Properties

Label 4925.2.a.q.1.12
Level $4925$
Weight $2$
Character 4925.1
Self dual yes
Analytic conductor $39.326$
Analytic rank $0$
Dimension $37$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4925,2,Mod(1,4925)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4925, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4925.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4925 = 5^{2} \cdot 197 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4925.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(39.3263229955\)
Analytic rank: \(0\)
Dimension: \(37\)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.12
Character \(\chi\) \(=\) 4925.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.27073 q^{2} +2.56743 q^{3} -0.385233 q^{4} -3.26253 q^{6} -0.840739 q^{7} +3.03100 q^{8} +3.59172 q^{9} -4.34010 q^{11} -0.989061 q^{12} +5.35753 q^{13} +1.06836 q^{14} -3.08113 q^{16} +3.54972 q^{17} -4.56412 q^{18} +1.48982 q^{19} -2.15854 q^{21} +5.51512 q^{22} +8.79752 q^{23} +7.78189 q^{24} -6.80800 q^{26} +1.51920 q^{27} +0.323881 q^{28} +0.249992 q^{29} -0.752380 q^{31} -2.14670 q^{32} -11.1429 q^{33} -4.51075 q^{34} -1.38365 q^{36} +4.94813 q^{37} -1.89316 q^{38} +13.7551 q^{39} +2.52610 q^{41} +2.74294 q^{42} +3.98446 q^{43} +1.67195 q^{44} -11.1793 q^{46} -2.10694 q^{47} -7.91060 q^{48} -6.29316 q^{49} +9.11368 q^{51} -2.06390 q^{52} -10.9059 q^{53} -1.93050 q^{54} -2.54828 q^{56} +3.82501 q^{57} -0.317674 q^{58} -7.97796 q^{59} -11.5832 q^{61} +0.956075 q^{62} -3.01970 q^{63} +8.89014 q^{64} +14.1597 q^{66} +0.0288247 q^{67} -1.36747 q^{68} +22.5871 q^{69} +11.3323 q^{71} +10.8865 q^{72} +12.2568 q^{73} -6.28775 q^{74} -0.573928 q^{76} +3.64889 q^{77} -17.4791 q^{78} -3.43029 q^{79} -6.87471 q^{81} -3.21001 q^{82} -0.952959 q^{83} +0.831543 q^{84} -5.06319 q^{86} +0.641838 q^{87} -13.1548 q^{88} -6.14398 q^{89} -4.50428 q^{91} -3.38910 q^{92} -1.93169 q^{93} +2.67736 q^{94} -5.51151 q^{96} +5.17024 q^{97} +7.99693 q^{98} -15.5884 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 37 q + 2 q^{2} + q^{3} + 50 q^{4} + 8 q^{6} - 4 q^{7} + 50 q^{9} + 17 q^{11} - 2 q^{12} - 3 q^{13} + 14 q^{14} + 72 q^{16} - 10 q^{17} - 4 q^{18} + 54 q^{19} + 15 q^{21} - 11 q^{22} + 4 q^{23} + 28 q^{24}+ \cdots + 40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.27073 −0.898545 −0.449273 0.893395i \(-0.648317\pi\)
−0.449273 + 0.893395i \(0.648317\pi\)
\(3\) 2.56743 1.48231 0.741154 0.671335i \(-0.234279\pi\)
0.741154 + 0.671335i \(0.234279\pi\)
\(4\) −0.385233 −0.192617
\(5\) 0 0
\(6\) −3.26253 −1.33192
\(7\) −0.840739 −0.317770 −0.158885 0.987297i \(-0.550790\pi\)
−0.158885 + 0.987297i \(0.550790\pi\)
\(8\) 3.03100 1.07162
\(9\) 3.59172 1.19724
\(10\) 0 0
\(11\) −4.34010 −1.30859 −0.654295 0.756240i \(-0.727034\pi\)
−0.654295 + 0.756240i \(0.727034\pi\)
\(12\) −0.989061 −0.285517
\(13\) 5.35753 1.48591 0.742956 0.669341i \(-0.233423\pi\)
0.742956 + 0.669341i \(0.233423\pi\)
\(14\) 1.06836 0.285530
\(15\) 0 0
\(16\) −3.08113 −0.770282
\(17\) 3.54972 0.860934 0.430467 0.902606i \(-0.358349\pi\)
0.430467 + 0.902606i \(0.358349\pi\)
\(18\) −4.56412 −1.07577
\(19\) 1.48982 0.341788 0.170894 0.985289i \(-0.445334\pi\)
0.170894 + 0.985289i \(0.445334\pi\)
\(20\) 0 0
\(21\) −2.15854 −0.471033
\(22\) 5.51512 1.17583
\(23\) 8.79752 1.83441 0.917205 0.398415i \(-0.130440\pi\)
0.917205 + 0.398415i \(0.130440\pi\)
\(24\) 7.78189 1.58847
\(25\) 0 0
\(26\) −6.80800 −1.33516
\(27\) 1.51920 0.292370
\(28\) 0.323881 0.0612077
\(29\) 0.249992 0.0464223 0.0232112 0.999731i \(-0.492611\pi\)
0.0232112 + 0.999731i \(0.492611\pi\)
\(30\) 0 0
\(31\) −0.752380 −0.135131 −0.0675657 0.997715i \(-0.521523\pi\)
−0.0675657 + 0.997715i \(0.521523\pi\)
\(32\) −2.14670 −0.379487
\(33\) −11.1429 −1.93973
\(34\) −4.51075 −0.773588
\(35\) 0 0
\(36\) −1.38365 −0.230608
\(37\) 4.94813 0.813467 0.406733 0.913547i \(-0.366668\pi\)
0.406733 + 0.913547i \(0.366668\pi\)
\(38\) −1.89316 −0.307112
\(39\) 13.7551 2.20258
\(40\) 0 0
\(41\) 2.52610 0.394511 0.197256 0.980352i \(-0.436797\pi\)
0.197256 + 0.980352i \(0.436797\pi\)
\(42\) 2.74294 0.423244
\(43\) 3.98446 0.607624 0.303812 0.952732i \(-0.401740\pi\)
0.303812 + 0.952732i \(0.401740\pi\)
\(44\) 1.67195 0.252056
\(45\) 0 0
\(46\) −11.1793 −1.64830
\(47\) −2.10694 −0.307329 −0.153665 0.988123i \(-0.549108\pi\)
−0.153665 + 0.988123i \(0.549108\pi\)
\(48\) −7.91060 −1.14180
\(49\) −6.29316 −0.899022
\(50\) 0 0
\(51\) 9.11368 1.27617
\(52\) −2.06390 −0.286211
\(53\) −10.9059 −1.49804 −0.749018 0.662550i \(-0.769474\pi\)
−0.749018 + 0.662550i \(0.769474\pi\)
\(54\) −1.93050 −0.262708
\(55\) 0 0
\(56\) −2.54828 −0.340528
\(57\) 3.82501 0.506635
\(58\) −0.317674 −0.0417126
\(59\) −7.97796 −1.03864 −0.519321 0.854579i \(-0.673815\pi\)
−0.519321 + 0.854579i \(0.673815\pi\)
\(60\) 0 0
\(61\) −11.5832 −1.48307 −0.741536 0.670914i \(-0.765902\pi\)
−0.741536 + 0.670914i \(0.765902\pi\)
\(62\) 0.956075 0.121422
\(63\) −3.01970 −0.380446
\(64\) 8.89014 1.11127
\(65\) 0 0
\(66\) 14.1597 1.74294
\(67\) 0.0288247 0.00352150 0.00176075 0.999998i \(-0.499440\pi\)
0.00176075 + 0.999998i \(0.499440\pi\)
\(68\) −1.36747 −0.165830
\(69\) 22.5871 2.71916
\(70\) 0 0
\(71\) 11.3323 1.34490 0.672448 0.740144i \(-0.265243\pi\)
0.672448 + 0.740144i \(0.265243\pi\)
\(72\) 10.8865 1.28299
\(73\) 12.2568 1.43455 0.717273 0.696792i \(-0.245390\pi\)
0.717273 + 0.696792i \(0.245390\pi\)
\(74\) −6.28775 −0.730937
\(75\) 0 0
\(76\) −0.573928 −0.0658340
\(77\) 3.64889 0.415830
\(78\) −17.4791 −1.97912
\(79\) −3.43029 −0.385938 −0.192969 0.981205i \(-0.561812\pi\)
−0.192969 + 0.981205i \(0.561812\pi\)
\(80\) 0 0
\(81\) −6.87471 −0.763857
\(82\) −3.21001 −0.354486
\(83\) −0.952959 −0.104601 −0.0523004 0.998631i \(-0.516655\pi\)
−0.0523004 + 0.998631i \(0.516655\pi\)
\(84\) 0.831543 0.0907287
\(85\) 0 0
\(86\) −5.06319 −0.545978
\(87\) 0.641838 0.0688123
\(88\) −13.1548 −1.40231
\(89\) −6.14398 −0.651261 −0.325631 0.945497i \(-0.605577\pi\)
−0.325631 + 0.945497i \(0.605577\pi\)
\(90\) 0 0
\(91\) −4.50428 −0.472177
\(92\) −3.38910 −0.353338
\(93\) −1.93169 −0.200306
\(94\) 2.67736 0.276149
\(95\) 0 0
\(96\) −5.51151 −0.562516
\(97\) 5.17024 0.524959 0.262479 0.964938i \(-0.415460\pi\)
0.262479 + 0.964938i \(0.415460\pi\)
\(98\) 7.99693 0.807812
\(99\) −15.5884 −1.56670
\(100\) 0 0
\(101\) 9.56484 0.951737 0.475868 0.879516i \(-0.342134\pi\)
0.475868 + 0.879516i \(0.342134\pi\)
\(102\) −11.5811 −1.14670
\(103\) −7.55823 −0.744735 −0.372367 0.928085i \(-0.621454\pi\)
−0.372367 + 0.928085i \(0.621454\pi\)
\(104\) 16.2387 1.59233
\(105\) 0 0
\(106\) 13.8585 1.34605
\(107\) 5.89996 0.570371 0.285185 0.958472i \(-0.407945\pi\)
0.285185 + 0.958472i \(0.407945\pi\)
\(108\) −0.585246 −0.0563154
\(109\) 15.0084 1.43755 0.718773 0.695245i \(-0.244704\pi\)
0.718773 + 0.695245i \(0.244704\pi\)
\(110\) 0 0
\(111\) 12.7040 1.20581
\(112\) 2.59043 0.244772
\(113\) 8.53901 0.803283 0.401641 0.915797i \(-0.368440\pi\)
0.401641 + 0.915797i \(0.368440\pi\)
\(114\) −4.86057 −0.455234
\(115\) 0 0
\(116\) −0.0963052 −0.00894172
\(117\) 19.2427 1.77899
\(118\) 10.1379 0.933266
\(119\) −2.98439 −0.273579
\(120\) 0 0
\(121\) 7.83648 0.712407
\(122\) 14.7191 1.33261
\(123\) 6.48561 0.584787
\(124\) 0.289842 0.0260286
\(125\) 0 0
\(126\) 3.83724 0.341848
\(127\) 9.88262 0.876940 0.438470 0.898746i \(-0.355520\pi\)
0.438470 + 0.898746i \(0.355520\pi\)
\(128\) −7.00361 −0.619038
\(129\) 10.2298 0.900687
\(130\) 0 0
\(131\) 6.11501 0.534270 0.267135 0.963659i \(-0.413923\pi\)
0.267135 + 0.963659i \(0.413923\pi\)
\(132\) 4.29263 0.373625
\(133\) −1.25255 −0.108610
\(134\) −0.0366285 −0.00316422
\(135\) 0 0
\(136\) 10.7592 0.922594
\(137\) 8.43937 0.721024 0.360512 0.932755i \(-0.382602\pi\)
0.360512 + 0.932755i \(0.382602\pi\)
\(138\) −28.7022 −2.44329
\(139\) 10.1596 0.861729 0.430864 0.902417i \(-0.358209\pi\)
0.430864 + 0.902417i \(0.358209\pi\)
\(140\) 0 0
\(141\) −5.40944 −0.455557
\(142\) −14.4003 −1.20845
\(143\) −23.2522 −1.94445
\(144\) −11.0665 −0.922212
\(145\) 0 0
\(146\) −15.5751 −1.28901
\(147\) −16.1573 −1.33263
\(148\) −1.90618 −0.156687
\(149\) 2.67438 0.219094 0.109547 0.993982i \(-0.465060\pi\)
0.109547 + 0.993982i \(0.465060\pi\)
\(150\) 0 0
\(151\) 3.11672 0.253635 0.126818 0.991926i \(-0.459524\pi\)
0.126818 + 0.991926i \(0.459524\pi\)
\(152\) 4.51564 0.366267
\(153\) 12.7496 1.03074
\(154\) −4.63678 −0.373642
\(155\) 0 0
\(156\) −5.29892 −0.424253
\(157\) 1.50182 0.119859 0.0599293 0.998203i \(-0.480912\pi\)
0.0599293 + 0.998203i \(0.480912\pi\)
\(158\) 4.35899 0.346783
\(159\) −28.0001 −2.22055
\(160\) 0 0
\(161\) −7.39642 −0.582920
\(162\) 8.73593 0.686360
\(163\) 1.19875 0.0938935 0.0469468 0.998897i \(-0.485051\pi\)
0.0469468 + 0.998897i \(0.485051\pi\)
\(164\) −0.973139 −0.0759894
\(165\) 0 0
\(166\) 1.21096 0.0939886
\(167\) 0.493224 0.0381668 0.0190834 0.999818i \(-0.493925\pi\)
0.0190834 + 0.999818i \(0.493925\pi\)
\(168\) −6.54254 −0.504768
\(169\) 15.7031 1.20793
\(170\) 0 0
\(171\) 5.35101 0.409202
\(172\) −1.53495 −0.117039
\(173\) −13.3902 −1.01804 −0.509020 0.860755i \(-0.669992\pi\)
−0.509020 + 0.860755i \(0.669992\pi\)
\(174\) −0.815606 −0.0618309
\(175\) 0 0
\(176\) 13.3724 1.00798
\(177\) −20.4829 −1.53959
\(178\) 7.80737 0.585187
\(179\) −10.2304 −0.764653 −0.382327 0.924027i \(-0.624877\pi\)
−0.382327 + 0.924027i \(0.624877\pi\)
\(180\) 0 0
\(181\) 14.7223 1.09430 0.547149 0.837035i \(-0.315713\pi\)
0.547149 + 0.837035i \(0.315713\pi\)
\(182\) 5.72375 0.424273
\(183\) −29.7390 −2.19837
\(184\) 26.6653 1.96579
\(185\) 0 0
\(186\) 2.45466 0.179984
\(187\) −15.4061 −1.12661
\(188\) 0.811664 0.0591967
\(189\) −1.27725 −0.0929063
\(190\) 0 0
\(191\) 13.7718 0.996490 0.498245 0.867036i \(-0.333978\pi\)
0.498245 + 0.867036i \(0.333978\pi\)
\(192\) 22.8249 1.64724
\(193\) 4.20388 0.302602 0.151301 0.988488i \(-0.451654\pi\)
0.151301 + 0.988488i \(0.451654\pi\)
\(194\) −6.57001 −0.471699
\(195\) 0 0
\(196\) 2.42433 0.173167
\(197\) 1.00000 0.0712470
\(198\) 19.8088 1.40775
\(199\) 25.7088 1.82245 0.911226 0.411908i \(-0.135137\pi\)
0.911226 + 0.411908i \(0.135137\pi\)
\(200\) 0 0
\(201\) 0.0740055 0.00521995
\(202\) −12.1544 −0.855178
\(203\) −0.210178 −0.0147516
\(204\) −3.51089 −0.245812
\(205\) 0 0
\(206\) 9.60451 0.669178
\(207\) 31.5982 2.19623
\(208\) −16.5072 −1.14457
\(209\) −6.46596 −0.447260
\(210\) 0 0
\(211\) 12.1797 0.838485 0.419242 0.907874i \(-0.362296\pi\)
0.419242 + 0.907874i \(0.362296\pi\)
\(212\) 4.20130 0.288547
\(213\) 29.0949 1.99355
\(214\) −7.49728 −0.512504
\(215\) 0 0
\(216\) 4.60469 0.313310
\(217\) 0.632555 0.0429406
\(218\) −19.0717 −1.29170
\(219\) 31.4685 2.12644
\(220\) 0 0
\(221\) 19.0177 1.27927
\(222\) −16.1434 −1.08347
\(223\) −4.46872 −0.299247 −0.149624 0.988743i \(-0.547806\pi\)
−0.149624 + 0.988743i \(0.547806\pi\)
\(224\) 1.80482 0.120589
\(225\) 0 0
\(226\) −10.8508 −0.721786
\(227\) 10.5115 0.697671 0.348836 0.937184i \(-0.386577\pi\)
0.348836 + 0.937184i \(0.386577\pi\)
\(228\) −1.47352 −0.0975863
\(229\) 25.5028 1.68527 0.842635 0.538485i \(-0.181003\pi\)
0.842635 + 0.538485i \(0.181003\pi\)
\(230\) 0 0
\(231\) 9.36829 0.616389
\(232\) 0.757725 0.0497471
\(233\) 3.51329 0.230163 0.115082 0.993356i \(-0.463287\pi\)
0.115082 + 0.993356i \(0.463287\pi\)
\(234\) −24.4524 −1.59850
\(235\) 0 0
\(236\) 3.07337 0.200060
\(237\) −8.80705 −0.572080
\(238\) 3.79237 0.245823
\(239\) 29.5503 1.91145 0.955725 0.294260i \(-0.0950732\pi\)
0.955725 + 0.294260i \(0.0950732\pi\)
\(240\) 0 0
\(241\) −29.2735 −1.88567 −0.942836 0.333257i \(-0.891852\pi\)
−0.942836 + 0.333257i \(0.891852\pi\)
\(242\) −9.95808 −0.640130
\(243\) −22.2080 −1.42464
\(244\) 4.46222 0.285664
\(245\) 0 0
\(246\) −8.24149 −0.525458
\(247\) 7.98174 0.507866
\(248\) −2.28046 −0.144809
\(249\) −2.44666 −0.155051
\(250\) 0 0
\(251\) −0.554757 −0.0350159 −0.0175080 0.999847i \(-0.505573\pi\)
−0.0175080 + 0.999847i \(0.505573\pi\)
\(252\) 1.16329 0.0732803
\(253\) −38.1821 −2.40049
\(254\) −12.5582 −0.787971
\(255\) 0 0
\(256\) −8.88055 −0.555034
\(257\) 6.20512 0.387065 0.193532 0.981094i \(-0.438006\pi\)
0.193532 + 0.981094i \(0.438006\pi\)
\(258\) −12.9994 −0.809308
\(259\) −4.16008 −0.258495
\(260\) 0 0
\(261\) 0.897901 0.0555787
\(262\) −7.77055 −0.480066
\(263\) 29.1872 1.79976 0.899880 0.436138i \(-0.143654\pi\)
0.899880 + 0.436138i \(0.143654\pi\)
\(264\) −33.7742 −2.07866
\(265\) 0 0
\(266\) 1.59166 0.0975908
\(267\) −15.7743 −0.965370
\(268\) −0.0111042 −0.000678299 0
\(269\) −2.57989 −0.157299 −0.0786495 0.996902i \(-0.525061\pi\)
−0.0786495 + 0.996902i \(0.525061\pi\)
\(270\) 0 0
\(271\) 13.2844 0.806972 0.403486 0.914986i \(-0.367798\pi\)
0.403486 + 0.914986i \(0.367798\pi\)
\(272\) −10.9371 −0.663162
\(273\) −11.5645 −0.699913
\(274\) −10.7242 −0.647872
\(275\) 0 0
\(276\) −8.70129 −0.523756
\(277\) −24.3551 −1.46336 −0.731679 0.681649i \(-0.761263\pi\)
−0.731679 + 0.681649i \(0.761263\pi\)
\(278\) −12.9102 −0.774302
\(279\) −2.70234 −0.161785
\(280\) 0 0
\(281\) −28.9239 −1.72545 −0.862727 0.505669i \(-0.831246\pi\)
−0.862727 + 0.505669i \(0.831246\pi\)
\(282\) 6.87396 0.409338
\(283\) 21.0715 1.25257 0.626285 0.779594i \(-0.284574\pi\)
0.626285 + 0.779594i \(0.284574\pi\)
\(284\) −4.36558 −0.259049
\(285\) 0 0
\(286\) 29.5474 1.74717
\(287\) −2.12380 −0.125364
\(288\) −7.71034 −0.454336
\(289\) −4.39948 −0.258793
\(290\) 0 0
\(291\) 13.2743 0.778151
\(292\) −4.72172 −0.276318
\(293\) 19.0068 1.11039 0.555195 0.831720i \(-0.312643\pi\)
0.555195 + 0.831720i \(0.312643\pi\)
\(294\) 20.5316 1.19743
\(295\) 0 0
\(296\) 14.9978 0.871727
\(297\) −6.59348 −0.382593
\(298\) −3.39843 −0.196866
\(299\) 47.1330 2.72577
\(300\) 0 0
\(301\) −3.34989 −0.193085
\(302\) −3.96053 −0.227903
\(303\) 24.5571 1.41077
\(304\) −4.59032 −0.263273
\(305\) 0 0
\(306\) −16.2014 −0.926170
\(307\) 15.4963 0.884418 0.442209 0.896912i \(-0.354195\pi\)
0.442209 + 0.896912i \(0.354195\pi\)
\(308\) −1.40568 −0.0800958
\(309\) −19.4053 −1.10393
\(310\) 0 0
\(311\) −16.2558 −0.921782 −0.460891 0.887457i \(-0.652470\pi\)
−0.460891 + 0.887457i \(0.652470\pi\)
\(312\) 41.6917 2.36033
\(313\) −29.7230 −1.68004 −0.840022 0.542552i \(-0.817458\pi\)
−0.840022 + 0.542552i \(0.817458\pi\)
\(314\) −1.90842 −0.107698
\(315\) 0 0
\(316\) 1.32146 0.0743381
\(317\) −16.8258 −0.945031 −0.472515 0.881322i \(-0.656654\pi\)
−0.472515 + 0.881322i \(0.656654\pi\)
\(318\) 35.5807 1.99527
\(319\) −1.08499 −0.0607478
\(320\) 0 0
\(321\) 15.1478 0.845465
\(322\) 9.39889 0.523780
\(323\) 5.28844 0.294257
\(324\) 2.64837 0.147132
\(325\) 0 0
\(326\) −1.52330 −0.0843676
\(327\) 38.5331 2.13089
\(328\) 7.65662 0.422766
\(329\) 1.77139 0.0976598
\(330\) 0 0
\(331\) 23.5179 1.29266 0.646330 0.763058i \(-0.276303\pi\)
0.646330 + 0.763058i \(0.276303\pi\)
\(332\) 0.367111 0.0201479
\(333\) 17.7723 0.973915
\(334\) −0.626756 −0.0342946
\(335\) 0 0
\(336\) 6.65075 0.362828
\(337\) 4.98221 0.271398 0.135699 0.990750i \(-0.456672\pi\)
0.135699 + 0.990750i \(0.456672\pi\)
\(338\) −19.9545 −1.08538
\(339\) 21.9234 1.19071
\(340\) 0 0
\(341\) 3.26540 0.176832
\(342\) −6.79971 −0.367686
\(343\) 11.1761 0.603452
\(344\) 12.0769 0.651142
\(345\) 0 0
\(346\) 17.0154 0.914754
\(347\) −35.9354 −1.92911 −0.964557 0.263874i \(-0.915000\pi\)
−0.964557 + 0.263874i \(0.915000\pi\)
\(348\) −0.247257 −0.0132544
\(349\) 4.84440 0.259315 0.129657 0.991559i \(-0.458612\pi\)
0.129657 + 0.991559i \(0.458612\pi\)
\(350\) 0 0
\(351\) 8.13916 0.434436
\(352\) 9.31690 0.496592
\(353\) 29.6559 1.57842 0.789211 0.614122i \(-0.210490\pi\)
0.789211 + 0.614122i \(0.210490\pi\)
\(354\) 26.0283 1.38339
\(355\) 0 0
\(356\) 2.36687 0.125444
\(357\) −7.66223 −0.405528
\(358\) 13.0001 0.687075
\(359\) −33.3896 −1.76224 −0.881118 0.472896i \(-0.843209\pi\)
−0.881118 + 0.472896i \(0.843209\pi\)
\(360\) 0 0
\(361\) −16.7804 −0.883181
\(362\) −18.7081 −0.983276
\(363\) 20.1196 1.05601
\(364\) 1.73520 0.0909492
\(365\) 0 0
\(366\) 37.7904 1.97533
\(367\) −36.2306 −1.89122 −0.945612 0.325296i \(-0.894536\pi\)
−0.945612 + 0.325296i \(0.894536\pi\)
\(368\) −27.1063 −1.41301
\(369\) 9.07306 0.472324
\(370\) 0 0
\(371\) 9.16899 0.476030
\(372\) 0.744150 0.0385824
\(373\) −12.7415 −0.659730 −0.329865 0.944028i \(-0.607003\pi\)
−0.329865 + 0.944028i \(0.607003\pi\)
\(374\) 19.5771 1.01231
\(375\) 0 0
\(376\) −6.38614 −0.329340
\(377\) 1.33934 0.0689795
\(378\) 1.62305 0.0834805
\(379\) 14.1352 0.726078 0.363039 0.931774i \(-0.381739\pi\)
0.363039 + 0.931774i \(0.381739\pi\)
\(380\) 0 0
\(381\) 25.3730 1.29990
\(382\) −17.5003 −0.895391
\(383\) −13.6470 −0.697331 −0.348665 0.937247i \(-0.613365\pi\)
−0.348665 + 0.937247i \(0.613365\pi\)
\(384\) −17.9813 −0.917605
\(385\) 0 0
\(386\) −5.34202 −0.271902
\(387\) 14.3111 0.727472
\(388\) −1.99175 −0.101116
\(389\) −8.53466 −0.432725 −0.216362 0.976313i \(-0.569419\pi\)
−0.216362 + 0.976313i \(0.569419\pi\)
\(390\) 0 0
\(391\) 31.2288 1.57931
\(392\) −19.0746 −0.963410
\(393\) 15.6999 0.791954
\(394\) −1.27073 −0.0640187
\(395\) 0 0
\(396\) 6.00518 0.301772
\(397\) 10.1191 0.507865 0.253933 0.967222i \(-0.418276\pi\)
0.253933 + 0.967222i \(0.418276\pi\)
\(398\) −32.6691 −1.63755
\(399\) −3.21584 −0.160993
\(400\) 0 0
\(401\) −15.9024 −0.794130 −0.397065 0.917790i \(-0.629971\pi\)
−0.397065 + 0.917790i \(0.629971\pi\)
\(402\) −0.0940414 −0.00469036
\(403\) −4.03090 −0.200793
\(404\) −3.68469 −0.183320
\(405\) 0 0
\(406\) 0.267081 0.0132550
\(407\) −21.4754 −1.06449
\(408\) 27.6235 1.36757
\(409\) −34.8872 −1.72506 −0.862531 0.506005i \(-0.831122\pi\)
−0.862531 + 0.506005i \(0.831122\pi\)
\(410\) 0 0
\(411\) 21.6675 1.06878
\(412\) 2.91168 0.143448
\(413\) 6.70738 0.330049
\(414\) −40.1530 −1.97341
\(415\) 0 0
\(416\) −11.5010 −0.563883
\(417\) 26.0842 1.27735
\(418\) 8.21652 0.401883
\(419\) −10.2677 −0.501611 −0.250805 0.968038i \(-0.580695\pi\)
−0.250805 + 0.968038i \(0.580695\pi\)
\(420\) 0 0
\(421\) 14.2806 0.695996 0.347998 0.937495i \(-0.386862\pi\)
0.347998 + 0.937495i \(0.386862\pi\)
\(422\) −15.4772 −0.753417
\(423\) −7.56754 −0.367947
\(424\) −33.0557 −1.60532
\(425\) 0 0
\(426\) −36.9719 −1.79130
\(427\) 9.73841 0.471275
\(428\) −2.27286 −0.109863
\(429\) −59.6985 −2.88227
\(430\) 0 0
\(431\) 26.0782 1.25614 0.628072 0.778155i \(-0.283844\pi\)
0.628072 + 0.778155i \(0.283844\pi\)
\(432\) −4.68085 −0.225208
\(433\) 14.2583 0.685211 0.342605 0.939479i \(-0.388691\pi\)
0.342605 + 0.939479i \(0.388691\pi\)
\(434\) −0.803810 −0.0385841
\(435\) 0 0
\(436\) −5.78174 −0.276895
\(437\) 13.1067 0.626979
\(438\) −39.9881 −1.91070
\(439\) −13.0603 −0.623332 −0.311666 0.950192i \(-0.600887\pi\)
−0.311666 + 0.950192i \(0.600887\pi\)
\(440\) 0 0
\(441\) −22.6033 −1.07635
\(442\) −24.1665 −1.14948
\(443\) −1.07809 −0.0512214 −0.0256107 0.999672i \(-0.508153\pi\)
−0.0256107 + 0.999672i \(0.508153\pi\)
\(444\) −4.89400 −0.232259
\(445\) 0 0
\(446\) 5.67856 0.268887
\(447\) 6.86629 0.324764
\(448\) −7.47429 −0.353127
\(449\) −31.9691 −1.50871 −0.754357 0.656465i \(-0.772051\pi\)
−0.754357 + 0.656465i \(0.772051\pi\)
\(450\) 0 0
\(451\) −10.9635 −0.516253
\(452\) −3.28951 −0.154726
\(453\) 8.00198 0.375966
\(454\) −13.3573 −0.626889
\(455\) 0 0
\(456\) 11.5936 0.542920
\(457\) 3.25528 0.152275 0.0761377 0.997097i \(-0.475741\pi\)
0.0761377 + 0.997097i \(0.475741\pi\)
\(458\) −32.4073 −1.51429
\(459\) 5.39274 0.251711
\(460\) 0 0
\(461\) −2.57036 −0.119713 −0.0598567 0.998207i \(-0.519064\pi\)
−0.0598567 + 0.998207i \(0.519064\pi\)
\(462\) −11.9046 −0.553853
\(463\) 35.8942 1.66814 0.834072 0.551655i \(-0.186003\pi\)
0.834072 + 0.551655i \(0.186003\pi\)
\(464\) −0.770258 −0.0357583
\(465\) 0 0
\(466\) −4.46446 −0.206812
\(467\) −0.985633 −0.0456096 −0.0228048 0.999740i \(-0.507260\pi\)
−0.0228048 + 0.999740i \(0.507260\pi\)
\(468\) −7.41294 −0.342663
\(469\) −0.0242341 −0.00111902
\(470\) 0 0
\(471\) 3.85583 0.177667
\(472\) −24.1812 −1.11303
\(473\) −17.2930 −0.795131
\(474\) 11.1914 0.514039
\(475\) 0 0
\(476\) 1.14969 0.0526958
\(477\) −39.1708 −1.79351
\(478\) −37.5506 −1.71752
\(479\) 6.66573 0.304565 0.152283 0.988337i \(-0.451338\pi\)
0.152283 + 0.988337i \(0.451338\pi\)
\(480\) 0 0
\(481\) 26.5097 1.20874
\(482\) 37.1989 1.69436
\(483\) −18.9898 −0.864067
\(484\) −3.01887 −0.137221
\(485\) 0 0
\(486\) 28.2204 1.28011
\(487\) −35.7666 −1.62074 −0.810370 0.585919i \(-0.800734\pi\)
−0.810370 + 0.585919i \(0.800734\pi\)
\(488\) −35.1085 −1.58929
\(489\) 3.07772 0.139179
\(490\) 0 0
\(491\) −32.3477 −1.45983 −0.729916 0.683537i \(-0.760441\pi\)
−0.729916 + 0.683537i \(0.760441\pi\)
\(492\) −2.49847 −0.112640
\(493\) 0.887402 0.0399666
\(494\) −10.1427 −0.456341
\(495\) 0 0
\(496\) 2.31818 0.104089
\(497\) −9.52751 −0.427367
\(498\) 3.10905 0.139320
\(499\) 10.1041 0.452323 0.226161 0.974090i \(-0.427382\pi\)
0.226161 + 0.974090i \(0.427382\pi\)
\(500\) 0 0
\(501\) 1.26632 0.0565750
\(502\) 0.704948 0.0314634
\(503\) −3.84475 −0.171429 −0.0857146 0.996320i \(-0.527317\pi\)
−0.0857146 + 0.996320i \(0.527317\pi\)
\(504\) −9.15271 −0.407694
\(505\) 0 0
\(506\) 48.5194 2.15695
\(507\) 40.3167 1.79053
\(508\) −3.80711 −0.168913
\(509\) −28.0430 −1.24298 −0.621491 0.783421i \(-0.713473\pi\)
−0.621491 + 0.783421i \(0.713473\pi\)
\(510\) 0 0
\(511\) −10.3048 −0.455855
\(512\) 25.2921 1.11776
\(513\) 2.26333 0.0999285
\(514\) −7.88506 −0.347795
\(515\) 0 0
\(516\) −3.94087 −0.173487
\(517\) 9.14434 0.402168
\(518\) 5.28636 0.232269
\(519\) −34.3785 −1.50905
\(520\) 0 0
\(521\) 22.7189 0.995333 0.497666 0.867369i \(-0.334190\pi\)
0.497666 + 0.867369i \(0.334190\pi\)
\(522\) −1.14099 −0.0499400
\(523\) 15.5424 0.679622 0.339811 0.940494i \(-0.389637\pi\)
0.339811 + 0.940494i \(0.389637\pi\)
\(524\) −2.35570 −0.102909
\(525\) 0 0
\(526\) −37.0892 −1.61717
\(527\) −2.67074 −0.116339
\(528\) 34.3328 1.49414
\(529\) 54.3964 2.36506
\(530\) 0 0
\(531\) −28.6546 −1.24350
\(532\) 0.482523 0.0209200
\(533\) 13.5337 0.586209
\(534\) 20.0449 0.867429
\(535\) 0 0
\(536\) 0.0873676 0.00377371
\(537\) −26.2658 −1.13345
\(538\) 3.27836 0.141340
\(539\) 27.3129 1.17645
\(540\) 0 0
\(541\) −29.7765 −1.28019 −0.640097 0.768294i \(-0.721106\pi\)
−0.640097 + 0.768294i \(0.721106\pi\)
\(542\) −16.8810 −0.725100
\(543\) 37.7985 1.62209
\(544\) −7.62019 −0.326713
\(545\) 0 0
\(546\) 14.6954 0.628903
\(547\) 31.5735 1.34998 0.674992 0.737825i \(-0.264147\pi\)
0.674992 + 0.737825i \(0.264147\pi\)
\(548\) −3.25113 −0.138881
\(549\) −41.6034 −1.77559
\(550\) 0 0
\(551\) 0.372443 0.0158666
\(552\) 68.4614 2.91391
\(553\) 2.88398 0.122639
\(554\) 30.9489 1.31489
\(555\) 0 0
\(556\) −3.91383 −0.165983
\(557\) −0.211991 −0.00898235 −0.00449118 0.999990i \(-0.501430\pi\)
−0.00449118 + 0.999990i \(0.501430\pi\)
\(558\) 3.43395 0.145371
\(559\) 21.3469 0.902876
\(560\) 0 0
\(561\) −39.5543 −1.66998
\(562\) 36.7546 1.55040
\(563\) 20.5800 0.867346 0.433673 0.901070i \(-0.357217\pi\)
0.433673 + 0.901070i \(0.357217\pi\)
\(564\) 2.08389 0.0877478
\(565\) 0 0
\(566\) −26.7763 −1.12549
\(567\) 5.77984 0.242730
\(568\) 34.3482 1.44122
\(569\) −8.21040 −0.344198 −0.172099 0.985080i \(-0.555055\pi\)
−0.172099 + 0.985080i \(0.555055\pi\)
\(570\) 0 0
\(571\) −30.4973 −1.27627 −0.638135 0.769924i \(-0.720294\pi\)
−0.638135 + 0.769924i \(0.720294\pi\)
\(572\) 8.95753 0.374533
\(573\) 35.3581 1.47711
\(574\) 2.69878 0.112645
\(575\) 0 0
\(576\) 31.9309 1.33045
\(577\) −10.5889 −0.440820 −0.220410 0.975407i \(-0.570740\pi\)
−0.220410 + 0.975407i \(0.570740\pi\)
\(578\) 5.59057 0.232537
\(579\) 10.7932 0.448550
\(580\) 0 0
\(581\) 0.801190 0.0332390
\(582\) −16.8681 −0.699204
\(583\) 47.3326 1.96031
\(584\) 37.1503 1.53729
\(585\) 0 0
\(586\) −24.1526 −0.997736
\(587\) −44.9239 −1.85421 −0.927104 0.374804i \(-0.877710\pi\)
−0.927104 + 0.374804i \(0.877710\pi\)
\(588\) 6.22432 0.256687
\(589\) −1.12091 −0.0461863
\(590\) 0 0
\(591\) 2.56743 0.105610
\(592\) −15.2458 −0.626599
\(593\) 9.24694 0.379726 0.189863 0.981811i \(-0.439196\pi\)
0.189863 + 0.981811i \(0.439196\pi\)
\(594\) 8.37857 0.343777
\(595\) 0 0
\(596\) −1.03026 −0.0422011
\(597\) 66.0058 2.70144
\(598\) −59.8935 −2.44923
\(599\) −24.1790 −0.987926 −0.493963 0.869483i \(-0.664452\pi\)
−0.493963 + 0.869483i \(0.664452\pi\)
\(600\) 0 0
\(601\) −24.2974 −0.991112 −0.495556 0.868576i \(-0.665036\pi\)
−0.495556 + 0.868576i \(0.665036\pi\)
\(602\) 4.25682 0.173495
\(603\) 0.103530 0.00421608
\(604\) −1.20067 −0.0488544
\(605\) 0 0
\(606\) −31.2055 −1.26764
\(607\) 8.52637 0.346075 0.173037 0.984915i \(-0.444642\pi\)
0.173037 + 0.984915i \(0.444642\pi\)
\(608\) −3.19819 −0.129704
\(609\) −0.539618 −0.0218664
\(610\) 0 0
\(611\) −11.2880 −0.456664
\(612\) −4.91157 −0.198538
\(613\) −15.2646 −0.616532 −0.308266 0.951300i \(-0.599749\pi\)
−0.308266 + 0.951300i \(0.599749\pi\)
\(614\) −19.6916 −0.794690
\(615\) 0 0
\(616\) 11.0598 0.445612
\(617\) −29.5735 −1.19058 −0.595291 0.803510i \(-0.702963\pi\)
−0.595291 + 0.803510i \(0.702963\pi\)
\(618\) 24.6589 0.991928
\(619\) 21.5621 0.866654 0.433327 0.901237i \(-0.357339\pi\)
0.433327 + 0.901237i \(0.357339\pi\)
\(620\) 0 0
\(621\) 13.3652 0.536327
\(622\) 20.6568 0.828263
\(623\) 5.16549 0.206951
\(624\) −42.3812 −1.69661
\(625\) 0 0
\(626\) 37.7701 1.50960
\(627\) −16.6009 −0.662977
\(628\) −0.578552 −0.0230868
\(629\) 17.5645 0.700341
\(630\) 0 0
\(631\) −9.85441 −0.392298 −0.196149 0.980574i \(-0.562844\pi\)
−0.196149 + 0.980574i \(0.562844\pi\)
\(632\) −10.3972 −0.413579
\(633\) 31.2706 1.24289
\(634\) 21.3811 0.849153
\(635\) 0 0
\(636\) 10.7866 0.427715
\(637\) −33.7158 −1.33587
\(638\) 1.37874 0.0545846
\(639\) 40.7024 1.61016
\(640\) 0 0
\(641\) −7.63907 −0.301725 −0.150863 0.988555i \(-0.548205\pi\)
−0.150863 + 0.988555i \(0.548205\pi\)
\(642\) −19.2488 −0.759689
\(643\) 15.5644 0.613801 0.306901 0.951742i \(-0.400708\pi\)
0.306901 + 0.951742i \(0.400708\pi\)
\(644\) 2.84935 0.112280
\(645\) 0 0
\(646\) −6.72020 −0.264403
\(647\) 41.8999 1.64725 0.823627 0.567132i \(-0.191947\pi\)
0.823627 + 0.567132i \(0.191947\pi\)
\(648\) −20.8372 −0.818564
\(649\) 34.6251 1.35916
\(650\) 0 0
\(651\) 1.62404 0.0636513
\(652\) −0.461799 −0.0180855
\(653\) 4.58237 0.179322 0.0896611 0.995972i \(-0.471422\pi\)
0.0896611 + 0.995972i \(0.471422\pi\)
\(654\) −48.9654 −1.91470
\(655\) 0 0
\(656\) −7.78325 −0.303885
\(657\) 44.0229 1.71750
\(658\) −2.25097 −0.0877518
\(659\) −2.20124 −0.0857483 −0.0428741 0.999080i \(-0.513651\pi\)
−0.0428741 + 0.999080i \(0.513651\pi\)
\(660\) 0 0
\(661\) 31.1237 1.21057 0.605286 0.796008i \(-0.293059\pi\)
0.605286 + 0.796008i \(0.293059\pi\)
\(662\) −29.8850 −1.16151
\(663\) 48.8268 1.89628
\(664\) −2.88842 −0.112092
\(665\) 0 0
\(666\) −22.5838 −0.875106
\(667\) 2.19931 0.0851576
\(668\) −0.190006 −0.00735156
\(669\) −11.4731 −0.443577
\(670\) 0 0
\(671\) 50.2721 1.94073
\(672\) 4.63374 0.178751
\(673\) −16.0139 −0.617290 −0.308645 0.951177i \(-0.599875\pi\)
−0.308645 + 0.951177i \(0.599875\pi\)
\(674\) −6.33107 −0.243864
\(675\) 0 0
\(676\) −6.04936 −0.232668
\(677\) 12.4482 0.478424 0.239212 0.970967i \(-0.423111\pi\)
0.239212 + 0.970967i \(0.423111\pi\)
\(678\) −27.8588 −1.06991
\(679\) −4.34683 −0.166816
\(680\) 0 0
\(681\) 26.9875 1.03416
\(682\) −4.14946 −0.158891
\(683\) 27.0020 1.03320 0.516601 0.856226i \(-0.327197\pi\)
0.516601 + 0.856226i \(0.327197\pi\)
\(684\) −2.06139 −0.0788191
\(685\) 0 0
\(686\) −14.2018 −0.542229
\(687\) 65.4767 2.49809
\(688\) −12.2766 −0.468042
\(689\) −58.4285 −2.22595
\(690\) 0 0
\(691\) 26.3961 1.00416 0.502078 0.864822i \(-0.332569\pi\)
0.502078 + 0.864822i \(0.332569\pi\)
\(692\) 5.15836 0.196091
\(693\) 13.1058 0.497848
\(694\) 45.6644 1.73340
\(695\) 0 0
\(696\) 1.94541 0.0737406
\(697\) 8.96697 0.339648
\(698\) −6.15594 −0.233006
\(699\) 9.02014 0.341173
\(700\) 0 0
\(701\) −28.2190 −1.06582 −0.532908 0.846173i \(-0.678901\pi\)
−0.532908 + 0.846173i \(0.678901\pi\)
\(702\) −10.3427 −0.390360
\(703\) 7.37181 0.278033
\(704\) −38.5841 −1.45419
\(705\) 0 0
\(706\) −37.6847 −1.41828
\(707\) −8.04153 −0.302433
\(708\) 7.89069 0.296550
\(709\) 2.62332 0.0985207 0.0492604 0.998786i \(-0.484314\pi\)
0.0492604 + 0.998786i \(0.484314\pi\)
\(710\) 0 0
\(711\) −12.3207 −0.462061
\(712\) −18.6224 −0.697904
\(713\) −6.61908 −0.247886
\(714\) 9.73666 0.364385
\(715\) 0 0
\(716\) 3.94108 0.147285
\(717\) 75.8685 2.83336
\(718\) 42.4293 1.58345
\(719\) 7.79924 0.290863 0.145431 0.989368i \(-0.453543\pi\)
0.145431 + 0.989368i \(0.453543\pi\)
\(720\) 0 0
\(721\) 6.35450 0.236654
\(722\) 21.3235 0.793578
\(723\) −75.1578 −2.79515
\(724\) −5.67151 −0.210780
\(725\) 0 0
\(726\) −25.5667 −0.948870
\(727\) −32.8349 −1.21778 −0.608889 0.793256i \(-0.708384\pi\)
−0.608889 + 0.793256i \(0.708384\pi\)
\(728\) −13.6525 −0.505995
\(729\) −36.3934 −1.34790
\(730\) 0 0
\(731\) 14.1437 0.523125
\(732\) 11.4564 0.423443
\(733\) 6.54261 0.241657 0.120828 0.992673i \(-0.461445\pi\)
0.120828 + 0.992673i \(0.461445\pi\)
\(734\) 46.0395 1.69935
\(735\) 0 0
\(736\) −18.8856 −0.696134
\(737\) −0.125102 −0.00460820
\(738\) −11.5294 −0.424405
\(739\) 41.6103 1.53066 0.765330 0.643639i \(-0.222576\pi\)
0.765330 + 0.643639i \(0.222576\pi\)
\(740\) 0 0
\(741\) 20.4926 0.752815
\(742\) −11.6514 −0.427735
\(743\) 9.77987 0.358789 0.179394 0.983777i \(-0.442586\pi\)
0.179394 + 0.983777i \(0.442586\pi\)
\(744\) −5.85494 −0.214652
\(745\) 0 0
\(746\) 16.1911 0.592797
\(747\) −3.42276 −0.125232
\(748\) 5.93496 0.217004
\(749\) −4.96033 −0.181246
\(750\) 0 0
\(751\) 28.5826 1.04299 0.521496 0.853253i \(-0.325374\pi\)
0.521496 + 0.853253i \(0.325374\pi\)
\(752\) 6.49176 0.236730
\(753\) −1.42430 −0.0519044
\(754\) −1.70194 −0.0619812
\(755\) 0 0
\(756\) 0.492040 0.0178953
\(757\) 8.24184 0.299555 0.149777 0.988720i \(-0.452144\pi\)
0.149777 + 0.988720i \(0.452144\pi\)
\(758\) −17.9621 −0.652414
\(759\) −98.0301 −3.55827
\(760\) 0 0
\(761\) 42.3724 1.53600 0.767999 0.640451i \(-0.221253\pi\)
0.767999 + 0.640451i \(0.221253\pi\)
\(762\) −32.2423 −1.16802
\(763\) −12.6182 −0.456808
\(764\) −5.30534 −0.191941
\(765\) 0 0
\(766\) 17.3418 0.626583
\(767\) −42.7421 −1.54333
\(768\) −22.8002 −0.822733
\(769\) 30.7290 1.10812 0.554058 0.832478i \(-0.313079\pi\)
0.554058 + 0.832478i \(0.313079\pi\)
\(770\) 0 0
\(771\) 15.9312 0.573750
\(772\) −1.61948 −0.0582862
\(773\) 37.3634 1.34387 0.671934 0.740611i \(-0.265464\pi\)
0.671934 + 0.740611i \(0.265464\pi\)
\(774\) −18.1856 −0.653667
\(775\) 0 0
\(776\) 15.6710 0.562556
\(777\) −10.6807 −0.383169
\(778\) 10.8453 0.388823
\(779\) 3.76344 0.134839
\(780\) 0 0
\(781\) −49.1833 −1.75992
\(782\) −39.6835 −1.41908
\(783\) 0.379788 0.0135725
\(784\) 19.3900 0.692501
\(785\) 0 0
\(786\) −19.9504 −0.711606
\(787\) −22.5392 −0.803437 −0.401719 0.915763i \(-0.631587\pi\)
−0.401719 + 0.915763i \(0.631587\pi\)
\(788\) −0.385233 −0.0137234
\(789\) 74.9362 2.66780
\(790\) 0 0
\(791\) −7.17909 −0.255259
\(792\) −47.2485 −1.67890
\(793\) −62.0571 −2.20371
\(794\) −12.8588 −0.456340
\(795\) 0 0
\(796\) −9.90390 −0.351034
\(797\) 21.8779 0.774956 0.387478 0.921879i \(-0.373346\pi\)
0.387478 + 0.921879i \(0.373346\pi\)
\(798\) 4.08648 0.144660
\(799\) −7.47906 −0.264590
\(800\) 0 0
\(801\) −22.0675 −0.779716
\(802\) 20.2078 0.713562
\(803\) −53.1956 −1.87723
\(804\) −0.0285094 −0.00100545
\(805\) 0 0
\(806\) 5.12220 0.180422
\(807\) −6.62371 −0.233166
\(808\) 28.9910 1.01990
\(809\) −30.9092 −1.08671 −0.543355 0.839503i \(-0.682846\pi\)
−0.543355 + 0.839503i \(0.682846\pi\)
\(810\) 0 0
\(811\) 29.7736 1.04549 0.522746 0.852488i \(-0.324907\pi\)
0.522746 + 0.852488i \(0.324907\pi\)
\(812\) 0.0809676 0.00284141
\(813\) 34.1069 1.19618
\(814\) 27.2895 0.956496
\(815\) 0 0
\(816\) −28.0804 −0.983011
\(817\) 5.93612 0.207679
\(818\) 44.3324 1.55005
\(819\) −16.1781 −0.565309
\(820\) 0 0
\(821\) 3.56378 0.124377 0.0621884 0.998064i \(-0.480192\pi\)
0.0621884 + 0.998064i \(0.480192\pi\)
\(822\) −27.5337 −0.960347
\(823\) 54.9352 1.91492 0.957461 0.288564i \(-0.0931777\pi\)
0.957461 + 0.288564i \(0.0931777\pi\)
\(824\) −22.9090 −0.798073
\(825\) 0 0
\(826\) −8.52330 −0.296564
\(827\) 55.6540 1.93528 0.967640 0.252335i \(-0.0811986\pi\)
0.967640 + 0.252335i \(0.0811986\pi\)
\(828\) −12.1727 −0.423030
\(829\) 24.1406 0.838439 0.419219 0.907885i \(-0.362304\pi\)
0.419219 + 0.907885i \(0.362304\pi\)
\(830\) 0 0
\(831\) −62.5302 −2.16915
\(832\) 47.6292 1.65125
\(833\) −22.3390 −0.773999
\(834\) −33.1461 −1.14775
\(835\) 0 0
\(836\) 2.49090 0.0861497
\(837\) −1.14302 −0.0395084
\(838\) 13.0475 0.450720
\(839\) −5.80565 −0.200433 −0.100217 0.994966i \(-0.531954\pi\)
−0.100217 + 0.994966i \(0.531954\pi\)
\(840\) 0 0
\(841\) −28.9375 −0.997845
\(842\) −18.1469 −0.625384
\(843\) −74.2602 −2.55766
\(844\) −4.69202 −0.161506
\(845\) 0 0
\(846\) 9.61634 0.330617
\(847\) −6.58843 −0.226381
\(848\) 33.6024 1.15391
\(849\) 54.0997 1.85670
\(850\) 0 0
\(851\) 43.5313 1.49223
\(852\) −11.2083 −0.383991
\(853\) −1.99743 −0.0683908 −0.0341954 0.999415i \(-0.510887\pi\)
−0.0341954 + 0.999415i \(0.510887\pi\)
\(854\) −12.3749 −0.423462
\(855\) 0 0
\(856\) 17.8828 0.611220
\(857\) −33.1164 −1.13123 −0.565617 0.824668i \(-0.691362\pi\)
−0.565617 + 0.824668i \(0.691362\pi\)
\(858\) 75.8610 2.58985
\(859\) 12.0670 0.411719 0.205860 0.978582i \(-0.434001\pi\)
0.205860 + 0.978582i \(0.434001\pi\)
\(860\) 0 0
\(861\) −5.45270 −0.185828
\(862\) −33.1385 −1.12870
\(863\) −36.3710 −1.23808 −0.619041 0.785359i \(-0.712479\pi\)
−0.619041 + 0.785359i \(0.712479\pi\)
\(864\) −3.26127 −0.110951
\(865\) 0 0
\(866\) −18.1185 −0.615693
\(867\) −11.2954 −0.383611
\(868\) −0.243681 −0.00827108
\(869\) 14.8878 0.505035
\(870\) 0 0
\(871\) 0.154429 0.00523263
\(872\) 45.4905 1.54050
\(873\) 18.5701 0.628501
\(874\) −16.6552 −0.563369
\(875\) 0 0
\(876\) −12.1227 −0.409588
\(877\) −17.3189 −0.584818 −0.292409 0.956293i \(-0.594457\pi\)
−0.292409 + 0.956293i \(0.594457\pi\)
\(878\) 16.5961 0.560092
\(879\) 48.7988 1.64594
\(880\) 0 0
\(881\) −53.3439 −1.79720 −0.898600 0.438768i \(-0.855415\pi\)
−0.898600 + 0.438768i \(0.855415\pi\)
\(882\) 28.7227 0.967145
\(883\) −46.1134 −1.55184 −0.775919 0.630832i \(-0.782714\pi\)
−0.775919 + 0.630832i \(0.782714\pi\)
\(884\) −7.32626 −0.246409
\(885\) 0 0
\(886\) 1.36996 0.0460248
\(887\) −34.7806 −1.16782 −0.583908 0.811820i \(-0.698477\pi\)
−0.583908 + 0.811820i \(0.698477\pi\)
\(888\) 38.5058 1.29217
\(889\) −8.30871 −0.278665
\(890\) 0 0
\(891\) 29.8369 0.999575
\(892\) 1.72150 0.0576400
\(893\) −3.13896 −0.105041
\(894\) −8.72523 −0.291815
\(895\) 0 0
\(896\) 5.88821 0.196711
\(897\) 121.011 4.04043
\(898\) 40.6242 1.35565
\(899\) −0.188089 −0.00627312
\(900\) 0 0
\(901\) −38.7128 −1.28971
\(902\) 13.9318 0.463877
\(903\) −8.60063 −0.286211
\(904\) 25.8817 0.860814
\(905\) 0 0
\(906\) −10.1684 −0.337822
\(907\) 39.7663 1.32042 0.660209 0.751082i \(-0.270468\pi\)
0.660209 + 0.751082i \(0.270468\pi\)
\(908\) −4.04937 −0.134383
\(909\) 34.3542 1.13946
\(910\) 0 0
\(911\) −33.6230 −1.11398 −0.556991 0.830519i \(-0.688044\pi\)
−0.556991 + 0.830519i \(0.688044\pi\)
\(912\) −11.7854 −0.390252
\(913\) 4.13594 0.136880
\(914\) −4.13659 −0.136826
\(915\) 0 0
\(916\) −9.82452 −0.324611
\(917\) −5.14113 −0.169775
\(918\) −6.85274 −0.226174
\(919\) −49.8301 −1.64374 −0.821872 0.569673i \(-0.807070\pi\)
−0.821872 + 0.569673i \(0.807070\pi\)
\(920\) 0 0
\(921\) 39.7856 1.31098
\(922\) 3.26624 0.107568
\(923\) 60.7131 1.99840
\(924\) −3.60898 −0.118727
\(925\) 0 0
\(926\) −45.6120 −1.49890
\(927\) −27.1470 −0.891626
\(928\) −0.536658 −0.0176167
\(929\) 10.7631 0.353127 0.176564 0.984289i \(-0.443502\pi\)
0.176564 + 0.984289i \(0.443502\pi\)
\(930\) 0 0
\(931\) −9.37566 −0.307275
\(932\) −1.35344 −0.0443333
\(933\) −41.7357 −1.36637
\(934\) 1.25248 0.0409823
\(935\) 0 0
\(936\) 58.3247 1.90640
\(937\) 10.8163 0.353354 0.176677 0.984269i \(-0.443465\pi\)
0.176677 + 0.984269i \(0.443465\pi\)
\(938\) 0.0307951 0.00100549
\(939\) −76.3119 −2.49034
\(940\) 0 0
\(941\) −56.1398 −1.83011 −0.915053 0.403333i \(-0.867852\pi\)
−0.915053 + 0.403333i \(0.867852\pi\)
\(942\) −4.89974 −0.159642
\(943\) 22.2235 0.723696
\(944\) 24.5811 0.800047
\(945\) 0 0
\(946\) 21.9748 0.714461
\(947\) 11.8386 0.384704 0.192352 0.981326i \(-0.438388\pi\)
0.192352 + 0.981326i \(0.438388\pi\)
\(948\) 3.39277 0.110192
\(949\) 65.6660 2.13161
\(950\) 0 0
\(951\) −43.1991 −1.40083
\(952\) −9.04568 −0.293172
\(953\) 41.9706 1.35956 0.679781 0.733416i \(-0.262075\pi\)
0.679781 + 0.733416i \(0.262075\pi\)
\(954\) 49.7757 1.61155
\(955\) 0 0
\(956\) −11.3838 −0.368177
\(957\) −2.78564 −0.0900470
\(958\) −8.47038 −0.273665
\(959\) −7.09531 −0.229119
\(960\) 0 0
\(961\) −30.4339 −0.981740
\(962\) −33.6868 −1.08611
\(963\) 21.1910 0.682870
\(964\) 11.2771 0.363212
\(965\) 0 0
\(966\) 24.1310 0.776404
\(967\) 19.7955 0.636580 0.318290 0.947993i \(-0.396891\pi\)
0.318290 + 0.947993i \(0.396891\pi\)
\(968\) 23.7524 0.763430
\(969\) 13.5777 0.436179
\(970\) 0 0
\(971\) −23.3780 −0.750235 −0.375118 0.926977i \(-0.622398\pi\)
−0.375118 + 0.926977i \(0.622398\pi\)
\(972\) 8.55525 0.274410
\(973\) −8.54160 −0.273831
\(974\) 45.4499 1.45631
\(975\) 0 0
\(976\) 35.6892 1.14238
\(977\) 11.4712 0.366995 0.183498 0.983020i \(-0.441258\pi\)
0.183498 + 0.983020i \(0.441258\pi\)
\(978\) −3.91096 −0.125059
\(979\) 26.6655 0.852234
\(980\) 0 0
\(981\) 53.9060 1.72109
\(982\) 41.1054 1.31173
\(983\) −32.2131 −1.02744 −0.513719 0.857959i \(-0.671732\pi\)
−0.513719 + 0.857959i \(0.671732\pi\)
\(984\) 19.6579 0.626670
\(985\) 0 0
\(986\) −1.12765 −0.0359118
\(987\) 4.54793 0.144762
\(988\) −3.07483 −0.0978235
\(989\) 35.0534 1.11463
\(990\) 0 0
\(991\) −12.0981 −0.384308 −0.192154 0.981365i \(-0.561547\pi\)
−0.192154 + 0.981365i \(0.561547\pi\)
\(992\) 1.61513 0.0512805
\(993\) 60.3806 1.91612
\(994\) 12.1069 0.384009
\(995\) 0 0
\(996\) 0.942534 0.0298653
\(997\) −28.4299 −0.900383 −0.450192 0.892932i \(-0.648644\pi\)
−0.450192 + 0.892932i \(0.648644\pi\)
\(998\) −12.8397 −0.406432
\(999\) 7.51719 0.237833
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4925.2.a.q.1.12 yes 37
5.4 even 2 4925.2.a.p.1.26 37
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4925.2.a.p.1.26 37 5.4 even 2
4925.2.a.q.1.12 yes 37 1.1 even 1 trivial