Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [5040,2,Mod(1009,5040)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(5040, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0, 1, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("5040.1009");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 5040 = 2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 5040.t (of order \(2\), degree \(1\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(40.2446026187\) |
Analytic rank: | \(0\) |
Dimension: | \(2\) |
Coefficient field: | \(\Q(i)\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: | \( x^{2} + 1 \) |
Coefficient ring: | \(\Z[a_1, \ldots, a_{5}]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 315) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
Embedding invariants
Embedding label | 1009.2 | ||
Root | \(1.00000i\) of defining polynomial | ||
Character | \(\chi\) | \(=\) | 5040.1009 |
Dual form | 5040.2.t.c.1009.1 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/5040\mathbb{Z}\right)^\times\).
\(n\) | \(2017\) | \(2801\) | \(3151\) | \(3601\) | \(3781\) |
\(\chi(n)\) | \(-1\) | \(1\) | \(1\) | \(1\) | \(1\) |
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | ||||||||
\(3\) | 0 | 0 | ||||||||
\(4\) | 0 | 0 | ||||||||
\(5\) | −2.00000 | + | 1.00000i | −0.894427 | + | 0.447214i | ||||
\(6\) | 0 | 0 | ||||||||
\(7\) | − | 1.00000i | − | 0.377964i | ||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | 0 | 0 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | 4.00000i | 1.10940i | 0.832050 | + | 0.554700i | \(0.187167\pi\) | ||||
−0.832050 | + | 0.554700i | \(0.812833\pi\) | |||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | 0 | 0 | ||||||||
\(17\) | 2.00000i | 0.485071i | 0.970143 | + | 0.242536i | \(0.0779791\pi\) | ||||
−0.970143 | + | 0.242536i | \(0.922021\pi\) | |||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | 0 | 0 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | 3.00000 | − | 4.00000i | 0.600000 | − | 0.800000i | ||||
\(26\) | 0 | 0 | ||||||||
\(27\) | 0 | 0 | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | 8.00000 | 1.48556 | 0.742781 | − | 0.669534i | \(-0.233506\pi\) | ||||
0.742781 | + | 0.669534i | \(0.233506\pi\) | |||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | 4.00000 | 0.718421 | 0.359211 | − | 0.933257i | \(-0.383046\pi\) | ||||
0.359211 | + | 0.933257i | \(0.383046\pi\) | |||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | 0 | 0 | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | 1.00000 | + | 2.00000i | 0.169031 | + | 0.338062i | ||||
\(36\) | 0 | 0 | ||||||||
\(37\) | − | 8.00000i | − | 1.31519i | −0.753371 | − | 0.657596i | \(-0.771573\pi\) | ||
0.753371 | − | 0.657596i | \(-0.228427\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | 0 | 0 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | −4.00000 | −0.624695 | −0.312348 | − | 0.949968i | \(-0.601115\pi\) | ||||
−0.312348 | + | 0.949968i | \(0.601115\pi\) | |||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | − | 8.00000i | − | 1.21999i | −0.792406 | − | 0.609994i | \(-0.791172\pi\) | ||
0.792406 | − | 0.609994i | \(-0.208828\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 0 | 0 | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | 12.0000i | 1.75038i | 0.483779 | + | 0.875190i | \(0.339264\pi\) | ||||
−0.483779 | + | 0.875190i | \(0.660736\pi\) | |||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | −1.00000 | −0.142857 | ||||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | 0 | 0 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | − | 6.00000i | − | 0.824163i | −0.911147 | − | 0.412082i | \(-0.864802\pi\) | ||
0.911147 | − | 0.412082i | \(-0.135198\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | 0 | 0 | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | 0 | 0 | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | −8.00000 | −1.04151 | −0.520756 | − | 0.853706i | \(-0.674350\pi\) | ||||
−0.520756 | + | 0.853706i | \(0.674350\pi\) | |||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | 10.0000 | 1.28037 | 0.640184 | − | 0.768221i | \(-0.278858\pi\) | ||||
0.640184 | + | 0.768221i | \(0.278858\pi\) | |||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | 0 | 0 | ||||||||
\(64\) | 0 | 0 | ||||||||
\(65\) | −4.00000 | − | 8.00000i | −0.496139 | − | 0.992278i | ||||
\(66\) | 0 | 0 | ||||||||
\(67\) | 8.00000i | 0.977356i | 0.872464 | + | 0.488678i | \(0.162521\pi\) | ||||
−0.872464 | + | 0.488678i | \(0.837479\pi\) | |||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | 0 | 0 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | −16.0000 | −1.89885 | −0.949425 | − | 0.313993i | \(-0.898333\pi\) | ||||
−0.949425 | + | 0.313993i | \(0.898333\pi\) | |||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | 12.0000i | 1.40449i | 0.711934 | + | 0.702247i | \(0.247820\pi\) | ||||
−0.711934 | + | 0.702247i | \(0.752180\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 0 | 0 | ||||||||
\(76\) | 0 | 0 | ||||||||
\(77\) | 0 | 0 | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | −8.00000 | −0.900070 | −0.450035 | − | 0.893011i | \(-0.648589\pi\) | ||||
−0.450035 | + | 0.893011i | \(0.648589\pi\) | |||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | 0 | 0 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | 16.0000i | 1.75623i | 0.478451 | + | 0.878114i | \(0.341198\pi\) | ||||
−0.478451 | + | 0.878114i | \(0.658802\pi\) | |||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | −2.00000 | − | 4.00000i | −0.216930 | − | 0.433861i | ||||
\(86\) | 0 | 0 | ||||||||
\(87\) | 0 | 0 | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | −12.0000 | −1.27200 | −0.635999 | − | 0.771690i | \(-0.719412\pi\) | ||||
−0.635999 | + | 0.771690i | \(0.719412\pi\) | |||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | 4.00000 | 0.419314 | ||||||||
\(92\) | 0 | 0 | ||||||||
\(93\) | 0 | 0 | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | 0 | 0 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | − | 4.00000i | − | 0.406138i | −0.979164 | − | 0.203069i | \(-0.934908\pi\) | ||
0.979164 | − | 0.203069i | \(-0.0650917\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | 0 | 0 | ||||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | 12.0000 | 1.19404 | 0.597022 | − | 0.802225i | \(-0.296350\pi\) | ||||
0.597022 | + | 0.802225i | \(0.296350\pi\) | |||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | − | 8.00000i | − | 0.788263i | −0.919054 | − | 0.394132i | \(-0.871045\pi\) | ||
0.919054 | − | 0.394132i | \(-0.128955\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | 4.00000i | 0.386695i | 0.981130 | + | 0.193347i | \(0.0619344\pi\) | ||||
−0.981130 | + | 0.193347i | \(0.938066\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | −2.00000 | −0.191565 | −0.0957826 | − | 0.995402i | \(-0.530535\pi\) | ||||
−0.0957826 | + | 0.995402i | \(0.530535\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | 0 | 0 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | 18.0000i | 1.69330i | 0.532152 | + | 0.846649i | \(0.321383\pi\) | ||||
−0.532152 | + | 0.846649i | \(0.678617\pi\) | |||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | 0 | 0 | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | 0 | 0 | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | 2.00000 | 0.183340 | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | −11.0000 | −1.00000 | ||||||||
\(122\) | 0 | 0 | ||||||||
\(123\) | 0 | 0 | ||||||||
\(124\) | 0 | 0 | ||||||||
\(125\) | −2.00000 | + | 11.0000i | −0.178885 | + | 0.983870i | ||||
\(126\) | 0 | 0 | ||||||||
\(127\) | 8.00000i | 0.709885i | 0.934888 | + | 0.354943i | \(0.115500\pi\) | ||||
−0.934888 | + | 0.354943i | \(0.884500\pi\) | |||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | 0 | 0 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | 8.00000 | 0.698963 | 0.349482 | − | 0.936943i | \(-0.386358\pi\) | ||||
0.349482 | + | 0.936943i | \(0.386358\pi\) | |||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | 0 | 0 | ||||||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | 6.00000i | 0.512615i | 0.966595 | + | 0.256307i | \(0.0825059\pi\) | ||||
−0.966595 | + | 0.256307i | \(0.917494\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | 8.00000 | 0.678551 | 0.339276 | − | 0.940687i | \(-0.389818\pi\) | ||||
0.339276 | + | 0.940687i | \(0.389818\pi\) | |||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 0 | 0 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | 0 | 0 | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | −16.0000 | + | 8.00000i | −1.32873 | + | 0.664364i | ||||
\(146\) | 0 | 0 | ||||||||
\(147\) | 0 | 0 | ||||||||
\(148\) | 0 | 0 | ||||||||
\(149\) | −16.0000 | −1.31077 | −0.655386 | − | 0.755295i | \(-0.727494\pi\) | ||||
−0.655386 | + | 0.755295i | \(0.727494\pi\) | |||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | 16.0000 | 1.30206 | 0.651031 | − | 0.759051i | \(-0.274337\pi\) | ||||
0.651031 | + | 0.759051i | \(0.274337\pi\) | |||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | 0 | 0 | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | −8.00000 | + | 4.00000i | −0.642575 | + | 0.321288i | ||||
\(156\) | 0 | 0 | ||||||||
\(157\) | − | 12.0000i | − | 0.957704i | −0.877896 | − | 0.478852i | \(-0.841053\pi\) | ||
0.877896 | − | 0.478852i | \(-0.158947\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | 0 | 0 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | 0 | 0 | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | 8.00000i | 0.626608i | 0.949653 | + | 0.313304i | \(0.101436\pi\) | ||||
−0.949653 | + | 0.313304i | \(0.898564\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | − | 12.0000i | − | 0.928588i | −0.885681 | − | 0.464294i | \(-0.846308\pi\) | ||
0.885681 | − | 0.464294i | \(-0.153692\pi\) | |||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | −3.00000 | −0.230769 | ||||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | 0 | 0 | ||||||||
\(172\) | 0 | 0 | ||||||||
\(173\) | 6.00000i | 0.456172i | 0.973641 | + | 0.228086i | \(0.0732467\pi\) | ||||
−0.973641 | + | 0.228086i | \(0.926753\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | −4.00000 | − | 3.00000i | −0.302372 | − | 0.226779i | ||||
\(176\) | 0 | 0 | ||||||||
\(177\) | 0 | 0 | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | 16.0000 | 1.19590 | 0.597948 | − | 0.801535i | \(-0.295983\pi\) | ||||
0.597948 | + | 0.801535i | \(0.295983\pi\) | |||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | 18.0000 | 1.33793 | 0.668965 | − | 0.743294i | \(-0.266738\pi\) | ||||
0.668965 | + | 0.743294i | \(0.266738\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | 0 | 0 | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | 8.00000 | + | 16.0000i | 0.588172 | + | 1.17634i | ||||
\(186\) | 0 | 0 | ||||||||
\(187\) | 0 | 0 | ||||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | 0 | 0 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | 16.0000i | 1.15171i | 0.817554 | + | 0.575853i | \(0.195330\pi\) | ||||
−0.817554 | + | 0.575853i | \(0.804670\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 0 | 0 | ||||||||
\(197\) | 10.0000i | 0.712470i | 0.934396 | + | 0.356235i | \(0.115940\pi\) | ||||
−0.934396 | + | 0.356235i | \(0.884060\pi\) | |||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | −4.00000 | −0.283552 | −0.141776 | − | 0.989899i | \(-0.545281\pi\) | ||||
−0.141776 | + | 0.989899i | \(0.545281\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | 0 | 0 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | − | 8.00000i | − | 0.561490i | ||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | 8.00000 | − | 4.00000i | 0.558744 | − | 0.279372i | ||||
\(206\) | 0 | 0 | ||||||||
\(207\) | 0 | 0 | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | 0 | 0 | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | −20.0000 | −1.37686 | −0.688428 | − | 0.725304i | \(-0.741699\pi\) | ||||
−0.688428 | + | 0.725304i | \(0.741699\pi\) | |||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | 0 | 0 | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | 8.00000 | + | 16.0000i | 0.545595 | + | 1.09119i | ||||
\(216\) | 0 | 0 | ||||||||
\(217\) | − | 4.00000i | − | 0.271538i | ||||||
\(218\) | 0 | 0 | ||||||||
\(219\) | 0 | 0 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | −8.00000 | −0.538138 | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | 24.0000i | 1.60716i | 0.595198 | + | 0.803579i | \(0.297074\pi\) | ||||
−0.595198 | + | 0.803579i | \(0.702926\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 0 | 0 | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | 8.00000i | 0.530979i | 0.964114 | + | 0.265489i | \(0.0855335\pi\) | ||||
−0.964114 | + | 0.265489i | \(0.914466\pi\) | |||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | −14.0000 | −0.925146 | −0.462573 | − | 0.886581i | \(-0.653074\pi\) | ||||
−0.462573 | + | 0.886581i | \(0.653074\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | 22.0000i | 1.44127i | 0.693316 | + | 0.720634i | \(0.256149\pi\) | ||||
−0.693316 | + | 0.720634i | \(0.743851\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | −12.0000 | − | 24.0000i | −0.782794 | − | 1.56559i | ||||
\(236\) | 0 | 0 | ||||||||
\(237\) | 0 | 0 | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | −14.0000 | −0.901819 | −0.450910 | − | 0.892570i | \(-0.648900\pi\) | ||||
−0.450910 | + | 0.892570i | \(0.648900\pi\) | |||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | 0 | 0 | ||||||||
\(244\) | 0 | 0 | ||||||||
\(245\) | 2.00000 | − | 1.00000i | 0.127775 | − | 0.0638877i | ||||
\(246\) | 0 | 0 | ||||||||
\(247\) | 0 | 0 | ||||||||
\(248\) | 0 | 0 | ||||||||
\(249\) | 0 | 0 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | −24.0000 | −1.51487 | −0.757433 | − | 0.652913i | \(-0.773547\pi\) | ||||
−0.757433 | + | 0.652913i | \(0.773547\pi\) | |||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | 0 | 0 | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 0 | 0 | ||||||||
\(257\) | 14.0000i | 0.873296i | 0.899632 | + | 0.436648i | \(0.143834\pi\) | ||||
−0.899632 | + | 0.436648i | \(0.856166\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | −8.00000 | −0.497096 | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | 0 | 0 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | 24.0000i | 1.47990i | 0.672660 | + | 0.739952i | \(0.265152\pi\) | ||||
−0.672660 | + | 0.739952i | \(0.734848\pi\) | |||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | 6.00000 | + | 12.0000i | 0.368577 | + | 0.737154i | ||||
\(266\) | 0 | 0 | ||||||||
\(267\) | 0 | 0 | ||||||||
\(268\) | 0 | 0 | ||||||||
\(269\) | −4.00000 | −0.243884 | −0.121942 | − | 0.992537i | \(-0.538912\pi\) | ||||
−0.121942 | + | 0.992537i | \(0.538912\pi\) | |||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | −28.0000 | −1.70088 | −0.850439 | − | 0.526073i | \(-0.823664\pi\) | ||||
−0.850439 | + | 0.526073i | \(0.823664\pi\) | |||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | 0 | 0 | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | 0 | 0 | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | 16.0000i | 0.961347i | 0.876900 | + | 0.480673i | \(0.159608\pi\) | ||||
−0.876900 | + | 0.480673i | \(0.840392\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | 0 | 0 | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | −8.00000 | −0.477240 | −0.238620 | − | 0.971113i | \(-0.576695\pi\) | ||||
−0.238620 | + | 0.971113i | \(0.576695\pi\) | |||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | 16.0000i | 0.951101i | 0.879688 | + | 0.475551i | \(0.157751\pi\) | ||||
−0.879688 | + | 0.475551i | \(0.842249\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | 4.00000i | 0.236113i | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | 13.0000 | 0.764706 | ||||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | 0 | 0 | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | − | 18.0000i | − | 1.05157i | −0.850617 | − | 0.525786i | \(-0.823771\pi\) | ||
0.850617 | − | 0.525786i | \(-0.176229\pi\) | |||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | 16.0000 | − | 8.00000i | 0.931556 | − | 0.465778i | ||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 0 | 0 | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | 0 | 0 | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | −8.00000 | −0.461112 | ||||||||
\(302\) | 0 | 0 | ||||||||
\(303\) | 0 | 0 | ||||||||
\(304\) | 0 | 0 | ||||||||
\(305\) | −20.0000 | + | 10.0000i | −1.14520 | + | 0.572598i | ||||
\(306\) | 0 | 0 | ||||||||
\(307\) | 16.0000i | 0.913168i | 0.889680 | + | 0.456584i | \(0.150927\pi\) | ||||
−0.889680 | + | 0.456584i | \(0.849073\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | 0 | 0 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | − | 12.0000i | − | 0.678280i | −0.940736 | − | 0.339140i | \(-0.889864\pi\) | ||
0.940736 | − | 0.339140i | \(-0.110136\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 0 | 0 | ||||||||
\(317\) | − | 18.0000i | − | 1.01098i | −0.862832 | − | 0.505490i | \(-0.831312\pi\) | ||
0.862832 | − | 0.505490i | \(-0.168688\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | 0 | 0 | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | 0 | 0 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | 0 | 0 | ||||||||
\(324\) | 0 | 0 | ||||||||
\(325\) | 16.0000 | + | 12.0000i | 0.887520 | + | 0.665640i | ||||
\(326\) | 0 | 0 | ||||||||
\(327\) | 0 | 0 | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | 12.0000 | 0.661581 | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | 12.0000 | 0.659580 | 0.329790 | − | 0.944054i | \(-0.393022\pi\) | ||||
0.329790 | + | 0.944054i | \(0.393022\pi\) | |||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | 0 | 0 | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | −8.00000 | − | 16.0000i | −0.437087 | − | 0.874173i | ||||
\(336\) | 0 | 0 | ||||||||
\(337\) | − | 24.0000i | − | 1.30736i | −0.756770 | − | 0.653682i | \(-0.773224\pi\) | ||
0.756770 | − | 0.653682i | \(-0.226776\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | 0 | 0 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | 0 | 0 | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | 1.00000i | 0.0539949i | ||||||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | 12.0000i | 0.644194i | 0.946707 | + | 0.322097i | \(0.104388\pi\) | ||||
−0.946707 | + | 0.322097i | \(0.895612\pi\) | |||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | −10.0000 | −0.535288 | −0.267644 | − | 0.963518i | \(-0.586245\pi\) | ||||
−0.267644 | + | 0.963518i | \(0.586245\pi\) | |||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 0 | 0 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | 14.0000i | 0.745145i | 0.928003 | + | 0.372572i | \(0.121524\pi\) | ||||
−0.928003 | + | 0.372572i | \(0.878476\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | 32.0000 | − | 16.0000i | 1.69838 | − | 0.849192i | ||||
\(356\) | 0 | 0 | ||||||||
\(357\) | 0 | 0 | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | −32.0000 | −1.68890 | −0.844448 | − | 0.535638i | \(-0.820071\pi\) | ||||
−0.844448 | + | 0.535638i | \(0.820071\pi\) | |||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | −19.0000 | −1.00000 | ||||||||
\(362\) | 0 | 0 | ||||||||
\(363\) | 0 | 0 | ||||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | −12.0000 | − | 24.0000i | −0.628109 | − | 1.25622i | ||||
\(366\) | 0 | 0 | ||||||||
\(367\) | − | 24.0000i | − | 1.25279i | −0.779506 | − | 0.626395i | \(-0.784530\pi\) | ||
0.779506 | − | 0.626395i | \(-0.215470\pi\) | |||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | 0 | 0 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | −6.00000 | −0.311504 | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | 32.0000i | 1.64808i | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | −4.00000 | −0.205466 | −0.102733 | − | 0.994709i | \(-0.532759\pi\) | ||||
−0.102733 | + | 0.994709i | \(0.532759\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | 0 | 0 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | − | 4.00000i | − | 0.204390i | −0.994764 | − | 0.102195i | \(-0.967413\pi\) | ||
0.994764 | − | 0.102195i | \(-0.0325866\pi\) | |||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | 0 | 0 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | 0 | 0 | ||||||||
\(388\) | 0 | 0 | ||||||||
\(389\) | −8.00000 | −0.405616 | −0.202808 | − | 0.979219i | \(-0.565007\pi\) | ||||
−0.202808 | + | 0.979219i | \(0.565007\pi\) | |||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | 0 | 0 | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | 0 | 0 | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | 16.0000 | − | 8.00000i | 0.805047 | − | 0.402524i | ||||
\(396\) | 0 | 0 | ||||||||
\(397\) | − | 4.00000i | − | 0.200754i | −0.994949 | − | 0.100377i | \(-0.967995\pi\) | ||
0.994949 | − | 0.100377i | \(-0.0320049\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | 0 | 0 | ||||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | −24.0000 | −1.19850 | −0.599251 | − | 0.800561i | \(-0.704535\pi\) | ||||
−0.599251 | + | 0.800561i | \(0.704535\pi\) | |||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | 16.0000i | 0.797017i | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | 0 | 0 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | 0 | 0 | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | 10.0000 | 0.494468 | 0.247234 | − | 0.968956i | \(-0.420478\pi\) | ||||
0.247234 | + | 0.968956i | \(0.420478\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | 0 | 0 | ||||||||
\(412\) | 0 | 0 | ||||||||
\(413\) | 8.00000i | 0.393654i | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | −16.0000 | − | 32.0000i | −0.785409 | − | 1.57082i | ||||
\(416\) | 0 | 0 | ||||||||
\(417\) | 0 | 0 | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | −24.0000 | −1.17248 | −0.586238 | − | 0.810139i | \(-0.699392\pi\) | ||||
−0.586238 | + | 0.810139i | \(0.699392\pi\) | |||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | 6.00000 | 0.292422 | 0.146211 | − | 0.989253i | \(-0.453292\pi\) | ||||
0.146211 | + | 0.989253i | \(0.453292\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | 0 | 0 | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | 8.00000 | + | 6.00000i | 0.388057 | + | 0.291043i | ||||
\(426\) | 0 | 0 | ||||||||
\(427\) | − | 10.0000i | − | 0.483934i | ||||||
\(428\) | 0 | 0 | ||||||||
\(429\) | 0 | 0 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | 32.0000 | 1.54139 | 0.770693 | − | 0.637207i | \(-0.219910\pi\) | ||||
0.770693 | + | 0.637207i | \(0.219910\pi\) | |||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | 20.0000i | 0.961139i | 0.876957 | + | 0.480569i | \(0.159570\pi\) | ||||
−0.876957 | + | 0.480569i | \(0.840430\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | 0 | 0 | ||||||||
\(437\) | 0 | 0 | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | 12.0000 | 0.572729 | 0.286364 | − | 0.958121i | \(-0.407553\pi\) | ||||
0.286364 | + | 0.958121i | \(0.407553\pi\) | |||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | 0 | 0 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | − | 20.0000i | − | 0.950229i | −0.879924 | − | 0.475114i | \(-0.842407\pi\) | ||
0.879924 | − | 0.475114i | \(-0.157593\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | 24.0000 | − | 12.0000i | 1.13771 | − | 0.568855i | ||||
\(446\) | 0 | 0 | ||||||||
\(447\) | 0 | 0 | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | −16.0000 | −0.755087 | −0.377543 | − | 0.925992i | \(-0.623231\pi\) | ||||
−0.377543 | + | 0.925992i | \(0.623231\pi\) | |||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | 0 | 0 | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | 0 | 0 | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | −8.00000 | + | 4.00000i | −0.375046 | + | 0.187523i | ||||
\(456\) | 0 | 0 | ||||||||
\(457\) | − | 16.0000i | − | 0.748448i | −0.927338 | − | 0.374224i | \(-0.877909\pi\) | ||
0.927338 | − | 0.374224i | \(-0.122091\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | 0 | 0 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | 12.0000 | 0.558896 | 0.279448 | − | 0.960161i | \(-0.409849\pi\) | ||||
0.279448 | + | 0.960161i | \(0.409849\pi\) | |||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | 24.0000i | 1.11537i | 0.830051 | + | 0.557687i | \(0.188311\pi\) | ||||
−0.830051 | + | 0.557687i | \(0.811689\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | 8.00000 | 0.369406 | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | 0 | 0 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | 0 | 0 | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | 0 | 0 | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | 0 | 0 | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | 32.0000 | 1.45907 | ||||||||
\(482\) | 0 | 0 | ||||||||
\(483\) | 0 | 0 | ||||||||
\(484\) | 0 | 0 | ||||||||
\(485\) | 4.00000 | + | 8.00000i | 0.181631 | + | 0.363261i | ||||
\(486\) | 0 | 0 | ||||||||
\(487\) | 24.0000i | 1.08754i | 0.839233 | + | 0.543772i | \(0.183004\pi\) | ||||
−0.839233 | + | 0.543772i | \(0.816996\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | 0 | 0 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | 32.0000 | 1.44414 | 0.722070 | − | 0.691820i | \(-0.243191\pi\) | ||||
0.722070 | + | 0.691820i | \(0.243191\pi\) | |||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | 16.0000i | 0.720604i | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | 0 | 0 | ||||||||
\(497\) | 16.0000i | 0.717698i | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | −20.0000 | −0.895323 | −0.447661 | − | 0.894203i | \(-0.647743\pi\) | ||||
−0.447661 | + | 0.894203i | \(0.647743\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 0 | 0 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | − | 12.0000i | − | 0.535054i | −0.963550 | − | 0.267527i | \(-0.913794\pi\) | ||
0.963550 | − | 0.267527i | \(-0.0862064\pi\) | |||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | −24.0000 | + | 12.0000i | −1.06799 | + | 0.533993i | ||||
\(506\) | 0 | 0 | ||||||||
\(507\) | 0 | 0 | ||||||||
\(508\) | 0 | 0 | ||||||||
\(509\) | 36.0000 | 1.59567 | 0.797836 | − | 0.602875i | \(-0.205978\pi\) | ||||
0.797836 | + | 0.602875i | \(0.205978\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | 12.0000 | 0.530849 | ||||||||
\(512\) | 0 | 0 | ||||||||
\(513\) | 0 | 0 | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | 8.00000 | + | 16.0000i | 0.352522 | + | 0.705044i | ||||
\(516\) | 0 | 0 | ||||||||
\(517\) | 0 | 0 | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 0 | 0 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | −4.00000 | −0.175243 | −0.0876216 | − | 0.996154i | \(-0.527927\pi\) | ||||
−0.0876216 | + | 0.996154i | \(0.527927\pi\) | |||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | 16.0000i | 0.699631i | 0.936819 | + | 0.349816i | \(0.113756\pi\) | ||||
−0.936819 | + | 0.349816i | \(0.886244\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | 8.00000i | 0.348485i | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | 23.0000 | 1.00000 | ||||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 0 | 0 | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | − | 16.0000i | − | 0.693037i | ||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | −4.00000 | − | 8.00000i | −0.172935 | − | 0.345870i | ||||
\(536\) | 0 | 0 | ||||||||
\(537\) | 0 | 0 | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | 0 | 0 | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | −30.0000 | −1.28980 | −0.644900 | − | 0.764267i | \(-0.723101\pi\) | ||||
−0.644900 | + | 0.764267i | \(0.723101\pi\) | |||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | 0 | 0 | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | 4.00000 | − | 2.00000i | 0.171341 | − | 0.0856706i | ||||
\(546\) | 0 | 0 | ||||||||
\(547\) | − | 40.0000i | − | 1.71028i | −0.518400 | − | 0.855138i | \(-0.673472\pi\) | ||
0.518400 | − | 0.855138i | \(-0.326528\pi\) | |||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | 0 | 0 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | 0 | 0 | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | 8.00000i | 0.340195i | ||||||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | 0 | 0 | ||||||||
\(557\) | − | 2.00000i | − | 0.0847427i | −0.999102 | − | 0.0423714i | \(-0.986509\pi\) | ||
0.999102 | − | 0.0423714i | \(-0.0134913\pi\) | |||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | 32.0000 | 1.35346 | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 0 | 0 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | 24.0000i | 1.01148i | 0.862686 | + | 0.505740i | \(0.168780\pi\) | ||||
−0.862686 | + | 0.505740i | \(0.831220\pi\) | |||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | −18.0000 | − | 36.0000i | −0.757266 | − | 1.51453i | ||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 0 | 0 | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | −24.0000 | −1.00613 | −0.503066 | − | 0.864248i | \(-0.667795\pi\) | ||||
−0.503066 | + | 0.864248i | \(0.667795\pi\) | |||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | 12.0000 | 0.502184 | 0.251092 | − | 0.967963i | \(-0.419210\pi\) | ||||
0.251092 | + | 0.967963i | \(0.419210\pi\) | |||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | 0 | 0 | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | 0 | 0 | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | − | 20.0000i | − | 0.832611i | −0.909225 | − | 0.416305i | \(-0.863325\pi\) | ||
0.909225 | − | 0.416305i | \(-0.136675\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | 0 | 0 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | 16.0000 | 0.663792 | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | 0 | 0 | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | 0 | 0 | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | 0 | 0 | ||||||||
\(592\) | 0 | 0 | ||||||||
\(593\) | 2.00000i | 0.0821302i | 0.999156 | + | 0.0410651i | \(0.0130751\pi\) | ||||
−0.999156 | + | 0.0410651i | \(0.986925\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | −4.00000 | + | 2.00000i | −0.163984 | + | 0.0819920i | ||||
\(596\) | 0 | 0 | ||||||||
\(597\) | 0 | 0 | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | 16.0000 | 0.653742 | 0.326871 | − | 0.945069i | \(-0.394006\pi\) | ||||
0.326871 | + | 0.945069i | \(0.394006\pi\) | |||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | 22.0000 | 0.897399 | 0.448699 | − | 0.893683i | \(-0.351887\pi\) | ||||
0.448699 | + | 0.893683i | \(0.351887\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | 0 | 0 | ||||||||
\(604\) | 0 | 0 | ||||||||
\(605\) | 22.0000 | − | 11.0000i | 0.894427 | − | 0.447214i | ||||
\(606\) | 0 | 0 | ||||||||
\(607\) | 24.0000i | 0.974130i | 0.873366 | + | 0.487065i | \(0.161933\pi\) | ||||
−0.873366 | + | 0.487065i | \(0.838067\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 0 | 0 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | −48.0000 | −1.94187 | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | − | 8.00000i | − | 0.323117i | −0.986863 | − | 0.161558i | \(-0.948348\pi\) | ||
0.986863 | − | 0.161558i | \(-0.0516520\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | − | 22.0000i | − | 0.885687i | −0.896599 | − | 0.442843i | \(-0.853970\pi\) | ||
0.896599 | − | 0.442843i | \(-0.146030\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | 40.0000 | 1.60774 | 0.803868 | − | 0.594808i | \(-0.202772\pi\) | ||||
0.803868 | + | 0.594808i | \(0.202772\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | 0 | 0 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | 12.0000i | 0.480770i | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | −7.00000 | − | 24.0000i | −0.280000 | − | 0.960000i | ||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 0 | 0 | ||||||||
\(628\) | 0 | 0 | ||||||||
\(629\) | 16.0000 | 0.637962 | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | 8.00000 | 0.318475 | 0.159237 | − | 0.987240i | \(-0.449096\pi\) | ||||
0.159237 | + | 0.987240i | \(0.449096\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | 0 | 0 | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | −8.00000 | − | 16.0000i | −0.317470 | − | 0.634941i | ||||
\(636\) | 0 | 0 | ||||||||
\(637\) | − | 4.00000i | − | 0.158486i | ||||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 0 | 0 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | −8.00000 | −0.315981 | −0.157991 | − | 0.987441i | \(-0.550502\pi\) | ||||
−0.157991 | + | 0.987441i | \(0.550502\pi\) | |||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | − | 16.0000i | − | 0.630978i | −0.948929 | − | 0.315489i | \(-0.897831\pi\) | ||
0.948929 | − | 0.315489i | \(-0.102169\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | 28.0000i | 1.10079i | 0.834903 | + | 0.550397i | \(0.185524\pi\) | ||||
−0.834903 | + | 0.550397i | \(0.814476\pi\) | |||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | 0 | 0 | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 0 | 0 | ||||||||
\(652\) | 0 | 0 | ||||||||
\(653\) | − | 46.0000i | − | 1.80012i | −0.435767 | − | 0.900060i | \(-0.643523\pi\) | ||
0.435767 | − | 0.900060i | \(-0.356477\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | −16.0000 | + | 8.00000i | −0.625172 | + | 0.312586i | ||||
\(656\) | 0 | 0 | ||||||||
\(657\) | 0 | 0 | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | −30.0000 | −1.16686 | −0.583432 | − | 0.812162i | \(-0.698291\pi\) | ||||
−0.583432 | + | 0.812162i | \(0.698291\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | 0 | 0 | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | 0 | 0 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | 0 | 0 | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | 0 | 0 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | 0 | 0 | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | 24.0000i | 0.925132i | 0.886585 | + | 0.462566i | \(0.153071\pi\) | ||||
−0.886585 | + | 0.462566i | \(0.846929\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | 0 | 0 | ||||||||
\(676\) | 0 | 0 | ||||||||
\(677\) | − | 50.0000i | − | 1.92166i | −0.277145 | − | 0.960828i | \(-0.589388\pi\) | ||
0.277145 | − | 0.960828i | \(-0.410612\pi\) | |||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | −4.00000 | −0.153506 | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | 0 | 0 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | 20.0000i | 0.765279i | 0.923898 | + | 0.382639i | \(0.124985\pi\) | ||||
−0.923898 | + | 0.382639i | \(0.875015\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | −6.00000 | − | 12.0000i | −0.229248 | − | 0.458496i | ||||
\(686\) | 0 | 0 | ||||||||
\(687\) | 0 | 0 | ||||||||
\(688\) | 0 | 0 | ||||||||
\(689\) | 24.0000 | 0.914327 | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | −40.0000 | −1.52167 | −0.760836 | − | 0.648944i | \(-0.775211\pi\) | ||||
−0.760836 | + | 0.648944i | \(0.775211\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | 0 | 0 | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | −16.0000 | + | 8.00000i | −0.606915 | + | 0.303457i | ||||
\(696\) | 0 | 0 | ||||||||
\(697\) | − | 8.00000i | − | 0.303022i | ||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | 0 | 0 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | 8.00000 | 0.302156 | 0.151078 | − | 0.988522i | \(-0.451726\pi\) | ||||
0.151078 | + | 0.988522i | \(0.451726\pi\) | |||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | 0 | 0 | ||||||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | − | 12.0000i | − | 0.451306i | ||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | 10.0000 | 0.375558 | 0.187779 | − | 0.982211i | \(-0.439871\pi\) | ||||
0.187779 | + | 0.982211i | \(0.439871\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | 0 | 0 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | 0 | 0 | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | 0 | 0 | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | 0 | 0 | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | 48.0000 | 1.79010 | 0.895049 | − | 0.445968i | \(-0.147140\pi\) | ||||
0.895049 | + | 0.445968i | \(0.147140\pi\) | |||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | −8.00000 | −0.297936 | ||||||||
\(722\) | 0 | 0 | ||||||||
\(723\) | 0 | 0 | ||||||||
\(724\) | 0 | 0 | ||||||||
\(725\) | 24.0000 | − | 32.0000i | 0.891338 | − | 1.18845i | ||||
\(726\) | 0 | 0 | ||||||||
\(727\) | − | 40.0000i | − | 1.48352i | −0.670667 | − | 0.741759i | \(-0.733992\pi\) | ||
0.670667 | − | 0.741759i | \(-0.266008\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | 0 | 0 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | 16.0000 | 0.591781 | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | 52.0000i | 1.92066i | 0.278859 | + | 0.960332i | \(0.410044\pi\) | ||||
−0.278859 | + | 0.960332i | \(0.589956\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | 0 | 0 | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | 4.00000 | 0.147142 | 0.0735712 | − | 0.997290i | \(-0.476560\pi\) | ||||
0.0735712 | + | 0.997290i | \(0.476560\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 0 | 0 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | 8.00000i | 0.293492i | 0.989174 | + | 0.146746i | \(0.0468799\pi\) | ||||
−0.989174 | + | 0.146746i | \(0.953120\pi\) | |||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | 32.0000 | − | 16.0000i | 1.17239 | − | 0.586195i | ||||
\(746\) | 0 | 0 | ||||||||
\(747\) | 0 | 0 | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | 4.00000 | 0.146157 | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | 24.0000 | 0.875772 | 0.437886 | − | 0.899030i | \(-0.355727\pi\) | ||||
0.437886 | + | 0.899030i | \(0.355727\pi\) | |||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | 0 | 0 | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | −32.0000 | + | 16.0000i | −1.16460 | + | 0.582300i | ||||
\(756\) | 0 | 0 | ||||||||
\(757\) | − | 8.00000i | − | 0.290765i | −0.989376 | − | 0.145382i | \(-0.953559\pi\) | ||
0.989376 | − | 0.145382i | \(-0.0464413\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | 0 | 0 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | 20.0000 | 0.724999 | 0.362500 | − | 0.931984i | \(-0.381923\pi\) | ||||
0.362500 | + | 0.931984i | \(0.381923\pi\) | |||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | 2.00000i | 0.0724049i | ||||||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | − | 32.0000i | − | 1.15545i | ||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | −30.0000 | −1.08183 | −0.540914 | − | 0.841078i | \(-0.681921\pi\) | ||||
−0.540914 | + | 0.841078i | \(0.681921\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | 0 | 0 | ||||||||
\(772\) | 0 | 0 | ||||||||
\(773\) | 18.0000i | 0.647415i | 0.946157 | + | 0.323708i | \(0.104929\pi\) | ||||
−0.946157 | + | 0.323708i | \(0.895071\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | 12.0000 | − | 16.0000i | 0.431053 | − | 0.574737i | ||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 0 | 0 | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | 0 | 0 | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | 0 | 0 | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | 0 | 0 | ||||||||
\(784\) | 0 | 0 | ||||||||
\(785\) | 12.0000 | + | 24.0000i | 0.428298 | + | 0.856597i | ||||
\(786\) | 0 | 0 | ||||||||
\(787\) | 32.0000i | 1.14068i | 0.821410 | + | 0.570338i | \(0.193188\pi\) | ||||
−0.821410 | + | 0.570338i | \(0.806812\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | 0 | 0 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | 18.0000 | 0.640006 | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | 40.0000i | 1.42044i | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | 0 | 0 | ||||||||
\(797\) | − | 38.0000i | − | 1.34603i | −0.739629 | − | 0.673015i | \(-0.764999\pi\) | ||
0.739629 | − | 0.673015i | \(-0.235001\pi\) | |||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | −24.0000 | −0.849059 | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | 0 | 0 | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | 0 | 0 | ||||||||
\(804\) | 0 | 0 | ||||||||
\(805\) | 0 | 0 | ||||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | 0 | 0 | ||||||||
\(808\) | 0 | 0 | ||||||||
\(809\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | −16.0000 | −0.561836 | −0.280918 | − | 0.959732i | \(-0.590639\pi\) | ||||
−0.280918 | + | 0.959732i | \(0.590639\pi\) | |||||||
\(812\) | 0 | 0 | ||||||||
\(813\) | 0 | 0 | ||||||||
\(814\) | 0 | 0 | ||||||||
\(815\) | −8.00000 | − | 16.0000i | −0.280228 | − | 0.560456i | ||||
\(816\) | 0 | 0 | ||||||||
\(817\) | 0 | 0 | ||||||||
\(818\) | 0 | 0 | ||||||||
\(819\) | 0 | 0 | ||||||||
\(820\) | 0 | 0 | ||||||||
\(821\) | −32.0000 | −1.11681 | −0.558404 | − | 0.829569i | \(-0.688586\pi\) | ||||
−0.558404 | + | 0.829569i | \(0.688586\pi\) | |||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | − | 8.00000i | − | 0.278862i | −0.990232 | − | 0.139431i | \(-0.955473\pi\) | ||
0.990232 | − | 0.139431i | \(-0.0445274\pi\) | |||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | 0 | 0 | ||||||||
\(826\) | 0 | 0 | ||||||||
\(827\) | − | 36.0000i | − | 1.25184i | −0.779886 | − | 0.625921i | \(-0.784723\pi\) | ||
0.779886 | − | 0.625921i | \(-0.215277\pi\) | |||||||
\(828\) | 0 | 0 | ||||||||
\(829\) | 6.00000 | 0.208389 | 0.104194 | − | 0.994557i | \(-0.466774\pi\) | ||||
0.104194 | + | 0.994557i | \(0.466774\pi\) | |||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | 0 | 0 | ||||||||
\(832\) | 0 | 0 | ||||||||
\(833\) | − | 2.00000i | − | 0.0692959i | ||||||
\(834\) | 0 | 0 | ||||||||
\(835\) | 12.0000 | + | 24.0000i | 0.415277 | + | 0.830554i | ||||
\(836\) | 0 | 0 | ||||||||
\(837\) | 0 | 0 | ||||||||
\(838\) | 0 | 0 | ||||||||
\(839\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | 35.0000 | 1.20690 | ||||||||
\(842\) | 0 | 0 | ||||||||
\(843\) | 0 | 0 | ||||||||
\(844\) | 0 | 0 | ||||||||
\(845\) | 6.00000 | − | 3.00000i | 0.206406 | − | 0.103203i | ||||
\(846\) | 0 | 0 | ||||||||
\(847\) | 11.0000i | 0.377964i | ||||||||
\(848\) | 0 | 0 | ||||||||
\(849\) | 0 | 0 | ||||||||
\(850\) | 0 | 0 | ||||||||
\(851\) | 0 | 0 | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | 36.0000i | 1.23262i | 0.787505 | + | 0.616308i | \(0.211372\pi\) | ||||
−0.787505 | + | 0.616308i | \(0.788628\pi\) | |||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | 0 | 0 | ||||||||
\(856\) | 0 | 0 | ||||||||
\(857\) | − | 6.00000i | − | 0.204956i | −0.994735 | − | 0.102478i | \(-0.967323\pi\) | ||
0.994735 | − | 0.102478i | \(-0.0326771\pi\) | |||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | −8.00000 | −0.272956 | −0.136478 | − | 0.990643i | \(-0.543578\pi\) | ||||
−0.136478 | + | 0.990643i | \(0.543578\pi\) | |||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | 0 | 0 | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | − | 24.0000i | − | 0.816970i | −0.912765 | − | 0.408485i | \(-0.866057\pi\) | ||
0.912765 | − | 0.408485i | \(-0.133943\pi\) | |||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | −6.00000 | − | 12.0000i | −0.204006 | − | 0.408012i | ||||
\(866\) | 0 | 0 | ||||||||
\(867\) | 0 | 0 | ||||||||
\(868\) | 0 | 0 | ||||||||
\(869\) | 0 | 0 | ||||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | −32.0000 | −1.08428 | ||||||||
\(872\) | 0 | 0 | ||||||||
\(873\) | 0 | 0 | ||||||||
\(874\) | 0 | 0 | ||||||||
\(875\) | 11.0000 | + | 2.00000i | 0.371868 | + | 0.0676123i | ||||
\(876\) | 0 | 0 | ||||||||
\(877\) | 40.0000i | 1.35070i | 0.737496 | + | 0.675352i | \(0.236008\pi\) | ||||
−0.737496 | + | 0.675352i | \(0.763992\pi\) | |||||||
\(878\) | 0 | 0 | ||||||||
\(879\) | 0 | 0 | ||||||||
\(880\) | 0 | 0 | ||||||||
\(881\) | −28.0000 | −0.943344 | −0.471672 | − | 0.881774i | \(-0.656349\pi\) | ||||
−0.471672 | + | 0.881774i | \(0.656349\pi\) | |||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | 24.0000i | 0.807664i | 0.914833 | + | 0.403832i | \(0.132322\pi\) | ||||
−0.914833 | + | 0.403832i | \(0.867678\pi\) | |||||||
\(884\) | 0 | 0 | ||||||||
\(885\) | 0 | 0 | ||||||||
\(886\) | 0 | 0 | ||||||||
\(887\) | − | 4.00000i | − | 0.134307i | −0.997743 | − | 0.0671534i | \(-0.978608\pi\) | ||
0.997743 | − | 0.0671534i | \(-0.0213917\pi\) | |||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | 8.00000 | 0.268311 | ||||||||
\(890\) | 0 | 0 | ||||||||
\(891\) | 0 | 0 | ||||||||
\(892\) | 0 | 0 | ||||||||
\(893\) | 0 | 0 | ||||||||
\(894\) | 0 | 0 | ||||||||
\(895\) | −32.0000 | + | 16.0000i | −1.06964 | + | 0.534821i | ||||
\(896\) | 0 | 0 | ||||||||
\(897\) | 0 | 0 | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | 32.0000 | 1.06726 | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | 12.0000 | 0.399778 | ||||||||
\(902\) | 0 | 0 | ||||||||
\(903\) | 0 | 0 | ||||||||
\(904\) | 0 | 0 | ||||||||
\(905\) | −36.0000 | + | 18.0000i | −1.19668 | + | 0.598340i | ||||
\(906\) | 0 | 0 | ||||||||
\(907\) | − | 8.00000i | − | 0.265636i | −0.991140 | − | 0.132818i | \(-0.957597\pi\) | ||
0.991140 | − | 0.132818i | \(-0.0424025\pi\) | |||||||
\(908\) | 0 | 0 | ||||||||
\(909\) | 0 | 0 | ||||||||
\(910\) | 0 | 0 | ||||||||
\(911\) | −48.0000 | −1.59031 | −0.795155 | − | 0.606406i | \(-0.792611\pi\) | ||||
−0.795155 | + | 0.606406i | \(0.792611\pi\) | |||||||
\(912\) | 0 | 0 | ||||||||
\(913\) | 0 | 0 | ||||||||
\(914\) | 0 | 0 | ||||||||
\(915\) | 0 | 0 | ||||||||
\(916\) | 0 | 0 | ||||||||
\(917\) | − | 8.00000i | − | 0.264183i | ||||||
\(918\) | 0 | 0 | ||||||||
\(919\) | −8.00000 | −0.263896 | −0.131948 | − | 0.991257i | \(-0.542123\pi\) | ||||
−0.131948 | + | 0.991257i | \(0.542123\pi\) | |||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | 0 | 0 | ||||||||
\(922\) | 0 | 0 | ||||||||
\(923\) | − | 64.0000i | − | 2.10659i | ||||||
\(924\) | 0 | 0 | ||||||||
\(925\) | −32.0000 | − | 24.0000i | −1.05215 | − | 0.789115i | ||||
\(926\) | 0 | 0 | ||||||||
\(927\) | 0 | 0 | ||||||||
\(928\) | 0 | 0 | ||||||||
\(929\) | −4.00000 | −0.131236 | −0.0656179 | − | 0.997845i | \(-0.520902\pi\) | ||||
−0.0656179 | + | 0.997845i | \(0.520902\pi\) | |||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | 0 | 0 | ||||||||
\(932\) | 0 | 0 | ||||||||
\(933\) | 0 | 0 | ||||||||
\(934\) | 0 | 0 | ||||||||
\(935\) | 0 | 0 | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | − | 44.0000i | − | 1.43742i | −0.695311 | − | 0.718709i | \(-0.744734\pi\) | ||
0.695311 | − | 0.718709i | \(-0.255266\pi\) | |||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | 0 | 0 | ||||||||
\(940\) | 0 | 0 | ||||||||
\(941\) | 36.0000 | 1.17357 | 0.586783 | − | 0.809744i | \(-0.300394\pi\) | ||||
0.586783 | + | 0.809744i | \(0.300394\pi\) | |||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | 0 | 0 | ||||||||
\(944\) | 0 | 0 | ||||||||
\(945\) | 0 | 0 | ||||||||
\(946\) | 0 | 0 | ||||||||
\(947\) | − | 36.0000i | − | 1.16984i | −0.811090 | − | 0.584921i | \(-0.801125\pi\) | ||
0.811090 | − | 0.584921i | \(-0.198875\pi\) | |||||||
\(948\) | 0 | 0 | ||||||||
\(949\) | −48.0000 | −1.55815 | ||||||||
\(950\) | 0 | 0 | ||||||||
\(951\) | 0 | 0 | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | − | 6.00000i | − | 0.194359i | −0.995267 | − | 0.0971795i | \(-0.969018\pi\) | ||
0.995267 | − | 0.0971795i | \(-0.0309821\pi\) | |||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | 0 | 0 | ||||||||
\(956\) | 0 | 0 | ||||||||
\(957\) | 0 | 0 | ||||||||
\(958\) | 0 | 0 | ||||||||
\(959\) | 6.00000 | 0.193750 | ||||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | −15.0000 | −0.483871 | ||||||||
\(962\) | 0 | 0 | ||||||||
\(963\) | 0 | 0 | ||||||||
\(964\) | 0 | 0 | ||||||||
\(965\) | −16.0000 | − | 32.0000i | −0.515058 | − | 1.03012i | ||||
\(966\) | 0 | 0 | ||||||||
\(967\) | − | 8.00000i | − | 0.257263i | −0.991692 | − | 0.128631i | \(-0.958942\pi\) | ||
0.991692 | − | 0.128631i | \(-0.0410584\pi\) | |||||||
\(968\) | 0 | 0 | ||||||||
\(969\) | 0 | 0 | ||||||||
\(970\) | 0 | 0 | ||||||||
\(971\) | 56.0000 | 1.79713 | 0.898563 | − | 0.438845i | \(-0.144612\pi\) | ||||
0.898563 | + | 0.438845i | \(0.144612\pi\) | |||||||
\(972\) | 0 | 0 | ||||||||
\(973\) | − | 8.00000i | − | 0.256468i | ||||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 0 | 0 | ||||||||
\(976\) | 0 | 0 | ||||||||
\(977\) | 18.0000i | 0.575871i | 0.957650 | + | 0.287936i | \(0.0929689\pi\) | ||||
−0.957650 | + | 0.287936i | \(0.907031\pi\) | |||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | 0 | 0 | ||||||||
\(980\) | 0 | 0 | ||||||||
\(981\) | 0 | 0 | ||||||||
\(982\) | 0 | 0 | ||||||||
\(983\) | − | 36.0000i | − | 1.14822i | −0.818778 | − | 0.574111i | \(-0.805348\pi\) | ||
0.818778 | − | 0.574111i | \(-0.194652\pi\) | |||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | −10.0000 | − | 20.0000i | −0.318626 | − | 0.637253i | ||||
\(986\) | 0 | 0 | ||||||||
\(987\) | 0 | 0 | ||||||||
\(988\) | 0 | 0 | ||||||||
\(989\) | 0 | 0 | ||||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | 32.0000 | 1.01651 | 0.508257 | − | 0.861206i | \(-0.330290\pi\) | ||||
0.508257 | + | 0.861206i | \(0.330290\pi\) | |||||||
\(992\) | 0 | 0 | ||||||||
\(993\) | 0 | 0 | ||||||||
\(994\) | 0 | 0 | ||||||||
\(995\) | 8.00000 | − | 4.00000i | 0.253617 | − | 0.126809i | ||||
\(996\) | 0 | 0 | ||||||||
\(997\) | 28.0000i | 0.886769i | 0.896332 | + | 0.443384i | \(0.146222\pi\) | ||||
−0.896332 | + | 0.443384i | \(0.853778\pi\) | |||||||
\(998\) | 0 | 0 | ||||||||
\(999\) | 0 | 0 |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
Twists
By twisting character | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Type | Twist | Min | Dim | |
1.1 | even | 1 | trivial | 5040.2.t.c.1009.2 | 2 | ||
3.2 | odd | 2 | 5040.2.t.r.1009.1 | 2 | |||
4.3 | odd | 2 | 315.2.d.b.64.2 | yes | 2 | ||
5.4 | even | 2 | inner | 5040.2.t.c.1009.1 | 2 | ||
12.11 | even | 2 | 315.2.d.d.64.1 | yes | 2 | ||
15.14 | odd | 2 | 5040.2.t.r.1009.2 | 2 | |||
20.3 | even | 4 | 1575.2.a.j.1.1 | 1 | |||
20.7 | even | 4 | 1575.2.a.b.1.1 | 1 | |||
20.19 | odd | 2 | 315.2.d.b.64.1 | ✓ | 2 | ||
28.27 | even | 2 | 2205.2.d.g.1324.2 | 2 | |||
60.23 | odd | 4 | 1575.2.a.d.1.1 | 1 | |||
60.47 | odd | 4 | 1575.2.a.g.1.1 | 1 | |||
60.59 | even | 2 | 315.2.d.d.64.2 | yes | 2 | ||
84.83 | odd | 2 | 2205.2.d.c.1324.1 | 2 | |||
140.139 | even | 2 | 2205.2.d.g.1324.1 | 2 | |||
420.419 | odd | 2 | 2205.2.d.c.1324.2 | 2 |
By twisted newform | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Type | |
315.2.d.b.64.1 | ✓ | 2 | 20.19 | odd | 2 | ||
315.2.d.b.64.2 | yes | 2 | 4.3 | odd | 2 | ||
315.2.d.d.64.1 | yes | 2 | 12.11 | even | 2 | ||
315.2.d.d.64.2 | yes | 2 | 60.59 | even | 2 | ||
1575.2.a.b.1.1 | 1 | 20.7 | even | 4 | |||
1575.2.a.d.1.1 | 1 | 60.23 | odd | 4 | |||
1575.2.a.g.1.1 | 1 | 60.47 | odd | 4 | |||
1575.2.a.j.1.1 | 1 | 20.3 | even | 4 | |||
2205.2.d.c.1324.1 | 2 | 84.83 | odd | 2 | |||
2205.2.d.c.1324.2 | 2 | 420.419 | odd | 2 | |||
2205.2.d.g.1324.1 | 2 | 140.139 | even | 2 | |||
2205.2.d.g.1324.2 | 2 | 28.27 | even | 2 | |||
5040.2.t.c.1009.1 | 2 | 5.4 | even | 2 | inner | ||
5040.2.t.c.1009.2 | 2 | 1.1 | even | 1 | trivial | ||
5040.2.t.r.1009.1 | 2 | 3.2 | odd | 2 | |||
5040.2.t.r.1009.2 | 2 | 15.14 | odd | 2 |