Properties

Label 4925.2.a.s.1.29
Level 49254925
Weight 22
Character 4925.1
Self dual yes
Analytic conductor 39.32639.326
Analytic rank 00
Dimension 4949
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4925,2,Mod(1,4925)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4925, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4925.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 4925=52197 4925 = 5^{2} \cdot 197
Weight: k k == 2 2
Character orbit: [χ][\chi] == 4925.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 39.326322995539.3263229955
Analytic rank: 00
Dimension: 4949
Twist minimal: no (minimal twist has level 985)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.29
Character χ\chi == 4925.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+0.828486q2+2.62539q31.31361q4+2.17510q61.25071q72.74528q8+3.89268q95.56666q113.44874q12+4.43513q131.03620q14+0.352794q163.67759q17+3.22503q18+2.46665q193.28361q214.61190q22+3.29841q237.20743q24+3.67445q26+2.34362q27+1.64295q28+1.93477q29+7.45953q31+5.78285q3214.6147q333.04683q345.11346q36+6.44125q37+2.04359q38+11.6440q39+1.59137q412.72043q42+7.59936q43+7.31242q44+2.73269q46+6.52045q47+0.926223q485.43571q499.65511q515.82604q52+7.51214q53+1.94166q54+3.43356q56+6.47593q57+1.60293q58+6.90090q59+13.8403q61+6.18011q624.86863q63+4.08542q6412.1080q66+7.77589q67+4.83092q68+8.65961q69+14.4768q7110.6865q7214.3996q73+5.33649q743.24022q76+6.96230q77+9.64686q789.44708q795.52510q81+1.31843q8212.5209q83+4.31339q84+6.29596q86+5.07953q87+15.2820q88+8.40950q895.54709q914.33282q92+19.5842q93+5.40210q94+15.1822q966.31891q974.50341q9821.6692q99+O(q100)q+0.828486 q^{2} +2.62539 q^{3} -1.31361 q^{4} +2.17510 q^{6} -1.25071 q^{7} -2.74528 q^{8} +3.89268 q^{9} -5.56666 q^{11} -3.44874 q^{12} +4.43513 q^{13} -1.03620 q^{14} +0.352794 q^{16} -3.67759 q^{17} +3.22503 q^{18} +2.46665 q^{19} -3.28361 q^{21} -4.61190 q^{22} +3.29841 q^{23} -7.20743 q^{24} +3.67445 q^{26} +2.34362 q^{27} +1.64295 q^{28} +1.93477 q^{29} +7.45953 q^{31} +5.78285 q^{32} -14.6147 q^{33} -3.04683 q^{34} -5.11346 q^{36} +6.44125 q^{37} +2.04359 q^{38} +11.6440 q^{39} +1.59137 q^{41} -2.72043 q^{42} +7.59936 q^{43} +7.31242 q^{44} +2.73269 q^{46} +6.52045 q^{47} +0.926223 q^{48} -5.43571 q^{49} -9.65511 q^{51} -5.82604 q^{52} +7.51214 q^{53} +1.94166 q^{54} +3.43356 q^{56} +6.47593 q^{57} +1.60293 q^{58} +6.90090 q^{59} +13.8403 q^{61} +6.18011 q^{62} -4.86863 q^{63} +4.08542 q^{64} -12.1080 q^{66} +7.77589 q^{67} +4.83092 q^{68} +8.65961 q^{69} +14.4768 q^{71} -10.6865 q^{72} -14.3996 q^{73} +5.33649 q^{74} -3.24022 q^{76} +6.96230 q^{77} +9.64686 q^{78} -9.44708 q^{79} -5.52510 q^{81} +1.31843 q^{82} -12.5209 q^{83} +4.31339 q^{84} +6.29596 q^{86} +5.07953 q^{87} +15.2820 q^{88} +8.40950 q^{89} -5.54709 q^{91} -4.33282 q^{92} +19.5842 q^{93} +5.40210 q^{94} +15.1822 q^{96} -6.31891 q^{97} -4.50341 q^{98} -21.6692 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 49q+5q2+22q3+49q4+2q6+32q7+15q8+51q92q11+44q12+32q138q14+49q16+14q17+25q18+4q19+10q21+38q22+24q23++22q99+O(q100) 49 q + 5 q^{2} + 22 q^{3} + 49 q^{4} + 2 q^{6} + 32 q^{7} + 15 q^{8} + 51 q^{9} - 2 q^{11} + 44 q^{12} + 32 q^{13} - 8 q^{14} + 49 q^{16} + 14 q^{17} + 25 q^{18} + 4 q^{19} + 10 q^{21} + 38 q^{22} + 24 q^{23}+ \cdots + 22 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0.828486 0.585828 0.292914 0.956139i 0.405375π-0.405375\pi
0.292914 + 0.956139i 0.405375π0.405375\pi
33 2.62539 1.51577 0.757885 0.652388i 0.226233π-0.226233\pi
0.757885 + 0.652388i 0.226233π0.226233\pi
44 −1.31361 −0.656805
55 0 0
66 2.17510 0.887981
77 −1.25071 −0.472726 −0.236363 0.971665i 0.575955π-0.575955\pi
−0.236363 + 0.971665i 0.575955π0.575955\pi
88 −2.74528 −0.970603
99 3.89268 1.29756
1010 0 0
1111 −5.56666 −1.67841 −0.839205 0.543815i 0.816979π-0.816979\pi
−0.839205 + 0.543815i 0.816979π0.816979\pi
1212 −3.44874 −0.995566
1313 4.43513 1.23008 0.615042 0.788494i 0.289139π-0.289139\pi
0.615042 + 0.788494i 0.289139π0.289139\pi
1414 −1.03620 −0.276936
1515 0 0
1616 0.352794 0.0881986
1717 −3.67759 −0.891947 −0.445973 0.895046i 0.647142π-0.647142\pi
−0.445973 + 0.895046i 0.647142π0.647142\pi
1818 3.22503 0.760146
1919 2.46665 0.565889 0.282944 0.959136i 0.408689π-0.408689\pi
0.282944 + 0.959136i 0.408689π0.408689\pi
2020 0 0
2121 −3.28361 −0.716543
2222 −4.61190 −0.983260
2323 3.29841 0.687766 0.343883 0.939013i 0.388258π-0.388258\pi
0.343883 + 0.939013i 0.388258π0.388258\pi
2424 −7.20743 −1.47121
2525 0 0
2626 3.67445 0.720618
2727 2.34362 0.451030
2828 1.64295 0.310489
2929 1.93477 0.359278 0.179639 0.983733i 0.442507π-0.442507\pi
0.179639 + 0.983733i 0.442507π0.442507\pi
3030 0 0
3131 7.45953 1.33977 0.669885 0.742465i 0.266343π-0.266343\pi
0.669885 + 0.742465i 0.266343π0.266343\pi
3232 5.78285 1.02227
3333 −14.6147 −2.54408
3434 −3.04683 −0.522528
3535 0 0
3636 −5.11346 −0.852243
3737 6.44125 1.05894 0.529468 0.848330i 0.322392π-0.322392\pi
0.529468 + 0.848330i 0.322392π0.322392\pi
3838 2.04359 0.331514
3939 11.6440 1.86453
4040 0 0
4141 1.59137 0.248530 0.124265 0.992249i 0.460343π-0.460343\pi
0.124265 + 0.992249i 0.460343π0.460343\pi
4242 −2.72043 −0.419771
4343 7.59936 1.15889 0.579446 0.815011i 0.303269π-0.303269\pi
0.579446 + 0.815011i 0.303269π0.303269\pi
4444 7.31242 1.10239
4545 0 0
4646 2.73269 0.402913
4747 6.52045 0.951105 0.475553 0.879687i 0.342248π-0.342248\pi
0.475553 + 0.879687i 0.342248π0.342248\pi
4848 0.926223 0.133689
4949 −5.43571 −0.776531
5050 0 0
5151 −9.65511 −1.35199
5252 −5.82604 −0.807926
5353 7.51214 1.03187 0.515936 0.856627i 0.327444π-0.327444\pi
0.515936 + 0.856627i 0.327444π0.327444\pi
5454 1.94166 0.264226
5555 0 0
5656 3.43356 0.458829
5757 6.47593 0.857758
5858 1.60293 0.210475
5959 6.90090 0.898421 0.449211 0.893426i 0.351705π-0.351705\pi
0.449211 + 0.893426i 0.351705π0.351705\pi
6060 0 0
6161 13.8403 1.77207 0.886033 0.463622i 0.153450π-0.153450\pi
0.886033 + 0.463622i 0.153450π0.153450\pi
6262 6.18011 0.784875
6363 −4.86863 −0.613389
6464 4.08542 0.510677
6565 0 0
6666 −12.1080 −1.49040
6767 7.77589 0.949976 0.474988 0.879992i 0.342452π-0.342452\pi
0.474988 + 0.879992i 0.342452π0.342452\pi
6868 4.83092 0.585835
6969 8.65961 1.04249
7070 0 0
7171 14.4768 1.71808 0.859041 0.511907i 0.171061π-0.171061\pi
0.859041 + 0.511907i 0.171061π0.171061\pi
7272 −10.6865 −1.25941
7373 −14.3996 −1.68534 −0.842671 0.538428i 0.819018π-0.819018\pi
−0.842671 + 0.538428i 0.819018π0.819018\pi
7474 5.33649 0.620354
7575 0 0
7676 −3.24022 −0.371679
7777 6.96230 0.793428
7878 9.64686 1.09229
7979 −9.44708 −1.06288 −0.531440 0.847096i 0.678349π-0.678349\pi
−0.531440 + 0.847096i 0.678349π0.678349\pi
8080 0 0
8181 −5.52510 −0.613900
8282 1.31843 0.145596
8383 −12.5209 −1.37435 −0.687176 0.726491i 0.741150π-0.741150\pi
−0.687176 + 0.726491i 0.741150π0.741150\pi
8484 4.31339 0.470629
8585 0 0
8686 6.29596 0.678911
8787 5.07953 0.544582
8888 15.2820 1.62907
8989 8.40950 0.891405 0.445703 0.895181i 0.352954π-0.352954\pi
0.445703 + 0.895181i 0.352954π0.352954\pi
9090 0 0
9191 −5.54709 −0.581493
9292 −4.33282 −0.451728
9393 19.5842 2.03078
9494 5.40210 0.557184
9595 0 0
9696 15.1822 1.54953
9797 −6.31891 −0.641588 −0.320794 0.947149i 0.603950π-0.603950\pi
−0.320794 + 0.947149i 0.603950π0.603950\pi
9898 −4.50341 −0.454913
9999 −21.6692 −2.17784
100100 0 0
101101 1.96974 0.195996 0.0979981 0.995187i 0.468756π-0.468756\pi
0.0979981 + 0.995187i 0.468756π0.468756\pi
102102 −7.99913 −0.792032
103103 4.14430 0.408350 0.204175 0.978934i 0.434549π-0.434549\pi
0.204175 + 0.978934i 0.434549π0.434549\pi
104104 −12.1757 −1.19392
105105 0 0
106106 6.22370 0.604500
107107 −11.7031 −1.13138 −0.565692 0.824617i 0.691391π-0.691391\pi
−0.565692 + 0.824617i 0.691391π0.691391\pi
108108 −3.07861 −0.296239
109109 5.83793 0.559172 0.279586 0.960121i 0.409803π-0.409803\pi
0.279586 + 0.960121i 0.409803π0.409803\pi
110110 0 0
111111 16.9108 1.60510
112112 −0.441245 −0.0416937
113113 −13.5004 −1.27001 −0.635007 0.772507i 0.719003π-0.719003\pi
−0.635007 + 0.772507i 0.719003π0.719003\pi
114114 5.36522 0.502499
115115 0 0
116116 −2.54153 −0.235975
117117 17.2645 1.59611
118118 5.71730 0.526321
119119 4.59962 0.421646
120120 0 0
121121 19.9877 1.81706
122122 11.4665 1.03813
123123 4.17797 0.376715
124124 −9.79891 −0.879969
125125 0 0
126126 −4.03359 −0.359341
127127 −0.808906 −0.0717788 −0.0358894 0.999356i 0.511426π-0.511426\pi
−0.0358894 + 0.999356i 0.511426π0.511426\pi
128128 −8.18098 −0.723103
129129 19.9513 1.75661
130130 0 0
131131 −17.9546 −1.56870 −0.784348 0.620321i 0.787003π-0.787003\pi
−0.784348 + 0.620321i 0.787003π0.787003\pi
132132 19.1980 1.67097
133133 −3.08508 −0.267510
134134 6.44222 0.556523
135135 0 0
136136 10.0960 0.865726
137137 −0.404201 −0.0345332 −0.0172666 0.999851i 0.505496π-0.505496\pi
−0.0172666 + 0.999851i 0.505496π0.505496\pi
138138 7.17437 0.610723
139139 17.1259 1.45260 0.726302 0.687376i 0.241237π-0.241237\pi
0.726302 + 0.687376i 0.241237π0.241237\pi
140140 0 0
141141 17.1187 1.44166
142142 11.9938 1.00650
143143 −24.6889 −2.06459
144144 1.37331 0.114443
145145 0 0
146146 −11.9298 −0.987321
147147 −14.2709 −1.17704
148148 −8.46130 −0.695514
149149 −8.78283 −0.719517 −0.359759 0.933045i 0.617141π-0.617141\pi
−0.359759 + 0.933045i 0.617141π0.617141\pi
150150 0 0
151151 −6.84679 −0.557184 −0.278592 0.960410i 0.589868π-0.589868\pi
−0.278592 + 0.960410i 0.589868π0.589868\pi
152152 −6.77165 −0.549254
153153 −14.3157 −1.15735
154154 5.76817 0.464812
155155 0 0
156156 −15.2956 −1.22463
157157 19.0201 1.51797 0.758985 0.651108i 0.225695π-0.225695\pi
0.758985 + 0.651108i 0.225695π0.225695\pi
158158 −7.82678 −0.622665
159159 19.7223 1.56408
160160 0 0
161161 −4.12537 −0.325124
162162 −4.57747 −0.359640
163163 −0.780206 −0.0611104 −0.0305552 0.999533i 0.509728π-0.509728\pi
−0.0305552 + 0.999533i 0.509728π0.509728\pi
164164 −2.09044 −0.163236
165165 0 0
166166 −10.3734 −0.805134
167167 −9.22289 −0.713689 −0.356844 0.934164i 0.616147π-0.616147\pi
−0.356844 + 0.934164i 0.616147π0.616147\pi
168168 9.01444 0.695479
169169 6.67041 0.513109
170170 0 0
171171 9.60188 0.734274
172172 −9.98260 −0.761166
173173 −12.6520 −0.961916 −0.480958 0.876744i 0.659711π-0.659711\pi
−0.480958 + 0.876744i 0.659711π0.659711\pi
174174 4.20832 0.319032
175175 0 0
176176 −1.96389 −0.148033
177177 18.1176 1.36180
178178 6.96715 0.522210
179179 −14.2477 −1.06492 −0.532462 0.846454i 0.678733π-0.678733\pi
−0.532462 + 0.846454i 0.678733π0.678733\pi
180180 0 0
181181 24.4657 1.81852 0.909259 0.416230i 0.136649π-0.136649\pi
0.909259 + 0.416230i 0.136649π0.136649\pi
182182 −4.59568 −0.340655
183183 36.3361 2.68604
184184 −9.05506 −0.667548
185185 0 0
186186 16.2252 1.18969
187187 20.4719 1.49705
188188 −8.56533 −0.624691
189189 −2.93120 −0.213214
190190 0 0
191191 −3.60292 −0.260698 −0.130349 0.991468i 0.541610π-0.541610\pi
−0.130349 + 0.991468i 0.541610π0.541610\pi
192192 10.7258 0.774070
193193 −0.674279 −0.0485357 −0.0242678 0.999705i 0.507725π-0.507725\pi
−0.0242678 + 0.999705i 0.507725π0.507725\pi
194194 −5.23513 −0.375860
195195 0 0
196196 7.14041 0.510029
197197 −1.00000 −0.0712470
198198 −17.9526 −1.27584
199199 4.12802 0.292627 0.146314 0.989238i 0.453259π-0.453259\pi
0.146314 + 0.989238i 0.453259π0.453259\pi
200200 0 0
201201 20.4147 1.43995
202202 1.63190 0.114820
203203 −2.41984 −0.169840
204204 12.6831 0.887992
205205 0 0
206206 3.43350 0.239223
207207 12.8396 0.892416
208208 1.56469 0.108492
209209 −13.7310 −0.949794
210210 0 0
211211 −24.9117 −1.71499 −0.857495 0.514492i 0.827981π-0.827981\pi
−0.857495 + 0.514492i 0.827981π0.827981\pi
212212 −9.86803 −0.677739
213213 38.0073 2.60422
214214 −9.69588 −0.662796
215215 0 0
216216 −6.43390 −0.437772
217217 −9.32974 −0.633344
218218 4.83664 0.327579
219219 −37.8045 −2.55459
220220 0 0
221221 −16.3106 −1.09717
222222 14.0104 0.940314
223223 4.36939 0.292596 0.146298 0.989241i 0.453264π-0.453264\pi
0.146298 + 0.989241i 0.453264π0.453264\pi
224224 −7.23269 −0.483254
225225 0 0
226226 −11.1849 −0.744010
227227 13.6263 0.904410 0.452205 0.891914i 0.350638π-0.350638\pi
0.452205 + 0.891914i 0.350638π0.350638\pi
228228 −8.50685 −0.563380
229229 −5.29112 −0.349647 −0.174823 0.984600i 0.555935π-0.555935\pi
−0.174823 + 0.984600i 0.555935π0.555935\pi
230230 0 0
231231 18.2788 1.20265
232232 −5.31148 −0.348716
233233 6.68539 0.437974 0.218987 0.975728i 0.429725π-0.429725\pi
0.218987 + 0.975728i 0.429725π0.429725\pi
234234 14.3034 0.935045
235235 0 0
236236 −9.06510 −0.590088
237237 −24.8023 −1.61108
238238 3.81072 0.247012
239239 17.1044 1.10639 0.553196 0.833051i 0.313408π-0.313408\pi
0.553196 + 0.833051i 0.313408π0.313408\pi
240240 0 0
241241 5.50017 0.354297 0.177149 0.984184i 0.443313π-0.443313\pi
0.177149 + 0.984184i 0.443313π0.443313\pi
242242 16.5595 1.06449
243243 −21.5364 −1.38156
244244 −18.1807 −1.16390
245245 0 0
246246 3.46139 0.220690
247247 10.9399 0.696091
248248 −20.4785 −1.30039
249249 −32.8724 −2.08320
250250 0 0
251251 −12.3140 −0.777253 −0.388626 0.921395i 0.627050π-0.627050\pi
−0.388626 + 0.921395i 0.627050π0.627050\pi
252252 6.39548 0.402877
253253 −18.3611 −1.15435
254254 −0.670168 −0.0420501
255255 0 0
256256 −14.9487 −0.934292
257257 22.8292 1.42404 0.712022 0.702157i 0.247780π-0.247780\pi
0.712022 + 0.702157i 0.247780π0.247780\pi
258258 16.5294 1.02907
259259 −8.05616 −0.500586
260260 0 0
261261 7.53143 0.466184
262262 −14.8751 −0.918987
263263 25.3186 1.56121 0.780606 0.625023i 0.214910π-0.214910\pi
0.780606 + 0.625023i 0.214910π0.214910\pi
264264 40.1213 2.46930
265265 0 0
266266 −2.55594 −0.156715
267267 22.0782 1.35117
268268 −10.2145 −0.623949
269269 0.555341 0.0338598 0.0169299 0.999857i 0.494611π-0.494611\pi
0.0169299 + 0.999857i 0.494611π0.494611\pi
270270 0 0
271271 15.4061 0.935852 0.467926 0.883768i 0.345001π-0.345001\pi
0.467926 + 0.883768i 0.345001π0.345001\pi
272272 −1.29743 −0.0786685
273273 −14.5633 −0.881409
274274 −0.334875 −0.0202305
275275 0 0
276276 −11.3754 −0.684716
277277 −10.3809 −0.623725 −0.311863 0.950127i 0.600953π-0.600953\pi
−0.311863 + 0.950127i 0.600953π0.600953\pi
278278 14.1886 0.850976
279279 29.0375 1.73843
280280 0 0
281281 12.4022 0.739855 0.369927 0.929061i 0.379383π-0.379383\pi
0.369927 + 0.929061i 0.379383π0.379383\pi
282282 14.1826 0.844563
283283 16.4352 0.976971 0.488485 0.872572i 0.337550π-0.337550\pi
0.488485 + 0.872572i 0.337550π0.337550\pi
284284 −19.0169 −1.12845
285285 0 0
286286 −20.4544 −1.20949
287287 −1.99035 −0.117487
288288 22.5107 1.32646
289289 −3.47533 −0.204431
290290 0 0
291291 −16.5896 −0.972500
292292 18.9154 1.10694
293293 −15.4094 −0.900228 −0.450114 0.892971i 0.648617π-0.648617\pi
−0.450114 + 0.892971i 0.648617π0.648617\pi
294294 −11.8232 −0.689544
295295 0 0
296296 −17.6830 −1.02781
297297 −13.0461 −0.757014
298298 −7.27645 −0.421513
299299 14.6289 0.846010
300300 0 0
301301 −9.50463 −0.547838
302302 −5.67247 −0.326414
303303 5.17133 0.297085
304304 0.870221 0.0499106
305305 0 0
306306 −11.8603 −0.678010
307307 −14.1683 −0.808626 −0.404313 0.914621i 0.632489π-0.632489\pi
−0.404313 + 0.914621i 0.632489π0.632489\pi
308308 −9.14575 −0.521127
309309 10.8804 0.618965
310310 0 0
311311 14.9512 0.847805 0.423903 0.905708i 0.360660π-0.360660\pi
0.423903 + 0.905708i 0.360660π0.360660\pi
312312 −31.9659 −1.80971
313313 2.76214 0.156125 0.0780627 0.996948i 0.475127π-0.475127\pi
0.0780627 + 0.996948i 0.475127π0.475127\pi
314314 15.7579 0.889270
315315 0 0
316316 12.4098 0.698105
317317 −5.61587 −0.315419 −0.157709 0.987486i 0.550411π-0.550411\pi
−0.157709 + 0.987486i 0.550411π0.550411\pi
318318 16.3397 0.916282
319319 −10.7702 −0.603015
320320 0 0
321321 −30.7253 −1.71492
322322 −3.41781 −0.190467
323323 −9.07134 −0.504743
324324 7.25783 0.403213
325325 0 0
326326 −0.646390 −0.0358002
327327 15.3268 0.847576
328328 −4.36876 −0.241224
329329 −8.15522 −0.449612
330330 0 0
331331 −12.0210 −0.660732 −0.330366 0.943853i 0.607172π-0.607172\pi
−0.330366 + 0.943853i 0.607172π0.607172\pi
332332 16.4476 0.902682
333333 25.0737 1.37403
334334 −7.64104 −0.418099
335335 0 0
336336 −1.15844 −0.0631981
337337 18.5547 1.01074 0.505370 0.862903i 0.331356π-0.331356\pi
0.505370 + 0.862903i 0.331356π0.331356\pi
338338 5.52635 0.300594
339339 −35.4439 −1.92505
340340 0 0
341341 −41.5246 −2.24869
342342 7.95502 0.430158
343343 15.5535 0.839811
344344 −20.8624 −1.12482
345345 0 0
346346 −10.4820 −0.563517
347347 34.3835 1.84580 0.922902 0.385035i 0.125811π-0.125811\pi
0.922902 + 0.385035i 0.125811π0.125811\pi
348348 −6.67252 −0.357685
349349 −34.7319 −1.85916 −0.929579 0.368624i 0.879829π-0.879829\pi
−0.929579 + 0.368624i 0.879829π0.879829\pi
350350 0 0
351351 10.3943 0.554806
352352 −32.1911 −1.71579
353353 −19.4978 −1.03776 −0.518881 0.854846i 0.673651π-0.673651\pi
−0.518881 + 0.854846i 0.673651π0.673651\pi
354354 15.0102 0.797781
355355 0 0
356356 −11.0468 −0.585480
357357 12.0758 0.639118
358358 −11.8040 −0.623863
359359 −25.1653 −1.32817 −0.664087 0.747656i 0.731179π-0.731179\pi
−0.664087 + 0.747656i 0.731179π0.731179\pi
360360 0 0
361361 −12.9156 −0.679770
362362 20.2695 1.06534
363363 52.4755 2.75425
364364 7.28671 0.381927
365365 0 0
366366 30.1040 1.57356
367367 6.17921 0.322552 0.161276 0.986909i 0.448439π-0.448439\pi
0.161276 + 0.986909i 0.448439π0.448439\pi
368368 1.16366 0.0606600
369369 6.19469 0.322483
370370 0 0
371371 −9.39554 −0.487792
372372 −25.7260 −1.33383
373373 27.6858 1.43351 0.716757 0.697323i 0.245626π-0.245626\pi
0.716757 + 0.697323i 0.245626π0.245626\pi
374374 16.9607 0.877016
375375 0 0
376376 −17.9005 −0.923146
377377 8.58096 0.441942
378378 −2.42846 −0.124907
379379 21.8264 1.12115 0.560574 0.828104i 0.310580π-0.310580\pi
0.560574 + 0.828104i 0.310580π0.310580\pi
380380 0 0
381381 −2.12370 −0.108800
382382 −2.98497 −0.152724
383383 0.993450 0.0507629 0.0253815 0.999678i 0.491920π-0.491920\pi
0.0253815 + 0.999678i 0.491920π0.491920\pi
384384 −21.4783 −1.09606
385385 0 0
386386 −0.558631 −0.0284336
387387 29.5818 1.50373
388388 8.30059 0.421398
389389 −17.9885 −0.912051 −0.456025 0.889967i 0.650727π-0.650727\pi
−0.456025 + 0.889967i 0.650727π0.650727\pi
390390 0 0
391391 −12.1302 −0.613450
392392 14.9226 0.753703
393393 −47.1377 −2.37778
394394 −0.828486 −0.0417385
395395 0 0
396396 28.4649 1.43041
397397 −4.06775 −0.204155 −0.102077 0.994776i 0.532549π-0.532549\pi
−0.102077 + 0.994776i 0.532549π0.532549\pi
398398 3.42001 0.171429
399399 −8.09953 −0.405484
400400 0 0
401401 30.9146 1.54380 0.771900 0.635743i 0.219306π-0.219306\pi
0.771900 + 0.635743i 0.219306π0.219306\pi
402402 16.9133 0.843560
403403 33.0840 1.64803
404404 −2.58747 −0.128731
405405 0 0
406406 −2.00481 −0.0994969
407407 −35.8562 −1.77733
408408 26.5060 1.31224
409409 23.9199 1.18276 0.591382 0.806391i 0.298582π-0.298582\pi
0.591382 + 0.806391i 0.298582π0.298582\pi
410410 0 0
411411 −1.06118 −0.0523444
412412 −5.44400 −0.268206
413413 −8.63106 −0.424707
414414 10.6375 0.522803
415415 0 0
416416 25.6477 1.25748
417417 44.9623 2.20181
418418 −11.3760 −0.556416
419419 9.22370 0.450607 0.225304 0.974289i 0.427663π-0.427663\pi
0.225304 + 0.974289i 0.427663π0.427663\pi
420420 0 0
421421 13.2461 0.645573 0.322787 0.946472i 0.395380π-0.395380\pi
0.322787 + 0.946472i 0.395380π0.395380\pi
422422 −20.6390 −1.00469
423423 25.3820 1.23411
424424 −20.6229 −1.00154
425425 0 0
426426 31.4885 1.52562
427427 −17.3102 −0.837701
428428 15.3733 0.743099
429429 −64.8179 −3.12944
430430 0 0
431431 −26.9184 −1.29662 −0.648308 0.761378i 0.724523π-0.724523\pi
−0.648308 + 0.761378i 0.724523π0.724523\pi
432432 0.826817 0.0397803
433433 28.9834 1.39285 0.696427 0.717627i 0.254772π-0.254772\pi
0.696427 + 0.717627i 0.254772π0.254772\pi
434434 −7.72956 −0.371031
435435 0 0
436436 −7.66877 −0.367267
437437 8.13603 0.389199
438438 −31.3205 −1.49655
439439 −34.1704 −1.63086 −0.815432 0.578853i 0.803501π-0.803501\pi
−0.815432 + 0.578853i 0.803501π0.803501\pi
440440 0 0
441441 −21.1595 −1.00759
442442 −13.5131 −0.642753
443443 7.51967 0.357270 0.178635 0.983915i 0.442832π-0.442832\pi
0.178635 + 0.983915i 0.442832π0.442832\pi
444444 −22.2142 −1.05424
445445 0 0
446446 3.61998 0.171411
447447 −23.0584 −1.09062
448448 −5.10969 −0.241410
449449 −3.72879 −0.175972 −0.0879862 0.996122i 0.528043π-0.528043\pi
−0.0879862 + 0.996122i 0.528043π0.528043\pi
450450 0 0
451451 −8.85861 −0.417136
452452 17.7343 0.834151
453453 −17.9755 −0.844563
454454 11.2892 0.529829
455455 0 0
456456 −17.7782 −0.832542
457457 −16.5767 −0.775424 −0.387712 0.921781i 0.626734π-0.626734\pi
−0.387712 + 0.921781i 0.626734π0.626734\pi
458458 −4.38362 −0.204833
459459 −8.61889 −0.402295
460460 0 0
461461 −2.48534 −0.115754 −0.0578769 0.998324i 0.518433π-0.518433\pi
−0.0578769 + 0.998324i 0.518433π0.518433\pi
462462 15.1437 0.704548
463463 29.0032 1.34789 0.673946 0.738781i 0.264598π-0.264598\pi
0.673946 + 0.738781i 0.264598π0.264598\pi
464464 0.682576 0.0316878
465465 0 0
466466 5.53875 0.256578
467467 34.5919 1.60072 0.800361 0.599518i 0.204641π-0.204641\pi
0.800361 + 0.599518i 0.204641π0.204641\pi
468468 −22.6789 −1.04833
469469 −9.72541 −0.449078
470470 0 0
471471 49.9352 2.30089
472472 −18.9449 −0.872011
473473 −42.3030 −1.94510
474474 −20.5483 −0.943817
475475 0 0
476476 −6.04210 −0.276939
477477 29.2423 1.33891
478478 14.1708 0.648155
479479 14.6393 0.668885 0.334443 0.942416i 0.391452π-0.391452\pi
0.334443 + 0.942416i 0.391452π0.391452\pi
480480 0 0
481481 28.5678 1.30258
482482 4.55681 0.207557
483483 −10.8307 −0.492814
484484 −26.2560 −1.19346
485485 0 0
486486 −17.8426 −0.809358
487487 28.2463 1.27996 0.639980 0.768391i 0.278942π-0.278942\pi
0.639980 + 0.768391i 0.278942π0.278942\pi
488488 −37.9955 −1.71997
489489 −2.04835 −0.0926294
490490 0 0
491491 −1.19790 −0.0540604 −0.0270302 0.999635i 0.508605π-0.508605\pi
−0.0270302 + 0.999635i 0.508605π0.508605\pi
492492 −5.48822 −0.247428
493493 −7.11529 −0.320457
494494 9.06359 0.407790
495495 0 0
496496 2.63168 0.118166
497497 −18.1064 −0.812181
498498 −27.2343 −1.22040
499499 −28.5113 −1.27634 −0.638171 0.769894i 0.720309π-0.720309\pi
−0.638171 + 0.769894i 0.720309π0.720309\pi
500500 0 0
501501 −24.2137 −1.08179
502502 −10.2020 −0.455337
503503 14.1483 0.630841 0.315421 0.948952i 0.397854π-0.397854\pi
0.315421 + 0.948952i 0.397854π0.397854\pi
504504 13.3657 0.595357
505505 0 0
506506 −15.2119 −0.676253
507507 17.5124 0.777755
508508 1.06259 0.0471447
509509 36.7074 1.62703 0.813514 0.581545i 0.197552π-0.197552\pi
0.813514 + 0.581545i 0.197552π0.197552\pi
510510 0 0
511511 18.0098 0.796705
512512 3.97720 0.175769
513513 5.78090 0.255233
514514 18.9136 0.834245
515515 0 0
516516 −26.2082 −1.15375
517517 −36.2971 −1.59634
518518 −6.67442 −0.293257
519519 −33.2165 −1.45804
520520 0 0
521521 −1.84046 −0.0806318 −0.0403159 0.999187i 0.512836π-0.512836\pi
−0.0403159 + 0.999187i 0.512836π0.512836\pi
522522 6.23969 0.273104
523523 10.7185 0.468689 0.234345 0.972154i 0.424706π-0.424706\pi
0.234345 + 0.972154i 0.424706π0.424706\pi
524524 23.5853 1.03033
525525 0 0
526526 20.9761 0.914602
527527 −27.4331 −1.19500
528528 −5.15597 −0.224385
529529 −12.1205 −0.526978
530530 0 0
531531 26.8630 1.16575
532532 4.05259 0.175702
533533 7.05794 0.305713
534534 18.2915 0.791551
535535 0 0
536536 −21.3470 −0.922050
537537 −37.4058 −1.61418
538538 0.460093 0.0198360
539539 30.2588 1.30334
540540 0 0
541541 −12.5366 −0.538990 −0.269495 0.963002i 0.586857π-0.586857\pi
−0.269495 + 0.963002i 0.586857π0.586857\pi
542542 12.7637 0.548249
543543 64.2319 2.75646
544544 −21.2669 −0.911813
545545 0 0
546546 −12.0655 −0.516354
547547 −17.5238 −0.749262 −0.374631 0.927174i 0.622231π-0.622231\pi
−0.374631 + 0.927174i 0.622231π0.622231\pi
548548 0.530962 0.0226816
549549 53.8757 2.29936
550550 0 0
551551 4.77240 0.203311
552552 −23.7731 −1.01185
553553 11.8156 0.502450
554554 −8.60039 −0.365396
555555 0 0
556556 −22.4968 −0.954078
557557 −28.9383 −1.22615 −0.613077 0.790023i 0.710068π-0.710068\pi
−0.613077 + 0.790023i 0.710068π0.710068\pi
558558 24.0572 1.01842
559559 33.7042 1.42553
560560 0 0
561561 53.7467 2.26919
562562 10.2751 0.433428
563563 1.69109 0.0712709 0.0356354 0.999365i 0.488654π-0.488654\pi
0.0356354 + 0.999365i 0.488654π0.488654\pi
564564 −22.4873 −0.946888
565565 0 0
566566 13.6163 0.572337
567567 6.91032 0.290206
568568 −39.7429 −1.66758
569569 −8.00803 −0.335714 −0.167857 0.985811i 0.553685π-0.553685\pi
−0.167857 + 0.985811i 0.553685π0.553685\pi
570570 0 0
571571 −0.952819 −0.0398742 −0.0199371 0.999801i 0.506347π-0.506347\pi
−0.0199371 + 0.999801i 0.506347π0.506347\pi
572572 32.4316 1.35603
573573 −9.45907 −0.395158
574574 −1.64898 −0.0688270
575575 0 0
576576 15.9032 0.662634
577577 −8.25605 −0.343704 −0.171852 0.985123i 0.554975π-0.554975\pi
−0.171852 + 0.985123i 0.554975π0.554975\pi
578578 −2.87926 −0.119761
579579 −1.77025 −0.0735689
580580 0 0
581581 15.6601 0.649691
582582 −13.7443 −0.569718
583583 −41.8175 −1.73190
584584 39.5309 1.63580
585585 0 0
586586 −12.7665 −0.527379
587587 −13.1511 −0.542805 −0.271403 0.962466i 0.587487π-0.587487\pi
−0.271403 + 0.962466i 0.587487π0.587487\pi
588588 18.7464 0.773087
589589 18.4001 0.758161
590590 0 0
591591 −2.62539 −0.107994
592592 2.27244 0.0933966
593593 −26.5644 −1.09087 −0.545434 0.838154i 0.683635π-0.683635\pi
−0.545434 + 0.838154i 0.683635π0.683635\pi
594594 −10.8086 −0.443480
595595 0 0
596596 11.5372 0.472583
597597 10.8377 0.443556
598598 12.1198 0.495617
599599 13.7241 0.560752 0.280376 0.959890i 0.409541π-0.409541\pi
0.280376 + 0.959890i 0.409541π0.409541\pi
600600 0 0
601601 5.38268 0.219564 0.109782 0.993956i 0.464985π-0.464985\pi
0.109782 + 0.993956i 0.464985π0.464985\pi
602602 −7.87445 −0.320939
603603 30.2690 1.23265
604604 8.99402 0.365962
605605 0 0
606606 4.28438 0.174041
607607 6.50833 0.264165 0.132082 0.991239i 0.457834π-0.457834\pi
0.132082 + 0.991239i 0.457834π0.457834\pi
608608 14.2643 0.578493
609609 −6.35303 −0.257438
610610 0 0
611611 28.9191 1.16994
612612 18.8052 0.760156
613613 10.2305 0.413206 0.206603 0.978425i 0.433759π-0.433759\pi
0.206603 + 0.978425i 0.433759π0.433759\pi
614614 −11.7382 −0.473716
615615 0 0
616616 −19.1135 −0.770103
617617 −16.4663 −0.662910 −0.331455 0.943471i 0.607540π-0.607540\pi
−0.331455 + 0.943471i 0.607540π0.607540\pi
618618 9.01427 0.362607
619619 21.9351 0.881647 0.440823 0.897594i 0.354686π-0.354686\pi
0.440823 + 0.897594i 0.354686π0.354686\pi
620620 0 0
621621 7.73023 0.310203
622622 12.3869 0.496668
623623 −10.5179 −0.421390
624624 4.10792 0.164449
625625 0 0
626626 2.28840 0.0914627
627627 −36.0493 −1.43967
628628 −24.9850 −0.997011
629629 −23.6883 −0.944514
630630 0 0
631631 14.4810 0.576481 0.288240 0.957558i 0.406930π-0.406930\pi
0.288240 + 0.957558i 0.406930π0.406930\pi
632632 25.9349 1.03163
633633 −65.4029 −2.59953
634634 −4.65267 −0.184781
635635 0 0
636636 −25.9074 −1.02730
637637 −24.1081 −0.955198
638638 −8.92296 −0.353263
639639 56.3536 2.22931
640640 0 0
641641 −14.6151 −0.577262 −0.288631 0.957440i 0.593200π-0.593200\pi
−0.288631 + 0.957440i 0.593200π0.593200\pi
642642 −25.4555 −1.00465
643643 −36.3205 −1.43234 −0.716170 0.697925i 0.754107π-0.754107\pi
−0.716170 + 0.697925i 0.754107π0.754107\pi
644644 5.41913 0.213543
645645 0 0
646646 −7.51548 −0.295693
647647 −20.2839 −0.797443 −0.398721 0.917072i 0.630546π-0.630546\pi
−0.398721 + 0.917072i 0.630546π0.630546\pi
648648 15.1680 0.595854
649649 −38.4150 −1.50792
650650 0 0
651651 −24.4942 −0.960004
652652 1.02489 0.0401377
653653 −9.57379 −0.374651 −0.187326 0.982298i 0.559982π-0.559982\pi
−0.187326 + 0.982298i 0.559982π0.559982\pi
654654 12.6981 0.496534
655655 0 0
656656 0.561427 0.0219200
657657 −56.0529 −2.18683
658658 −6.75648 −0.263395
659659 −27.0032 −1.05189 −0.525947 0.850517i 0.676289π-0.676289\pi
−0.525947 + 0.850517i 0.676289π0.676289\pi
660660 0 0
661661 −48.7702 −1.89694 −0.948470 0.316868i 0.897369π-0.897369\pi
−0.948470 + 0.316868i 0.897369π0.897369\pi
662662 −9.95920 −0.387075
663663 −42.8217 −1.66306
664664 34.3735 1.33395
665665 0 0
666666 20.7732 0.804946
667667 6.38166 0.247099
668668 12.1153 0.468754
669669 11.4713 0.443508
670670 0 0
671671 −77.0441 −2.97425
672672 −18.9886 −0.732502
673673 42.9571 1.65587 0.827937 0.560821i 0.189514π-0.189514\pi
0.827937 + 0.560821i 0.189514π0.189514\pi
674674 15.3723 0.592120
675675 0 0
676676 −8.76233 −0.337013
677677 −35.6547 −1.37032 −0.685160 0.728393i 0.740268π-0.740268\pi
−0.685160 + 0.728393i 0.740268π0.740268\pi
678678 −29.3648 −1.12775
679679 7.90315 0.303295
680680 0 0
681681 35.7744 1.37088
682682 −34.4026 −1.31734
683683 −0.933116 −0.0357047 −0.0178523 0.999841i 0.505683π-0.505683\pi
−0.0178523 + 0.999841i 0.505683π0.505683\pi
684684 −12.6131 −0.482275
685685 0 0
686686 12.8859 0.491985
687687 −13.8913 −0.529984
688688 2.68101 0.102213
689689 33.3173 1.26929
690690 0 0
691691 −19.3165 −0.734836 −0.367418 0.930056i 0.619758π-0.619758\pi
−0.367418 + 0.930056i 0.619758π0.619758\pi
692692 16.6198 0.631792
693693 27.1020 1.02952
694694 28.4863 1.08132
695695 0 0
696696 −13.9447 −0.528573
697697 −5.85241 −0.221676
698698 −28.7749 −1.08915
699699 17.5518 0.663869
700700 0 0
701701 −41.4399 −1.56517 −0.782583 0.622547i 0.786098π-0.786098\pi
−0.782583 + 0.622547i 0.786098π0.786098\pi
702702 8.61152 0.325021
703703 15.8883 0.599240
704704 −22.7421 −0.857126
705705 0 0
706706 −16.1536 −0.607950
707707 −2.46358 −0.0926525
708708 −23.7994 −0.894438
709709 51.9958 1.95274 0.976371 0.216102i 0.0693343π-0.0693343\pi
0.976371 + 0.216102i 0.0693343π0.0693343\pi
710710 0 0
711711 −36.7744 −1.37915
712712 −23.0864 −0.865201
713713 24.6046 0.921448
714714 10.0046 0.374414
715715 0 0
716716 18.7160 0.699448
717717 44.9057 1.67704
718718 −20.8491 −0.778081
719719 −2.29676 −0.0856549 −0.0428274 0.999082i 0.513637π-0.513637\pi
−0.0428274 + 0.999082i 0.513637π0.513637\pi
720720 0 0
721721 −5.18334 −0.193037
722722 −10.7004 −0.398228
723723 14.4401 0.537033
724724 −32.1384 −1.19441
725725 0 0
726726 43.4752 1.61352
727727 17.7008 0.656485 0.328242 0.944594i 0.393544π-0.393544\pi
0.328242 + 0.944594i 0.393544π0.393544\pi
728728 15.2283 0.564399
729729 −39.9662 −1.48023
730730 0 0
731731 −27.9473 −1.03367
732732 −47.7315 −1.76421
733733 −39.3110 −1.45198 −0.725992 0.687703i 0.758619π-0.758619\pi
−0.725992 + 0.687703i 0.758619π0.758619\pi
734734 5.11939 0.188960
735735 0 0
736736 19.0742 0.703084
737737 −43.2857 −1.59445
738738 5.13221 0.188919
739739 34.8854 1.28328 0.641640 0.767006i 0.278254π-0.278254\pi
0.641640 + 0.767006i 0.278254π0.278254\pi
740740 0 0
741741 28.7216 1.05511
742742 −7.78408 −0.285762
743743 18.7028 0.686138 0.343069 0.939310i 0.388534π-0.388534\pi
0.343069 + 0.939310i 0.388534π0.388534\pi
744744 −53.7640 −1.97109
745745 0 0
746746 22.9373 0.839793
747747 −48.7400 −1.78330
748748 −26.8921 −0.983272
749749 14.6373 0.534834
750750 0 0
751751 40.0760 1.46239 0.731197 0.682166i 0.238962π-0.238962\pi
0.731197 + 0.682166i 0.238962π0.238962\pi
752752 2.30038 0.0838861
753753 −32.3291 −1.17814
754754 7.10921 0.258902
755755 0 0
756756 3.85046 0.140040
757757 −22.7584 −0.827168 −0.413584 0.910466i 0.635723π-0.635723\pi
−0.413584 + 0.910466i 0.635723π0.635723\pi
758758 18.0829 0.656801
759759 −48.2051 −1.74973
760760 0 0
761761 −21.8639 −0.792566 −0.396283 0.918128i 0.629700π-0.629700\pi
−0.396283 + 0.918128i 0.629700π0.629700\pi
762762 −1.75945 −0.0637382
763763 −7.30158 −0.264335
764764 4.73283 0.171228
765765 0 0
766766 0.823060 0.0297384
767767 30.6064 1.10513
768768 −39.2461 −1.41617
769769 15.9462 0.575034 0.287517 0.957776i 0.407170π-0.407170\pi
0.287517 + 0.957776i 0.407170π0.407170\pi
770770 0 0
771771 59.9355 2.15852
772772 0.885740 0.0318785
773773 18.4449 0.663418 0.331709 0.943382i 0.392375π-0.392375\pi
0.331709 + 0.943382i 0.392375π0.392375\pi
774774 24.5081 0.880927
775775 0 0
776776 17.3472 0.622727
777777 −21.1506 −0.758773
778778 −14.9032 −0.534305
779779 3.92536 0.140641
780780 0 0
781781 −80.5875 −2.88365
782782 −10.0497 −0.359377
783783 4.53437 0.162045
784784 −1.91769 −0.0684889
785785 0 0
786786 −39.0529 −1.39297
787787 46.4201 1.65470 0.827349 0.561688i 0.189848π-0.189848\pi
0.827349 + 0.561688i 0.189848π0.189848\pi
788788 1.31361 0.0467954
789789 66.4713 2.36644
790790 0 0
791791 16.8852 0.600368
792792 59.4880 2.11381
793793 61.3835 2.17979
794794 −3.37008 −0.119600
795795 0 0
796796 −5.42261 −0.192199
797797 44.8723 1.58946 0.794729 0.606965i 0.207613π-0.207613\pi
0.794729 + 0.606965i 0.207613π0.207613\pi
798798 −6.71035 −0.237544
799799 −23.9795 −0.848335
800800 0 0
801801 32.7355 1.15665
802802 25.6123 0.904402
803803 80.1575 2.82870
804804 −26.8170 −0.945764
805805 0 0
806806 27.4096 0.965463
807807 1.45799 0.0513236
808808 −5.40748 −0.190235
809809 26.6725 0.937755 0.468877 0.883263i 0.344659π-0.344659\pi
0.468877 + 0.883263i 0.344659π0.344659\pi
810810 0 0
811811 −30.1724 −1.05950 −0.529748 0.848155i 0.677713π-0.677713\pi
−0.529748 + 0.848155i 0.677713π0.677713\pi
812812 3.17873 0.111552
813813 40.4470 1.41854
814814 −29.7064 −1.04121
815815 0 0
816816 −3.40627 −0.119243
817817 18.7450 0.655804
818818 19.8173 0.692897
819819 −21.5930 −0.754521
820820 0 0
821821 −26.7513 −0.933628 −0.466814 0.884355i 0.654598π-0.654598\pi
−0.466814 + 0.884355i 0.654598π0.654598\pi
822822 −0.879177 −0.0306648
823823 −21.0257 −0.732908 −0.366454 0.930436i 0.619428π-0.619428\pi
−0.366454 + 0.930436i 0.619428π0.619428\pi
824824 −11.3773 −0.396346
825825 0 0
826826 −7.15071 −0.248805
827827 4.29301 0.149283 0.0746413 0.997210i 0.476219π-0.476219\pi
0.0746413 + 0.997210i 0.476219π0.476219\pi
828828 −16.8663 −0.586144
829829 −5.07828 −0.176376 −0.0881879 0.996104i 0.528108π-0.528108\pi
−0.0881879 + 0.996104i 0.528108π0.528108\pi
830830 0 0
831831 −27.2538 −0.945424
832832 18.1194 0.628177
833833 19.9903 0.692624
834834 37.2506 1.28988
835835 0 0
836836 18.0372 0.623830
837837 17.4823 0.604277
838838 7.64171 0.263979
839839 −13.7575 −0.474962 −0.237481 0.971392i 0.576322π-0.576322\pi
−0.237481 + 0.971392i 0.576322π0.576322\pi
840840 0 0
841841 −25.2567 −0.870920
842842 10.9742 0.378195
843843 32.5607 1.12145
844844 32.7243 1.12642
845845 0 0
846846 21.0286 0.722979
847847 −24.9989 −0.858972
848848 2.65024 0.0910097
849849 43.1488 1.48086
850850 0 0
851851 21.2459 0.728299
852852 −49.9268 −1.71046
853853 −18.6226 −0.637626 −0.318813 0.947818i 0.603284π-0.603284\pi
−0.318813 + 0.947818i 0.603284π0.603284\pi
854854 −14.3413 −0.490749
855855 0 0
856856 32.1284 1.09812
857857 −3.11710 −0.106478 −0.0532391 0.998582i 0.516955π-0.516955\pi
−0.0532391 + 0.998582i 0.516955π0.516955\pi
858858 −53.7008 −1.83331
859859 −46.7701 −1.59577 −0.797887 0.602807i 0.794049π-0.794049\pi
−0.797887 + 0.602807i 0.794049π0.794049\pi
860860 0 0
861861 −5.22544 −0.178083
862862 −22.3016 −0.759594
863863 −48.9641 −1.66676 −0.833379 0.552702i 0.813597π-0.813597\pi
−0.833379 + 0.552702i 0.813597π0.813597\pi
864864 13.5528 0.461076
865865 0 0
866866 24.0124 0.815974
867867 −9.12409 −0.309870
868868 12.2556 0.415984
869869 52.5887 1.78395
870870 0 0
871871 34.4871 1.16855
872872 −16.0268 −0.542734
873873 −24.5975 −0.832498
874874 6.74059 0.228004
875875 0 0
876876 49.6604 1.67787
877877 43.4332 1.46663 0.733317 0.679887i 0.237971π-0.237971\pi
0.733317 + 0.679887i 0.237971π0.237971\pi
878878 −28.3097 −0.955406
879879 −40.4557 −1.36454
880880 0 0
881881 −43.3084 −1.45910 −0.729548 0.683930i 0.760269π-0.760269\pi
−0.729548 + 0.683930i 0.760269π0.760269\pi
882882 −17.5303 −0.590277
883883 4.15547 0.139843 0.0699214 0.997553i 0.477725π-0.477725\pi
0.0699214 + 0.997553i 0.477725π0.477725\pi
884884 21.4258 0.720627
885885 0 0
886886 6.22994 0.209299
887887 12.1615 0.408344 0.204172 0.978935i 0.434550π-0.434550\pi
0.204172 + 0.978935i 0.434550π0.434550\pi
888888 −46.4249 −1.55792
889889 1.01171 0.0339317
890890 0 0
891891 30.7564 1.03038
892892 −5.73967 −0.192179
893893 16.0837 0.538220
894894 −19.1035 −0.638917
895895 0 0
896896 10.2321 0.341829
897897 38.4065 1.28236
898898 −3.08925 −0.103090
899899 14.4325 0.481350
900900 0 0
901901 −27.6266 −0.920375
902902 −7.33924 −0.244370
903903 −24.9534 −0.830396
904904 37.0625 1.23268
905905 0 0
906906 −14.8925 −0.494769
907907 46.0244 1.52822 0.764108 0.645088i 0.223179π-0.223179\pi
0.764108 + 0.645088i 0.223179π0.223179\pi
908908 −17.8997 −0.594021
909909 7.66755 0.254317
910910 0 0
911911 40.1821 1.33129 0.665647 0.746267i 0.268156π-0.268156\pi
0.665647 + 0.746267i 0.268156π0.268156\pi
912912 2.28467 0.0756530
913913 69.6998 2.30673
914914 −13.7335 −0.454265
915915 0 0
916916 6.95047 0.229650
917917 22.4560 0.741563
918918 −7.14063 −0.235676
919919 9.95664 0.328439 0.164220 0.986424i 0.447489π-0.447489\pi
0.164220 + 0.986424i 0.447489π0.447489\pi
920920 0 0
921921 −37.1972 −1.22569
922922 −2.05907 −0.0678119
923923 64.2066 2.11339
924924 −24.0112 −0.789909
925925 0 0
926926 24.0287 0.789633
927927 16.1324 0.529858
928928 11.1885 0.367280
929929 8.56011 0.280848 0.140424 0.990091i 0.455153π-0.455153\pi
0.140424 + 0.990091i 0.455153π0.455153\pi
930930 0 0
931931 −13.4080 −0.439430
932932 −8.78200 −0.287664
933933 39.2528 1.28508
934934 28.6589 0.937748
935935 0 0
936936 −47.3960 −1.54919
937937 −36.6021 −1.19574 −0.597870 0.801593i 0.703986π-0.703986\pi
−0.597870 + 0.801593i 0.703986π0.703986\pi
938938 −8.05737 −0.263082
939939 7.25170 0.236650
940940 0 0
941941 53.9573 1.75896 0.879479 0.475939i 0.157892π-0.157892\pi
0.879479 + 0.475939i 0.157892π0.157892\pi
942942 41.3707 1.34793
943943 5.24899 0.170931
944944 2.43460 0.0792395
945945 0 0
946946 −35.0475 −1.13949
947947 29.5042 0.958757 0.479378 0.877608i 0.340862π-0.340862\pi
0.479378 + 0.877608i 0.340862π0.340862\pi
948948 32.5805 1.05817
949949 −63.8640 −2.07311
950950 0 0
951951 −14.7439 −0.478102
952952 −12.6272 −0.409251
953953 2.43741 0.0789553 0.0394777 0.999220i 0.487431π-0.487431\pi
0.0394777 + 0.999220i 0.487431π0.487431\pi
954954 24.2269 0.784374
955955 0 0
956956 −22.4685 −0.726684
957957 −28.2760 −0.914033
958958 12.1284 0.391852
959959 0.505539 0.0163247
960960 0 0
961961 24.6445 0.794985
962962 23.6680 0.763088
963963 −45.5565 −1.46804
964964 −7.22508 −0.232704
965965 0 0
966966 −8.97308 −0.288704
967967 34.4353 1.10736 0.553682 0.832728i 0.313222π-0.313222\pi
0.553682 + 0.832728i 0.313222π0.313222\pi
968968 −54.8718 −1.76365
969969 −23.8158 −0.765074
970970 0 0
971971 7.50069 0.240709 0.120354 0.992731i 0.461597π-0.461597\pi
0.120354 + 0.992731i 0.461597π0.461597\pi
972972 28.2905 0.907417
973973 −21.4197 −0.686683
974974 23.4016 0.749837
975975 0 0
976976 4.88277 0.156294
977977 −18.9023 −0.604739 −0.302369 0.953191i 0.597778π-0.597778\pi
−0.302369 + 0.953191i 0.597778π0.597778\pi
978978 −1.69703 −0.0542649
979979 −46.8128 −1.49614
980980 0 0
981981 22.7252 0.725559
982982 −0.992441 −0.0316701
983983 51.0261 1.62748 0.813740 0.581229i 0.197428π-0.197428\pi
0.813740 + 0.581229i 0.197428π0.197428\pi
984984 −11.4697 −0.365641
985985 0 0
986986 −5.89492 −0.187732
987987 −21.4106 −0.681508
988988 −14.3708 −0.457197
989989 25.0658 0.797046
990990 0 0
991991 0.923477 0.0293352 0.0146676 0.999892i 0.495331π-0.495331\pi
0.0146676 + 0.999892i 0.495331π0.495331\pi
992992 43.1373 1.36961
993993 −31.5597 −1.00152
994994 −15.0009 −0.475799
995995 0 0
996996 43.1815 1.36826
997997 −8.11305 −0.256943 −0.128471 0.991713i 0.541007π-0.541007\pi
−0.128471 + 0.991713i 0.541007π0.541007\pi
998998 −23.6213 −0.747718
999999 15.0959 0.477612
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4925.2.a.s.1.29 49
5.2 odd 4 985.2.b.a.789.60 yes 98
5.3 odd 4 985.2.b.a.789.39 98
5.4 even 2 4925.2.a.r.1.21 49
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
985.2.b.a.789.39 98 5.3 odd 4
985.2.b.a.789.60 yes 98 5.2 odd 4
4925.2.a.r.1.21 49 5.4 even 2
4925.2.a.s.1.29 49 1.1 even 1 trivial