Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [4925,2,Mod(1,4925)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4925, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("4925.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 4925.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | 10.10.21886214112361.1 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 985) |
Fricke sign: | |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 |
|
−2.12691 | 2.07716 | 2.52376 | 0 | −4.41794 | 2.06572 | −1.11399 | 1.31459 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||
1.2 | −1.39693 | −0.475994 | −0.0485756 | 0 | 0.664932 | 3.39303 | 2.86172 | −2.77343 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||
1.3 | −1.23959 | 2.93211 | −0.463416 | 0 | −3.63462 | −2.16985 | 3.05363 | 5.59727 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||
1.4 | −0.638386 | −1.45932 | −1.59246 | 0 | 0.931607 | 2.37873 | 2.29338 | −0.870397 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||
1.5 | 0.231201 | 0.400645 | −1.94655 | 0 | 0.0926295 | −1.70963 | −0.912444 | −2.83948 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||
1.6 | 0.285611 | 1.26844 | −1.91843 | 0 | 0.362280 | 2.73433 | −1.11915 | −1.39107 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||
1.7 | 0.888606 | −1.66962 | −1.21038 | 0 | −1.48364 | −1.49037 | −2.85276 | −0.212359 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||
1.8 | 1.33777 | 1.51312 | −0.210373 | 0 | 2.02421 | 1.25982 | −2.95697 | −0.710457 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||
1.9 | 2.24278 | −1.69515 | 3.03007 | 0 | −3.80186 | 3.86416 | 2.31023 | −0.126460 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||
1.10 | 2.41585 | 0.108610 | 3.83635 | 0 | 0.262386 | −4.32596 | 4.43635 | −2.98820 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||
Atkin-Lehner signs
Sign | |
---|---|
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 4925.2.a.j | 10 | |
5.b | even | 2 | 1 | 985.2.a.e | ✓ | 10 | |
15.d | odd | 2 | 1 | 8865.2.a.t | 10 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
985.2.a.e | ✓ | 10 | 5.b | even | 2 | 1 | |
4925.2.a.j | 10 | 1.a | even | 1 | 1 | trivial | |
8865.2.a.t | 10 | 15.d | odd | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|