459i
\(929\) 13636.0 23618.2i 0.481574 0.834111i −0.518202 0.855258i \(-0.673398\pi\)
0.999776 + 0.0211469i \(0.00673177\pi\)
\(930\) 3480.00 0.122703
\(931\) 0 0
\(932\) −5472.00 −0.192319
\(933\) 6633.00 11488.7i 0.232749 0.403133i
\(934\) 19283.0 + 33399.1i 0.675545 + 1.17008i
\(935\) −3867.50 6698.71i −0.135274 0.234301i
\(936\) 5832.00 10101.3i 0.203659 0.352748i
\(937\) 44177.0 1.54023 0.770117 0.637902i \(-0.220198\pi\)
0.770117 + 0.637902i \(0.220198\pi\)
\(938\) 0 0
\(939\) −825.000 −0.0286718
\(940\) −4970.00 + 8608.29i −0.172451 + 0.298693i
\(941\) 1118.00 + 1936.43i 0.0387309 + 0.0670839i 0.884741 0.466083i \(-0.154335\pi\)
−0.846010 + 0.533167i \(0.821002\pi\)
\(942\) 7530.00 + 13042.3i 0.260447 + 0.451107i
\(943\) −5580.00 + 9664.84i −0.192693 + 0.333755i
\(944\) −5312.00 −0.183147
\(945\) 0 0
\(946\) −14756.0 −0.507145
\(947\) 8732.00 15124.3i 0.299632 0.518979i −0.676419 0.736517i \(-0.736469\pi\)
0.976052 + 0.217538i \(0.0698026\pi\)
\(948\) 2166.00 + 3751.62i 0.0742072 + 0.128531i
\(949\) 9315.00 + 16134.1i 0.318628 + 0.551879i
\(950\) 2550.00 4416.73i 0.0870873 0.150840i
\(951\) 12318.0 0.420019
\(952\) 0 0
\(953\) −18336.0 −0.623254 −0.311627 0.950204i \(-0.600874\pi\)
−0.311627 + 0.950204i \(0.600874\pi\)
\(954\) 10512.0 18207.3i 0.356749 0.617907i
\(955\) −9997.50 17316.2i −0.338756 0.586742i
\(956\) 7606.00 + 13174.0i 0.257318 + 0.445687i
\(957\) 3289.50 5697.58i 0.111112 0.192452i
\(958\) 10236.0 0.345209
\(959\) 0 0
\(960\) −960.000 −0.0322749
\(961\) 8167.50 14146.5i 0.274160 0.474859i
\(962\) −25434.0 44053.0i −0.852417 1.47643i
\(963\) −10854.0 18799.7i −0.363204 0.629087i
\(964\) −11300.0 + 19572.2i −0.377540 + 0.653918i
\(965\) 24400.0 0.813952
\(966\) 0 0
\(967\) −46802.0 −1.55641 −0.778206 0.628009i \(-0.783870\pi\)
−0.778206 + 0.628009i \(0.783870\pi\)
\(968\) −4168.00 + 7219.19i −0.138393 + 0.239704i
\(969\) −13923.0 24115.3i −0.461580 0.799480i
\(970\) −875.000 1515.54i −0.0289635 0.0501662i
\(971\) −22512.0 + 38991.9i −0.744021 + 1.28868i 0.206630 + 0.978419i \(0.433750\pi\)
−0.950651 + 0.310263i \(0.899583\pi\)
\(972\) −15552.0 −0.513200
\(973\) 0 0
\(974\) −5836.00 −0.191989
\(975\) −3037.50 + 5261.10i −0.0997722 + 0.172810i
\(976\) −1760.00 3048.41i −0.0577215 0.0999766i
\(977\) −6393.00 11073.0i −0.209345 0.362596i 0.742163 0.670219i \(-0.233800\pi\)
−0.951508 + 0.307623i \(0.900467\pi\)
\(978\) 5610.00 9716.81i 0.183423 0.317699i
\(979\) −680.000 −0.0221991
\(980\) 0 0
\(981\) 25542.0 0.831288
\(982\) −18627.0 + 32262.9i −0.605307 + 1.04842i
\(983\) −16769.5 29045.6i −0.544114 0.942433i −0.998662 0.0517108i \(-0.983533\pi\)
0.454548 0.890722i \(-0.349801\pi\)
\(984\) 1488.00 + 2577.29i 0.0482070 + 0.0834970i
\(985\) −11780.0 + 20403.6i −0.381058 + 0.660012i
\(986\) −23478.0 −0.758308
\(987\) 0 0
\(988\) −33048.0 −1.06417
\(989\) −19530.0 + 33827.0i −0.627925 + 1.08760i
\(990\) 1530.00 + 2650.04i 0.0491178 + 0.0850745i
\(991\) 9100.00 + 15761.7i 0.291696 + 0.505233i 0.974211 0.225639i \(-0.0724470\pi\)
−0.682515 + 0.730872i \(0.739114\pi\)
\(992\) 1856.00 3214.69i 0.0594033 0.102890i
\(993\) −24780.0 −0.791913
\(994\) 0 0
\(995\) 13780.0 0.439051
\(996\) 7032.00 12179.8i 0.223712 0.387481i
\(997\) 16299.5 + 28231.6i 0.517764 + 0.896793i 0.999787 + 0.0206346i \(0.00656867\pi\)
−0.482023 + 0.876158i \(0.660098\pi\)
\(998\) 12843.0 + 22244.7i 0.407353 + 0.705556i
\(999\) −21195.0 + 36710.8i −0.671251 + 1.16264i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 490.4.e.p.471.1 2
7.2 even 3 70.4.a.b.1.1 1
7.3 odd 6 490.4.e.l.361.1 2
7.4 even 3 inner 490.4.e.p.361.1 2
7.5 odd 6 490.4.a.f.1.1 1
7.6 odd 2 490.4.e.l.471.1 2
21.2 odd 6 630.4.a.m.1.1 1
28.23 odd 6 560.4.a.k.1.1 1
35.2 odd 12 350.4.c.j.99.1 2
35.9 even 6 350.4.a.t.1.1 1
35.19 odd 6 2450.4.a.ba.1.1 1
35.23 odd 12 350.4.c.j.99.2 2
56.37 even 6 2240.4.a.w.1.1 1
56.51 odd 6 2240.4.a.p.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
70.4.a.b.1.1 1 7.2 even 3
350.4.a.t.1.1 1 35.9 even 6
350.4.c.j.99.1 2 35.2 odd 12
350.4.c.j.99.2 2 35.23 odd 12
490.4.a.f.1.1 1 7.5 odd 6
490.4.e.l.361.1 2 7.3 odd 6
490.4.e.l.471.1 2 7.6 odd 2
490.4.e.p.361.1 2 7.4 even 3 inner
490.4.e.p.471.1 2 1.1 even 1 trivial
560.4.a.k.1.1 1 28.23 odd 6
630.4.a.m.1.1 1 21.2 odd 6
2240.4.a.p.1.1 1 56.51 odd 6
2240.4.a.w.1.1 1 56.37 even 6
2450.4.a.ba.1.1 1 35.19 odd 6