Properties

Label 4925.2.a.q.1.12
Level 49254925
Weight 22
Character 4925.1
Self dual yes
Analytic conductor 39.32639.326
Analytic rank 00
Dimension 3737
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4925,2,Mod(1,4925)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4925, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4925.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 4925=52197 4925 = 5^{2} \cdot 197
Weight: k k == 2 2
Character orbit: [χ][\chi] == 4925.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 39.326322995539.3263229955
Analytic rank: 00
Dimension: 3737
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.12
Character χ\chi == 4925.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q1.27073q2+2.56743q30.385233q43.26253q60.840739q7+3.03100q8+3.59172q94.34010q110.989061q12+5.35753q13+1.06836q143.08113q16+3.54972q174.56412q18+1.48982q192.15854q21+5.51512q22+8.79752q23+7.78189q246.80800q26+1.51920q27+0.323881q28+0.249992q290.752380q312.14670q3211.1429q334.51075q341.38365q36+4.94813q371.89316q38+13.7551q39+2.52610q41+2.74294q42+3.98446q43+1.67195q4411.1793q462.10694q477.91060q486.29316q49+9.11368q512.06390q5210.9059q531.93050q542.54828q56+3.82501q570.317674q587.97796q5911.5832q61+0.956075q623.01970q63+8.89014q64+14.1597q66+0.0288247q671.36747q68+22.5871q69+11.3323q71+10.8865q72+12.2568q736.28775q740.573928q76+3.64889q7717.4791q783.43029q796.87471q813.21001q820.952959q83+0.831543q845.06319q86+0.641838q8713.1548q886.14398q894.50428q913.38910q921.93169q93+2.67736q945.51151q96+5.17024q97+7.99693q9815.5884q99+O(q100)q-1.27073 q^{2} +2.56743 q^{3} -0.385233 q^{4} -3.26253 q^{6} -0.840739 q^{7} +3.03100 q^{8} +3.59172 q^{9} -4.34010 q^{11} -0.989061 q^{12} +5.35753 q^{13} +1.06836 q^{14} -3.08113 q^{16} +3.54972 q^{17} -4.56412 q^{18} +1.48982 q^{19} -2.15854 q^{21} +5.51512 q^{22} +8.79752 q^{23} +7.78189 q^{24} -6.80800 q^{26} +1.51920 q^{27} +0.323881 q^{28} +0.249992 q^{29} -0.752380 q^{31} -2.14670 q^{32} -11.1429 q^{33} -4.51075 q^{34} -1.38365 q^{36} +4.94813 q^{37} -1.89316 q^{38} +13.7551 q^{39} +2.52610 q^{41} +2.74294 q^{42} +3.98446 q^{43} +1.67195 q^{44} -11.1793 q^{46} -2.10694 q^{47} -7.91060 q^{48} -6.29316 q^{49} +9.11368 q^{51} -2.06390 q^{52} -10.9059 q^{53} -1.93050 q^{54} -2.54828 q^{56} +3.82501 q^{57} -0.317674 q^{58} -7.97796 q^{59} -11.5832 q^{61} +0.956075 q^{62} -3.01970 q^{63} +8.89014 q^{64} +14.1597 q^{66} +0.0288247 q^{67} -1.36747 q^{68} +22.5871 q^{69} +11.3323 q^{71} +10.8865 q^{72} +12.2568 q^{73} -6.28775 q^{74} -0.573928 q^{76} +3.64889 q^{77} -17.4791 q^{78} -3.43029 q^{79} -6.87471 q^{81} -3.21001 q^{82} -0.952959 q^{83} +0.831543 q^{84} -5.06319 q^{86} +0.641838 q^{87} -13.1548 q^{88} -6.14398 q^{89} -4.50428 q^{91} -3.38910 q^{92} -1.93169 q^{93} +2.67736 q^{94} -5.51151 q^{96} +5.17024 q^{97} +7.99693 q^{98} -15.5884 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 37q+2q2+q3+50q4+8q64q7+50q9+17q112q123q13+14q14+72q1610q174q18+54q19+15q2111q22+4q23+28q24++40q99+O(q100) 37 q + 2 q^{2} + q^{3} + 50 q^{4} + 8 q^{6} - 4 q^{7} + 50 q^{9} + 17 q^{11} - 2 q^{12} - 3 q^{13} + 14 q^{14} + 72 q^{16} - 10 q^{17} - 4 q^{18} + 54 q^{19} + 15 q^{21} - 11 q^{22} + 4 q^{23} + 28 q^{24}+ \cdots + 40 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −1.27073 −0.898545 −0.449273 0.893395i 0.648317π-0.648317\pi
−0.449273 + 0.893395i 0.648317π0.648317\pi
33 2.56743 1.48231 0.741154 0.671335i 0.234279π-0.234279\pi
0.741154 + 0.671335i 0.234279π0.234279\pi
44 −0.385233 −0.192617
55 0 0
66 −3.26253 −1.33192
77 −0.840739 −0.317770 −0.158885 0.987297i 0.550790π-0.550790\pi
−0.158885 + 0.987297i 0.550790π0.550790\pi
88 3.03100 1.07162
99 3.59172 1.19724
1010 0 0
1111 −4.34010 −1.30859 −0.654295 0.756240i 0.727034π-0.727034\pi
−0.654295 + 0.756240i 0.727034π0.727034\pi
1212 −0.989061 −0.285517
1313 5.35753 1.48591 0.742956 0.669341i 0.233423π-0.233423\pi
0.742956 + 0.669341i 0.233423π0.233423\pi
1414 1.06836 0.285530
1515 0 0
1616 −3.08113 −0.770282
1717 3.54972 0.860934 0.430467 0.902606i 0.358349π-0.358349\pi
0.430467 + 0.902606i 0.358349π0.358349\pi
1818 −4.56412 −1.07577
1919 1.48982 0.341788 0.170894 0.985289i 0.445334π-0.445334\pi
0.170894 + 0.985289i 0.445334π0.445334\pi
2020 0 0
2121 −2.15854 −0.471033
2222 5.51512 1.17583
2323 8.79752 1.83441 0.917205 0.398415i 0.130440π-0.130440\pi
0.917205 + 0.398415i 0.130440π0.130440\pi
2424 7.78189 1.58847
2525 0 0
2626 −6.80800 −1.33516
2727 1.51920 0.292370
2828 0.323881 0.0612077
2929 0.249992 0.0464223 0.0232112 0.999731i 0.492611π-0.492611\pi
0.0232112 + 0.999731i 0.492611π0.492611\pi
3030 0 0
3131 −0.752380 −0.135131 −0.0675657 0.997715i 0.521523π-0.521523\pi
−0.0675657 + 0.997715i 0.521523π0.521523\pi
3232 −2.14670 −0.379487
3333 −11.1429 −1.93973
3434 −4.51075 −0.773588
3535 0 0
3636 −1.38365 −0.230608
3737 4.94813 0.813467 0.406733 0.913547i 0.366668π-0.366668\pi
0.406733 + 0.913547i 0.366668π0.366668\pi
3838 −1.89316 −0.307112
3939 13.7551 2.20258
4040 0 0
4141 2.52610 0.394511 0.197256 0.980352i 0.436797π-0.436797\pi
0.197256 + 0.980352i 0.436797π0.436797\pi
4242 2.74294 0.423244
4343 3.98446 0.607624 0.303812 0.952732i 0.401740π-0.401740\pi
0.303812 + 0.952732i 0.401740π0.401740\pi
4444 1.67195 0.252056
4545 0 0
4646 −11.1793 −1.64830
4747 −2.10694 −0.307329 −0.153665 0.988123i 0.549108π-0.549108\pi
−0.153665 + 0.988123i 0.549108π0.549108\pi
4848 −7.91060 −1.14180
4949 −6.29316 −0.899022
5050 0 0
5151 9.11368 1.27617
5252 −2.06390 −0.286211
5353 −10.9059 −1.49804 −0.749018 0.662550i 0.769474π-0.769474\pi
−0.749018 + 0.662550i 0.769474π0.769474\pi
5454 −1.93050 −0.262708
5555 0 0
5656 −2.54828 −0.340528
5757 3.82501 0.506635
5858 −0.317674 −0.0417126
5959 −7.97796 −1.03864 −0.519321 0.854579i 0.673815π-0.673815\pi
−0.519321 + 0.854579i 0.673815π0.673815\pi
6060 0 0
6161 −11.5832 −1.48307 −0.741536 0.670914i 0.765902π-0.765902\pi
−0.741536 + 0.670914i 0.765902π0.765902\pi
6262 0.956075 0.121422
6363 −3.01970 −0.380446
6464 8.89014 1.11127
6565 0 0
6666 14.1597 1.74294
6767 0.0288247 0.00352150 0.00176075 0.999998i 0.499440π-0.499440\pi
0.00176075 + 0.999998i 0.499440π0.499440\pi
6868 −1.36747 −0.165830
6969 22.5871 2.71916
7070 0 0
7171 11.3323 1.34490 0.672448 0.740144i 0.265243π-0.265243\pi
0.672448 + 0.740144i 0.265243π0.265243\pi
7272 10.8865 1.28299
7373 12.2568 1.43455 0.717273 0.696792i 0.245390π-0.245390\pi
0.717273 + 0.696792i 0.245390π0.245390\pi
7474 −6.28775 −0.730937
7575 0 0
7676 −0.573928 −0.0658340
7777 3.64889 0.415830
7878 −17.4791 −1.97912
7979 −3.43029 −0.385938 −0.192969 0.981205i 0.561812π-0.561812\pi
−0.192969 + 0.981205i 0.561812π0.561812\pi
8080 0 0
8181 −6.87471 −0.763857
8282 −3.21001 −0.354486
8383 −0.952959 −0.104601 −0.0523004 0.998631i 0.516655π-0.516655\pi
−0.0523004 + 0.998631i 0.516655π0.516655\pi
8484 0.831543 0.0907287
8585 0 0
8686 −5.06319 −0.545978
8787 0.641838 0.0688123
8888 −13.1548 −1.40231
8989 −6.14398 −0.651261 −0.325631 0.945497i 0.605577π-0.605577\pi
−0.325631 + 0.945497i 0.605577π0.605577\pi
9090 0 0
9191 −4.50428 −0.472177
9292 −3.38910 −0.353338
9393 −1.93169 −0.200306
9494 2.67736 0.276149
9595 0 0
9696 −5.51151 −0.562516
9797 5.17024 0.524959 0.262479 0.964938i 0.415460π-0.415460\pi
0.262479 + 0.964938i 0.415460π0.415460\pi
9898 7.99693 0.807812
9999 −15.5884 −1.56670
100100 0 0
101101 9.56484 0.951737 0.475868 0.879516i 0.342134π-0.342134\pi
0.475868 + 0.879516i 0.342134π0.342134\pi
102102 −11.5811 −1.14670
103103 −7.55823 −0.744735 −0.372367 0.928085i 0.621454π-0.621454\pi
−0.372367 + 0.928085i 0.621454π0.621454\pi
104104 16.2387 1.59233
105105 0 0
106106 13.8585 1.34605
107107 5.89996 0.570371 0.285185 0.958472i 0.407945π-0.407945\pi
0.285185 + 0.958472i 0.407945π0.407945\pi
108108 −0.585246 −0.0563154
109109 15.0084 1.43755 0.718773 0.695245i 0.244704π-0.244704\pi
0.718773 + 0.695245i 0.244704π0.244704\pi
110110 0 0
111111 12.7040 1.20581
112112 2.59043 0.244772
113113 8.53901 0.803283 0.401641 0.915797i 0.368440π-0.368440\pi
0.401641 + 0.915797i 0.368440π0.368440\pi
114114 −4.86057 −0.455234
115115 0 0
116116 −0.0963052 −0.00894172
117117 19.2427 1.77899
118118 10.1379 0.933266
119119 −2.98439 −0.273579
120120 0 0
121121 7.83648 0.712407
122122 14.7191 1.33261
123123 6.48561 0.584787
124124 0.289842 0.0260286
125125 0 0
126126 3.83724 0.341848
127127 9.88262 0.876940 0.438470 0.898746i 0.355520π-0.355520\pi
0.438470 + 0.898746i 0.355520π0.355520\pi
128128 −7.00361 −0.619038
129129 10.2298 0.900687
130130 0 0
131131 6.11501 0.534270 0.267135 0.963659i 0.413923π-0.413923\pi
0.267135 + 0.963659i 0.413923π0.413923\pi
132132 4.29263 0.373625
133133 −1.25255 −0.108610
134134 −0.0366285 −0.00316422
135135 0 0
136136 10.7592 0.922594
137137 8.43937 0.721024 0.360512 0.932755i 0.382602π-0.382602\pi
0.360512 + 0.932755i 0.382602π0.382602\pi
138138 −28.7022 −2.44329
139139 10.1596 0.861729 0.430864 0.902417i 0.358209π-0.358209\pi
0.430864 + 0.902417i 0.358209π0.358209\pi
140140 0 0
141141 −5.40944 −0.455557
142142 −14.4003 −1.20845
143143 −23.2522 −1.94445
144144 −11.0665 −0.922212
145145 0 0
146146 −15.5751 −1.28901
147147 −16.1573 −1.33263
148148 −1.90618 −0.156687
149149 2.67438 0.219094 0.109547 0.993982i 0.465060π-0.465060\pi
0.109547 + 0.993982i 0.465060π0.465060\pi
150150 0 0
151151 3.11672 0.253635 0.126818 0.991926i 0.459524π-0.459524\pi
0.126818 + 0.991926i 0.459524π0.459524\pi
152152 4.51564 0.366267
153153 12.7496 1.03074
154154 −4.63678 −0.373642
155155 0 0
156156 −5.29892 −0.424253
157157 1.50182 0.119859 0.0599293 0.998203i 0.480912π-0.480912\pi
0.0599293 + 0.998203i 0.480912π0.480912\pi
158158 4.35899 0.346783
159159 −28.0001 −2.22055
160160 0 0
161161 −7.39642 −0.582920
162162 8.73593 0.686360
163163 1.19875 0.0938935 0.0469468 0.998897i 0.485051π-0.485051\pi
0.0469468 + 0.998897i 0.485051π0.485051\pi
164164 −0.973139 −0.0759894
165165 0 0
166166 1.21096 0.0939886
167167 0.493224 0.0381668 0.0190834 0.999818i 0.493925π-0.493925\pi
0.0190834 + 0.999818i 0.493925π0.493925\pi
168168 −6.54254 −0.504768
169169 15.7031 1.20793
170170 0 0
171171 5.35101 0.409202
172172 −1.53495 −0.117039
173173 −13.3902 −1.01804 −0.509020 0.860755i 0.669992π-0.669992\pi
−0.509020 + 0.860755i 0.669992π0.669992\pi
174174 −0.815606 −0.0618309
175175 0 0
176176 13.3724 1.00798
177177 −20.4829 −1.53959
178178 7.80737 0.585187
179179 −10.2304 −0.764653 −0.382327 0.924027i 0.624877π-0.624877\pi
−0.382327 + 0.924027i 0.624877π0.624877\pi
180180 0 0
181181 14.7223 1.09430 0.547149 0.837035i 0.315713π-0.315713\pi
0.547149 + 0.837035i 0.315713π0.315713\pi
182182 5.72375 0.424273
183183 −29.7390 −2.19837
184184 26.6653 1.96579
185185 0 0
186186 2.45466 0.179984
187187 −15.4061 −1.12661
188188 0.811664 0.0591967
189189 −1.27725 −0.0929063
190190 0 0
191191 13.7718 0.996490 0.498245 0.867036i 0.333978π-0.333978\pi
0.498245 + 0.867036i 0.333978π0.333978\pi
192192 22.8249 1.64724
193193 4.20388 0.302602 0.151301 0.988488i 0.451654π-0.451654\pi
0.151301 + 0.988488i 0.451654π0.451654\pi
194194 −6.57001 −0.471699
195195 0 0
196196 2.42433 0.173167
197197 1.00000 0.0712470
198198 19.8088 1.40775
199199 25.7088 1.82245 0.911226 0.411908i 0.135137π-0.135137\pi
0.911226 + 0.411908i 0.135137π0.135137\pi
200200 0 0
201201 0.0740055 0.00521995
202202 −12.1544 −0.855178
203203 −0.210178 −0.0147516
204204 −3.51089 −0.245812
205205 0 0
206206 9.60451 0.669178
207207 31.5982 2.19623
208208 −16.5072 −1.14457
209209 −6.46596 −0.447260
210210 0 0
211211 12.1797 0.838485 0.419242 0.907874i 0.362296π-0.362296\pi
0.419242 + 0.907874i 0.362296π0.362296\pi
212212 4.20130 0.288547
213213 29.0949 1.99355
214214 −7.49728 −0.512504
215215 0 0
216216 4.60469 0.313310
217217 0.632555 0.0429406
218218 −19.0717 −1.29170
219219 31.4685 2.12644
220220 0 0
221221 19.0177 1.27927
222222 −16.1434 −1.08347
223223 −4.46872 −0.299247 −0.149624 0.988743i 0.547806π-0.547806\pi
−0.149624 + 0.988743i 0.547806π0.547806\pi
224224 1.80482 0.120589
225225 0 0
226226 −10.8508 −0.721786
227227 10.5115 0.697671 0.348836 0.937184i 0.386577π-0.386577\pi
0.348836 + 0.937184i 0.386577π0.386577\pi
228228 −1.47352 −0.0975863
229229 25.5028 1.68527 0.842635 0.538485i 0.181003π-0.181003\pi
0.842635 + 0.538485i 0.181003π0.181003\pi
230230 0 0
231231 9.36829 0.616389
232232 0.757725 0.0497471
233233 3.51329 0.230163 0.115082 0.993356i 0.463287π-0.463287\pi
0.115082 + 0.993356i 0.463287π0.463287\pi
234234 −24.4524 −1.59850
235235 0 0
236236 3.07337 0.200060
237237 −8.80705 −0.572080
238238 3.79237 0.245823
239239 29.5503 1.91145 0.955725 0.294260i 0.0950732π-0.0950732\pi
0.955725 + 0.294260i 0.0950732π0.0950732\pi
240240 0 0
241241 −29.2735 −1.88567 −0.942836 0.333257i 0.891852π-0.891852\pi
−0.942836 + 0.333257i 0.891852π0.891852\pi
242242 −9.95808 −0.640130
243243 −22.2080 −1.42464
244244 4.46222 0.285664
245245 0 0
246246 −8.24149 −0.525458
247247 7.98174 0.507866
248248 −2.28046 −0.144809
249249 −2.44666 −0.155051
250250 0 0
251251 −0.554757 −0.0350159 −0.0175080 0.999847i 0.505573π-0.505573\pi
−0.0175080 + 0.999847i 0.505573π0.505573\pi
252252 1.16329 0.0732803
253253 −38.1821 −2.40049
254254 −12.5582 −0.787971
255255 0 0
256256 −8.88055 −0.555034
257257 6.20512 0.387065 0.193532 0.981094i 0.438006π-0.438006\pi
0.193532 + 0.981094i 0.438006π0.438006\pi
258258 −12.9994 −0.809308
259259 −4.16008 −0.258495
260260 0 0
261261 0.897901 0.0555787
262262 −7.77055 −0.480066
263263 29.1872 1.79976 0.899880 0.436138i 0.143654π-0.143654\pi
0.899880 + 0.436138i 0.143654π0.143654\pi
264264 −33.7742 −2.07866
265265 0 0
266266 1.59166 0.0975908
267267 −15.7743 −0.965370
268268 −0.0111042 −0.000678299 0
269269 −2.57989 −0.157299 −0.0786495 0.996902i 0.525061π-0.525061\pi
−0.0786495 + 0.996902i 0.525061π0.525061\pi
270270 0 0
271271 13.2844 0.806972 0.403486 0.914986i 0.367798π-0.367798\pi
0.403486 + 0.914986i 0.367798π0.367798\pi
272272 −10.9371 −0.663162
273273 −11.5645 −0.699913
274274 −10.7242 −0.647872
275275 0 0
276276 −8.70129 −0.523756
277277 −24.3551 −1.46336 −0.731679 0.681649i 0.761263π-0.761263\pi
−0.731679 + 0.681649i 0.761263π0.761263\pi
278278 −12.9102 −0.774302
279279 −2.70234 −0.161785
280280 0 0
281281 −28.9239 −1.72545 −0.862727 0.505669i 0.831246π-0.831246\pi
−0.862727 + 0.505669i 0.831246π0.831246\pi
282282 6.87396 0.409338
283283 21.0715 1.25257 0.626285 0.779594i 0.284574π-0.284574\pi
0.626285 + 0.779594i 0.284574π0.284574\pi
284284 −4.36558 −0.259049
285285 0 0
286286 29.5474 1.74717
287287 −2.12380 −0.125364
288288 −7.71034 −0.454336
289289 −4.39948 −0.258793
290290 0 0
291291 13.2743 0.778151
292292 −4.72172 −0.276318
293293 19.0068 1.11039 0.555195 0.831720i 0.312643π-0.312643\pi
0.555195 + 0.831720i 0.312643π0.312643\pi
294294 20.5316 1.19743
295295 0 0
296296 14.9978 0.871727
297297 −6.59348 −0.382593
298298 −3.39843 −0.196866
299299 47.1330 2.72577
300300 0 0
301301 −3.34989 −0.193085
302302 −3.96053 −0.227903
303303 24.5571 1.41077
304304 −4.59032 −0.263273
305305 0 0
306306 −16.2014 −0.926170
307307 15.4963 0.884418 0.442209 0.896912i 0.354195π-0.354195\pi
0.442209 + 0.896912i 0.354195π0.354195\pi
308308 −1.40568 −0.0800958
309309 −19.4053 −1.10393
310310 0 0
311311 −16.2558 −0.921782 −0.460891 0.887457i 0.652470π-0.652470\pi
−0.460891 + 0.887457i 0.652470π0.652470\pi
312312 41.6917 2.36033
313313 −29.7230 −1.68004 −0.840022 0.542552i 0.817458π-0.817458\pi
−0.840022 + 0.542552i 0.817458π0.817458\pi
314314 −1.90842 −0.107698
315315 0 0
316316 1.32146 0.0743381
317317 −16.8258 −0.945031 −0.472515 0.881322i 0.656654π-0.656654\pi
−0.472515 + 0.881322i 0.656654π0.656654\pi
318318 35.5807 1.99527
319319 −1.08499 −0.0607478
320320 0 0
321321 15.1478 0.845465
322322 9.39889 0.523780
323323 5.28844 0.294257
324324 2.64837 0.147132
325325 0 0
326326 −1.52330 −0.0843676
327327 38.5331 2.13089
328328 7.65662 0.422766
329329 1.77139 0.0976598
330330 0 0
331331 23.5179 1.29266 0.646330 0.763058i 0.276303π-0.276303\pi
0.646330 + 0.763058i 0.276303π0.276303\pi
332332 0.367111 0.0201479
333333 17.7723 0.973915
334334 −0.626756 −0.0342946
335335 0 0
336336 6.65075 0.362828
337337 4.98221 0.271398 0.135699 0.990750i 0.456672π-0.456672\pi
0.135699 + 0.990750i 0.456672π0.456672\pi
338338 −19.9545 −1.08538
339339 21.9234 1.19071
340340 0 0
341341 3.26540 0.176832
342342 −6.79971 −0.367686
343343 11.1761 0.603452
344344 12.0769 0.651142
345345 0 0
346346 17.0154 0.914754
347347 −35.9354 −1.92911 −0.964557 0.263874i 0.915000π-0.915000\pi
−0.964557 + 0.263874i 0.915000π0.915000\pi
348348 −0.247257 −0.0132544
349349 4.84440 0.259315 0.129657 0.991559i 0.458612π-0.458612\pi
0.129657 + 0.991559i 0.458612π0.458612\pi
350350 0 0
351351 8.13916 0.434436
352352 9.31690 0.496592
353353 29.6559 1.57842 0.789211 0.614122i 0.210490π-0.210490\pi
0.789211 + 0.614122i 0.210490π0.210490\pi
354354 26.0283 1.38339
355355 0 0
356356 2.36687 0.125444
357357 −7.66223 −0.405528
358358 13.0001 0.687075
359359 −33.3896 −1.76224 −0.881118 0.472896i 0.843209π-0.843209\pi
−0.881118 + 0.472896i 0.843209π0.843209\pi
360360 0 0
361361 −16.7804 −0.883181
362362 −18.7081 −0.983276
363363 20.1196 1.05601
364364 1.73520 0.0909492
365365 0 0
366366 37.7904 1.97533
367367 −36.2306 −1.89122 −0.945612 0.325296i 0.894536π-0.894536\pi
−0.945612 + 0.325296i 0.894536π0.894536\pi
368368 −27.1063 −1.41301
369369 9.07306 0.472324
370370 0 0
371371 9.16899 0.476030
372372 0.744150 0.0385824
373373 −12.7415 −0.659730 −0.329865 0.944028i 0.607003π-0.607003\pi
−0.329865 + 0.944028i 0.607003π0.607003\pi
374374 19.5771 1.01231
375375 0 0
376376 −6.38614 −0.329340
377377 1.33934 0.0689795
378378 1.62305 0.0834805
379379 14.1352 0.726078 0.363039 0.931774i 0.381739π-0.381739\pi
0.363039 + 0.931774i 0.381739π0.381739\pi
380380 0 0
381381 25.3730 1.29990
382382 −17.5003 −0.895391
383383 −13.6470 −0.697331 −0.348665 0.937247i 0.613365π-0.613365\pi
−0.348665 + 0.937247i 0.613365π0.613365\pi
384384 −17.9813 −0.917605
385385 0 0
386386 −5.34202 −0.271902
387387 14.3111 0.727472
388388 −1.99175 −0.101116
389389 −8.53466 −0.432725 −0.216362 0.976313i 0.569419π-0.569419\pi
−0.216362 + 0.976313i 0.569419π0.569419\pi
390390 0 0
391391 31.2288 1.57931
392392 −19.0746 −0.963410
393393 15.6999 0.791954
394394 −1.27073 −0.0640187
395395 0 0
396396 6.00518 0.301772
397397 10.1191 0.507865 0.253933 0.967222i 0.418276π-0.418276\pi
0.253933 + 0.967222i 0.418276π0.418276\pi
398398 −32.6691 −1.63755
399399 −3.21584 −0.160993
400400 0 0
401401 −15.9024 −0.794130 −0.397065 0.917790i 0.629971π-0.629971\pi
−0.397065 + 0.917790i 0.629971π0.629971\pi
402402 −0.0940414 −0.00469036
403403 −4.03090 −0.200793
404404 −3.68469 −0.183320
405405 0 0
406406 0.267081 0.0132550
407407 −21.4754 −1.06449
408408 27.6235 1.36757
409409 −34.8872 −1.72506 −0.862531 0.506005i 0.831122π-0.831122\pi
−0.862531 + 0.506005i 0.831122π0.831122\pi
410410 0 0
411411 21.6675 1.06878
412412 2.91168 0.143448
413413 6.70738 0.330049
414414 −40.1530 −1.97341
415415 0 0
416416 −11.5010 −0.563883
417417 26.0842 1.27735
418418 8.21652 0.401883
419419 −10.2677 −0.501611 −0.250805 0.968038i 0.580695π-0.580695\pi
−0.250805 + 0.968038i 0.580695π0.580695\pi
420420 0 0
421421 14.2806 0.695996 0.347998 0.937495i 0.386862π-0.386862\pi
0.347998 + 0.937495i 0.386862π0.386862\pi
422422 −15.4772 −0.753417
423423 −7.56754 −0.367947
424424 −33.0557 −1.60532
425425 0 0
426426 −36.9719 −1.79130
427427 9.73841 0.471275
428428 −2.27286 −0.109863
429429 −59.6985 −2.88227
430430 0 0
431431 26.0782 1.25614 0.628072 0.778155i 0.283844π-0.283844\pi
0.628072 + 0.778155i 0.283844π0.283844\pi
432432 −4.68085 −0.225208
433433 14.2583 0.685211 0.342605 0.939479i 0.388691π-0.388691\pi
0.342605 + 0.939479i 0.388691π0.388691\pi
434434 −0.803810 −0.0385841
435435 0 0
436436 −5.78174 −0.276895
437437 13.1067 0.626979
438438 −39.9881 −1.91070
439439 −13.0603 −0.623332 −0.311666 0.950192i 0.600887π-0.600887\pi
−0.311666 + 0.950192i 0.600887π0.600887\pi
440440 0 0
441441 −22.6033 −1.07635
442442 −24.1665 −1.14948
443443 −1.07809 −0.0512214 −0.0256107 0.999672i 0.508153π-0.508153\pi
−0.0256107 + 0.999672i 0.508153π0.508153\pi
444444 −4.89400 −0.232259
445445 0 0
446446 5.67856 0.268887
447447 6.86629 0.324764
448448 −7.47429 −0.353127
449449 −31.9691 −1.50871 −0.754357 0.656465i 0.772051π-0.772051\pi
−0.754357 + 0.656465i 0.772051π0.772051\pi
450450 0 0
451451 −10.9635 −0.516253
452452 −3.28951 −0.154726
453453 8.00198 0.375966
454454 −13.3573 −0.626889
455455 0 0
456456 11.5936 0.542920
457457 3.25528 0.152275 0.0761377 0.997097i 0.475741π-0.475741\pi
0.0761377 + 0.997097i 0.475741π0.475741\pi
458458 −32.4073 −1.51429
459459 5.39274 0.251711
460460 0 0
461461 −2.57036 −0.119713 −0.0598567 0.998207i 0.519064π-0.519064\pi
−0.0598567 + 0.998207i 0.519064π0.519064\pi
462462 −11.9046 −0.553853
463463 35.8942 1.66814 0.834072 0.551655i 0.186003π-0.186003\pi
0.834072 + 0.551655i 0.186003π0.186003\pi
464464 −0.770258 −0.0357583
465465 0 0
466466 −4.46446 −0.206812
467467 −0.985633 −0.0456096 −0.0228048 0.999740i 0.507260π-0.507260\pi
−0.0228048 + 0.999740i 0.507260π0.507260\pi
468468 −7.41294 −0.342663
469469 −0.0242341 −0.00111902
470470 0 0
471471 3.85583 0.177667
472472 −24.1812 −1.11303
473473 −17.2930 −0.795131
474474 11.1914 0.514039
475475 0 0
476476 1.14969 0.0526958
477477 −39.1708 −1.79351
478478 −37.5506 −1.71752
479479 6.66573 0.304565 0.152283 0.988337i 0.451338π-0.451338\pi
0.152283 + 0.988337i 0.451338π0.451338\pi
480480 0 0
481481 26.5097 1.20874
482482 37.1989 1.69436
483483 −18.9898 −0.864067
484484 −3.01887 −0.137221
485485 0 0
486486 28.2204 1.28011
487487 −35.7666 −1.62074 −0.810370 0.585919i 0.800734π-0.800734\pi
−0.810370 + 0.585919i 0.800734π0.800734\pi
488488 −35.1085 −1.58929
489489 3.07772 0.139179
490490 0 0
491491 −32.3477 −1.45983 −0.729916 0.683537i 0.760441π-0.760441\pi
−0.729916 + 0.683537i 0.760441π0.760441\pi
492492 −2.49847 −0.112640
493493 0.887402 0.0399666
494494 −10.1427 −0.456341
495495 0 0
496496 2.31818 0.104089
497497 −9.52751 −0.427367
498498 3.10905 0.139320
499499 10.1041 0.452323 0.226161 0.974090i 0.427382π-0.427382\pi
0.226161 + 0.974090i 0.427382π0.427382\pi
500500 0 0
501501 1.26632 0.0565750
502502 0.704948 0.0314634
503503 −3.84475 −0.171429 −0.0857146 0.996320i 0.527317π-0.527317\pi
−0.0857146 + 0.996320i 0.527317π0.527317\pi
504504 −9.15271 −0.407694
505505 0 0
506506 48.5194 2.15695
507507 40.3167 1.79053
508508 −3.80711 −0.168913
509509 −28.0430 −1.24298 −0.621491 0.783421i 0.713473π-0.713473\pi
−0.621491 + 0.783421i 0.713473π0.713473\pi
510510 0 0
511511 −10.3048 −0.455855
512512 25.2921 1.11776
513513 2.26333 0.0999285
514514 −7.88506 −0.347795
515515 0 0
516516 −3.94087 −0.173487
517517 9.14434 0.402168
518518 5.28636 0.232269
519519 −34.3785 −1.50905
520520 0 0
521521 22.7189 0.995333 0.497666 0.867369i 0.334190π-0.334190\pi
0.497666 + 0.867369i 0.334190π0.334190\pi
522522 −1.14099 −0.0499400
523523 15.5424 0.679622 0.339811 0.940494i 0.389637π-0.389637\pi
0.339811 + 0.940494i 0.389637π0.389637\pi
524524 −2.35570 −0.102909
525525 0 0
526526 −37.0892 −1.61717
527527 −2.67074 −0.116339
528528 34.3328 1.49414
529529 54.3964 2.36506
530530 0 0
531531 −28.6546 −1.24350
532532 0.482523 0.0209200
533533 13.5337 0.586209
534534 20.0449 0.867429
535535 0 0
536536 0.0873676 0.00377371
537537 −26.2658 −1.13345
538538 3.27836 0.141340
539539 27.3129 1.17645
540540 0 0
541541 −29.7765 −1.28019 −0.640097 0.768294i 0.721106π-0.721106\pi
−0.640097 + 0.768294i 0.721106π0.721106\pi
542542 −16.8810 −0.725100
543543 37.7985 1.62209
544544 −7.62019 −0.326713
545545 0 0
546546 14.6954 0.628903
547547 31.5735 1.34998 0.674992 0.737825i 0.264147π-0.264147\pi
0.674992 + 0.737825i 0.264147π0.264147\pi
548548 −3.25113 −0.138881
549549 −41.6034 −1.77559
550550 0 0
551551 0.372443 0.0158666
552552 68.4614 2.91391
553553 2.88398 0.122639
554554 30.9489 1.31489
555555 0 0
556556 −3.91383 −0.165983
557557 −0.211991 −0.00898235 −0.00449118 0.999990i 0.501430π-0.501430\pi
−0.00449118 + 0.999990i 0.501430π0.501430\pi
558558 3.43395 0.145371
559559 21.3469 0.902876
560560 0 0
561561 −39.5543 −1.66998
562562 36.7546 1.55040
563563 20.5800 0.867346 0.433673 0.901070i 0.357217π-0.357217\pi
0.433673 + 0.901070i 0.357217π0.357217\pi
564564 2.08389 0.0877478
565565 0 0
566566 −26.7763 −1.12549
567567 5.77984 0.242730
568568 34.3482 1.44122
569569 −8.21040 −0.344198 −0.172099 0.985080i 0.555055π-0.555055\pi
−0.172099 + 0.985080i 0.555055π0.555055\pi
570570 0 0
571571 −30.4973 −1.27627 −0.638135 0.769924i 0.720294π-0.720294\pi
−0.638135 + 0.769924i 0.720294π0.720294\pi
572572 8.95753 0.374533
573573 35.3581 1.47711
574574 2.69878 0.112645
575575 0 0
576576 31.9309 1.33045
577577 −10.5889 −0.440820 −0.220410 0.975407i 0.570740π-0.570740\pi
−0.220410 + 0.975407i 0.570740π0.570740\pi
578578 5.59057 0.232537
579579 10.7932 0.448550
580580 0 0
581581 0.801190 0.0332390
582582 −16.8681 −0.699204
583583 47.3326 1.96031
584584 37.1503 1.53729
585585 0 0
586586 −24.1526 −0.997736
587587 −44.9239 −1.85421 −0.927104 0.374804i 0.877710π-0.877710\pi
−0.927104 + 0.374804i 0.877710π0.877710\pi
588588 6.22432 0.256687
589589 −1.12091 −0.0461863
590590 0 0
591591 2.56743 0.105610
592592 −15.2458 −0.626599
593593 9.24694 0.379726 0.189863 0.981811i 0.439196π-0.439196\pi
0.189863 + 0.981811i 0.439196π0.439196\pi
594594 8.37857 0.343777
595595 0 0
596596 −1.03026 −0.0422011
597597 66.0058 2.70144
598598 −59.8935 −2.44923
599599 −24.1790 −0.987926 −0.493963 0.869483i 0.664452π-0.664452\pi
−0.493963 + 0.869483i 0.664452π0.664452\pi
600600 0 0
601601 −24.2974 −0.991112 −0.495556 0.868576i 0.665036π-0.665036\pi
−0.495556 + 0.868576i 0.665036π0.665036\pi
602602 4.25682 0.173495
603603 0.103530 0.00421608
604604 −1.20067 −0.0488544
605605 0 0
606606 −31.2055 −1.26764
607607 8.52637 0.346075 0.173037 0.984915i 0.444642π-0.444642\pi
0.173037 + 0.984915i 0.444642π0.444642\pi
608608 −3.19819 −0.129704
609609 −0.539618 −0.0218664
610610 0 0
611611 −11.2880 −0.456664
612612 −4.91157 −0.198538
613613 −15.2646 −0.616532 −0.308266 0.951300i 0.599749π-0.599749\pi
−0.308266 + 0.951300i 0.599749π0.599749\pi
614614 −19.6916 −0.794690
615615 0 0
616616 11.0598 0.445612
617617 −29.5735 −1.19058 −0.595291 0.803510i 0.702963π-0.702963\pi
−0.595291 + 0.803510i 0.702963π0.702963\pi
618618 24.6589 0.991928
619619 21.5621 0.866654 0.433327 0.901237i 0.357339π-0.357339\pi
0.433327 + 0.901237i 0.357339π0.357339\pi
620620 0 0
621621 13.3652 0.536327
622622 20.6568 0.828263
623623 5.16549 0.206951
624624 −42.3812 −1.69661
625625 0 0
626626 37.7701 1.50960
627627 −16.6009 −0.662977
628628 −0.578552 −0.0230868
629629 17.5645 0.700341
630630 0 0
631631 −9.85441 −0.392298 −0.196149 0.980574i 0.562844π-0.562844\pi
−0.196149 + 0.980574i 0.562844π0.562844\pi
632632 −10.3972 −0.413579
633633 31.2706 1.24289
634634 21.3811 0.849153
635635 0 0
636636 10.7866 0.427715
637637 −33.7158 −1.33587
638638 1.37874 0.0545846
639639 40.7024 1.61016
640640 0 0
641641 −7.63907 −0.301725 −0.150863 0.988555i 0.548205π-0.548205\pi
−0.150863 + 0.988555i 0.548205π0.548205\pi
642642 −19.2488 −0.759689
643643 15.5644 0.613801 0.306901 0.951742i 0.400708π-0.400708\pi
0.306901 + 0.951742i 0.400708π0.400708\pi
644644 2.84935 0.112280
645645 0 0
646646 −6.72020 −0.264403
647647 41.8999 1.64725 0.823627 0.567132i 0.191947π-0.191947\pi
0.823627 + 0.567132i 0.191947π0.191947\pi
648648 −20.8372 −0.818564
649649 34.6251 1.35916
650650 0 0
651651 1.62404 0.0636513
652652 −0.461799 −0.0180855
653653 4.58237 0.179322 0.0896611 0.995972i 0.471422π-0.471422\pi
0.0896611 + 0.995972i 0.471422π0.471422\pi
654654 −48.9654 −1.91470
655655 0 0
656656 −7.78325 −0.303885
657657 44.0229 1.71750
658658 −2.25097 −0.0877518
659659 −2.20124 −0.0857483 −0.0428741 0.999080i 0.513651π-0.513651\pi
−0.0428741 + 0.999080i 0.513651π0.513651\pi
660660 0 0
661661 31.1237 1.21057 0.605286 0.796008i 0.293059π-0.293059\pi
0.605286 + 0.796008i 0.293059π0.293059\pi
662662 −29.8850 −1.16151
663663 48.8268 1.89628
664664 −2.88842 −0.112092
665665 0 0
666666 −22.5838 −0.875106
667667 2.19931 0.0851576
668668 −0.190006 −0.00735156
669669 −11.4731 −0.443577
670670 0 0
671671 50.2721 1.94073
672672 4.63374 0.178751
673673 −16.0139 −0.617290 −0.308645 0.951177i 0.599875π-0.599875\pi
−0.308645 + 0.951177i 0.599875π0.599875\pi
674674 −6.33107 −0.243864
675675 0 0
676676 −6.04936 −0.232668
677677 12.4482 0.478424 0.239212 0.970967i 0.423111π-0.423111\pi
0.239212 + 0.970967i 0.423111π0.423111\pi
678678 −27.8588 −1.06991
679679 −4.34683 −0.166816
680680 0 0
681681 26.9875 1.03416
682682 −4.14946 −0.158891
683683 27.0020 1.03320 0.516601 0.856226i 0.327197π-0.327197\pi
0.516601 + 0.856226i 0.327197π0.327197\pi
684684 −2.06139 −0.0788191
685685 0 0
686686 −14.2018 −0.542229
687687 65.4767 2.49809
688688 −12.2766 −0.468042
689689 −58.4285 −2.22595
690690 0 0
691691 26.3961 1.00416 0.502078 0.864822i 0.332569π-0.332569\pi
0.502078 + 0.864822i 0.332569π0.332569\pi
692692 5.15836 0.196091
693693 13.1058 0.497848
694694 45.6644 1.73340
695695 0 0
696696 1.94541 0.0737406
697697 8.96697 0.339648
698698 −6.15594 −0.233006
699699 9.02014 0.341173
700700 0 0
701701 −28.2190 −1.06582 −0.532908 0.846173i 0.678901π-0.678901\pi
−0.532908 + 0.846173i 0.678901π0.678901\pi
702702 −10.3427 −0.390360
703703 7.37181 0.278033
704704 −38.5841 −1.45419
705705 0 0
706706 −37.6847 −1.41828
707707 −8.04153 −0.302433
708708 7.89069 0.296550
709709 2.62332 0.0985207 0.0492604 0.998786i 0.484314π-0.484314\pi
0.0492604 + 0.998786i 0.484314π0.484314\pi
710710 0 0
711711 −12.3207 −0.462061
712712 −18.6224 −0.697904
713713 −6.61908 −0.247886
714714 9.73666 0.364385
715715 0 0
716716 3.94108 0.147285
717717 75.8685 2.83336
718718 42.4293 1.58345
719719 7.79924 0.290863 0.145431 0.989368i 0.453543π-0.453543\pi
0.145431 + 0.989368i 0.453543π0.453543\pi
720720 0 0
721721 6.35450 0.236654
722722 21.3235 0.793578
723723 −75.1578 −2.79515
724724 −5.67151 −0.210780
725725 0 0
726726 −25.5667 −0.948870
727727 −32.8349 −1.21778 −0.608889 0.793256i 0.708384π-0.708384\pi
−0.608889 + 0.793256i 0.708384π0.708384\pi
728728 −13.6525 −0.505995
729729 −36.3934 −1.34790
730730 0 0
731731 14.1437 0.523125
732732 11.4564 0.423443
733733 6.54261 0.241657 0.120828 0.992673i 0.461445π-0.461445\pi
0.120828 + 0.992673i 0.461445π0.461445\pi
734734 46.0395 1.69935
735735 0 0
736736 −18.8856 −0.696134
737737 −0.125102 −0.00460820
738738 −11.5294 −0.424405
739739 41.6103 1.53066 0.765330 0.643639i 0.222576π-0.222576\pi
0.765330 + 0.643639i 0.222576π0.222576\pi
740740 0 0
741741 20.4926 0.752815
742742 −11.6514 −0.427735
743743 9.77987 0.358789 0.179394 0.983777i 0.442586π-0.442586\pi
0.179394 + 0.983777i 0.442586π0.442586\pi
744744 −5.85494 −0.214652
745745 0 0
746746 16.1911 0.592797
747747 −3.42276 −0.125232
748748 5.93496 0.217004
749749 −4.96033 −0.181246
750750 0 0
751751 28.5826 1.04299 0.521496 0.853253i 0.325374π-0.325374\pi
0.521496 + 0.853253i 0.325374π0.325374\pi
752752 6.49176 0.236730
753753 −1.42430 −0.0519044
754754 −1.70194 −0.0619812
755755 0 0
756756 0.492040 0.0178953
757757 8.24184 0.299555 0.149777 0.988720i 0.452144π-0.452144\pi
0.149777 + 0.988720i 0.452144π0.452144\pi
758758 −17.9621 −0.652414
759759 −98.0301 −3.55827
760760 0 0
761761 42.3724 1.53600 0.767999 0.640451i 0.221253π-0.221253\pi
0.767999 + 0.640451i 0.221253π0.221253\pi
762762 −32.2423 −1.16802
763763 −12.6182 −0.456808
764764 −5.30534 −0.191941
765765 0 0
766766 17.3418 0.626583
767767 −42.7421 −1.54333
768768 −22.8002 −0.822733
769769 30.7290 1.10812 0.554058 0.832478i 0.313079π-0.313079\pi
0.554058 + 0.832478i 0.313079π0.313079\pi
770770 0 0
771771 15.9312 0.573750
772772 −1.61948 −0.0582862
773773 37.3634 1.34387 0.671934 0.740611i 0.265464π-0.265464\pi
0.671934 + 0.740611i 0.265464π0.265464\pi
774774 −18.1856 −0.653667
775775 0 0
776776 15.6710 0.562556
777777 −10.6807 −0.383169
778778 10.8453 0.388823
779779 3.76344 0.134839
780780 0 0
781781 −49.1833 −1.75992
782782 −39.6835 −1.41908
783783 0.379788 0.0135725
784784 19.3900 0.692501
785785 0 0
786786 −19.9504 −0.711606
787787 −22.5392 −0.803437 −0.401719 0.915763i 0.631587π-0.631587\pi
−0.401719 + 0.915763i 0.631587π0.631587\pi
788788 −0.385233 −0.0137234
789789 74.9362 2.66780
790790 0 0
791791 −7.17909 −0.255259
792792 −47.2485 −1.67890
793793 −62.0571 −2.20371
794794 −12.8588 −0.456340
795795 0 0
796796 −9.90390 −0.351034
797797 21.8779 0.774956 0.387478 0.921879i 0.373346π-0.373346\pi
0.387478 + 0.921879i 0.373346π0.373346\pi
798798 4.08648 0.144660
799799 −7.47906 −0.264590
800800 0 0
801801 −22.0675 −0.779716
802802 20.2078 0.713562
803803 −53.1956 −1.87723
804804 −0.0285094 −0.00100545
805805 0 0
806806 5.12220 0.180422
807807 −6.62371 −0.233166
808808 28.9910 1.01990
809809 −30.9092 −1.08671 −0.543355 0.839503i 0.682846π-0.682846\pi
−0.543355 + 0.839503i 0.682846π0.682846\pi
810810 0 0
811811 29.7736 1.04549 0.522746 0.852488i 0.324907π-0.324907\pi
0.522746 + 0.852488i 0.324907π0.324907\pi
812812 0.0809676 0.00284141
813813 34.1069 1.19618
814814 27.2895 0.956496
815815 0 0
816816 −28.0804 −0.983011
817817 5.93612 0.207679
818818 44.3324 1.55005
819819 −16.1781 −0.565309
820820 0 0
821821 3.56378 0.124377 0.0621884 0.998064i 0.480192π-0.480192\pi
0.0621884 + 0.998064i 0.480192π0.480192\pi
822822 −27.5337 −0.960347
823823 54.9352 1.91492 0.957461 0.288564i 0.0931777π-0.0931777\pi
0.957461 + 0.288564i 0.0931777π0.0931777\pi
824824 −22.9090 −0.798073
825825 0 0
826826 −8.52330 −0.296564
827827 55.6540 1.93528 0.967640 0.252335i 0.0811986π-0.0811986\pi
0.967640 + 0.252335i 0.0811986π0.0811986\pi
828828 −12.1727 −0.423030
829829 24.1406 0.838439 0.419219 0.907885i 0.362304π-0.362304\pi
0.419219 + 0.907885i 0.362304π0.362304\pi
830830 0 0
831831 −62.5302 −2.16915
832832 47.6292 1.65125
833833 −22.3390 −0.773999
834834 −33.1461 −1.14775
835835 0 0
836836 2.49090 0.0861497
837837 −1.14302 −0.0395084
838838 13.0475 0.450720
839839 −5.80565 −0.200433 −0.100217 0.994966i 0.531954π-0.531954\pi
−0.100217 + 0.994966i 0.531954π0.531954\pi
840840 0 0
841841 −28.9375 −0.997845
842842 −18.1469 −0.625384
843843 −74.2602 −2.55766
844844 −4.69202 −0.161506
845845 0 0
846846 9.61634 0.330617
847847 −6.58843 −0.226381
848848 33.6024 1.15391
849849 54.0997 1.85670
850850 0 0
851851 43.5313 1.49223
852852 −11.2083 −0.383991
853853 −1.99743 −0.0683908 −0.0341954 0.999415i 0.510887π-0.510887\pi
−0.0341954 + 0.999415i 0.510887π0.510887\pi
854854 −12.3749 −0.423462
855855 0 0
856856 17.8828 0.611220
857857 −33.1164 −1.13123 −0.565617 0.824668i 0.691362π-0.691362\pi
−0.565617 + 0.824668i 0.691362π0.691362\pi
858858 75.8610 2.58985
859859 12.0670 0.411719 0.205860 0.978582i 0.434001π-0.434001\pi
0.205860 + 0.978582i 0.434001π0.434001\pi
860860 0 0
861861 −5.45270 −0.185828
862862 −33.1385 −1.12870
863863 −36.3710 −1.23808 −0.619041 0.785359i 0.712479π-0.712479\pi
−0.619041 + 0.785359i 0.712479π0.712479\pi
864864 −3.26127 −0.110951
865865 0 0
866866 −18.1185 −0.615693
867867 −11.2954 −0.383611
868868 −0.243681 −0.00827108
869869 14.8878 0.505035
870870 0 0
871871 0.154429 0.00523263
872872 45.4905 1.54050
873873 18.5701 0.628501
874874 −16.6552 −0.563369
875875 0 0
876876 −12.1227 −0.409588
877877 −17.3189 −0.584818 −0.292409 0.956293i 0.594457π-0.594457\pi
−0.292409 + 0.956293i 0.594457π0.594457\pi
878878 16.5961 0.560092
879879 48.7988 1.64594
880880 0 0
881881 −53.3439 −1.79720 −0.898600 0.438768i 0.855415π-0.855415\pi
−0.898600 + 0.438768i 0.855415π0.855415\pi
882882 28.7227 0.967145
883883 −46.1134 −1.55184 −0.775919 0.630832i 0.782714π-0.782714\pi
−0.775919 + 0.630832i 0.782714π0.782714\pi
884884 −7.32626 −0.246409
885885 0 0
886886 1.36996 0.0460248
887887 −34.7806 −1.16782 −0.583908 0.811820i 0.698477π-0.698477\pi
−0.583908 + 0.811820i 0.698477π0.698477\pi
888888 38.5058 1.29217
889889 −8.30871 −0.278665
890890 0 0
891891 29.8369 0.999575
892892 1.72150 0.0576400
893893 −3.13896 −0.105041
894894 −8.72523 −0.291815
895895 0 0
896896 5.88821 0.196711
897897 121.011 4.04043
898898 40.6242 1.35565
899899 −0.188089 −0.00627312
900900 0 0
901901 −38.7128 −1.28971
902902 13.9318 0.463877
903903 −8.60063 −0.286211
904904 25.8817 0.860814
905905 0 0
906906 −10.1684 −0.337822
907907 39.7663 1.32042 0.660209 0.751082i 0.270468π-0.270468\pi
0.660209 + 0.751082i 0.270468π0.270468\pi
908908 −4.04937 −0.134383
909909 34.3542 1.13946
910910 0 0
911911 −33.6230 −1.11398 −0.556991 0.830519i 0.688044π-0.688044\pi
−0.556991 + 0.830519i 0.688044π0.688044\pi
912912 −11.7854 −0.390252
913913 4.13594 0.136880
914914 −4.13659 −0.136826
915915 0 0
916916 −9.82452 −0.324611
917917 −5.14113 −0.169775
918918 −6.85274 −0.226174
919919 −49.8301 −1.64374 −0.821872 0.569673i 0.807070π-0.807070\pi
−0.821872 + 0.569673i 0.807070π0.807070\pi
920920 0 0
921921 39.7856 1.31098
922922 3.26624 0.107568
923923 60.7131 1.99840
924924 −3.60898 −0.118727
925925 0 0
926926 −45.6120 −1.49890
927927 −27.1470 −0.891626
928928 −0.536658 −0.0176167
929929 10.7631 0.353127 0.176564 0.984289i 0.443502π-0.443502\pi
0.176564 + 0.984289i 0.443502π0.443502\pi
930930 0 0
931931 −9.37566 −0.307275
932932 −1.35344 −0.0443333
933933 −41.7357 −1.36637
934934 1.25248 0.0409823
935935 0 0
936936 58.3247 1.90640
937937 10.8163 0.353354 0.176677 0.984269i 0.443465π-0.443465\pi
0.176677 + 0.984269i 0.443465π0.443465\pi
938938 0.0307951 0.00100549
939939 −76.3119 −2.49034
940940 0 0
941941 −56.1398 −1.83011 −0.915053 0.403333i 0.867852π-0.867852\pi
−0.915053 + 0.403333i 0.867852π0.867852\pi
942942 −4.89974 −0.159642
943943 22.2235 0.723696
944944 24.5811 0.800047
945945 0 0
946946 21.9748 0.714461
947947 11.8386 0.384704 0.192352 0.981326i 0.438388π-0.438388\pi
0.192352 + 0.981326i 0.438388π0.438388\pi
948948 3.39277 0.110192
949949 65.6660 2.13161
950950 0 0
951951 −43.1991 −1.40083
952952 −9.04568 −0.293172
953953 41.9706 1.35956 0.679781 0.733416i 0.262075π-0.262075\pi
0.679781 + 0.733416i 0.262075π0.262075\pi
954954 49.7757 1.61155
955955 0 0
956956 −11.3838 −0.368177
957957 −2.78564 −0.0900470
958958 −8.47038 −0.273665
959959 −7.09531 −0.229119
960960 0 0
961961 −30.4339 −0.981740
962962 −33.6868 −1.08611
963963 21.1910 0.682870
964964 11.2771 0.363212
965965 0 0
966966 24.1310 0.776404
967967 19.7955 0.636580 0.318290 0.947993i 0.396891π-0.396891\pi
0.318290 + 0.947993i 0.396891π0.396891\pi
968968 23.7524 0.763430
969969 13.5777 0.436179
970970 0 0
971971 −23.3780 −0.750235 −0.375118 0.926977i 0.622398π-0.622398\pi
−0.375118 + 0.926977i 0.622398π0.622398\pi
972972 8.55525 0.274410
973973 −8.54160 −0.273831
974974 45.4499 1.45631
975975 0 0
976976 35.6892 1.14238
977977 11.4712 0.366995 0.183498 0.983020i 0.441258π-0.441258\pi
0.183498 + 0.983020i 0.441258π0.441258\pi
978978 −3.91096 −0.125059
979979 26.6655 0.852234
980980 0 0
981981 53.9060 1.72109
982982 41.1054 1.31173
983983 −32.2131 −1.02744 −0.513719 0.857959i 0.671732π-0.671732\pi
−0.513719 + 0.857959i 0.671732π0.671732\pi
984984 19.6579 0.626670
985985 0 0
986986 −1.12765 −0.0359118
987987 4.54793 0.144762
988988 −3.07483 −0.0978235
989989 35.0534 1.11463
990990 0 0
991991 −12.0981 −0.384308 −0.192154 0.981365i 0.561547π-0.561547\pi
−0.192154 + 0.981365i 0.561547π0.561547\pi
992992 1.61513 0.0512805
993993 60.3806 1.91612
994994 12.1069 0.384009
995995 0 0
996996 0.942534 0.0298653
997997 −28.4299 −0.900383 −0.450192 0.892932i 0.648644π-0.648644\pi
−0.450192 + 0.892932i 0.648644π0.648644\pi
998998 −12.8397 −0.406432
999999 7.51719 0.237833
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4925.2.a.q.1.12 yes 37
5.4 even 2 4925.2.a.p.1.26 37
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4925.2.a.p.1.26 37 5.4 even 2
4925.2.a.q.1.12 yes 37 1.1 even 1 trivial