Properties

Label 4925.2.a.j
Level 49254925
Weight 22
Character orbit 4925.a
Self dual yes
Analytic conductor 39.32639.326
Analytic rank 11
Dimension 1010
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4925,2,Mod(1,4925)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4925, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4925.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 4925=52197 4925 = 5^{2} \cdot 197
Weight: k k == 2 2
Character orbit: [χ][\chi] == 4925.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 39.326322995539.3263229955
Analytic rank: 11
Dimension: 1010
Coefficient field: 10.10.21886214112361.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x102x99x8+16x7+26x638x527x4+32x3+6x27x+1 x^{10} - 2x^{9} - 9x^{8} + 16x^{7} + 26x^{6} - 38x^{5} - 27x^{4} + 32x^{3} + 6x^{2} - 7x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 985)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β91,\beta_1,\ldots,\beta_{9} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β1q2+β5q3+(β4+β3+β1)q4+(β4β3+β21)q6+(β9β7β6++1)q7+(β9β8β6++β1)q8++(β9β7+β6++1)q99+O(q100) q + \beta_1 q^{2} + \beta_{5} q^{3} + (\beta_{4} + \beta_{3} + \beta_1) q^{4} + ( - \beta_{4} - \beta_{3} + \beta_{2} - 1) q^{6} + ( - \beta_{9} - \beta_{7} - \beta_{6} + \cdots + 1) q^{7} + (\beta_{9} - \beta_{8} - \beta_{6} + \cdots + \beta_1) q^{8}+ \cdots + ( - \beta_{9} - \beta_{7} + \beta_{6} + \cdots + 1) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 10q+2q2+3q3+2q49q6+6q7+6q85q911q11+5q139q142q16+4q1715q1828q197q21+12q22+24q233q24+7q26+16q99+O(q100) 10 q + 2 q^{2} + 3 q^{3} + 2 q^{4} - 9 q^{6} + 6 q^{7} + 6 q^{8} - 5 q^{9} - 11 q^{11} + 5 q^{13} - 9 q^{14} - 2 q^{16} + 4 q^{17} - 15 q^{18} - 28 q^{19} - 7 q^{21} + 12 q^{22} + 24 q^{23} - 3 q^{24} + 7 q^{26}+ \cdots - 16 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x102x99x8+16x7+26x638x527x4+32x3+6x27x+1 x^{10} - 2x^{9} - 9x^{8} + 16x^{7} + 26x^{6} - 38x^{5} - 27x^{4} + 32x^{3} + 6x^{2} - 7x + 1 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== ν92ν88ν7+14ν6+19ν525ν415ν3+13ν2+2ν2 \nu^{9} - 2\nu^{8} - 8\nu^{7} + 14\nu^{6} + 19\nu^{5} - 25\nu^{4} - 15\nu^{3} + 13\nu^{2} + 2\nu - 2 Copy content Toggle raw display
β3\beta_{3}== ν9+2ν8+9ν716ν626ν5+38ν4+27ν331ν27ν+4 -\nu^{9} + 2\nu^{8} + 9\nu^{7} - 16\nu^{6} - 26\nu^{5} + 38\nu^{4} + 27\nu^{3} - 31\nu^{2} - 7\nu + 4 Copy content Toggle raw display
β4\beta_{4}== ν92ν89ν7+16ν6+26ν538ν427ν3+32ν2+6ν6 \nu^{9} - 2\nu^{8} - 9\nu^{7} + 16\nu^{6} + 26\nu^{5} - 38\nu^{4} - 27\nu^{3} + 32\nu^{2} + 6\nu - 6 Copy content Toggle raw display
β5\beta_{5}== ν9ν811ν7+8ν6+40ν519ν452ν3+17ν2+18ν4 \nu^{9} - \nu^{8} - 11\nu^{7} + 8\nu^{6} + 40\nu^{5} - 19\nu^{4} - 52\nu^{3} + 17\nu^{2} + 18\nu - 4 Copy content Toggle raw display
β6\beta_{6}== 3ν9+5ν8+29ν739ν693ν5+87ν4+112ν364ν238ν+10 -3\nu^{9} + 5\nu^{8} + 29\nu^{7} - 39\nu^{6} - 93\nu^{5} + 87\nu^{4} + 112\nu^{3} - 64\nu^{2} - 38\nu + 10 Copy content Toggle raw display
β7\beta_{7}== 4ν97ν838ν7+55ν6+120ν5125ν4146ν3+95ν2+54ν16 4\nu^{9} - 7\nu^{8} - 38\nu^{7} + 55\nu^{6} + 120\nu^{5} - 125\nu^{4} - 146\nu^{3} + 95\nu^{2} + 54\nu - 16 Copy content Toggle raw display
β8\beta_{8}== 4ν9+7ν8+38ν755ν6120ν5+126ν4+145ν3100ν251ν+19 -4\nu^{9} + 7\nu^{8} + 38\nu^{7} - 55\nu^{6} - 120\nu^{5} + 126\nu^{4} + 145\nu^{3} - 100\nu^{2} - 51\nu + 19 Copy content Toggle raw display
β9\beta_{9}== 8ν9+14ν8+75ν7108ν6232ν5+238ν4+273ν3177ν296ν+31 -8\nu^{9} + 14\nu^{8} + 75\nu^{7} - 108\nu^{6} - 232\nu^{5} + 238\nu^{4} + 273\nu^{3} - 177\nu^{2} - 96\nu + 31 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β4+β3+β1+2 \beta_{4} + \beta_{3} + \beta _1 + 2 Copy content Toggle raw display
ν3\nu^{3}== β9β8β6+β2+5β1 \beta_{9} - \beta_{8} - \beta_{6} + \beta_{2} + 5\beta_1 Copy content Toggle raw display
ν4\nu^{4}== β9+β7β6+5β4+5β3+β2+7β1+7 \beta_{9} + \beta_{7} - \beta_{6} + 5\beta_{4} + 5\beta_{3} + \beta_{2} + 7\beta _1 + 7 Copy content Toggle raw display
ν5\nu^{5}== 7β97β8+β76β6+β3+7β2+26β1+2 7\beta_{9} - 7\beta_{8} + \beta_{7} - 6\beta_{6} + \beta_{3} + 7\beta_{2} + 26\beta _1 + 2 Copy content Toggle raw display
ν6\nu^{6}== 9β9β8+9β77β6+β5+25β4+24β3+9β2+43β1+30 9\beta_{9} - \beta_{8} + 9\beta_{7} - 7\beta_{6} + \beta_{5} + 25\beta_{4} + 24\beta_{3} + 9\beta_{2} + 43\beta _1 + 30 Copy content Toggle raw display
ν7\nu^{7}== 42β939β8+12β731β6+2β5+3β4+9β3++17 42 \beta_{9} - 39 \beta_{8} + 12 \beta_{7} - 31 \beta_{6} + 2 \beta_{5} + 3 \beta_{4} + 9 \beta_{3} + \cdots + 17 Copy content Toggle raw display
ν8\nu^{8}== 64β913β8+63β740β6+13β5+125β4+116β3++141 64 \beta_{9} - 13 \beta_{8} + 63 \beta_{7} - 40 \beta_{6} + 13 \beta_{5} + 125 \beta_{4} + 116 \beta_{3} + \cdots + 141 Copy content Toggle raw display
ν9\nu^{9}== 245β9206β8+102β7156β6+28β5+36β4+61β3++111 245 \beta_{9} - 206 \beta_{8} + 102 \beta_{7} - 156 \beta_{6} + 28 \beta_{5} + 36 \beta_{4} + 61 \beta_{3} + \cdots + 111 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
−2.12691
−1.39693
−1.23959
−0.638386
0.231201
0.285611
0.888606
1.33777
2.24278
2.41585
−2.12691 2.07716 2.52376 0 −4.41794 2.06572 −1.11399 1.31459 0
1.2 −1.39693 −0.475994 −0.0485756 0 0.664932 3.39303 2.86172 −2.77343 0
1.3 −1.23959 2.93211 −0.463416 0 −3.63462 −2.16985 3.05363 5.59727 0
1.4 −0.638386 −1.45932 −1.59246 0 0.931607 2.37873 2.29338 −0.870397 0
1.5 0.231201 0.400645 −1.94655 0 0.0926295 −1.70963 −0.912444 −2.83948 0
1.6 0.285611 1.26844 −1.91843 0 0.362280 2.73433 −1.11915 −1.39107 0
1.7 0.888606 −1.66962 −1.21038 0 −1.48364 −1.49037 −2.85276 −0.212359 0
1.8 1.33777 1.51312 −0.210373 0 2.02421 1.25982 −2.95697 −0.710457 0
1.9 2.24278 −1.69515 3.03007 0 −3.80186 3.86416 2.31023 −0.126460 0
1.10 2.41585 0.108610 3.83635 0 0.262386 −4.32596 4.43635 −2.98820 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.10
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
55 +1 +1
197197 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4925.2.a.j 10
5.b even 2 1 985.2.a.e 10
15.d odd 2 1 8865.2.a.t 10
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
985.2.a.e 10 5.b even 2 1
4925.2.a.j 10 1.a even 1 1 trivial
8865.2.a.t 10 15.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(4925))S_{2}^{\mathrm{new}}(\Gamma_0(4925)):

T2102T299T28+16T27+26T2638T2527T24+32T23+6T227T2+1 T_{2}^{10} - 2T_{2}^{9} - 9T_{2}^{8} + 16T_{2}^{7} + 26T_{2}^{6} - 38T_{2}^{5} - 27T_{2}^{4} + 32T_{2}^{3} + 6T_{2}^{2} - 7T_{2} + 1 Copy content Toggle raw display
T3103T398T38+24T37+22T3664T3521T34+61T33+T3210T3+1 T_{3}^{10} - 3T_{3}^{9} - 8T_{3}^{8} + 24T_{3}^{7} + 22T_{3}^{6} - 64T_{3}^{5} - 21T_{3}^{4} + 61T_{3}^{3} + T_{3}^{2} - 10T_{3} + 1 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T102T9++1 T^{10} - 2 T^{9} + \cdots + 1 Copy content Toggle raw display
33 T103T9++1 T^{10} - 3 T^{9} + \cdots + 1 Copy content Toggle raw display
55 T10 T^{10} Copy content Toggle raw display
77 T106T9++5308 T^{10} - 6 T^{9} + \cdots + 5308 Copy content Toggle raw display
1111 T10+11T9++876 T^{10} + 11 T^{9} + \cdots + 876 Copy content Toggle raw display
1313 T105T9++17477 T^{10} - 5 T^{9} + \cdots + 17477 Copy content Toggle raw display
1717 T104T9+137988 T^{10} - 4 T^{9} + \cdots - 137988 Copy content Toggle raw display
1919 T10+28T9+25811 T^{10} + 28 T^{9} + \cdots - 25811 Copy content Toggle raw display
2323 T1024T9+2075712 T^{10} - 24 T^{9} + \cdots - 2075712 Copy content Toggle raw display
2929 T10+16T9++98764 T^{10} + 16 T^{9} + \cdots + 98764 Copy content Toggle raw display
3131 T10+34T9+73173232 T^{10} + 34 T^{9} + \cdots - 73173232 Copy content Toggle raw display
3737 T10+5T9++2426304 T^{10} + 5 T^{9} + \cdots + 2426304 Copy content Toggle raw display
4141 T10+15T9++337193 T^{10} + 15 T^{9} + \cdots + 337193 Copy content Toggle raw display
4343 T105T9++2284 T^{10} - 5 T^{9} + \cdots + 2284 Copy content Toggle raw display
4747 T1014T9++28474764 T^{10} - 14 T^{9} + \cdots + 28474764 Copy content Toggle raw display
5353 T1015T9++317244 T^{10} - 15 T^{9} + \cdots + 317244 Copy content Toggle raw display
5959 T10+49T9++12406847 T^{10} + 49 T^{9} + \cdots + 12406847 Copy content Toggle raw display
6161 T10+1693803719 T^{10} + \cdots - 1693803719 Copy content Toggle raw display
6767 T102T9+6547 T^{10} - 2 T^{9} + \cdots - 6547 Copy content Toggle raw display
7171 T10++150197316 T^{10} + \cdots + 150197316 Copy content Toggle raw display
7373 T10+18T9++506257 T^{10} + 18 T^{9} + \cdots + 506257 Copy content Toggle raw display
7979 T10+11T9++74241116 T^{10} + 11 T^{9} + \cdots + 74241116 Copy content Toggle raw display
8383 T10+4T9++132 T^{10} + 4 T^{9} + \cdots + 132 Copy content Toggle raw display
8989 T10+5T9+10810148 T^{10} + 5 T^{9} + \cdots - 10810148 Copy content Toggle raw display
9797 T10+2022756524 T^{10} + \cdots - 2022756524 Copy content Toggle raw display
show more
show less