Properties

Label 504.2.cc.a
Level $504$
Weight $2$
Character orbit 504.cc
Analytic conductor $4.024$
Analytic rank $0$
Dimension $16$
CM discriminant -56
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [504,2,Mod(293,504)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(504, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 5, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("504.293");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 504 = 2^{3} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 504.cc (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.02446026187\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 10x^{12} + 19x^{8} + 810x^{4} + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{6}\cdot 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{6}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{15}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{11} q^{2} - \beta_{14} q^{3} + ( - 2 \beta_{4} + 2) q^{4} + (\beta_{15} + \beta_{10} + \cdots + \beta_{8}) q^{5} + \beta_1 q^{6} - \beta_{12} q^{7} + 2 \beta_{2} q^{8} + (\beta_{13} - \beta_{12} + \beta_{2}) q^{9}+ \cdots - 7 \beta_{2} q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 16 q^{4} - 16 q^{15} - 32 q^{16} - 16 q^{18} + 72 q^{23} + 40 q^{25} + 32 q^{30} - 40 q^{39} - 56 q^{49} - 144 q^{50} + 8 q^{57} - 16 q^{60} + 56 q^{63} - 128 q^{64} - 72 q^{65} - 64 q^{72} + 128 q^{78}+ \cdots + 144 q^{92}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{16} + 10x^{12} + 19x^{8} + 810x^{4} + 6561 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( 10\nu^{13} + 19\nu^{9} - 1349\nu^{5} + 6561\nu ) / 9234 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 10\nu^{14} + 19\nu^{10} - 1349\nu^{6} + 6561\nu^{2} ) / 27702 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -11\nu^{13} + 133\nu^{9} - 209\nu^{5} + 324\nu ) / 9234 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 10\nu^{12} + 19\nu^{8} + 190\nu^{4} + 8100 ) / 1539 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -31\nu^{12} + 95\nu^{8} - 589\nu^{4} - 25110 ) / 3078 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( -\nu^{15} - 10\nu^{11} - 19\nu^{7} - 810\nu^{3} ) / 2187 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 50\nu^{12} + 95\nu^{8} - 589\nu^{4} + 32805 ) / 3078 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( -70\nu^{13} - 133\nu^{9} + 209\nu^{5} - 36693\nu ) / 9234 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( -\nu^{15} - 1133\nu^{3} + 1026\nu ) / 1026 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( \nu^{13} + 791\nu ) / 114 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( \nu^{14} + 791\nu^{2} ) / 342 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( -\nu^{14} - 449\nu^{2} ) / 342 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( 109\nu^{14} + 361\nu^{10} + 2071\nu^{6} + 88290\nu^{2} ) / 27702 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( -\nu^{15} - 620\nu^{3} ) / 513 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( 170\nu^{15} + 323\nu^{11} + 4769\nu^{7} + 111537\nu^{3} - 83106\nu ) / 83106 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{10} + \beta_{8} + \beta_{3} ) / 3 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{12} + \beta_{11} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 3\beta_{14} + 2\beta_{10} - 6\beta_{9} + 2\beta_{8} + 2\beta_{3} ) / 3 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -2\beta_{7} + 5\beta_{4} - 5 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( \beta_{10} - 2\beta_{8} + \beta_{3} - 21\beta_1 ) / 3 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( \beta_{13} - \beta_{12} - 19\beta_{2} \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( 60\beta_{15} + 51\beta_{14} + 20\beta_{10} + 20\beta_{8} + 51\beta_{6} + 20\beta_{3} ) / 3 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( 20\beta_{5} + 31\beta_{4} \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( ( -38\beta_{10} - 71\beta_{8} + 142\beta_{3} - 33\beta_1 ) / 3 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( 71\beta_{13} - 109\beta_{11} + 109\beta_{2} \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( ( -114\beta_{15} - 76\beta_{10} + 114\beta_{9} - 76\beta_{8} - 753\beta_{6} - 76\beta_{3} ) / 3 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( 38\beta_{7} - 38\beta_{5} - 715 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( ( -449\beta_{10} - 791\beta_{8} - 791\beta_{3} ) / 3 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( -791\beta_{12} - 449\beta_{11} \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( ( -3399\beta_{14} - 1240\beta_{10} + 3720\beta_{9} - 1240\beta_{8} - 1240\beta_{3} ) / 3 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/504\mathbb{Z}\right)^\times\).

\(n\) \(73\) \(127\) \(253\) \(281\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(1 - \beta_{4}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
293.1
−0.475594 + 1.66548i
1.24461 + 1.20455i
−1.24461 1.20455i
0.475594 1.66548i
−1.20455 + 1.24461i
−1.66548 0.475594i
1.66548 + 0.475594i
1.20455 1.24461i
−0.475594 1.66548i
1.24461 1.20455i
−1.24461 + 1.20455i
0.475594 + 1.66548i
−1.20455 1.24461i
−1.66548 + 0.475594i
1.66548 0.475594i
1.20455 + 1.24461i
−1.22474 + 0.707107i −1.68014 0.420861i 1.00000 1.73205i 3.32070 + 1.91721i 2.35534 0.672592i 1.32288 + 2.29129i 2.82843i 2.64575 + 1.41421i −5.42268
293.2 −1.22474 + 0.707107i −0.420861 1.68014i 1.00000 1.73205i −3.87242 2.23574i 1.70349 + 1.76015i −1.32288 2.29129i 2.82843i −2.64575 + 1.41421i 6.32364
293.3 −1.22474 + 0.707107i 0.420861 + 1.68014i 1.00000 1.73205i 3.87242 + 2.23574i −1.70349 1.76015i −1.32288 2.29129i 2.82843i −2.64575 + 1.41421i −6.32364
293.4 −1.22474 + 0.707107i 1.68014 + 0.420861i 1.00000 1.73205i −3.32070 1.91721i −2.35534 + 0.672592i 1.32288 + 2.29129i 2.82843i 2.64575 + 1.41421i 5.42268
293.5 1.22474 0.707107i −1.68014 + 0.420861i 1.00000 1.73205i −0.0658376 0.0380114i −1.76015 + 1.70349i 1.32288 + 2.29129i 2.82843i 2.64575 1.41421i −0.107512
293.6 1.22474 0.707107i −0.420861 + 1.68014i 1.00000 1.73205i −1.99323 1.15079i 0.672592 + 2.35534i −1.32288 2.29129i 2.82843i −2.64575 1.41421i −3.25493
293.7 1.22474 0.707107i 0.420861 1.68014i 1.00000 1.73205i 1.99323 + 1.15079i −0.672592 2.35534i −1.32288 2.29129i 2.82843i −2.64575 1.41421i 3.25493
293.8 1.22474 0.707107i 1.68014 0.420861i 1.00000 1.73205i 0.0658376 + 0.0380114i 1.76015 1.70349i 1.32288 + 2.29129i 2.82843i 2.64575 1.41421i 0.107512
461.1 −1.22474 0.707107i −1.68014 + 0.420861i 1.00000 + 1.73205i 3.32070 1.91721i 2.35534 + 0.672592i 1.32288 2.29129i 2.82843i 2.64575 1.41421i −5.42268
461.2 −1.22474 0.707107i −0.420861 + 1.68014i 1.00000 + 1.73205i −3.87242 + 2.23574i 1.70349 1.76015i −1.32288 + 2.29129i 2.82843i −2.64575 1.41421i 6.32364
461.3 −1.22474 0.707107i 0.420861 1.68014i 1.00000 + 1.73205i 3.87242 2.23574i −1.70349 + 1.76015i −1.32288 + 2.29129i 2.82843i −2.64575 1.41421i −6.32364
461.4 −1.22474 0.707107i 1.68014 0.420861i 1.00000 + 1.73205i −3.32070 + 1.91721i −2.35534 0.672592i 1.32288 2.29129i 2.82843i 2.64575 1.41421i 5.42268
461.5 1.22474 + 0.707107i −1.68014 0.420861i 1.00000 + 1.73205i −0.0658376 + 0.0380114i −1.76015 1.70349i 1.32288 2.29129i 2.82843i 2.64575 + 1.41421i −0.107512
461.6 1.22474 + 0.707107i −0.420861 1.68014i 1.00000 + 1.73205i −1.99323 + 1.15079i 0.672592 2.35534i −1.32288 + 2.29129i 2.82843i −2.64575 + 1.41421i −3.25493
461.7 1.22474 + 0.707107i 0.420861 + 1.68014i 1.00000 + 1.73205i 1.99323 1.15079i −0.672592 + 2.35534i −1.32288 + 2.29129i 2.82843i −2.64575 + 1.41421i 3.25493
461.8 1.22474 + 0.707107i 1.68014 + 0.420861i 1.00000 + 1.73205i 0.0658376 0.0380114i 1.76015 + 1.70349i 1.32288 2.29129i 2.82843i 2.64575 + 1.41421i 0.107512
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 293.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
56.h odd 2 1 CM by \(\Q(\sqrt{-14}) \)
7.b odd 2 1 inner
8.b even 2 1 inner
9.d odd 6 1 inner
63.o even 6 1 inner
72.j odd 6 1 inner
504.cc even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 504.2.cc.a 16
7.b odd 2 1 inner 504.2.cc.a 16
8.b even 2 1 inner 504.2.cc.a 16
9.d odd 6 1 inner 504.2.cc.a 16
56.h odd 2 1 CM 504.2.cc.a 16
63.o even 6 1 inner 504.2.cc.a 16
72.j odd 6 1 inner 504.2.cc.a 16
504.cc even 6 1 inner 504.2.cc.a 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
504.2.cc.a 16 1.a even 1 1 trivial
504.2.cc.a 16 7.b odd 2 1 inner
504.2.cc.a 16 8.b even 2 1 inner
504.2.cc.a 16 9.d odd 6 1 inner
504.2.cc.a 16 56.h odd 2 1 CM
504.2.cc.a 16 63.o even 6 1 inner
504.2.cc.a 16 72.j odd 6 1 inner
504.2.cc.a 16 504.cc even 6 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{16} - 40 T_{5}^{14} + 1122 T_{5}^{12} - 16000 T_{5}^{10} + 166075 T_{5}^{8} - 744960 T_{5}^{6} + \cdots + 81 \) acting on \(S_{2}^{\mathrm{new}}(504, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{4} - 2 T^{2} + 4)^{4} \) Copy content Toggle raw display
$3$ \( (T^{8} - 10 T^{4} + 81)^{2} \) Copy content Toggle raw display
$5$ \( T^{16} - 40 T^{14} + \cdots + 81 \) Copy content Toggle raw display
$7$ \( (T^{4} + 7 T^{2} + 49)^{4} \) Copy content Toggle raw display
$11$ \( T^{16} \) Copy content Toggle raw display
$13$ \( (T^{8} + 52 T^{6} + \cdots + 419904)^{2} \) Copy content Toggle raw display
$17$ \( T^{16} \) Copy content Toggle raw display
$19$ \( (T^{8} - 152 T^{6} + \cdots + 1022121)^{2} \) Copy content Toggle raw display
$23$ \( (T^{4} - 18 T^{3} + \cdots + 169)^{4} \) Copy content Toggle raw display
$29$ \( T^{16} \) Copy content Toggle raw display
$31$ \( T^{16} \) Copy content Toggle raw display
$37$ \( T^{16} \) Copy content Toggle raw display
$41$ \( T^{16} \) Copy content Toggle raw display
$43$ \( T^{16} \) Copy content Toggle raw display
$47$ \( T^{16} \) Copy content Toggle raw display
$53$ \( T^{16} \) Copy content Toggle raw display
$59$ \( (T^{8} - 236 T^{6} + \cdots + 34012224)^{2} \) Copy content Toggle raw display
$61$ \( T^{16} + \cdots + 15\!\cdots\!61 \) Copy content Toggle raw display
$67$ \( T^{16} \) Copy content Toggle raw display
$71$ \( (T^{4} + 394 T^{2} + 32761)^{4} \) Copy content Toggle raw display
$73$ \( T^{16} \) Copy content Toggle raw display
$79$ \( (T^{8} + 446 T^{6} + \cdots + 1908029761)^{2} \) Copy content Toggle raw display
$83$ \( (T^{8} - 332 T^{6} + \cdots + 419904)^{2} \) Copy content Toggle raw display
$89$ \( T^{16} \) Copy content Toggle raw display
$97$ \( T^{16} \) Copy content Toggle raw display
show more
show less