Properties

Label 5040.2.t.x
Level $5040$
Weight $2$
Character orbit 5040.t
Analytic conductor $40.245$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5040,2,Mod(1009,5040)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5040, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5040.1009");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5040 = 2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5040.t (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(40.2446026187\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.350464.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 2x^{4} + 2x^{3} + 4x^{2} - 4x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 2520)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{3} q^{5} + \beta_1 q^{7} + (\beta_{5} + \beta_{4} + \beta_{3} + \cdots + 2) q^{11} + (\beta_{4} - \beta_{3} + 2 \beta_1) q^{13} + (\beta_{4} - \beta_{3}) q^{17} + (\beta_{5} - \beta_{2} + 2) q^{19}+ \cdots + (2 \beta_{5} + 3 \beta_{4} + \cdots - 2 \beta_1) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 8 q^{11} + 8 q^{19} + 2 q^{25} + 16 q^{31} - 2 q^{35} - 6 q^{49} - 24 q^{55} - 48 q^{59} + 12 q^{61} - 32 q^{65} + 8 q^{71} + 16 q^{79} - 28 q^{85} + 48 q^{89} - 16 q^{91} + 8 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 2x^{5} + 2x^{4} + 2x^{3} + 4x^{2} - 4x + 2 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -7\nu^{5} + 10\nu^{4} - 5\nu^{3} - 30\nu^{2} - 32\nu + 13 ) / 23 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -9\nu^{5} + 3\nu^{4} + 10\nu^{3} - 32\nu^{2} - 74\nu - 3 ) / 23 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -10\nu^{5} + 11\nu^{4} - 17\nu^{3} - 10\nu^{2} - 72\nu - 11 ) / 23 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 12\nu^{5} - 27\nu^{4} + 25\nu^{3} + 12\nu^{2} + 68\nu - 65 ) / 23 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -19\nu^{5} + 37\nu^{4} - 30\nu^{3} - 42\nu^{2} - 54\nu + 55 ) / 23 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{5} + \beta_{4} - \beta _1 + 1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{5} + \beta_{2} - 4\beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( \beta_{5} - \beta_{4} - 3\beta_{3} + 3\beta_{2} - 4\beta _1 - 4 ) / 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( -\beta_{5} - 5\beta_{4} - 5\beta_{3} + \beta_{2} - 14 ) / 2 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( -11\beta_{5} - 11\beta_{4} - 5\beta_{3} - 5\beta_{2} + 18\beta _1 - 18 ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/5040\mathbb{Z}\right)^\times\).

\(n\) \(2017\) \(2801\) \(3151\) \(3601\) \(3781\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1009.1
1.45161 + 1.45161i
1.45161 1.45161i
−0.854638 0.854638i
−0.854638 + 0.854638i
0.403032 0.403032i
0.403032 + 0.403032i
0 0 0 −2.21432 0.311108i 0 1.00000i 0 0 0
1009.2 0 0 0 −2.21432 + 0.311108i 0 1.00000i 0 0 0
1009.3 0 0 0 0.539189 2.17009i 0 1.00000i 0 0 0
1009.4 0 0 0 0.539189 + 2.17009i 0 1.00000i 0 0 0
1009.5 0 0 0 1.67513 1.48119i 0 1.00000i 0 0 0
1009.6 0 0 0 1.67513 + 1.48119i 0 1.00000i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1009.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5040.2.t.x 6
3.b odd 2 1 5040.2.t.w 6
4.b odd 2 1 2520.2.t.h 6
5.b even 2 1 inner 5040.2.t.x 6
12.b even 2 1 2520.2.t.i yes 6
15.d odd 2 1 5040.2.t.w 6
20.d odd 2 1 2520.2.t.h 6
60.h even 2 1 2520.2.t.i yes 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2520.2.t.h 6 4.b odd 2 1
2520.2.t.h 6 20.d odd 2 1
2520.2.t.i yes 6 12.b even 2 1
2520.2.t.i yes 6 60.h even 2 1
5040.2.t.w 6 3.b odd 2 1
5040.2.t.w 6 15.d odd 2 1
5040.2.t.x 6 1.a even 1 1 trivial
5040.2.t.x 6 5.b even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(5040, [\chi])\):

\( T_{11}^{3} - 4T_{11}^{2} - 16T_{11} + 32 \) Copy content Toggle raw display
\( T_{13}^{6} + 48T_{13}^{4} + 320T_{13}^{2} + 256 \) Copy content Toggle raw display
\( T_{17}^{6} + 28T_{17}^{4} + 176T_{17}^{2} + 64 \) Copy content Toggle raw display
\( T_{19}^{3} - 4T_{19}^{2} - 8T_{19} + 16 \) Copy content Toggle raw display
\( T_{29} \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} \) Copy content Toggle raw display
$3$ \( T^{6} \) Copy content Toggle raw display
$5$ \( T^{6} - T^{4} + \cdots + 125 \) Copy content Toggle raw display
$7$ \( (T^{2} + 1)^{3} \) Copy content Toggle raw display
$11$ \( (T^{3} - 4 T^{2} - 16 T + 32)^{2} \) Copy content Toggle raw display
$13$ \( T^{6} + 48 T^{4} + \cdots + 256 \) Copy content Toggle raw display
$17$ \( T^{6} + 28 T^{4} + \cdots + 64 \) Copy content Toggle raw display
$19$ \( (T^{3} - 4 T^{2} - 8 T + 16)^{2} \) Copy content Toggle raw display
$23$ \( T^{6} + 80 T^{4} + \cdots + 256 \) Copy content Toggle raw display
$29$ \( T^{6} \) Copy content Toggle raw display
$31$ \( (T^{3} - 8 T^{2} + \cdots + 304)^{2} \) Copy content Toggle raw display
$37$ \( T^{6} \) Copy content Toggle raw display
$41$ \( (T^{3} - 16 T - 16)^{2} \) Copy content Toggle raw display
$43$ \( T^{6} + 128 T^{4} + \cdots + 16384 \) Copy content Toggle raw display
$47$ \( (T^{2} + 16)^{3} \) Copy content Toggle raw display
$53$ \( T^{6} + 332 T^{4} + \cdots + 732736 \) Copy content Toggle raw display
$59$ \( (T + 8)^{6} \) Copy content Toggle raw display
$61$ \( (T^{3} - 6 T^{2} - 52 T - 8)^{2} \) Copy content Toggle raw display
$67$ \( T^{6} + 192 T^{4} + \cdots + 16384 \) Copy content Toggle raw display
$71$ \( (T^{3} - 4 T^{2} - 32 T - 32)^{2} \) Copy content Toggle raw display
$73$ \( T^{6} + 272 T^{4} + \cdots + 246016 \) Copy content Toggle raw display
$79$ \( (T^{3} - 8 T^{2} + \cdots + 128)^{2} \) Copy content Toggle raw display
$83$ \( T^{6} + 128 T^{4} + \cdots + 16384 \) Copy content Toggle raw display
$89$ \( (T^{3} - 24 T^{2} + \cdots - 368)^{2} \) Copy content Toggle raw display
$97$ \( T^{6} + 272 T^{4} + \cdots + 246016 \) Copy content Toggle raw display
show more
show less