Properties

Label 50.4.a.e.1.1
Level $50$
Weight $4$
Character 50.1
Self dual yes
Analytic conductor $2.950$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [50,4,Mod(1,50)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(50, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("50.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 50 = 2 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 50.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(2.95009550029\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 50.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000 q^{2} +7.00000 q^{3} +4.00000 q^{4} +14.0000 q^{6} -34.0000 q^{7} +8.00000 q^{8} +22.0000 q^{9} +27.0000 q^{11} +28.0000 q^{12} -28.0000 q^{13} -68.0000 q^{14} +16.0000 q^{16} +21.0000 q^{17} +44.0000 q^{18} +35.0000 q^{19} -238.000 q^{21} +54.0000 q^{22} -78.0000 q^{23} +56.0000 q^{24} -56.0000 q^{26} -35.0000 q^{27} -136.000 q^{28} -120.000 q^{29} +182.000 q^{31} +32.0000 q^{32} +189.000 q^{33} +42.0000 q^{34} +88.0000 q^{36} +146.000 q^{37} +70.0000 q^{38} -196.000 q^{39} +357.000 q^{41} -476.000 q^{42} -148.000 q^{43} +108.000 q^{44} -156.000 q^{46} -84.0000 q^{47} +112.000 q^{48} +813.000 q^{49} +147.000 q^{51} -112.000 q^{52} +702.000 q^{53} -70.0000 q^{54} -272.000 q^{56} +245.000 q^{57} -240.000 q^{58} -840.000 q^{59} -238.000 q^{61} +364.000 q^{62} -748.000 q^{63} +64.0000 q^{64} +378.000 q^{66} +461.000 q^{67} +84.0000 q^{68} -546.000 q^{69} -708.000 q^{71} +176.000 q^{72} -133.000 q^{73} +292.000 q^{74} +140.000 q^{76} -918.000 q^{77} -392.000 q^{78} +650.000 q^{79} -839.000 q^{81} +714.000 q^{82} -903.000 q^{83} -952.000 q^{84} -296.000 q^{86} -840.000 q^{87} +216.000 q^{88} +735.000 q^{89} +952.000 q^{91} -312.000 q^{92} +1274.00 q^{93} -168.000 q^{94} +224.000 q^{96} +1106.00 q^{97} +1626.00 q^{98} +594.000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 0.707107
\(3\) 7.00000 1.34715 0.673575 0.739119i \(-0.264758\pi\)
0.673575 + 0.739119i \(0.264758\pi\)
\(4\) 4.00000 0.500000
\(5\) 0 0
\(6\) 14.0000 0.952579
\(7\) −34.0000 −1.83583 −0.917914 0.396780i \(-0.870128\pi\)
−0.917914 + 0.396780i \(0.870128\pi\)
\(8\) 8.00000 0.353553
\(9\) 22.0000 0.814815
\(10\) 0 0
\(11\) 27.0000 0.740073 0.370037 0.929017i \(-0.379345\pi\)
0.370037 + 0.929017i \(0.379345\pi\)
\(12\) 28.0000 0.673575
\(13\) −28.0000 −0.597369 −0.298685 0.954352i \(-0.596548\pi\)
−0.298685 + 0.954352i \(0.596548\pi\)
\(14\) −68.0000 −1.29813
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) 21.0000 0.299603 0.149801 0.988716i \(-0.452137\pi\)
0.149801 + 0.988716i \(0.452137\pi\)
\(18\) 44.0000 0.576161
\(19\) 35.0000 0.422608 0.211304 0.977420i \(-0.432229\pi\)
0.211304 + 0.977420i \(0.432229\pi\)
\(20\) 0 0
\(21\) −238.000 −2.47314
\(22\) 54.0000 0.523311
\(23\) −78.0000 −0.707136 −0.353568 0.935409i \(-0.615032\pi\)
−0.353568 + 0.935409i \(0.615032\pi\)
\(24\) 56.0000 0.476290
\(25\) 0 0
\(26\) −56.0000 −0.422404
\(27\) −35.0000 −0.249472
\(28\) −136.000 −0.917914
\(29\) −120.000 −0.768395 −0.384197 0.923251i \(-0.625522\pi\)
−0.384197 + 0.923251i \(0.625522\pi\)
\(30\) 0 0
\(31\) 182.000 1.05446 0.527228 0.849724i \(-0.323231\pi\)
0.527228 + 0.849724i \(0.323231\pi\)
\(32\) 32.0000 0.176777
\(33\) 189.000 0.996990
\(34\) 42.0000 0.211851
\(35\) 0 0
\(36\) 88.0000 0.407407
\(37\) 146.000 0.648710 0.324355 0.945936i \(-0.394853\pi\)
0.324355 + 0.945936i \(0.394853\pi\)
\(38\) 70.0000 0.298829
\(39\) −196.000 −0.804747
\(40\) 0 0
\(41\) 357.000 1.35985 0.679927 0.733280i \(-0.262011\pi\)
0.679927 + 0.733280i \(0.262011\pi\)
\(42\) −476.000 −1.74877
\(43\) −148.000 −0.524879 −0.262439 0.964948i \(-0.584527\pi\)
−0.262439 + 0.964948i \(0.584527\pi\)
\(44\) 108.000 0.370037
\(45\) 0 0
\(46\) −156.000 −0.500021
\(47\) −84.0000 −0.260695 −0.130347 0.991468i \(-0.541609\pi\)
−0.130347 + 0.991468i \(0.541609\pi\)
\(48\) 112.000 0.336788
\(49\) 813.000 2.37026
\(50\) 0 0
\(51\) 147.000 0.403610
\(52\) −112.000 −0.298685
\(53\) 702.000 1.81938 0.909690 0.415288i \(-0.136319\pi\)
0.909690 + 0.415288i \(0.136319\pi\)
\(54\) −70.0000 −0.176404
\(55\) 0 0
\(56\) −272.000 −0.649063
\(57\) 245.000 0.569317
\(58\) −240.000 −0.543337
\(59\) −840.000 −1.85354 −0.926769 0.375633i \(-0.877425\pi\)
−0.926769 + 0.375633i \(0.877425\pi\)
\(60\) 0 0
\(61\) −238.000 −0.499554 −0.249777 0.968303i \(-0.580357\pi\)
−0.249777 + 0.968303i \(0.580357\pi\)
\(62\) 364.000 0.745614
\(63\) −748.000 −1.49586
\(64\) 64.0000 0.125000
\(65\) 0 0
\(66\) 378.000 0.704979
\(67\) 461.000 0.840599 0.420299 0.907386i \(-0.361925\pi\)
0.420299 + 0.907386i \(0.361925\pi\)
\(68\) 84.0000 0.149801
\(69\) −546.000 −0.952618
\(70\) 0 0
\(71\) −708.000 −1.18344 −0.591719 0.806144i \(-0.701551\pi\)
−0.591719 + 0.806144i \(0.701551\pi\)
\(72\) 176.000 0.288081
\(73\) −133.000 −0.213239 −0.106620 0.994300i \(-0.534003\pi\)
−0.106620 + 0.994300i \(0.534003\pi\)
\(74\) 292.000 0.458707
\(75\) 0 0
\(76\) 140.000 0.211304
\(77\) −918.000 −1.35865
\(78\) −392.000 −0.569042
\(79\) 650.000 0.925705 0.462853 0.886435i \(-0.346826\pi\)
0.462853 + 0.886435i \(0.346826\pi\)
\(80\) 0 0
\(81\) −839.000 −1.15089
\(82\) 714.000 0.961562
\(83\) −903.000 −1.19418 −0.597091 0.802173i \(-0.703677\pi\)
−0.597091 + 0.802173i \(0.703677\pi\)
\(84\) −952.000 −1.23657
\(85\) 0 0
\(86\) −296.000 −0.371145
\(87\) −840.000 −1.03514
\(88\) 216.000 0.261655
\(89\) 735.000 0.875392 0.437696 0.899123i \(-0.355795\pi\)
0.437696 + 0.899123i \(0.355795\pi\)
\(90\) 0 0
\(91\) 952.000 1.09667
\(92\) −312.000 −0.353568
\(93\) 1274.00 1.42051
\(94\) −168.000 −0.184339
\(95\) 0 0
\(96\) 224.000 0.238145
\(97\) 1106.00 1.15770 0.578852 0.815433i \(-0.303501\pi\)
0.578852 + 0.815433i \(0.303501\pi\)
\(98\) 1626.00 1.67603
\(99\) 594.000 0.603023
\(100\) 0 0
\(101\) 462.000 0.455156 0.227578 0.973760i \(-0.426919\pi\)
0.227578 + 0.973760i \(0.426919\pi\)
\(102\) 294.000 0.285395
\(103\) 812.000 0.776784 0.388392 0.921494i \(-0.373031\pi\)
0.388392 + 0.921494i \(0.373031\pi\)
\(104\) −224.000 −0.211202
\(105\) 0 0
\(106\) 1404.00 1.28650
\(107\) −789.000 −0.712855 −0.356428 0.934323i \(-0.616005\pi\)
−0.356428 + 0.934323i \(0.616005\pi\)
\(108\) −140.000 −0.124736
\(109\) 230.000 0.202110 0.101055 0.994881i \(-0.467778\pi\)
0.101055 + 0.994881i \(0.467778\pi\)
\(110\) 0 0
\(111\) 1022.00 0.873909
\(112\) −544.000 −0.458957
\(113\) −2073.00 −1.72576 −0.862882 0.505405i \(-0.831343\pi\)
−0.862882 + 0.505405i \(0.831343\pi\)
\(114\) 490.000 0.402568
\(115\) 0 0
\(116\) −480.000 −0.384197
\(117\) −616.000 −0.486745
\(118\) −1680.00 −1.31065
\(119\) −714.000 −0.550019
\(120\) 0 0
\(121\) −602.000 −0.452292
\(122\) −476.000 −0.353238
\(123\) 2499.00 1.83193
\(124\) 728.000 0.527228
\(125\) 0 0
\(126\) −1496.00 −1.05773
\(127\) −1114.00 −0.778358 −0.389179 0.921162i \(-0.627241\pi\)
−0.389179 + 0.921162i \(0.627241\pi\)
\(128\) 128.000 0.0883883
\(129\) −1036.00 −0.707091
\(130\) 0 0
\(131\) 252.000 0.168071 0.0840357 0.996463i \(-0.473219\pi\)
0.0840357 + 0.996463i \(0.473219\pi\)
\(132\) 756.000 0.498495
\(133\) −1190.00 −0.775835
\(134\) 922.000 0.594393
\(135\) 0 0
\(136\) 168.000 0.105926
\(137\) 1941.00 1.21044 0.605222 0.796057i \(-0.293084\pi\)
0.605222 + 0.796057i \(0.293084\pi\)
\(138\) −1092.00 −0.673603
\(139\) −1645.00 −1.00379 −0.501896 0.864928i \(-0.667364\pi\)
−0.501896 + 0.864928i \(0.667364\pi\)
\(140\) 0 0
\(141\) −588.000 −0.351195
\(142\) −1416.00 −0.836817
\(143\) −756.000 −0.442097
\(144\) 352.000 0.203704
\(145\) 0 0
\(146\) −266.000 −0.150783
\(147\) 5691.00 3.19310
\(148\) 584.000 0.324355
\(149\) −1800.00 −0.989676 −0.494838 0.868985i \(-0.664773\pi\)
−0.494838 + 0.868985i \(0.664773\pi\)
\(150\) 0 0
\(151\) −3298.00 −1.77740 −0.888700 0.458489i \(-0.848391\pi\)
−0.888700 + 0.458489i \(0.848391\pi\)
\(152\) 280.000 0.149414
\(153\) 462.000 0.244121
\(154\) −1836.00 −0.960708
\(155\) 0 0
\(156\) −784.000 −0.402373
\(157\) 266.000 0.135217 0.0676086 0.997712i \(-0.478463\pi\)
0.0676086 + 0.997712i \(0.478463\pi\)
\(158\) 1300.00 0.654572
\(159\) 4914.00 2.45098
\(160\) 0 0
\(161\) 2652.00 1.29818
\(162\) −1678.00 −0.813803
\(163\) 1157.00 0.555971 0.277985 0.960585i \(-0.410333\pi\)
0.277985 + 0.960585i \(0.410333\pi\)
\(164\) 1428.00 0.679927
\(165\) 0 0
\(166\) −1806.00 −0.844414
\(167\) −1764.00 −0.817380 −0.408690 0.912673i \(-0.634014\pi\)
−0.408690 + 0.912673i \(0.634014\pi\)
\(168\) −1904.00 −0.874386
\(169\) −1413.00 −0.643150
\(170\) 0 0
\(171\) 770.000 0.344347
\(172\) −592.000 −0.262439
\(173\) −1848.00 −0.812144 −0.406072 0.913841i \(-0.633102\pi\)
−0.406072 + 0.913841i \(0.633102\pi\)
\(174\) −1680.00 −0.731957
\(175\) 0 0
\(176\) 432.000 0.185018
\(177\) −5880.00 −2.49699
\(178\) 1470.00 0.618995
\(179\) 135.000 0.0563708 0.0281854 0.999603i \(-0.491027\pi\)
0.0281854 + 0.999603i \(0.491027\pi\)
\(180\) 0 0
\(181\) 2282.00 0.937126 0.468563 0.883430i \(-0.344772\pi\)
0.468563 + 0.883430i \(0.344772\pi\)
\(182\) 1904.00 0.775461
\(183\) −1666.00 −0.672974
\(184\) −624.000 −0.250010
\(185\) 0 0
\(186\) 2548.00 1.00445
\(187\) 567.000 0.221728
\(188\) −336.000 −0.130347
\(189\) 1190.00 0.457988
\(190\) 0 0
\(191\) −1398.00 −0.529611 −0.264806 0.964302i \(-0.585308\pi\)
−0.264806 + 0.964302i \(0.585308\pi\)
\(192\) 448.000 0.168394
\(193\) 3317.00 1.23711 0.618557 0.785740i \(-0.287718\pi\)
0.618557 + 0.785740i \(0.287718\pi\)
\(194\) 2212.00 0.818620
\(195\) 0 0
\(196\) 3252.00 1.18513
\(197\) 1686.00 0.609759 0.304880 0.952391i \(-0.401384\pi\)
0.304880 + 0.952391i \(0.401384\pi\)
\(198\) 1188.00 0.426401
\(199\) −1540.00 −0.548581 −0.274291 0.961647i \(-0.588443\pi\)
−0.274291 + 0.961647i \(0.588443\pi\)
\(200\) 0 0
\(201\) 3227.00 1.13241
\(202\) 924.000 0.321844
\(203\) 4080.00 1.41064
\(204\) 588.000 0.201805
\(205\) 0 0
\(206\) 1624.00 0.549269
\(207\) −1716.00 −0.576185
\(208\) −448.000 −0.149342
\(209\) 945.000 0.312761
\(210\) 0 0
\(211\) −3043.00 −0.992838 −0.496419 0.868083i \(-0.665352\pi\)
−0.496419 + 0.868083i \(0.665352\pi\)
\(212\) 2808.00 0.909690
\(213\) −4956.00 −1.59427
\(214\) −1578.00 −0.504065
\(215\) 0 0
\(216\) −280.000 −0.0882018
\(217\) −6188.00 −1.93580
\(218\) 460.000 0.142913
\(219\) −931.000 −0.287266
\(220\) 0 0
\(221\) −588.000 −0.178974
\(222\) 2044.00 0.617947
\(223\) 3332.00 1.00057 0.500285 0.865861i \(-0.333228\pi\)
0.500285 + 0.865861i \(0.333228\pi\)
\(224\) −1088.00 −0.324532
\(225\) 0 0
\(226\) −4146.00 −1.22030
\(227\) 1596.00 0.466653 0.233327 0.972398i \(-0.425039\pi\)
0.233327 + 0.972398i \(0.425039\pi\)
\(228\) 980.000 0.284658
\(229\) 4340.00 1.25238 0.626191 0.779670i \(-0.284613\pi\)
0.626191 + 0.779670i \(0.284613\pi\)
\(230\) 0 0
\(231\) −6426.00 −1.83030
\(232\) −960.000 −0.271668
\(233\) −3018.00 −0.848565 −0.424283 0.905530i \(-0.639474\pi\)
−0.424283 + 0.905530i \(0.639474\pi\)
\(234\) −1232.00 −0.344181
\(235\) 0 0
\(236\) −3360.00 −0.926769
\(237\) 4550.00 1.24706
\(238\) −1428.00 −0.388922
\(239\) 4440.00 1.20167 0.600836 0.799372i \(-0.294834\pi\)
0.600836 + 0.799372i \(0.294834\pi\)
\(240\) 0 0
\(241\) −3703.00 −0.989756 −0.494878 0.868962i \(-0.664787\pi\)
−0.494878 + 0.868962i \(0.664787\pi\)
\(242\) −1204.00 −0.319818
\(243\) −4928.00 −1.30095
\(244\) −952.000 −0.249777
\(245\) 0 0
\(246\) 4998.00 1.29537
\(247\) −980.000 −0.252453
\(248\) 1456.00 0.372807
\(249\) −6321.00 −1.60874
\(250\) 0 0
\(251\) 7077.00 1.77967 0.889833 0.456286i \(-0.150821\pi\)
0.889833 + 0.456286i \(0.150821\pi\)
\(252\) −2992.00 −0.747930
\(253\) −2106.00 −0.523332
\(254\) −2228.00 −0.550382
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) 6846.00 1.66164 0.830821 0.556540i \(-0.187872\pi\)
0.830821 + 0.556540i \(0.187872\pi\)
\(258\) −2072.00 −0.499989
\(259\) −4964.00 −1.19092
\(260\) 0 0
\(261\) −2640.00 −0.626099
\(262\) 504.000 0.118844
\(263\) −3438.00 −0.806069 −0.403035 0.915185i \(-0.632045\pi\)
−0.403035 + 0.915185i \(0.632045\pi\)
\(264\) 1512.00 0.352489
\(265\) 0 0
\(266\) −2380.00 −0.548598
\(267\) 5145.00 1.17928
\(268\) 1844.00 0.420299
\(269\) −1680.00 −0.380786 −0.190393 0.981708i \(-0.560976\pi\)
−0.190393 + 0.981708i \(0.560976\pi\)
\(270\) 0 0
\(271\) 5222.00 1.17053 0.585266 0.810842i \(-0.300990\pi\)
0.585266 + 0.810842i \(0.300990\pi\)
\(272\) 336.000 0.0749007
\(273\) 6664.00 1.47738
\(274\) 3882.00 0.855913
\(275\) 0 0
\(276\) −2184.00 −0.476309
\(277\) −1384.00 −0.300204 −0.150102 0.988671i \(-0.547960\pi\)
−0.150102 + 0.988671i \(0.547960\pi\)
\(278\) −3290.00 −0.709788
\(279\) 4004.00 0.859187
\(280\) 0 0
\(281\) −3858.00 −0.819036 −0.409518 0.912302i \(-0.634303\pi\)
−0.409518 + 0.912302i \(0.634303\pi\)
\(282\) −1176.00 −0.248333
\(283\) 4277.00 0.898379 0.449190 0.893437i \(-0.351713\pi\)
0.449190 + 0.893437i \(0.351713\pi\)
\(284\) −2832.00 −0.591719
\(285\) 0 0
\(286\) −1512.00 −0.312610
\(287\) −12138.0 −2.49646
\(288\) 704.000 0.144040
\(289\) −4472.00 −0.910238
\(290\) 0 0
\(291\) 7742.00 1.55960
\(292\) −532.000 −0.106620
\(293\) 6342.00 1.26452 0.632259 0.774757i \(-0.282128\pi\)
0.632259 + 0.774757i \(0.282128\pi\)
\(294\) 11382.0 2.25786
\(295\) 0 0
\(296\) 1168.00 0.229353
\(297\) −945.000 −0.184628
\(298\) −3600.00 −0.699807
\(299\) 2184.00 0.422421
\(300\) 0 0
\(301\) 5032.00 0.963587
\(302\) −6596.00 −1.25681
\(303\) 3234.00 0.613163
\(304\) 560.000 0.105652
\(305\) 0 0
\(306\) 924.000 0.172619
\(307\) 5831.00 1.08402 0.542008 0.840373i \(-0.317664\pi\)
0.542008 + 0.840373i \(0.317664\pi\)
\(308\) −3672.00 −0.679323
\(309\) 5684.00 1.04644
\(310\) 0 0
\(311\) −2478.00 −0.451815 −0.225908 0.974149i \(-0.572535\pi\)
−0.225908 + 0.974149i \(0.572535\pi\)
\(312\) −1568.00 −0.284521
\(313\) −2758.00 −0.498056 −0.249028 0.968496i \(-0.580111\pi\)
−0.249028 + 0.968496i \(0.580111\pi\)
\(314\) 532.000 0.0956130
\(315\) 0 0
\(316\) 2600.00 0.462853
\(317\) 636.000 0.112686 0.0563428 0.998411i \(-0.482056\pi\)
0.0563428 + 0.998411i \(0.482056\pi\)
\(318\) 9828.00 1.73310
\(319\) −3240.00 −0.568668
\(320\) 0 0
\(321\) −5523.00 −0.960323
\(322\) 5304.00 0.917951
\(323\) 735.000 0.126615
\(324\) −3356.00 −0.575446
\(325\) 0 0
\(326\) 2314.00 0.393131
\(327\) 1610.00 0.272273
\(328\) 2856.00 0.480781
\(329\) 2856.00 0.478591
\(330\) 0 0
\(331\) 6887.00 1.14364 0.571818 0.820380i \(-0.306238\pi\)
0.571818 + 0.820380i \(0.306238\pi\)
\(332\) −3612.00 −0.597091
\(333\) 3212.00 0.528578
\(334\) −3528.00 −0.577975
\(335\) 0 0
\(336\) −3808.00 −0.618284
\(337\) 7331.00 1.18500 0.592500 0.805570i \(-0.298141\pi\)
0.592500 + 0.805570i \(0.298141\pi\)
\(338\) −2826.00 −0.454776
\(339\) −14511.0 −2.32487
\(340\) 0 0
\(341\) 4914.00 0.780375
\(342\) 1540.00 0.243490
\(343\) −15980.0 −2.51557
\(344\) −1184.00 −0.185573
\(345\) 0 0
\(346\) −3696.00 −0.574272
\(347\) −5349.00 −0.827520 −0.413760 0.910386i \(-0.635785\pi\)
−0.413760 + 0.910386i \(0.635785\pi\)
\(348\) −3360.00 −0.517572
\(349\) 11270.0 1.72857 0.864283 0.503007i \(-0.167773\pi\)
0.864283 + 0.503007i \(0.167773\pi\)
\(350\) 0 0
\(351\) 980.000 0.149027
\(352\) 864.000 0.130828
\(353\) 1302.00 0.196313 0.0981565 0.995171i \(-0.468705\pi\)
0.0981565 + 0.995171i \(0.468705\pi\)
\(354\) −11760.0 −1.76564
\(355\) 0 0
\(356\) 2940.00 0.437696
\(357\) −4998.00 −0.740959
\(358\) 270.000 0.0398602
\(359\) −750.000 −0.110260 −0.0551302 0.998479i \(-0.517557\pi\)
−0.0551302 + 0.998479i \(0.517557\pi\)
\(360\) 0 0
\(361\) −5634.00 −0.821403
\(362\) 4564.00 0.662648
\(363\) −4214.00 −0.609305
\(364\) 3808.00 0.548334
\(365\) 0 0
\(366\) −3332.00 −0.475865
\(367\) −1204.00 −0.171249 −0.0856244 0.996327i \(-0.527288\pi\)
−0.0856244 + 0.996327i \(0.527288\pi\)
\(368\) −1248.00 −0.176784
\(369\) 7854.00 1.10803
\(370\) 0 0
\(371\) −23868.0 −3.34007
\(372\) 5096.00 0.710256
\(373\) −1198.00 −0.166301 −0.0831503 0.996537i \(-0.526498\pi\)
−0.0831503 + 0.996537i \(0.526498\pi\)
\(374\) 1134.00 0.156785
\(375\) 0 0
\(376\) −672.000 −0.0921696
\(377\) 3360.00 0.459015
\(378\) 2380.00 0.323847
\(379\) 8105.00 1.09849 0.549243 0.835663i \(-0.314916\pi\)
0.549243 + 0.835663i \(0.314916\pi\)
\(380\) 0 0
\(381\) −7798.00 −1.04857
\(382\) −2796.00 −0.374492
\(383\) −3318.00 −0.442668 −0.221334 0.975198i \(-0.571041\pi\)
−0.221334 + 0.975198i \(0.571041\pi\)
\(384\) 896.000 0.119072
\(385\) 0 0
\(386\) 6634.00 0.874771
\(387\) −3256.00 −0.427679
\(388\) 4424.00 0.578852
\(389\) −13770.0 −1.79477 −0.897387 0.441245i \(-0.854537\pi\)
−0.897387 + 0.441245i \(0.854537\pi\)
\(390\) 0 0
\(391\) −1638.00 −0.211860
\(392\) 6504.00 0.838014
\(393\) 1764.00 0.226417
\(394\) 3372.00 0.431165
\(395\) 0 0
\(396\) 2376.00 0.301511
\(397\) −3724.00 −0.470786 −0.235393 0.971900i \(-0.575638\pi\)
−0.235393 + 0.971900i \(0.575638\pi\)
\(398\) −3080.00 −0.387906
\(399\) −8330.00 −1.04517
\(400\) 0 0
\(401\) 6117.00 0.761767 0.380883 0.924623i \(-0.375620\pi\)
0.380883 + 0.924623i \(0.375620\pi\)
\(402\) 6454.00 0.800737
\(403\) −5096.00 −0.629900
\(404\) 1848.00 0.227578
\(405\) 0 0
\(406\) 8160.00 0.997473
\(407\) 3942.00 0.480093
\(408\) 1176.00 0.142698
\(409\) 6125.00 0.740493 0.370247 0.928933i \(-0.379273\pi\)
0.370247 + 0.928933i \(0.379273\pi\)
\(410\) 0 0
\(411\) 13587.0 1.63065
\(412\) 3248.00 0.388392
\(413\) 28560.0 3.40277
\(414\) −3432.00 −0.407424
\(415\) 0 0
\(416\) −896.000 −0.105601
\(417\) −11515.0 −1.35226
\(418\) 1890.00 0.221155
\(419\) 1575.00 0.183637 0.0918184 0.995776i \(-0.470732\pi\)
0.0918184 + 0.995776i \(0.470732\pi\)
\(420\) 0 0
\(421\) −988.000 −0.114376 −0.0571879 0.998363i \(-0.518213\pi\)
−0.0571879 + 0.998363i \(0.518213\pi\)
\(422\) −6086.00 −0.702042
\(423\) −1848.00 −0.212418
\(424\) 5616.00 0.643248
\(425\) 0 0
\(426\) −9912.00 −1.12732
\(427\) 8092.00 0.917094
\(428\) −3156.00 −0.356428
\(429\) −5292.00 −0.595571
\(430\) 0 0
\(431\) −558.000 −0.0623617 −0.0311809 0.999514i \(-0.509927\pi\)
−0.0311809 + 0.999514i \(0.509927\pi\)
\(432\) −560.000 −0.0623681
\(433\) −2443.00 −0.271139 −0.135569 0.990768i \(-0.543286\pi\)
−0.135569 + 0.990768i \(0.543286\pi\)
\(434\) −12376.0 −1.36882
\(435\) 0 0
\(436\) 920.000 0.101055
\(437\) −2730.00 −0.298841
\(438\) −1862.00 −0.203127
\(439\) 12320.0 1.33941 0.669706 0.742627i \(-0.266420\pi\)
0.669706 + 0.742627i \(0.266420\pi\)
\(440\) 0 0
\(441\) 17886.0 1.93132
\(442\) −1176.00 −0.126553
\(443\) −2343.00 −0.251285 −0.125643 0.992076i \(-0.540099\pi\)
−0.125643 + 0.992076i \(0.540099\pi\)
\(444\) 4088.00 0.436955
\(445\) 0 0
\(446\) 6664.00 0.707510
\(447\) −12600.0 −1.33324
\(448\) −2176.00 −0.229478
\(449\) 10905.0 1.14619 0.573094 0.819489i \(-0.305743\pi\)
0.573094 + 0.819489i \(0.305743\pi\)
\(450\) 0 0
\(451\) 9639.00 1.00639
\(452\) −8292.00 −0.862882
\(453\) −23086.0 −2.39443
\(454\) 3192.00 0.329974
\(455\) 0 0
\(456\) 1960.00 0.201284
\(457\) −3319.00 −0.339729 −0.169865 0.985467i \(-0.554333\pi\)
−0.169865 + 0.985467i \(0.554333\pi\)
\(458\) 8680.00 0.885567
\(459\) −735.000 −0.0747426
\(460\) 0 0
\(461\) −6468.00 −0.653459 −0.326730 0.945118i \(-0.605947\pi\)
−0.326730 + 0.945118i \(0.605947\pi\)
\(462\) −12852.0 −1.29422
\(463\) 11972.0 1.20170 0.600849 0.799363i \(-0.294829\pi\)
0.600849 + 0.799363i \(0.294829\pi\)
\(464\) −1920.00 −0.192099
\(465\) 0 0
\(466\) −6036.00 −0.600026
\(467\) 6636.00 0.657553 0.328777 0.944408i \(-0.393364\pi\)
0.328777 + 0.944408i \(0.393364\pi\)
\(468\) −2464.00 −0.243373
\(469\) −15674.0 −1.54319
\(470\) 0 0
\(471\) 1862.00 0.182158
\(472\) −6720.00 −0.655324
\(473\) −3996.00 −0.388449
\(474\) 9100.00 0.881808
\(475\) 0 0
\(476\) −2856.00 −0.275010
\(477\) 15444.0 1.48246
\(478\) 8880.00 0.849711
\(479\) −630.000 −0.0600949 −0.0300474 0.999548i \(-0.509566\pi\)
−0.0300474 + 0.999548i \(0.509566\pi\)
\(480\) 0 0
\(481\) −4088.00 −0.387519
\(482\) −7406.00 −0.699863
\(483\) 18564.0 1.74884
\(484\) −2408.00 −0.226146
\(485\) 0 0
\(486\) −9856.00 −0.919912
\(487\) 10646.0 0.990588 0.495294 0.868725i \(-0.335060\pi\)
0.495294 + 0.868725i \(0.335060\pi\)
\(488\) −1904.00 −0.176619
\(489\) 8099.00 0.748976
\(490\) 0 0
\(491\) −2388.00 −0.219489 −0.109744 0.993960i \(-0.535003\pi\)
−0.109744 + 0.993960i \(0.535003\pi\)
\(492\) 9996.00 0.915964
\(493\) −2520.00 −0.230213
\(494\) −1960.00 −0.178511
\(495\) 0 0
\(496\) 2912.00 0.263614
\(497\) 24072.0 2.17259
\(498\) −12642.0 −1.13755
\(499\) −10540.0 −0.945562 −0.472781 0.881180i \(-0.656750\pi\)
−0.472781 + 0.881180i \(0.656750\pi\)
\(500\) 0 0
\(501\) −12348.0 −1.10113
\(502\) 14154.0 1.25841
\(503\) 6972.00 0.618024 0.309012 0.951058i \(-0.400002\pi\)
0.309012 + 0.951058i \(0.400002\pi\)
\(504\) −5984.00 −0.528866
\(505\) 0 0
\(506\) −4212.00 −0.370052
\(507\) −9891.00 −0.866420
\(508\) −4456.00 −0.389179
\(509\) −9030.00 −0.786341 −0.393171 0.919466i \(-0.628622\pi\)
−0.393171 + 0.919466i \(0.628622\pi\)
\(510\) 0 0
\(511\) 4522.00 0.391471
\(512\) 512.000 0.0441942
\(513\) −1225.00 −0.105429
\(514\) 13692.0 1.17496
\(515\) 0 0
\(516\) −4144.00 −0.353545
\(517\) −2268.00 −0.192933
\(518\) −9928.00 −0.842107
\(519\) −12936.0 −1.09408
\(520\) 0 0
\(521\) 10437.0 0.877645 0.438823 0.898574i \(-0.355396\pi\)
0.438823 + 0.898574i \(0.355396\pi\)
\(522\) −5280.00 −0.442719
\(523\) −8113.00 −0.678311 −0.339156 0.940730i \(-0.610141\pi\)
−0.339156 + 0.940730i \(0.610141\pi\)
\(524\) 1008.00 0.0840357
\(525\) 0 0
\(526\) −6876.00 −0.569977
\(527\) 3822.00 0.315918
\(528\) 3024.00 0.249248
\(529\) −6083.00 −0.499959
\(530\) 0 0
\(531\) −18480.0 −1.51029
\(532\) −4760.00 −0.387918
\(533\) −9996.00 −0.812336
\(534\) 10290.0 0.833880
\(535\) 0 0
\(536\) 3688.00 0.297197
\(537\) 945.000 0.0759400
\(538\) −3360.00 −0.269256
\(539\) 21951.0 1.75417
\(540\) 0 0
\(541\) −14848.0 −1.17997 −0.589986 0.807413i \(-0.700867\pi\)
−0.589986 + 0.807413i \(0.700867\pi\)
\(542\) 10444.0 0.827690
\(543\) 15974.0 1.26245
\(544\) 672.000 0.0529628
\(545\) 0 0
\(546\) 13328.0 1.04466
\(547\) −20329.0 −1.58904 −0.794520 0.607238i \(-0.792278\pi\)
−0.794520 + 0.607238i \(0.792278\pi\)
\(548\) 7764.00 0.605222
\(549\) −5236.00 −0.407044
\(550\) 0 0
\(551\) −4200.00 −0.324730
\(552\) −4368.00 −0.336801
\(553\) −22100.0 −1.69944
\(554\) −2768.00 −0.212276
\(555\) 0 0
\(556\) −6580.00 −0.501896
\(557\) −15324.0 −1.16571 −0.582853 0.812577i \(-0.698064\pi\)
−0.582853 + 0.812577i \(0.698064\pi\)
\(558\) 8008.00 0.607537
\(559\) 4144.00 0.313547
\(560\) 0 0
\(561\) 3969.00 0.298701
\(562\) −7716.00 −0.579146
\(563\) −9408.00 −0.704263 −0.352131 0.935951i \(-0.614543\pi\)
−0.352131 + 0.935951i \(0.614543\pi\)
\(564\) −2352.00 −0.175598
\(565\) 0 0
\(566\) 8554.00 0.635250
\(567\) 28526.0 2.11284
\(568\) −5664.00 −0.418409
\(569\) −24375.0 −1.79588 −0.897938 0.440122i \(-0.854935\pi\)
−0.897938 + 0.440122i \(0.854935\pi\)
\(570\) 0 0
\(571\) −988.000 −0.0724107 −0.0362054 0.999344i \(-0.511527\pi\)
−0.0362054 + 0.999344i \(0.511527\pi\)
\(572\) −3024.00 −0.221049
\(573\) −9786.00 −0.713466
\(574\) −24276.0 −1.76526
\(575\) 0 0
\(576\) 1408.00 0.101852
\(577\) −16429.0 −1.18535 −0.592676 0.805441i \(-0.701929\pi\)
−0.592676 + 0.805441i \(0.701929\pi\)
\(578\) −8944.00 −0.643636
\(579\) 23219.0 1.66658
\(580\) 0 0
\(581\) 30702.0 2.19231
\(582\) 15484.0 1.10280
\(583\) 18954.0 1.34647
\(584\) −1064.00 −0.0753915
\(585\) 0 0
\(586\) 12684.0 0.894149
\(587\) −13839.0 −0.973078 −0.486539 0.873659i \(-0.661741\pi\)
−0.486539 + 0.873659i \(0.661741\pi\)
\(588\) 22764.0 1.59655
\(589\) 6370.00 0.445622
\(590\) 0 0
\(591\) 11802.0 0.821437
\(592\) 2336.00 0.162177
\(593\) 14007.0 0.969981 0.484990 0.874520i \(-0.338823\pi\)
0.484990 + 0.874520i \(0.338823\pi\)
\(594\) −1890.00 −0.130552
\(595\) 0 0
\(596\) −7200.00 −0.494838
\(597\) −10780.0 −0.739022
\(598\) 4368.00 0.298697
\(599\) 21090.0 1.43859 0.719294 0.694706i \(-0.244465\pi\)
0.719294 + 0.694706i \(0.244465\pi\)
\(600\) 0 0
\(601\) 5747.00 0.390058 0.195029 0.980797i \(-0.437520\pi\)
0.195029 + 0.980797i \(0.437520\pi\)
\(602\) 10064.0 0.681359
\(603\) 10142.0 0.684932
\(604\) −13192.0 −0.888700
\(605\) 0 0
\(606\) 6468.00 0.433572
\(607\) 17696.0 1.18329 0.591646 0.806198i \(-0.298478\pi\)
0.591646 + 0.806198i \(0.298478\pi\)
\(608\) 1120.00 0.0747072
\(609\) 28560.0 1.90034
\(610\) 0 0
\(611\) 2352.00 0.155731
\(612\) 1848.00 0.122060
\(613\) 26102.0 1.71982 0.859910 0.510445i \(-0.170519\pi\)
0.859910 + 0.510445i \(0.170519\pi\)
\(614\) 11662.0 0.766515
\(615\) 0 0
\(616\) −7344.00 −0.480354
\(617\) −4194.00 −0.273653 −0.136827 0.990595i \(-0.543690\pi\)
−0.136827 + 0.990595i \(0.543690\pi\)
\(618\) 11368.0 0.739948
\(619\) −7420.00 −0.481801 −0.240901 0.970550i \(-0.577443\pi\)
−0.240901 + 0.970550i \(0.577443\pi\)
\(620\) 0 0
\(621\) 2730.00 0.176411
\(622\) −4956.00 −0.319482
\(623\) −24990.0 −1.60707
\(624\) −3136.00 −0.201187
\(625\) 0 0
\(626\) −5516.00 −0.352178
\(627\) 6615.00 0.421336
\(628\) 1064.00 0.0676086
\(629\) 3066.00 0.194355
\(630\) 0 0
\(631\) −5818.00 −0.367054 −0.183527 0.983015i \(-0.558751\pi\)
−0.183527 + 0.983015i \(0.558751\pi\)
\(632\) 5200.00 0.327286
\(633\) −21301.0 −1.33750
\(634\) 1272.00 0.0796807
\(635\) 0 0
\(636\) 19656.0 1.22549
\(637\) −22764.0 −1.41592
\(638\) −6480.00 −0.402109
\(639\) −15576.0 −0.964283
\(640\) 0 0
\(641\) −29478.0 −1.81640 −0.908199 0.418539i \(-0.862542\pi\)
−0.908199 + 0.418539i \(0.862542\pi\)
\(642\) −11046.0 −0.679051
\(643\) 5852.00 0.358912 0.179456 0.983766i \(-0.442566\pi\)
0.179456 + 0.983766i \(0.442566\pi\)
\(644\) 10608.0 0.649090
\(645\) 0 0
\(646\) 1470.00 0.0895300
\(647\) −29484.0 −1.79155 −0.895777 0.444503i \(-0.853380\pi\)
−0.895777 + 0.444503i \(0.853380\pi\)
\(648\) −6712.00 −0.406902
\(649\) −22680.0 −1.37175
\(650\) 0 0
\(651\) −43316.0 −2.60782
\(652\) 4628.00 0.277985
\(653\) −3498.00 −0.209628 −0.104814 0.994492i \(-0.533425\pi\)
−0.104814 + 0.994492i \(0.533425\pi\)
\(654\) 3220.00 0.192526
\(655\) 0 0
\(656\) 5712.00 0.339964
\(657\) −2926.00 −0.173751
\(658\) 5712.00 0.338415
\(659\) 7905.00 0.467276 0.233638 0.972324i \(-0.424937\pi\)
0.233638 + 0.972324i \(0.424937\pi\)
\(660\) 0 0
\(661\) 27272.0 1.60478 0.802389 0.596802i \(-0.203562\pi\)
0.802389 + 0.596802i \(0.203562\pi\)
\(662\) 13774.0 0.808673
\(663\) −4116.00 −0.241104
\(664\) −7224.00 −0.422207
\(665\) 0 0
\(666\) 6424.00 0.373761
\(667\) 9360.00 0.543359
\(668\) −7056.00 −0.408690
\(669\) 23324.0 1.34792
\(670\) 0 0
\(671\) −6426.00 −0.369706
\(672\) −7616.00 −0.437193
\(673\) 12602.0 0.721800 0.360900 0.932605i \(-0.382470\pi\)
0.360900 + 0.932605i \(0.382470\pi\)
\(674\) 14662.0 0.837922
\(675\) 0 0
\(676\) −5652.00 −0.321575
\(677\) 25536.0 1.44967 0.724836 0.688921i \(-0.241915\pi\)
0.724836 + 0.688921i \(0.241915\pi\)
\(678\) −29022.0 −1.64393
\(679\) −37604.0 −2.12534
\(680\) 0 0
\(681\) 11172.0 0.628652
\(682\) 9828.00 0.551809
\(683\) 2127.00 0.119162 0.0595808 0.998223i \(-0.481024\pi\)
0.0595808 + 0.998223i \(0.481024\pi\)
\(684\) 3080.00 0.172174
\(685\) 0 0
\(686\) −31960.0 −1.77877
\(687\) 30380.0 1.68715
\(688\) −2368.00 −0.131220
\(689\) −19656.0 −1.08684
\(690\) 0 0
\(691\) −8953.00 −0.492892 −0.246446 0.969157i \(-0.579263\pi\)
−0.246446 + 0.969157i \(0.579263\pi\)
\(692\) −7392.00 −0.406072
\(693\) −20196.0 −1.10705
\(694\) −10698.0 −0.585145
\(695\) 0 0
\(696\) −6720.00 −0.365978
\(697\) 7497.00 0.407416
\(698\) 22540.0 1.22228
\(699\) −21126.0 −1.14315
\(700\) 0 0
\(701\) 23172.0 1.24849 0.624247 0.781227i \(-0.285406\pi\)
0.624247 + 0.781227i \(0.285406\pi\)
\(702\) 1960.00 0.105378
\(703\) 5110.00 0.274150
\(704\) 1728.00 0.0925092
\(705\) 0 0
\(706\) 2604.00 0.138814
\(707\) −15708.0 −0.835587
\(708\) −23520.0 −1.24850
\(709\) 9620.00 0.509572 0.254786 0.966997i \(-0.417995\pi\)
0.254786 + 0.966997i \(0.417995\pi\)
\(710\) 0 0
\(711\) 14300.0 0.754278
\(712\) 5880.00 0.309498
\(713\) −14196.0 −0.745644
\(714\) −9996.00 −0.523937
\(715\) 0 0
\(716\) 540.000 0.0281854
\(717\) 31080.0 1.61883
\(718\) −1500.00 −0.0779659
\(719\) 4830.00 0.250527 0.125263 0.992124i \(-0.460022\pi\)
0.125263 + 0.992124i \(0.460022\pi\)
\(720\) 0 0
\(721\) −27608.0 −1.42604
\(722\) −11268.0 −0.580819
\(723\) −25921.0 −1.33335
\(724\) 9128.00 0.468563
\(725\) 0 0
\(726\) −8428.00 −0.430844
\(727\) 11816.0 0.602794 0.301397 0.953499i \(-0.402547\pi\)
0.301397 + 0.953499i \(0.402547\pi\)
\(728\) 7616.00 0.387730
\(729\) −11843.0 −0.601687
\(730\) 0 0
\(731\) −3108.00 −0.157255
\(732\) −6664.00 −0.336487
\(733\) 23492.0 1.18376 0.591881 0.806026i \(-0.298386\pi\)
0.591881 + 0.806026i \(0.298386\pi\)
\(734\) −2408.00 −0.121091
\(735\) 0 0
\(736\) −2496.00 −0.125005
\(737\) 12447.0 0.622105
\(738\) 15708.0 0.783495
\(739\) 35300.0 1.75715 0.878573 0.477607i \(-0.158496\pi\)
0.878573 + 0.477607i \(0.158496\pi\)
\(740\) 0 0
\(741\) −6860.00 −0.340092
\(742\) −47736.0 −2.36178
\(743\) 16242.0 0.801967 0.400983 0.916085i \(-0.368669\pi\)
0.400983 + 0.916085i \(0.368669\pi\)
\(744\) 10192.0 0.502227
\(745\) 0 0
\(746\) −2396.00 −0.117592
\(747\) −19866.0 −0.973037
\(748\) 2268.00 0.110864
\(749\) 26826.0 1.30868
\(750\) 0 0
\(751\) 10712.0 0.520488 0.260244 0.965543i \(-0.416197\pi\)
0.260244 + 0.965543i \(0.416197\pi\)
\(752\) −1344.00 −0.0651737
\(753\) 49539.0 2.39748
\(754\) 6720.00 0.324573
\(755\) 0 0
\(756\) 4760.00 0.228994
\(757\) −13504.0 −0.648364 −0.324182 0.945995i \(-0.605089\pi\)
−0.324182 + 0.945995i \(0.605089\pi\)
\(758\) 16210.0 0.776746
\(759\) −14742.0 −0.705008
\(760\) 0 0
\(761\) −18123.0 −0.863283 −0.431641 0.902045i \(-0.642065\pi\)
−0.431641 + 0.902045i \(0.642065\pi\)
\(762\) −15596.0 −0.741448
\(763\) −7820.00 −0.371039
\(764\) −5592.00 −0.264806
\(765\) 0 0
\(766\) −6636.00 −0.313014
\(767\) 23520.0 1.10725
\(768\) 1792.00 0.0841969
\(769\) 9485.00 0.444783 0.222391 0.974957i \(-0.428614\pi\)
0.222391 + 0.974957i \(0.428614\pi\)
\(770\) 0 0
\(771\) 47922.0 2.23848
\(772\) 13268.0 0.618557
\(773\) −31248.0 −1.45396 −0.726981 0.686658i \(-0.759077\pi\)
−0.726981 + 0.686658i \(0.759077\pi\)
\(774\) −6512.00 −0.302415
\(775\) 0 0
\(776\) 8848.00 0.409310
\(777\) −34748.0 −1.60435
\(778\) −27540.0 −1.26910
\(779\) 12495.0 0.574685
\(780\) 0 0
\(781\) −19116.0 −0.875831
\(782\) −3276.00 −0.149808
\(783\) 4200.00 0.191693
\(784\) 13008.0 0.592566
\(785\) 0 0
\(786\) 3528.00 0.160101
\(787\) −15484.0 −0.701328 −0.350664 0.936501i \(-0.614044\pi\)
−0.350664 + 0.936501i \(0.614044\pi\)
\(788\) 6744.00 0.304880
\(789\) −24066.0 −1.08590
\(790\) 0 0
\(791\) 70482.0 3.16821
\(792\) 4752.00 0.213201
\(793\) 6664.00 0.298418
\(794\) −7448.00 −0.332896
\(795\) 0 0
\(796\) −6160.00 −0.274291
\(797\) 34146.0 1.51758 0.758791 0.651334i \(-0.225790\pi\)
0.758791 + 0.651334i \(0.225790\pi\)
\(798\) −16660.0 −0.739045
\(799\) −1764.00 −0.0781049
\(800\) 0 0
\(801\) 16170.0 0.713282
\(802\) 12234.0 0.538650
\(803\) −3591.00 −0.157813
\(804\) 12908.0 0.566207
\(805\) 0 0
\(806\) −10192.0 −0.445407
\(807\) −11760.0 −0.512976
\(808\) 3696.00 0.160922
\(809\) −36030.0 −1.56582 −0.782909 0.622136i \(-0.786265\pi\)
−0.782909 + 0.622136i \(0.786265\pi\)
\(810\) 0 0
\(811\) −6748.00 −0.292175 −0.146088 0.989272i \(-0.546668\pi\)
−0.146088 + 0.989272i \(0.546668\pi\)
\(812\) 16320.0 0.705320
\(813\) 36554.0 1.57688
\(814\) 7884.00 0.339477
\(815\) 0 0
\(816\) 2352.00 0.100903
\(817\) −5180.00 −0.221818
\(818\) 12250.0 0.523608
\(819\) 20944.0 0.893581
\(820\) 0 0
\(821\) −5598.00 −0.237968 −0.118984 0.992896i \(-0.537964\pi\)
−0.118984 + 0.992896i \(0.537964\pi\)
\(822\) 27174.0 1.15304
\(823\) 5732.00 0.242776 0.121388 0.992605i \(-0.461265\pi\)
0.121388 + 0.992605i \(0.461265\pi\)
\(824\) 6496.00 0.274635
\(825\) 0 0
\(826\) 57120.0 2.40612
\(827\) −39999.0 −1.68186 −0.840932 0.541141i \(-0.817993\pi\)
−0.840932 + 0.541141i \(0.817993\pi\)
\(828\) −6864.00 −0.288092
\(829\) 16940.0 0.709711 0.354856 0.934921i \(-0.384530\pi\)
0.354856 + 0.934921i \(0.384530\pi\)
\(830\) 0 0
\(831\) −9688.00 −0.404420
\(832\) −1792.00 −0.0746712
\(833\) 17073.0 0.710137
\(834\) −23030.0 −0.956191
\(835\) 0 0
\(836\) 3780.00 0.156380
\(837\) −6370.00 −0.263058
\(838\) 3150.00 0.129851
\(839\) −45360.0 −1.86651 −0.933255 0.359216i \(-0.883044\pi\)
−0.933255 + 0.359216i \(0.883044\pi\)
\(840\) 0 0
\(841\) −9989.00 −0.409570
\(842\) −1976.00 −0.0808758
\(843\) −27006.0 −1.10336
\(844\) −12172.0 −0.496419
\(845\) 0 0
\(846\) −3696.00 −0.150202
\(847\) 20468.0 0.830329
\(848\) 11232.0 0.454845
\(849\) 29939.0 1.21025
\(850\) 0 0
\(851\) −11388.0 −0.458726
\(852\) −19824.0 −0.797135
\(853\) −43918.0 −1.76286 −0.881432 0.472310i \(-0.843420\pi\)
−0.881432 + 0.472310i \(0.843420\pi\)
\(854\) 16184.0 0.648484
\(855\) 0 0
\(856\) −6312.00 −0.252032
\(857\) −3339.00 −0.133090 −0.0665450 0.997783i \(-0.521198\pi\)
−0.0665450 + 0.997783i \(0.521198\pi\)
\(858\) −10584.0 −0.421133
\(859\) −36925.0 −1.46666 −0.733332 0.679870i \(-0.762036\pi\)
−0.733332 + 0.679870i \(0.762036\pi\)
\(860\) 0 0
\(861\) −84966.0 −3.36311
\(862\) −1116.00 −0.0440964
\(863\) −40608.0 −1.60175 −0.800876 0.598830i \(-0.795633\pi\)
−0.800876 + 0.598830i \(0.795633\pi\)
\(864\) −1120.00 −0.0441009
\(865\) 0 0
\(866\) −4886.00 −0.191724
\(867\) −31304.0 −1.22623
\(868\) −24752.0 −0.967900
\(869\) 17550.0 0.685090
\(870\) 0 0
\(871\) −12908.0 −0.502148
\(872\) 1840.00 0.0714567
\(873\) 24332.0 0.943314
\(874\) −5460.00 −0.211313
\(875\) 0 0
\(876\) −3724.00 −0.143633
\(877\) 35156.0 1.35363 0.676815 0.736153i \(-0.263360\pi\)
0.676815 + 0.736153i \(0.263360\pi\)
\(878\) 24640.0 0.947107
\(879\) 44394.0 1.70350
\(880\) 0 0
\(881\) 2142.00 0.0819135 0.0409568 0.999161i \(-0.486959\pi\)
0.0409568 + 0.999161i \(0.486959\pi\)
\(882\) 35772.0 1.36565
\(883\) −19153.0 −0.729954 −0.364977 0.931016i \(-0.618923\pi\)
−0.364977 + 0.931016i \(0.618923\pi\)
\(884\) −2352.00 −0.0894868
\(885\) 0 0
\(886\) −4686.00 −0.177685
\(887\) −24444.0 −0.925309 −0.462655 0.886539i \(-0.653103\pi\)
−0.462655 + 0.886539i \(0.653103\pi\)
\(888\) 8176.00 0.308974
\(889\) 37876.0 1.42893
\(890\) 0 0
\(891\) −22653.0 −0.851744
\(892\) 13328.0 0.500285
\(893\) −2940.00 −0.110172
\(894\) −25200.0 −0.942745
\(895\) 0 0
\(896\) −4352.00 −0.162266
\(897\) 15288.0 0.569065
\(898\) 21810.0 0.810478
\(899\) −21840.0 −0.810239
\(900\) 0 0
\(901\) 14742.0 0.545091
\(902\) 19278.0 0.711627
\(903\) 35224.0 1.29810
\(904\) −16584.0 −0.610150
\(905\) 0 0
\(906\) −46172.0 −1.69311
\(907\) 20036.0 0.733500 0.366750 0.930320i \(-0.380470\pi\)
0.366750 + 0.930320i \(0.380470\pi\)
\(908\) 6384.00 0.233327
\(909\) 10164.0 0.370868
\(910\) 0 0
\(911\) −33468.0 −1.21717 −0.608586 0.793488i \(-0.708263\pi\)
−0.608586 + 0.793488i \(0.708263\pi\)
\(912\) 3920.00 0.142329
\(913\) −24381.0 −0.883782
\(914\) −6638.00 −0.240225
\(915\) 0 0
\(916\) 17360.0 0.626191
\(917\) −8568.00 −0.308550
\(918\) −1470.00 −0.0528510
\(919\) 35090.0 1.25953 0.629767 0.776784i \(-0.283150\pi\)
0.629767 + 0.776784i \(0.283150\pi\)
\(920\) 0 0
\(921\) 40817.0 1.46033
\(922\) −12936.0 −0.462066
\(923\) 19824.0 0.706950
\(924\) −25704.0 −0.915151
\(925\) 0 0
\(926\) 23944.0 0.849729
\(927\) 17864.0 0.632935
\(928\) −3840.00 −0.135834
\(929\) −32130.0 −1.13472 −0.567358 0.823471i \(-0.692034\pi\)
−0.567358 + 0.823471i \(0.692034\pi\)
\(930\) 0 0
\(931\) 28455.0 1.00169
\(932\) −12072.0 −0.424283
\(933\) −17346.0 −0.608663
\(934\) 13272.0 0.464960
\(935\) 0 0
\(936\) −4928.00 −0.172091
\(937\) 20531.0 0.715815 0.357907 0.933757i \(-0.383490\pi\)
0.357907 + 0.933757i \(0.383490\pi\)
\(938\) −31348.0 −1.09120
\(939\) −19306.0 −0.670956
\(940\) 0 0
\(941\) 7812.00 0.270631 0.135316 0.990803i \(-0.456795\pi\)
0.135316 + 0.990803i \(0.456795\pi\)
\(942\) 3724.00 0.128805
\(943\) −27846.0 −0.961602
\(944\) −13440.0 −0.463384
\(945\) 0 0
\(946\) −7992.00 −0.274675
\(947\) 23256.0 0.798013 0.399007 0.916948i \(-0.369355\pi\)
0.399007 + 0.916948i \(0.369355\pi\)
\(948\) 18200.0 0.623532
\(949\) 3724.00 0.127383
\(950\) 0 0
\(951\) 4452.00 0.151804
\(952\) −5712.00 −0.194461
\(953\) 14097.0 0.479167 0.239584 0.970876i \(-0.422989\pi\)
0.239584 + 0.970876i \(0.422989\pi\)
\(954\) 30888.0 1.04826
\(955\) 0 0
\(956\) 17760.0 0.600836
\(957\) −22680.0 −0.766082
\(958\) −1260.00 −0.0424935
\(959\) −65994.0 −2.22217
\(960\) 0 0
\(961\) 3333.00 0.111879
\(962\) −8176.00 −0.274017
\(963\) −17358.0 −0.580845
\(964\) −14812.0 −0.494878
\(965\) 0 0
\(966\) 37128.0 1.23662
\(967\) −34144.0 −1.13547 −0.567734 0.823212i \(-0.692180\pi\)
−0.567734 + 0.823212i \(0.692180\pi\)
\(968\) −4816.00 −0.159909
\(969\) 5145.00 0.170569
\(970\) 0 0
\(971\) −32613.0 −1.07786 −0.538929 0.842351i \(-0.681171\pi\)
−0.538929 + 0.842351i \(0.681171\pi\)
\(972\) −19712.0 −0.650476
\(973\) 55930.0 1.84279
\(974\) 21292.0 0.700451
\(975\) 0 0
\(976\) −3808.00 −0.124888
\(977\) −43359.0 −1.41983 −0.709917 0.704286i \(-0.751267\pi\)
−0.709917 + 0.704286i \(0.751267\pi\)
\(978\) 16198.0 0.529606
\(979\) 19845.0 0.647854
\(980\) 0 0
\(981\) 5060.00 0.164682
\(982\) −4776.00 −0.155202
\(983\) −28518.0 −0.925313 −0.462657 0.886538i \(-0.653104\pi\)
−0.462657 + 0.886538i \(0.653104\pi\)
\(984\) 19992.0 0.647685
\(985\) 0 0
\(986\) −5040.00 −0.162785
\(987\) 19992.0 0.644734
\(988\) −3920.00 −0.126227
\(989\) 11544.0 0.371161
\(990\) 0 0
\(991\) 18122.0 0.580892 0.290446 0.956891i \(-0.406196\pi\)
0.290446 + 0.956891i \(0.406196\pi\)
\(992\) 5824.00 0.186403
\(993\) 48209.0 1.54065
\(994\) 48144.0 1.53625
\(995\) 0 0
\(996\) −25284.0 −0.804372
\(997\) −28924.0 −0.918789 −0.459394 0.888232i \(-0.651934\pi\)
−0.459394 + 0.888232i \(0.651934\pi\)
\(998\) −21080.0 −0.668613
\(999\) −5110.00 −0.161835
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 50.4.a.e.1.1 yes 1
3.2 odd 2 450.4.a.a.1.1 1
4.3 odd 2 400.4.a.d.1.1 1
5.2 odd 4 50.4.b.b.49.2 2
5.3 odd 4 50.4.b.b.49.1 2
5.4 even 2 50.4.a.a.1.1 1
7.6 odd 2 2450.4.a.y.1.1 1
8.3 odd 2 1600.4.a.bv.1.1 1
8.5 even 2 1600.4.a.f.1.1 1
15.2 even 4 450.4.c.c.199.1 2
15.8 even 4 450.4.c.c.199.2 2
15.14 odd 2 450.4.a.t.1.1 1
20.3 even 4 400.4.c.d.49.1 2
20.7 even 4 400.4.c.d.49.2 2
20.19 odd 2 400.4.a.r.1.1 1
35.34 odd 2 2450.4.a.t.1.1 1
40.19 odd 2 1600.4.a.g.1.1 1
40.29 even 2 1600.4.a.bu.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
50.4.a.a.1.1 1 5.4 even 2
50.4.a.e.1.1 yes 1 1.1 even 1 trivial
50.4.b.b.49.1 2 5.3 odd 4
50.4.b.b.49.2 2 5.2 odd 4
400.4.a.d.1.1 1 4.3 odd 2
400.4.a.r.1.1 1 20.19 odd 2
400.4.c.d.49.1 2 20.3 even 4
400.4.c.d.49.2 2 20.7 even 4
450.4.a.a.1.1 1 3.2 odd 2
450.4.a.t.1.1 1 15.14 odd 2
450.4.c.c.199.1 2 15.2 even 4
450.4.c.c.199.2 2 15.8 even 4
1600.4.a.f.1.1 1 8.5 even 2
1600.4.a.g.1.1 1 40.19 odd 2
1600.4.a.bu.1.1 1 40.29 even 2
1600.4.a.bv.1.1 1 8.3 odd 2
2450.4.a.t.1.1 1 35.34 odd 2
2450.4.a.y.1.1 1 7.6 odd 2