Properties

Label 4925.2.a.s.1.29
Level $4925$
Weight $2$
Character 4925.1
Self dual yes
Analytic conductor $39.326$
Analytic rank $0$
Dimension $49$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4925,2,Mod(1,4925)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4925, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4925.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4925 = 5^{2} \cdot 197 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4925.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(39.3263229955\)
Analytic rank: \(0\)
Dimension: \(49\)
Twist minimal: no (minimal twist has level 985)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.29
Character \(\chi\) \(=\) 4925.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.828486 q^{2} +2.62539 q^{3} -1.31361 q^{4} +2.17510 q^{6} -1.25071 q^{7} -2.74528 q^{8} +3.89268 q^{9} -5.56666 q^{11} -3.44874 q^{12} +4.43513 q^{13} -1.03620 q^{14} +0.352794 q^{16} -3.67759 q^{17} +3.22503 q^{18} +2.46665 q^{19} -3.28361 q^{21} -4.61190 q^{22} +3.29841 q^{23} -7.20743 q^{24} +3.67445 q^{26} +2.34362 q^{27} +1.64295 q^{28} +1.93477 q^{29} +7.45953 q^{31} +5.78285 q^{32} -14.6147 q^{33} -3.04683 q^{34} -5.11346 q^{36} +6.44125 q^{37} +2.04359 q^{38} +11.6440 q^{39} +1.59137 q^{41} -2.72043 q^{42} +7.59936 q^{43} +7.31242 q^{44} +2.73269 q^{46} +6.52045 q^{47} +0.926223 q^{48} -5.43571 q^{49} -9.65511 q^{51} -5.82604 q^{52} +7.51214 q^{53} +1.94166 q^{54} +3.43356 q^{56} +6.47593 q^{57} +1.60293 q^{58} +6.90090 q^{59} +13.8403 q^{61} +6.18011 q^{62} -4.86863 q^{63} +4.08542 q^{64} -12.1080 q^{66} +7.77589 q^{67} +4.83092 q^{68} +8.65961 q^{69} +14.4768 q^{71} -10.6865 q^{72} -14.3996 q^{73} +5.33649 q^{74} -3.24022 q^{76} +6.96230 q^{77} +9.64686 q^{78} -9.44708 q^{79} -5.52510 q^{81} +1.31843 q^{82} -12.5209 q^{83} +4.31339 q^{84} +6.29596 q^{86} +5.07953 q^{87} +15.2820 q^{88} +8.40950 q^{89} -5.54709 q^{91} -4.33282 q^{92} +19.5842 q^{93} +5.40210 q^{94} +15.1822 q^{96} -6.31891 q^{97} -4.50341 q^{98} -21.6692 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 49 q + 5 q^{2} + 22 q^{3} + 49 q^{4} + 2 q^{6} + 32 q^{7} + 15 q^{8} + 51 q^{9} - 2 q^{11} + 44 q^{12} + 32 q^{13} - 8 q^{14} + 49 q^{16} + 14 q^{17} + 25 q^{18} + 4 q^{19} + 10 q^{21} + 38 q^{22} + 24 q^{23}+ \cdots + 22 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.828486 0.585828 0.292914 0.956139i \(-0.405375\pi\)
0.292914 + 0.956139i \(0.405375\pi\)
\(3\) 2.62539 1.51577 0.757885 0.652388i \(-0.226233\pi\)
0.757885 + 0.652388i \(0.226233\pi\)
\(4\) −1.31361 −0.656805
\(5\) 0 0
\(6\) 2.17510 0.887981
\(7\) −1.25071 −0.472726 −0.236363 0.971665i \(-0.575955\pi\)
−0.236363 + 0.971665i \(0.575955\pi\)
\(8\) −2.74528 −0.970603
\(9\) 3.89268 1.29756
\(10\) 0 0
\(11\) −5.56666 −1.67841 −0.839205 0.543815i \(-0.816979\pi\)
−0.839205 + 0.543815i \(0.816979\pi\)
\(12\) −3.44874 −0.995566
\(13\) 4.43513 1.23008 0.615042 0.788494i \(-0.289139\pi\)
0.615042 + 0.788494i \(0.289139\pi\)
\(14\) −1.03620 −0.276936
\(15\) 0 0
\(16\) 0.352794 0.0881986
\(17\) −3.67759 −0.891947 −0.445973 0.895046i \(-0.647142\pi\)
−0.445973 + 0.895046i \(0.647142\pi\)
\(18\) 3.22503 0.760146
\(19\) 2.46665 0.565889 0.282944 0.959136i \(-0.408689\pi\)
0.282944 + 0.959136i \(0.408689\pi\)
\(20\) 0 0
\(21\) −3.28361 −0.716543
\(22\) −4.61190 −0.983260
\(23\) 3.29841 0.687766 0.343883 0.939013i \(-0.388258\pi\)
0.343883 + 0.939013i \(0.388258\pi\)
\(24\) −7.20743 −1.47121
\(25\) 0 0
\(26\) 3.67445 0.720618
\(27\) 2.34362 0.451030
\(28\) 1.64295 0.310489
\(29\) 1.93477 0.359278 0.179639 0.983733i \(-0.442507\pi\)
0.179639 + 0.983733i \(0.442507\pi\)
\(30\) 0 0
\(31\) 7.45953 1.33977 0.669885 0.742465i \(-0.266343\pi\)
0.669885 + 0.742465i \(0.266343\pi\)
\(32\) 5.78285 1.02227
\(33\) −14.6147 −2.54408
\(34\) −3.04683 −0.522528
\(35\) 0 0
\(36\) −5.11346 −0.852243
\(37\) 6.44125 1.05894 0.529468 0.848330i \(-0.322392\pi\)
0.529468 + 0.848330i \(0.322392\pi\)
\(38\) 2.04359 0.331514
\(39\) 11.6440 1.86453
\(40\) 0 0
\(41\) 1.59137 0.248530 0.124265 0.992249i \(-0.460343\pi\)
0.124265 + 0.992249i \(0.460343\pi\)
\(42\) −2.72043 −0.419771
\(43\) 7.59936 1.15889 0.579446 0.815011i \(-0.303269\pi\)
0.579446 + 0.815011i \(0.303269\pi\)
\(44\) 7.31242 1.10239
\(45\) 0 0
\(46\) 2.73269 0.402913
\(47\) 6.52045 0.951105 0.475553 0.879687i \(-0.342248\pi\)
0.475553 + 0.879687i \(0.342248\pi\)
\(48\) 0.926223 0.133689
\(49\) −5.43571 −0.776531
\(50\) 0 0
\(51\) −9.65511 −1.35199
\(52\) −5.82604 −0.807926
\(53\) 7.51214 1.03187 0.515936 0.856627i \(-0.327444\pi\)
0.515936 + 0.856627i \(0.327444\pi\)
\(54\) 1.94166 0.264226
\(55\) 0 0
\(56\) 3.43356 0.458829
\(57\) 6.47593 0.857758
\(58\) 1.60293 0.210475
\(59\) 6.90090 0.898421 0.449211 0.893426i \(-0.351705\pi\)
0.449211 + 0.893426i \(0.351705\pi\)
\(60\) 0 0
\(61\) 13.8403 1.77207 0.886033 0.463622i \(-0.153450\pi\)
0.886033 + 0.463622i \(0.153450\pi\)
\(62\) 6.18011 0.784875
\(63\) −4.86863 −0.613389
\(64\) 4.08542 0.510677
\(65\) 0 0
\(66\) −12.1080 −1.49040
\(67\) 7.77589 0.949976 0.474988 0.879992i \(-0.342452\pi\)
0.474988 + 0.879992i \(0.342452\pi\)
\(68\) 4.83092 0.585835
\(69\) 8.65961 1.04249
\(70\) 0 0
\(71\) 14.4768 1.71808 0.859041 0.511907i \(-0.171061\pi\)
0.859041 + 0.511907i \(0.171061\pi\)
\(72\) −10.6865 −1.25941
\(73\) −14.3996 −1.68534 −0.842671 0.538428i \(-0.819018\pi\)
−0.842671 + 0.538428i \(0.819018\pi\)
\(74\) 5.33649 0.620354
\(75\) 0 0
\(76\) −3.24022 −0.371679
\(77\) 6.96230 0.793428
\(78\) 9.64686 1.09229
\(79\) −9.44708 −1.06288 −0.531440 0.847096i \(-0.678349\pi\)
−0.531440 + 0.847096i \(0.678349\pi\)
\(80\) 0 0
\(81\) −5.52510 −0.613900
\(82\) 1.31843 0.145596
\(83\) −12.5209 −1.37435 −0.687176 0.726491i \(-0.741150\pi\)
−0.687176 + 0.726491i \(0.741150\pi\)
\(84\) 4.31339 0.470629
\(85\) 0 0
\(86\) 6.29596 0.678911
\(87\) 5.07953 0.544582
\(88\) 15.2820 1.62907
\(89\) 8.40950 0.891405 0.445703 0.895181i \(-0.352954\pi\)
0.445703 + 0.895181i \(0.352954\pi\)
\(90\) 0 0
\(91\) −5.54709 −0.581493
\(92\) −4.33282 −0.451728
\(93\) 19.5842 2.03078
\(94\) 5.40210 0.557184
\(95\) 0 0
\(96\) 15.1822 1.54953
\(97\) −6.31891 −0.641588 −0.320794 0.947149i \(-0.603950\pi\)
−0.320794 + 0.947149i \(0.603950\pi\)
\(98\) −4.50341 −0.454913
\(99\) −21.6692 −2.17784
\(100\) 0 0
\(101\) 1.96974 0.195996 0.0979981 0.995187i \(-0.468756\pi\)
0.0979981 + 0.995187i \(0.468756\pi\)
\(102\) −7.99913 −0.792032
\(103\) 4.14430 0.408350 0.204175 0.978934i \(-0.434549\pi\)
0.204175 + 0.978934i \(0.434549\pi\)
\(104\) −12.1757 −1.19392
\(105\) 0 0
\(106\) 6.22370 0.604500
\(107\) −11.7031 −1.13138 −0.565692 0.824617i \(-0.691391\pi\)
−0.565692 + 0.824617i \(0.691391\pi\)
\(108\) −3.07861 −0.296239
\(109\) 5.83793 0.559172 0.279586 0.960121i \(-0.409803\pi\)
0.279586 + 0.960121i \(0.409803\pi\)
\(110\) 0 0
\(111\) 16.9108 1.60510
\(112\) −0.441245 −0.0416937
\(113\) −13.5004 −1.27001 −0.635007 0.772507i \(-0.719003\pi\)
−0.635007 + 0.772507i \(0.719003\pi\)
\(114\) 5.36522 0.502499
\(115\) 0 0
\(116\) −2.54153 −0.235975
\(117\) 17.2645 1.59611
\(118\) 5.71730 0.526321
\(119\) 4.59962 0.421646
\(120\) 0 0
\(121\) 19.9877 1.81706
\(122\) 11.4665 1.03813
\(123\) 4.17797 0.376715
\(124\) −9.79891 −0.879969
\(125\) 0 0
\(126\) −4.03359 −0.359341
\(127\) −0.808906 −0.0717788 −0.0358894 0.999356i \(-0.511426\pi\)
−0.0358894 + 0.999356i \(0.511426\pi\)
\(128\) −8.18098 −0.723103
\(129\) 19.9513 1.75661
\(130\) 0 0
\(131\) −17.9546 −1.56870 −0.784348 0.620321i \(-0.787003\pi\)
−0.784348 + 0.620321i \(0.787003\pi\)
\(132\) 19.1980 1.67097
\(133\) −3.08508 −0.267510
\(134\) 6.44222 0.556523
\(135\) 0 0
\(136\) 10.0960 0.865726
\(137\) −0.404201 −0.0345332 −0.0172666 0.999851i \(-0.505496\pi\)
−0.0172666 + 0.999851i \(0.505496\pi\)
\(138\) 7.17437 0.610723
\(139\) 17.1259 1.45260 0.726302 0.687376i \(-0.241237\pi\)
0.726302 + 0.687376i \(0.241237\pi\)
\(140\) 0 0
\(141\) 17.1187 1.44166
\(142\) 11.9938 1.00650
\(143\) −24.6889 −2.06459
\(144\) 1.37331 0.114443
\(145\) 0 0
\(146\) −11.9298 −0.987321
\(147\) −14.2709 −1.17704
\(148\) −8.46130 −0.695514
\(149\) −8.78283 −0.719517 −0.359759 0.933045i \(-0.617141\pi\)
−0.359759 + 0.933045i \(0.617141\pi\)
\(150\) 0 0
\(151\) −6.84679 −0.557184 −0.278592 0.960410i \(-0.589868\pi\)
−0.278592 + 0.960410i \(0.589868\pi\)
\(152\) −6.77165 −0.549254
\(153\) −14.3157 −1.15735
\(154\) 5.76817 0.464812
\(155\) 0 0
\(156\) −15.2956 −1.22463
\(157\) 19.0201 1.51797 0.758985 0.651108i \(-0.225695\pi\)
0.758985 + 0.651108i \(0.225695\pi\)
\(158\) −7.82678 −0.622665
\(159\) 19.7223 1.56408
\(160\) 0 0
\(161\) −4.12537 −0.325124
\(162\) −4.57747 −0.359640
\(163\) −0.780206 −0.0611104 −0.0305552 0.999533i \(-0.509728\pi\)
−0.0305552 + 0.999533i \(0.509728\pi\)
\(164\) −2.09044 −0.163236
\(165\) 0 0
\(166\) −10.3734 −0.805134
\(167\) −9.22289 −0.713689 −0.356844 0.934164i \(-0.616147\pi\)
−0.356844 + 0.934164i \(0.616147\pi\)
\(168\) 9.01444 0.695479
\(169\) 6.67041 0.513109
\(170\) 0 0
\(171\) 9.60188 0.734274
\(172\) −9.98260 −0.761166
\(173\) −12.6520 −0.961916 −0.480958 0.876744i \(-0.659711\pi\)
−0.480958 + 0.876744i \(0.659711\pi\)
\(174\) 4.20832 0.319032
\(175\) 0 0
\(176\) −1.96389 −0.148033
\(177\) 18.1176 1.36180
\(178\) 6.96715 0.522210
\(179\) −14.2477 −1.06492 −0.532462 0.846454i \(-0.678733\pi\)
−0.532462 + 0.846454i \(0.678733\pi\)
\(180\) 0 0
\(181\) 24.4657 1.81852 0.909259 0.416230i \(-0.136649\pi\)
0.909259 + 0.416230i \(0.136649\pi\)
\(182\) −4.59568 −0.340655
\(183\) 36.3361 2.68604
\(184\) −9.05506 −0.667548
\(185\) 0 0
\(186\) 16.2252 1.18969
\(187\) 20.4719 1.49705
\(188\) −8.56533 −0.624691
\(189\) −2.93120 −0.213214
\(190\) 0 0
\(191\) −3.60292 −0.260698 −0.130349 0.991468i \(-0.541610\pi\)
−0.130349 + 0.991468i \(0.541610\pi\)
\(192\) 10.7258 0.774070
\(193\) −0.674279 −0.0485357 −0.0242678 0.999705i \(-0.507725\pi\)
−0.0242678 + 0.999705i \(0.507725\pi\)
\(194\) −5.23513 −0.375860
\(195\) 0 0
\(196\) 7.14041 0.510029
\(197\) −1.00000 −0.0712470
\(198\) −17.9526 −1.27584
\(199\) 4.12802 0.292627 0.146314 0.989238i \(-0.453259\pi\)
0.146314 + 0.989238i \(0.453259\pi\)
\(200\) 0 0
\(201\) 20.4147 1.43995
\(202\) 1.63190 0.114820
\(203\) −2.41984 −0.169840
\(204\) 12.6831 0.887992
\(205\) 0 0
\(206\) 3.43350 0.239223
\(207\) 12.8396 0.892416
\(208\) 1.56469 0.108492
\(209\) −13.7310 −0.949794
\(210\) 0 0
\(211\) −24.9117 −1.71499 −0.857495 0.514492i \(-0.827981\pi\)
−0.857495 + 0.514492i \(0.827981\pi\)
\(212\) −9.86803 −0.677739
\(213\) 38.0073 2.60422
\(214\) −9.69588 −0.662796
\(215\) 0 0
\(216\) −6.43390 −0.437772
\(217\) −9.32974 −0.633344
\(218\) 4.83664 0.327579
\(219\) −37.8045 −2.55459
\(220\) 0 0
\(221\) −16.3106 −1.09717
\(222\) 14.0104 0.940314
\(223\) 4.36939 0.292596 0.146298 0.989241i \(-0.453264\pi\)
0.146298 + 0.989241i \(0.453264\pi\)
\(224\) −7.23269 −0.483254
\(225\) 0 0
\(226\) −11.1849 −0.744010
\(227\) 13.6263 0.904410 0.452205 0.891914i \(-0.350638\pi\)
0.452205 + 0.891914i \(0.350638\pi\)
\(228\) −8.50685 −0.563380
\(229\) −5.29112 −0.349647 −0.174823 0.984600i \(-0.555935\pi\)
−0.174823 + 0.984600i \(0.555935\pi\)
\(230\) 0 0
\(231\) 18.2788 1.20265
\(232\) −5.31148 −0.348716
\(233\) 6.68539 0.437974 0.218987 0.975728i \(-0.429725\pi\)
0.218987 + 0.975728i \(0.429725\pi\)
\(234\) 14.3034 0.935045
\(235\) 0 0
\(236\) −9.06510 −0.590088
\(237\) −24.8023 −1.61108
\(238\) 3.81072 0.247012
\(239\) 17.1044 1.10639 0.553196 0.833051i \(-0.313408\pi\)
0.553196 + 0.833051i \(0.313408\pi\)
\(240\) 0 0
\(241\) 5.50017 0.354297 0.177149 0.984184i \(-0.443313\pi\)
0.177149 + 0.984184i \(0.443313\pi\)
\(242\) 16.5595 1.06449
\(243\) −21.5364 −1.38156
\(244\) −18.1807 −1.16390
\(245\) 0 0
\(246\) 3.46139 0.220690
\(247\) 10.9399 0.696091
\(248\) −20.4785 −1.30039
\(249\) −32.8724 −2.08320
\(250\) 0 0
\(251\) −12.3140 −0.777253 −0.388626 0.921395i \(-0.627050\pi\)
−0.388626 + 0.921395i \(0.627050\pi\)
\(252\) 6.39548 0.402877
\(253\) −18.3611 −1.15435
\(254\) −0.670168 −0.0420501
\(255\) 0 0
\(256\) −14.9487 −0.934292
\(257\) 22.8292 1.42404 0.712022 0.702157i \(-0.247780\pi\)
0.712022 + 0.702157i \(0.247780\pi\)
\(258\) 16.5294 1.02907
\(259\) −8.05616 −0.500586
\(260\) 0 0
\(261\) 7.53143 0.466184
\(262\) −14.8751 −0.918987
\(263\) 25.3186 1.56121 0.780606 0.625023i \(-0.214910\pi\)
0.780606 + 0.625023i \(0.214910\pi\)
\(264\) 40.1213 2.46930
\(265\) 0 0
\(266\) −2.55594 −0.156715
\(267\) 22.0782 1.35117
\(268\) −10.2145 −0.623949
\(269\) 0.555341 0.0338598 0.0169299 0.999857i \(-0.494611\pi\)
0.0169299 + 0.999857i \(0.494611\pi\)
\(270\) 0 0
\(271\) 15.4061 0.935852 0.467926 0.883768i \(-0.345001\pi\)
0.467926 + 0.883768i \(0.345001\pi\)
\(272\) −1.29743 −0.0786685
\(273\) −14.5633 −0.881409
\(274\) −0.334875 −0.0202305
\(275\) 0 0
\(276\) −11.3754 −0.684716
\(277\) −10.3809 −0.623725 −0.311863 0.950127i \(-0.600953\pi\)
−0.311863 + 0.950127i \(0.600953\pi\)
\(278\) 14.1886 0.850976
\(279\) 29.0375 1.73843
\(280\) 0 0
\(281\) 12.4022 0.739855 0.369927 0.929061i \(-0.379383\pi\)
0.369927 + 0.929061i \(0.379383\pi\)
\(282\) 14.1826 0.844563
\(283\) 16.4352 0.976971 0.488485 0.872572i \(-0.337550\pi\)
0.488485 + 0.872572i \(0.337550\pi\)
\(284\) −19.0169 −1.12845
\(285\) 0 0
\(286\) −20.4544 −1.20949
\(287\) −1.99035 −0.117487
\(288\) 22.5107 1.32646
\(289\) −3.47533 −0.204431
\(290\) 0 0
\(291\) −16.5896 −0.972500
\(292\) 18.9154 1.10694
\(293\) −15.4094 −0.900228 −0.450114 0.892971i \(-0.648617\pi\)
−0.450114 + 0.892971i \(0.648617\pi\)
\(294\) −11.8232 −0.689544
\(295\) 0 0
\(296\) −17.6830 −1.02781
\(297\) −13.0461 −0.757014
\(298\) −7.27645 −0.421513
\(299\) 14.6289 0.846010
\(300\) 0 0
\(301\) −9.50463 −0.547838
\(302\) −5.67247 −0.326414
\(303\) 5.17133 0.297085
\(304\) 0.870221 0.0499106
\(305\) 0 0
\(306\) −11.8603 −0.678010
\(307\) −14.1683 −0.808626 −0.404313 0.914621i \(-0.632489\pi\)
−0.404313 + 0.914621i \(0.632489\pi\)
\(308\) −9.14575 −0.521127
\(309\) 10.8804 0.618965
\(310\) 0 0
\(311\) 14.9512 0.847805 0.423903 0.905708i \(-0.360660\pi\)
0.423903 + 0.905708i \(0.360660\pi\)
\(312\) −31.9659 −1.80971
\(313\) 2.76214 0.156125 0.0780627 0.996948i \(-0.475127\pi\)
0.0780627 + 0.996948i \(0.475127\pi\)
\(314\) 15.7579 0.889270
\(315\) 0 0
\(316\) 12.4098 0.698105
\(317\) −5.61587 −0.315419 −0.157709 0.987486i \(-0.550411\pi\)
−0.157709 + 0.987486i \(0.550411\pi\)
\(318\) 16.3397 0.916282
\(319\) −10.7702 −0.603015
\(320\) 0 0
\(321\) −30.7253 −1.71492
\(322\) −3.41781 −0.190467
\(323\) −9.07134 −0.504743
\(324\) 7.25783 0.403213
\(325\) 0 0
\(326\) −0.646390 −0.0358002
\(327\) 15.3268 0.847576
\(328\) −4.36876 −0.241224
\(329\) −8.15522 −0.449612
\(330\) 0 0
\(331\) −12.0210 −0.660732 −0.330366 0.943853i \(-0.607172\pi\)
−0.330366 + 0.943853i \(0.607172\pi\)
\(332\) 16.4476 0.902682
\(333\) 25.0737 1.37403
\(334\) −7.64104 −0.418099
\(335\) 0 0
\(336\) −1.15844 −0.0631981
\(337\) 18.5547 1.01074 0.505370 0.862903i \(-0.331356\pi\)
0.505370 + 0.862903i \(0.331356\pi\)
\(338\) 5.52635 0.300594
\(339\) −35.4439 −1.92505
\(340\) 0 0
\(341\) −41.5246 −2.24869
\(342\) 7.95502 0.430158
\(343\) 15.5535 0.839811
\(344\) −20.8624 −1.12482
\(345\) 0 0
\(346\) −10.4820 −0.563517
\(347\) 34.3835 1.84580 0.922902 0.385035i \(-0.125811\pi\)
0.922902 + 0.385035i \(0.125811\pi\)
\(348\) −6.67252 −0.357685
\(349\) −34.7319 −1.85916 −0.929579 0.368624i \(-0.879829\pi\)
−0.929579 + 0.368624i \(0.879829\pi\)
\(350\) 0 0
\(351\) 10.3943 0.554806
\(352\) −32.1911 −1.71579
\(353\) −19.4978 −1.03776 −0.518881 0.854846i \(-0.673651\pi\)
−0.518881 + 0.854846i \(0.673651\pi\)
\(354\) 15.0102 0.797781
\(355\) 0 0
\(356\) −11.0468 −0.585480
\(357\) 12.0758 0.639118
\(358\) −11.8040 −0.623863
\(359\) −25.1653 −1.32817 −0.664087 0.747656i \(-0.731179\pi\)
−0.664087 + 0.747656i \(0.731179\pi\)
\(360\) 0 0
\(361\) −12.9156 −0.679770
\(362\) 20.2695 1.06534
\(363\) 52.4755 2.75425
\(364\) 7.28671 0.381927
\(365\) 0 0
\(366\) 30.1040 1.57356
\(367\) 6.17921 0.322552 0.161276 0.986909i \(-0.448439\pi\)
0.161276 + 0.986909i \(0.448439\pi\)
\(368\) 1.16366 0.0606600
\(369\) 6.19469 0.322483
\(370\) 0 0
\(371\) −9.39554 −0.487792
\(372\) −25.7260 −1.33383
\(373\) 27.6858 1.43351 0.716757 0.697323i \(-0.245626\pi\)
0.716757 + 0.697323i \(0.245626\pi\)
\(374\) 16.9607 0.877016
\(375\) 0 0
\(376\) −17.9005 −0.923146
\(377\) 8.58096 0.441942
\(378\) −2.42846 −0.124907
\(379\) 21.8264 1.12115 0.560574 0.828104i \(-0.310580\pi\)
0.560574 + 0.828104i \(0.310580\pi\)
\(380\) 0 0
\(381\) −2.12370 −0.108800
\(382\) −2.98497 −0.152724
\(383\) 0.993450 0.0507629 0.0253815 0.999678i \(-0.491920\pi\)
0.0253815 + 0.999678i \(0.491920\pi\)
\(384\) −21.4783 −1.09606
\(385\) 0 0
\(386\) −0.558631 −0.0284336
\(387\) 29.5818 1.50373
\(388\) 8.30059 0.421398
\(389\) −17.9885 −0.912051 −0.456025 0.889967i \(-0.650727\pi\)
−0.456025 + 0.889967i \(0.650727\pi\)
\(390\) 0 0
\(391\) −12.1302 −0.613450
\(392\) 14.9226 0.753703
\(393\) −47.1377 −2.37778
\(394\) −0.828486 −0.0417385
\(395\) 0 0
\(396\) 28.4649 1.43041
\(397\) −4.06775 −0.204155 −0.102077 0.994776i \(-0.532549\pi\)
−0.102077 + 0.994776i \(0.532549\pi\)
\(398\) 3.42001 0.171429
\(399\) −8.09953 −0.405484
\(400\) 0 0
\(401\) 30.9146 1.54380 0.771900 0.635743i \(-0.219306\pi\)
0.771900 + 0.635743i \(0.219306\pi\)
\(402\) 16.9133 0.843560
\(403\) 33.0840 1.64803
\(404\) −2.58747 −0.128731
\(405\) 0 0
\(406\) −2.00481 −0.0994969
\(407\) −35.8562 −1.77733
\(408\) 26.5060 1.31224
\(409\) 23.9199 1.18276 0.591382 0.806391i \(-0.298582\pi\)
0.591382 + 0.806391i \(0.298582\pi\)
\(410\) 0 0
\(411\) −1.06118 −0.0523444
\(412\) −5.44400 −0.268206
\(413\) −8.63106 −0.424707
\(414\) 10.6375 0.522803
\(415\) 0 0
\(416\) 25.6477 1.25748
\(417\) 44.9623 2.20181
\(418\) −11.3760 −0.556416
\(419\) 9.22370 0.450607 0.225304 0.974289i \(-0.427663\pi\)
0.225304 + 0.974289i \(0.427663\pi\)
\(420\) 0 0
\(421\) 13.2461 0.645573 0.322787 0.946472i \(-0.395380\pi\)
0.322787 + 0.946472i \(0.395380\pi\)
\(422\) −20.6390 −1.00469
\(423\) 25.3820 1.23411
\(424\) −20.6229 −1.00154
\(425\) 0 0
\(426\) 31.4885 1.52562
\(427\) −17.3102 −0.837701
\(428\) 15.3733 0.743099
\(429\) −64.8179 −3.12944
\(430\) 0 0
\(431\) −26.9184 −1.29662 −0.648308 0.761378i \(-0.724523\pi\)
−0.648308 + 0.761378i \(0.724523\pi\)
\(432\) 0.826817 0.0397803
\(433\) 28.9834 1.39285 0.696427 0.717627i \(-0.254772\pi\)
0.696427 + 0.717627i \(0.254772\pi\)
\(434\) −7.72956 −0.371031
\(435\) 0 0
\(436\) −7.66877 −0.367267
\(437\) 8.13603 0.389199
\(438\) −31.3205 −1.49655
\(439\) −34.1704 −1.63086 −0.815432 0.578853i \(-0.803501\pi\)
−0.815432 + 0.578853i \(0.803501\pi\)
\(440\) 0 0
\(441\) −21.1595 −1.00759
\(442\) −13.5131 −0.642753
\(443\) 7.51967 0.357270 0.178635 0.983915i \(-0.442832\pi\)
0.178635 + 0.983915i \(0.442832\pi\)
\(444\) −22.2142 −1.05424
\(445\) 0 0
\(446\) 3.61998 0.171411
\(447\) −23.0584 −1.09062
\(448\) −5.10969 −0.241410
\(449\) −3.72879 −0.175972 −0.0879862 0.996122i \(-0.528043\pi\)
−0.0879862 + 0.996122i \(0.528043\pi\)
\(450\) 0 0
\(451\) −8.85861 −0.417136
\(452\) 17.7343 0.834151
\(453\) −17.9755 −0.844563
\(454\) 11.2892 0.529829
\(455\) 0 0
\(456\) −17.7782 −0.832542
\(457\) −16.5767 −0.775424 −0.387712 0.921781i \(-0.626734\pi\)
−0.387712 + 0.921781i \(0.626734\pi\)
\(458\) −4.38362 −0.204833
\(459\) −8.61889 −0.402295
\(460\) 0 0
\(461\) −2.48534 −0.115754 −0.0578769 0.998324i \(-0.518433\pi\)
−0.0578769 + 0.998324i \(0.518433\pi\)
\(462\) 15.1437 0.704548
\(463\) 29.0032 1.34789 0.673946 0.738781i \(-0.264598\pi\)
0.673946 + 0.738781i \(0.264598\pi\)
\(464\) 0.682576 0.0316878
\(465\) 0 0
\(466\) 5.53875 0.256578
\(467\) 34.5919 1.60072 0.800361 0.599518i \(-0.204641\pi\)
0.800361 + 0.599518i \(0.204641\pi\)
\(468\) −22.6789 −1.04833
\(469\) −9.72541 −0.449078
\(470\) 0 0
\(471\) 49.9352 2.30089
\(472\) −18.9449 −0.872011
\(473\) −42.3030 −1.94510
\(474\) −20.5483 −0.943817
\(475\) 0 0
\(476\) −6.04210 −0.276939
\(477\) 29.2423 1.33891
\(478\) 14.1708 0.648155
\(479\) 14.6393 0.668885 0.334443 0.942416i \(-0.391452\pi\)
0.334443 + 0.942416i \(0.391452\pi\)
\(480\) 0 0
\(481\) 28.5678 1.30258
\(482\) 4.55681 0.207557
\(483\) −10.8307 −0.492814
\(484\) −26.2560 −1.19346
\(485\) 0 0
\(486\) −17.8426 −0.809358
\(487\) 28.2463 1.27996 0.639980 0.768391i \(-0.278942\pi\)
0.639980 + 0.768391i \(0.278942\pi\)
\(488\) −37.9955 −1.71997
\(489\) −2.04835 −0.0926294
\(490\) 0 0
\(491\) −1.19790 −0.0540604 −0.0270302 0.999635i \(-0.508605\pi\)
−0.0270302 + 0.999635i \(0.508605\pi\)
\(492\) −5.48822 −0.247428
\(493\) −7.11529 −0.320457
\(494\) 9.06359 0.407790
\(495\) 0 0
\(496\) 2.63168 0.118166
\(497\) −18.1064 −0.812181
\(498\) −27.2343 −1.22040
\(499\) −28.5113 −1.27634 −0.638171 0.769894i \(-0.720309\pi\)
−0.638171 + 0.769894i \(0.720309\pi\)
\(500\) 0 0
\(501\) −24.2137 −1.08179
\(502\) −10.2020 −0.455337
\(503\) 14.1483 0.630841 0.315421 0.948952i \(-0.397854\pi\)
0.315421 + 0.948952i \(0.397854\pi\)
\(504\) 13.3657 0.595357
\(505\) 0 0
\(506\) −15.2119 −0.676253
\(507\) 17.5124 0.777755
\(508\) 1.06259 0.0471447
\(509\) 36.7074 1.62703 0.813514 0.581545i \(-0.197552\pi\)
0.813514 + 0.581545i \(0.197552\pi\)
\(510\) 0 0
\(511\) 18.0098 0.796705
\(512\) 3.97720 0.175769
\(513\) 5.78090 0.255233
\(514\) 18.9136 0.834245
\(515\) 0 0
\(516\) −26.2082 −1.15375
\(517\) −36.2971 −1.59634
\(518\) −6.67442 −0.293257
\(519\) −33.2165 −1.45804
\(520\) 0 0
\(521\) −1.84046 −0.0806318 −0.0403159 0.999187i \(-0.512836\pi\)
−0.0403159 + 0.999187i \(0.512836\pi\)
\(522\) 6.23969 0.273104
\(523\) 10.7185 0.468689 0.234345 0.972154i \(-0.424706\pi\)
0.234345 + 0.972154i \(0.424706\pi\)
\(524\) 23.5853 1.03033
\(525\) 0 0
\(526\) 20.9761 0.914602
\(527\) −27.4331 −1.19500
\(528\) −5.15597 −0.224385
\(529\) −12.1205 −0.526978
\(530\) 0 0
\(531\) 26.8630 1.16575
\(532\) 4.05259 0.175702
\(533\) 7.05794 0.305713
\(534\) 18.2915 0.791551
\(535\) 0 0
\(536\) −21.3470 −0.922050
\(537\) −37.4058 −1.61418
\(538\) 0.460093 0.0198360
\(539\) 30.2588 1.30334
\(540\) 0 0
\(541\) −12.5366 −0.538990 −0.269495 0.963002i \(-0.586857\pi\)
−0.269495 + 0.963002i \(0.586857\pi\)
\(542\) 12.7637 0.548249
\(543\) 64.2319 2.75646
\(544\) −21.2669 −0.911813
\(545\) 0 0
\(546\) −12.0655 −0.516354
\(547\) −17.5238 −0.749262 −0.374631 0.927174i \(-0.622231\pi\)
−0.374631 + 0.927174i \(0.622231\pi\)
\(548\) 0.530962 0.0226816
\(549\) 53.8757 2.29936
\(550\) 0 0
\(551\) 4.77240 0.203311
\(552\) −23.7731 −1.01185
\(553\) 11.8156 0.502450
\(554\) −8.60039 −0.365396
\(555\) 0 0
\(556\) −22.4968 −0.954078
\(557\) −28.9383 −1.22615 −0.613077 0.790023i \(-0.710068\pi\)
−0.613077 + 0.790023i \(0.710068\pi\)
\(558\) 24.0572 1.01842
\(559\) 33.7042 1.42553
\(560\) 0 0
\(561\) 53.7467 2.26919
\(562\) 10.2751 0.433428
\(563\) 1.69109 0.0712709 0.0356354 0.999365i \(-0.488654\pi\)
0.0356354 + 0.999365i \(0.488654\pi\)
\(564\) −22.4873 −0.946888
\(565\) 0 0
\(566\) 13.6163 0.572337
\(567\) 6.91032 0.290206
\(568\) −39.7429 −1.66758
\(569\) −8.00803 −0.335714 −0.167857 0.985811i \(-0.553685\pi\)
−0.167857 + 0.985811i \(0.553685\pi\)
\(570\) 0 0
\(571\) −0.952819 −0.0398742 −0.0199371 0.999801i \(-0.506347\pi\)
−0.0199371 + 0.999801i \(0.506347\pi\)
\(572\) 32.4316 1.35603
\(573\) −9.45907 −0.395158
\(574\) −1.64898 −0.0688270
\(575\) 0 0
\(576\) 15.9032 0.662634
\(577\) −8.25605 −0.343704 −0.171852 0.985123i \(-0.554975\pi\)
−0.171852 + 0.985123i \(0.554975\pi\)
\(578\) −2.87926 −0.119761
\(579\) −1.77025 −0.0735689
\(580\) 0 0
\(581\) 15.6601 0.649691
\(582\) −13.7443 −0.569718
\(583\) −41.8175 −1.73190
\(584\) 39.5309 1.63580
\(585\) 0 0
\(586\) −12.7665 −0.527379
\(587\) −13.1511 −0.542805 −0.271403 0.962466i \(-0.587487\pi\)
−0.271403 + 0.962466i \(0.587487\pi\)
\(588\) 18.7464 0.773087
\(589\) 18.4001 0.758161
\(590\) 0 0
\(591\) −2.62539 −0.107994
\(592\) 2.27244 0.0933966
\(593\) −26.5644 −1.09087 −0.545434 0.838154i \(-0.683635\pi\)
−0.545434 + 0.838154i \(0.683635\pi\)
\(594\) −10.8086 −0.443480
\(595\) 0 0
\(596\) 11.5372 0.472583
\(597\) 10.8377 0.443556
\(598\) 12.1198 0.495617
\(599\) 13.7241 0.560752 0.280376 0.959890i \(-0.409541\pi\)
0.280376 + 0.959890i \(0.409541\pi\)
\(600\) 0 0
\(601\) 5.38268 0.219564 0.109782 0.993956i \(-0.464985\pi\)
0.109782 + 0.993956i \(0.464985\pi\)
\(602\) −7.87445 −0.320939
\(603\) 30.2690 1.23265
\(604\) 8.99402 0.365962
\(605\) 0 0
\(606\) 4.28438 0.174041
\(607\) 6.50833 0.264165 0.132082 0.991239i \(-0.457834\pi\)
0.132082 + 0.991239i \(0.457834\pi\)
\(608\) 14.2643 0.578493
\(609\) −6.35303 −0.257438
\(610\) 0 0
\(611\) 28.9191 1.16994
\(612\) 18.8052 0.760156
\(613\) 10.2305 0.413206 0.206603 0.978425i \(-0.433759\pi\)
0.206603 + 0.978425i \(0.433759\pi\)
\(614\) −11.7382 −0.473716
\(615\) 0 0
\(616\) −19.1135 −0.770103
\(617\) −16.4663 −0.662910 −0.331455 0.943471i \(-0.607540\pi\)
−0.331455 + 0.943471i \(0.607540\pi\)
\(618\) 9.01427 0.362607
\(619\) 21.9351 0.881647 0.440823 0.897594i \(-0.354686\pi\)
0.440823 + 0.897594i \(0.354686\pi\)
\(620\) 0 0
\(621\) 7.73023 0.310203
\(622\) 12.3869 0.496668
\(623\) −10.5179 −0.421390
\(624\) 4.10792 0.164449
\(625\) 0 0
\(626\) 2.28840 0.0914627
\(627\) −36.0493 −1.43967
\(628\) −24.9850 −0.997011
\(629\) −23.6883 −0.944514
\(630\) 0 0
\(631\) 14.4810 0.576481 0.288240 0.957558i \(-0.406930\pi\)
0.288240 + 0.957558i \(0.406930\pi\)
\(632\) 25.9349 1.03163
\(633\) −65.4029 −2.59953
\(634\) −4.65267 −0.184781
\(635\) 0 0
\(636\) −25.9074 −1.02730
\(637\) −24.1081 −0.955198
\(638\) −8.92296 −0.353263
\(639\) 56.3536 2.22931
\(640\) 0 0
\(641\) −14.6151 −0.577262 −0.288631 0.957440i \(-0.593200\pi\)
−0.288631 + 0.957440i \(0.593200\pi\)
\(642\) −25.4555 −1.00465
\(643\) −36.3205 −1.43234 −0.716170 0.697925i \(-0.754107\pi\)
−0.716170 + 0.697925i \(0.754107\pi\)
\(644\) 5.41913 0.213543
\(645\) 0 0
\(646\) −7.51548 −0.295693
\(647\) −20.2839 −0.797443 −0.398721 0.917072i \(-0.630546\pi\)
−0.398721 + 0.917072i \(0.630546\pi\)
\(648\) 15.1680 0.595854
\(649\) −38.4150 −1.50792
\(650\) 0 0
\(651\) −24.4942 −0.960004
\(652\) 1.02489 0.0401377
\(653\) −9.57379 −0.374651 −0.187326 0.982298i \(-0.559982\pi\)
−0.187326 + 0.982298i \(0.559982\pi\)
\(654\) 12.6981 0.496534
\(655\) 0 0
\(656\) 0.561427 0.0219200
\(657\) −56.0529 −2.18683
\(658\) −6.75648 −0.263395
\(659\) −27.0032 −1.05189 −0.525947 0.850517i \(-0.676289\pi\)
−0.525947 + 0.850517i \(0.676289\pi\)
\(660\) 0 0
\(661\) −48.7702 −1.89694 −0.948470 0.316868i \(-0.897369\pi\)
−0.948470 + 0.316868i \(0.897369\pi\)
\(662\) −9.95920 −0.387075
\(663\) −42.8217 −1.66306
\(664\) 34.3735 1.33395
\(665\) 0 0
\(666\) 20.7732 0.804946
\(667\) 6.38166 0.247099
\(668\) 12.1153 0.468754
\(669\) 11.4713 0.443508
\(670\) 0 0
\(671\) −77.0441 −2.97425
\(672\) −18.9886 −0.732502
\(673\) 42.9571 1.65587 0.827937 0.560821i \(-0.189514\pi\)
0.827937 + 0.560821i \(0.189514\pi\)
\(674\) 15.3723 0.592120
\(675\) 0 0
\(676\) −8.76233 −0.337013
\(677\) −35.6547 −1.37032 −0.685160 0.728393i \(-0.740268\pi\)
−0.685160 + 0.728393i \(0.740268\pi\)
\(678\) −29.3648 −1.12775
\(679\) 7.90315 0.303295
\(680\) 0 0
\(681\) 35.7744 1.37088
\(682\) −34.4026 −1.31734
\(683\) −0.933116 −0.0357047 −0.0178523 0.999841i \(-0.505683\pi\)
−0.0178523 + 0.999841i \(0.505683\pi\)
\(684\) −12.6131 −0.482275
\(685\) 0 0
\(686\) 12.8859 0.491985
\(687\) −13.8913 −0.529984
\(688\) 2.68101 0.102213
\(689\) 33.3173 1.26929
\(690\) 0 0
\(691\) −19.3165 −0.734836 −0.367418 0.930056i \(-0.619758\pi\)
−0.367418 + 0.930056i \(0.619758\pi\)
\(692\) 16.6198 0.631792
\(693\) 27.1020 1.02952
\(694\) 28.4863 1.08132
\(695\) 0 0
\(696\) −13.9447 −0.528573
\(697\) −5.85241 −0.221676
\(698\) −28.7749 −1.08915
\(699\) 17.5518 0.663869
\(700\) 0 0
\(701\) −41.4399 −1.56517 −0.782583 0.622547i \(-0.786098\pi\)
−0.782583 + 0.622547i \(0.786098\pi\)
\(702\) 8.61152 0.325021
\(703\) 15.8883 0.599240
\(704\) −22.7421 −0.857126
\(705\) 0 0
\(706\) −16.1536 −0.607950
\(707\) −2.46358 −0.0926525
\(708\) −23.7994 −0.894438
\(709\) 51.9958 1.95274 0.976371 0.216102i \(-0.0693343\pi\)
0.976371 + 0.216102i \(0.0693343\pi\)
\(710\) 0 0
\(711\) −36.7744 −1.37915
\(712\) −23.0864 −0.865201
\(713\) 24.6046 0.921448
\(714\) 10.0046 0.374414
\(715\) 0 0
\(716\) 18.7160 0.699448
\(717\) 44.9057 1.67704
\(718\) −20.8491 −0.778081
\(719\) −2.29676 −0.0856549 −0.0428274 0.999082i \(-0.513637\pi\)
−0.0428274 + 0.999082i \(0.513637\pi\)
\(720\) 0 0
\(721\) −5.18334 −0.193037
\(722\) −10.7004 −0.398228
\(723\) 14.4401 0.537033
\(724\) −32.1384 −1.19441
\(725\) 0 0
\(726\) 43.4752 1.61352
\(727\) 17.7008 0.656485 0.328242 0.944594i \(-0.393544\pi\)
0.328242 + 0.944594i \(0.393544\pi\)
\(728\) 15.2283 0.564399
\(729\) −39.9662 −1.48023
\(730\) 0 0
\(731\) −27.9473 −1.03367
\(732\) −47.7315 −1.76421
\(733\) −39.3110 −1.45198 −0.725992 0.687703i \(-0.758619\pi\)
−0.725992 + 0.687703i \(0.758619\pi\)
\(734\) 5.11939 0.188960
\(735\) 0 0
\(736\) 19.0742 0.703084
\(737\) −43.2857 −1.59445
\(738\) 5.13221 0.188919
\(739\) 34.8854 1.28328 0.641640 0.767006i \(-0.278254\pi\)
0.641640 + 0.767006i \(0.278254\pi\)
\(740\) 0 0
\(741\) 28.7216 1.05511
\(742\) −7.78408 −0.285762
\(743\) 18.7028 0.686138 0.343069 0.939310i \(-0.388534\pi\)
0.343069 + 0.939310i \(0.388534\pi\)
\(744\) −53.7640 −1.97109
\(745\) 0 0
\(746\) 22.9373 0.839793
\(747\) −48.7400 −1.78330
\(748\) −26.8921 −0.983272
\(749\) 14.6373 0.534834
\(750\) 0 0
\(751\) 40.0760 1.46239 0.731197 0.682166i \(-0.238962\pi\)
0.731197 + 0.682166i \(0.238962\pi\)
\(752\) 2.30038 0.0838861
\(753\) −32.3291 −1.17814
\(754\) 7.10921 0.258902
\(755\) 0 0
\(756\) 3.85046 0.140040
\(757\) −22.7584 −0.827168 −0.413584 0.910466i \(-0.635723\pi\)
−0.413584 + 0.910466i \(0.635723\pi\)
\(758\) 18.0829 0.656801
\(759\) −48.2051 −1.74973
\(760\) 0 0
\(761\) −21.8639 −0.792566 −0.396283 0.918128i \(-0.629700\pi\)
−0.396283 + 0.918128i \(0.629700\pi\)
\(762\) −1.75945 −0.0637382
\(763\) −7.30158 −0.264335
\(764\) 4.73283 0.171228
\(765\) 0 0
\(766\) 0.823060 0.0297384
\(767\) 30.6064 1.10513
\(768\) −39.2461 −1.41617
\(769\) 15.9462 0.575034 0.287517 0.957776i \(-0.407170\pi\)
0.287517 + 0.957776i \(0.407170\pi\)
\(770\) 0 0
\(771\) 59.9355 2.15852
\(772\) 0.885740 0.0318785
\(773\) 18.4449 0.663418 0.331709 0.943382i \(-0.392375\pi\)
0.331709 + 0.943382i \(0.392375\pi\)
\(774\) 24.5081 0.880927
\(775\) 0 0
\(776\) 17.3472 0.622727
\(777\) −21.1506 −0.758773
\(778\) −14.9032 −0.534305
\(779\) 3.92536 0.140641
\(780\) 0 0
\(781\) −80.5875 −2.88365
\(782\) −10.0497 −0.359377
\(783\) 4.53437 0.162045
\(784\) −1.91769 −0.0684889
\(785\) 0 0
\(786\) −39.0529 −1.39297
\(787\) 46.4201 1.65470 0.827349 0.561688i \(-0.189848\pi\)
0.827349 + 0.561688i \(0.189848\pi\)
\(788\) 1.31361 0.0467954
\(789\) 66.4713 2.36644
\(790\) 0 0
\(791\) 16.8852 0.600368
\(792\) 59.4880 2.11381
\(793\) 61.3835 2.17979
\(794\) −3.37008 −0.119600
\(795\) 0 0
\(796\) −5.42261 −0.192199
\(797\) 44.8723 1.58946 0.794729 0.606965i \(-0.207613\pi\)
0.794729 + 0.606965i \(0.207613\pi\)
\(798\) −6.71035 −0.237544
\(799\) −23.9795 −0.848335
\(800\) 0 0
\(801\) 32.7355 1.15665
\(802\) 25.6123 0.904402
\(803\) 80.1575 2.82870
\(804\) −26.8170 −0.945764
\(805\) 0 0
\(806\) 27.4096 0.965463
\(807\) 1.45799 0.0513236
\(808\) −5.40748 −0.190235
\(809\) 26.6725 0.937755 0.468877 0.883263i \(-0.344659\pi\)
0.468877 + 0.883263i \(0.344659\pi\)
\(810\) 0 0
\(811\) −30.1724 −1.05950 −0.529748 0.848155i \(-0.677713\pi\)
−0.529748 + 0.848155i \(0.677713\pi\)
\(812\) 3.17873 0.111552
\(813\) 40.4470 1.41854
\(814\) −29.7064 −1.04121
\(815\) 0 0
\(816\) −3.40627 −0.119243
\(817\) 18.7450 0.655804
\(818\) 19.8173 0.692897
\(819\) −21.5930 −0.754521
\(820\) 0 0
\(821\) −26.7513 −0.933628 −0.466814 0.884355i \(-0.654598\pi\)
−0.466814 + 0.884355i \(0.654598\pi\)
\(822\) −0.879177 −0.0306648
\(823\) −21.0257 −0.732908 −0.366454 0.930436i \(-0.619428\pi\)
−0.366454 + 0.930436i \(0.619428\pi\)
\(824\) −11.3773 −0.396346
\(825\) 0 0
\(826\) −7.15071 −0.248805
\(827\) 4.29301 0.149283 0.0746413 0.997210i \(-0.476219\pi\)
0.0746413 + 0.997210i \(0.476219\pi\)
\(828\) −16.8663 −0.586144
\(829\) −5.07828 −0.176376 −0.0881879 0.996104i \(-0.528108\pi\)
−0.0881879 + 0.996104i \(0.528108\pi\)
\(830\) 0 0
\(831\) −27.2538 −0.945424
\(832\) 18.1194 0.628177
\(833\) 19.9903 0.692624
\(834\) 37.2506 1.28988
\(835\) 0 0
\(836\) 18.0372 0.623830
\(837\) 17.4823 0.604277
\(838\) 7.64171 0.263979
\(839\) −13.7575 −0.474962 −0.237481 0.971392i \(-0.576322\pi\)
−0.237481 + 0.971392i \(0.576322\pi\)
\(840\) 0 0
\(841\) −25.2567 −0.870920
\(842\) 10.9742 0.378195
\(843\) 32.5607 1.12145
\(844\) 32.7243 1.12642
\(845\) 0 0
\(846\) 21.0286 0.722979
\(847\) −24.9989 −0.858972
\(848\) 2.65024 0.0910097
\(849\) 43.1488 1.48086
\(850\) 0 0
\(851\) 21.2459 0.728299
\(852\) −49.9268 −1.71046
\(853\) −18.6226 −0.637626 −0.318813 0.947818i \(-0.603284\pi\)
−0.318813 + 0.947818i \(0.603284\pi\)
\(854\) −14.3413 −0.490749
\(855\) 0 0
\(856\) 32.1284 1.09812
\(857\) −3.11710 −0.106478 −0.0532391 0.998582i \(-0.516955\pi\)
−0.0532391 + 0.998582i \(0.516955\pi\)
\(858\) −53.7008 −1.83331
\(859\) −46.7701 −1.59577 −0.797887 0.602807i \(-0.794049\pi\)
−0.797887 + 0.602807i \(0.794049\pi\)
\(860\) 0 0
\(861\) −5.22544 −0.178083
\(862\) −22.3016 −0.759594
\(863\) −48.9641 −1.66676 −0.833379 0.552702i \(-0.813597\pi\)
−0.833379 + 0.552702i \(0.813597\pi\)
\(864\) 13.5528 0.461076
\(865\) 0 0
\(866\) 24.0124 0.815974
\(867\) −9.12409 −0.309870
\(868\) 12.2556 0.415984
\(869\) 52.5887 1.78395
\(870\) 0 0
\(871\) 34.4871 1.16855
\(872\) −16.0268 −0.542734
\(873\) −24.5975 −0.832498
\(874\) 6.74059 0.228004
\(875\) 0 0
\(876\) 49.6604 1.67787
\(877\) 43.4332 1.46663 0.733317 0.679887i \(-0.237971\pi\)
0.733317 + 0.679887i \(0.237971\pi\)
\(878\) −28.3097 −0.955406
\(879\) −40.4557 −1.36454
\(880\) 0 0
\(881\) −43.3084 −1.45910 −0.729548 0.683930i \(-0.760269\pi\)
−0.729548 + 0.683930i \(0.760269\pi\)
\(882\) −17.5303 −0.590277
\(883\) 4.15547 0.139843 0.0699214 0.997553i \(-0.477725\pi\)
0.0699214 + 0.997553i \(0.477725\pi\)
\(884\) 21.4258 0.720627
\(885\) 0 0
\(886\) 6.22994 0.209299
\(887\) 12.1615 0.408344 0.204172 0.978935i \(-0.434550\pi\)
0.204172 + 0.978935i \(0.434550\pi\)
\(888\) −46.4249 −1.55792
\(889\) 1.01171 0.0339317
\(890\) 0 0
\(891\) 30.7564 1.03038
\(892\) −5.73967 −0.192179
\(893\) 16.0837 0.538220
\(894\) −19.1035 −0.638917
\(895\) 0 0
\(896\) 10.2321 0.341829
\(897\) 38.4065 1.28236
\(898\) −3.08925 −0.103090
\(899\) 14.4325 0.481350
\(900\) 0 0
\(901\) −27.6266 −0.920375
\(902\) −7.33924 −0.244370
\(903\) −24.9534 −0.830396
\(904\) 37.0625 1.23268
\(905\) 0 0
\(906\) −14.8925 −0.494769
\(907\) 46.0244 1.52822 0.764108 0.645088i \(-0.223179\pi\)
0.764108 + 0.645088i \(0.223179\pi\)
\(908\) −17.8997 −0.594021
\(909\) 7.66755 0.254317
\(910\) 0 0
\(911\) 40.1821 1.33129 0.665647 0.746267i \(-0.268156\pi\)
0.665647 + 0.746267i \(0.268156\pi\)
\(912\) 2.28467 0.0756530
\(913\) 69.6998 2.30673
\(914\) −13.7335 −0.454265
\(915\) 0 0
\(916\) 6.95047 0.229650
\(917\) 22.4560 0.741563
\(918\) −7.14063 −0.235676
\(919\) 9.95664 0.328439 0.164220 0.986424i \(-0.447489\pi\)
0.164220 + 0.986424i \(0.447489\pi\)
\(920\) 0 0
\(921\) −37.1972 −1.22569
\(922\) −2.05907 −0.0678119
\(923\) 64.2066 2.11339
\(924\) −24.0112 −0.789909
\(925\) 0 0
\(926\) 24.0287 0.789633
\(927\) 16.1324 0.529858
\(928\) 11.1885 0.367280
\(929\) 8.56011 0.280848 0.140424 0.990091i \(-0.455153\pi\)
0.140424 + 0.990091i \(0.455153\pi\)
\(930\) 0 0
\(931\) −13.4080 −0.439430
\(932\) −8.78200 −0.287664
\(933\) 39.2528 1.28508
\(934\) 28.6589 0.937748
\(935\) 0 0
\(936\) −47.3960 −1.54919
\(937\) −36.6021 −1.19574 −0.597870 0.801593i \(-0.703986\pi\)
−0.597870 + 0.801593i \(0.703986\pi\)
\(938\) −8.05737 −0.263082
\(939\) 7.25170 0.236650
\(940\) 0 0
\(941\) 53.9573 1.75896 0.879479 0.475939i \(-0.157892\pi\)
0.879479 + 0.475939i \(0.157892\pi\)
\(942\) 41.3707 1.34793
\(943\) 5.24899 0.170931
\(944\) 2.43460 0.0792395
\(945\) 0 0
\(946\) −35.0475 −1.13949
\(947\) 29.5042 0.958757 0.479378 0.877608i \(-0.340862\pi\)
0.479378 + 0.877608i \(0.340862\pi\)
\(948\) 32.5805 1.05817
\(949\) −63.8640 −2.07311
\(950\) 0 0
\(951\) −14.7439 −0.478102
\(952\) −12.6272 −0.409251
\(953\) 2.43741 0.0789553 0.0394777 0.999220i \(-0.487431\pi\)
0.0394777 + 0.999220i \(0.487431\pi\)
\(954\) 24.2269 0.784374
\(955\) 0 0
\(956\) −22.4685 −0.726684
\(957\) −28.2760 −0.914033
\(958\) 12.1284 0.391852
\(959\) 0.505539 0.0163247
\(960\) 0 0
\(961\) 24.6445 0.794985
\(962\) 23.6680 0.763088
\(963\) −45.5565 −1.46804
\(964\) −7.22508 −0.232704
\(965\) 0 0
\(966\) −8.97308 −0.288704
\(967\) 34.4353 1.10736 0.553682 0.832728i \(-0.313222\pi\)
0.553682 + 0.832728i \(0.313222\pi\)
\(968\) −54.8718 −1.76365
\(969\) −23.8158 −0.765074
\(970\) 0 0
\(971\) 7.50069 0.240709 0.120354 0.992731i \(-0.461597\pi\)
0.120354 + 0.992731i \(0.461597\pi\)
\(972\) 28.2905 0.907417
\(973\) −21.4197 −0.686683
\(974\) 23.4016 0.749837
\(975\) 0 0
\(976\) 4.88277 0.156294
\(977\) −18.9023 −0.604739 −0.302369 0.953191i \(-0.597778\pi\)
−0.302369 + 0.953191i \(0.597778\pi\)
\(978\) −1.69703 −0.0542649
\(979\) −46.8128 −1.49614
\(980\) 0 0
\(981\) 22.7252 0.725559
\(982\) −0.992441 −0.0316701
\(983\) 51.0261 1.62748 0.813740 0.581229i \(-0.197428\pi\)
0.813740 + 0.581229i \(0.197428\pi\)
\(984\) −11.4697 −0.365641
\(985\) 0 0
\(986\) −5.89492 −0.187732
\(987\) −21.4106 −0.681508
\(988\) −14.3708 −0.457197
\(989\) 25.0658 0.797046
\(990\) 0 0
\(991\) 0.923477 0.0293352 0.0146676 0.999892i \(-0.495331\pi\)
0.0146676 + 0.999892i \(0.495331\pi\)
\(992\) 43.1373 1.36961
\(993\) −31.5597 −1.00152
\(994\) −15.0009 −0.475799
\(995\) 0 0
\(996\) 43.1815 1.36826
\(997\) −8.11305 −0.256943 −0.128471 0.991713i \(-0.541007\pi\)
−0.128471 + 0.991713i \(0.541007\pi\)
\(998\) −23.6213 −0.747718
\(999\) 15.0959 0.477612
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4925.2.a.s.1.29 49
5.2 odd 4 985.2.b.a.789.60 yes 98
5.3 odd 4 985.2.b.a.789.39 98
5.4 even 2 4925.2.a.r.1.21 49
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
985.2.b.a.789.39 98 5.3 odd 4
985.2.b.a.789.60 yes 98 5.2 odd 4
4925.2.a.r.1.21 49 5.4 even 2
4925.2.a.s.1.29 49 1.1 even 1 trivial