Properties

Label 507.2.k.b.80.1
Level $507$
Weight $2$
Character 507.80
Analytic conductor $4.048$
Analytic rank $0$
Dimension $4$
CM discriminant -3
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [507,2,Mod(80,507)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(507, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([6, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("507.80");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 507 = 3 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 507.k (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.04841538248\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 39)
Sato-Tate group: $\mathrm{U}(1)[D_{12}]$

Embedding invariants

Embedding label 80.1
Root \(0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 507.80
Dual form 507.2.k.b.488.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 + 1.50000i) q^{3} +(1.73205 + 1.00000i) q^{4} +(2.86603 - 0.767949i) q^{7} +(-1.50000 + 2.59808i) q^{9} +3.46410i q^{12} +(2.00000 + 3.46410i) q^{16} +(-2.09808 - 7.83013i) q^{19} +(3.63397 + 3.63397i) q^{21} -5.00000i q^{25} -5.19615 q^{27} +(5.73205 + 1.53590i) q^{28} +(-7.83013 + 7.83013i) q^{31} +(-5.19615 + 3.00000i) q^{36} +(-0.562178 + 2.09808i) q^{37} +(1.50000 + 0.866025i) q^{43} +(-3.46410 + 6.00000i) q^{48} +(1.56218 - 0.901924i) q^{49} +(9.92820 - 9.92820i) q^{57} +(4.33013 - 7.50000i) q^{61} +(-2.30385 + 8.59808i) q^{63} +8.00000i q^{64} +(-0.767949 - 0.205771i) q^{67} +(-9.36603 - 9.36603i) q^{73} +(7.50000 - 4.33013i) q^{75} +(4.19615 - 15.6603i) q^{76} +12.1244 q^{79} +(-4.50000 - 7.79423i) q^{81} +(2.66025 + 9.92820i) q^{84} +(-18.5263 - 4.96410i) q^{93} +(4.40192 + 16.4282i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 8 q^{7} - 6 q^{9} + 8 q^{16} + 2 q^{19} + 18 q^{21} + 16 q^{28} - 14 q^{31} + 22 q^{37} + 6 q^{43} - 18 q^{49} + 12 q^{57} - 30 q^{63} - 10 q^{67} - 34 q^{73} + 30 q^{75} - 4 q^{76} - 18 q^{81} - 24 q^{84}+ \cdots + 28 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/507\mathbb{Z}\right)^\times\).

\(n\) \(170\) \(340\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(3\) 0.866025 + 1.50000i 0.500000 + 0.866025i
\(4\) 1.73205 + 1.00000i 0.866025 + 0.500000i
\(5\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(6\) 0 0
\(7\) 2.86603 0.767949i 1.08326 0.290258i 0.327327 0.944911i \(-0.393852\pi\)
0.755929 + 0.654654i \(0.227186\pi\)
\(8\) 0 0
\(9\) −1.50000 + 2.59808i −0.500000 + 0.866025i
\(10\) 0 0
\(11\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(12\) 3.46410i 1.00000i
\(13\) 0 0
\(14\) 0 0
\(15\) 0 0
\(16\) 2.00000 + 3.46410i 0.500000 + 0.866025i
\(17\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(18\) 0 0
\(19\) −2.09808 7.83013i −0.481332 1.79635i −0.596040 0.802955i \(-0.703260\pi\)
0.114708 0.993399i \(-0.463407\pi\)
\(20\) 0 0
\(21\) 3.63397 + 3.63397i 0.792998 + 0.792998i
\(22\) 0 0
\(23\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(24\) 0 0
\(25\) 5.00000i 1.00000i
\(26\) 0 0
\(27\) −5.19615 −1.00000
\(28\) 5.73205 + 1.53590i 1.08326 + 0.290258i
\(29\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(30\) 0 0
\(31\) −7.83013 + 7.83013i −1.40633 + 1.40633i −0.628619 + 0.777714i \(0.716379\pi\)
−0.777714 + 0.628619i \(0.783621\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) −5.19615 + 3.00000i −0.866025 + 0.500000i
\(37\) −0.562178 + 2.09808i −0.0924215 + 0.344922i −0.996616 0.0821995i \(-0.973806\pi\)
0.904194 + 0.427121i \(0.140472\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(42\) 0 0
\(43\) 1.50000 + 0.866025i 0.228748 + 0.132068i 0.609994 0.792406i \(-0.291172\pi\)
−0.381246 + 0.924473i \(0.624505\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(48\) −3.46410 + 6.00000i −0.500000 + 0.866025i
\(49\) 1.56218 0.901924i 0.223168 0.128846i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 9.92820 9.92820i 1.31502 1.31502i
\(58\) 0 0
\(59\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(60\) 0 0
\(61\) 4.33013 7.50000i 0.554416 0.960277i −0.443533 0.896258i \(-0.646275\pi\)
0.997949 0.0640184i \(-0.0203916\pi\)
\(62\) 0 0
\(63\) −2.30385 + 8.59808i −0.290258 + 1.08326i
\(64\) 8.00000i 1.00000i
\(65\) 0 0
\(66\) 0 0
\(67\) −0.767949 0.205771i −0.0938199 0.0251390i 0.211604 0.977356i \(-0.432131\pi\)
−0.305424 + 0.952217i \(0.598798\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(72\) 0 0
\(73\) −9.36603 9.36603i −1.09621 1.09621i −0.994850 0.101361i \(-0.967680\pi\)
−0.101361 0.994850i \(-0.532320\pi\)
\(74\) 0 0
\(75\) 7.50000 4.33013i 0.866025 0.500000i
\(76\) 4.19615 15.6603i 0.481332 1.79635i
\(77\) 0 0
\(78\) 0 0
\(79\) 12.1244 1.36410 0.682048 0.731307i \(-0.261089\pi\)
0.682048 + 0.731307i \(0.261089\pi\)
\(80\) 0 0
\(81\) −4.50000 7.79423i −0.500000 0.866025i
\(82\) 0 0
\(83\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(84\) 2.66025 + 9.92820i 0.290258 + 1.08326i
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −18.5263 4.96410i −1.92109 0.514753i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 4.40192 + 16.4282i 0.446948 + 1.66803i 0.710742 + 0.703452i \(0.248359\pi\)
−0.263795 + 0.964579i \(0.584974\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 5.00000 8.66025i 0.500000 0.866025i
\(101\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(102\) 0 0
\(103\) 15.5885i 1.53598i −0.640464 0.767988i \(-0.721258\pi\)
0.640464 0.767988i \(-0.278742\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(108\) −9.00000 5.19615i −0.866025 0.500000i
\(109\) 5.16987 5.16987i 0.495184 0.495184i −0.414751 0.909935i \(-0.636131\pi\)
0.909935 + 0.414751i \(0.136131\pi\)
\(110\) 0 0
\(111\) −3.63397 + 0.973721i −0.344922 + 0.0924215i
\(112\) 8.39230 + 8.39230i 0.792998 + 0.792998i
\(113\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −9.52628 5.50000i −0.866025 0.500000i
\(122\) 0 0
\(123\) 0 0
\(124\) −21.3923 + 5.73205i −1.92109 + 0.514753i
\(125\) 0 0
\(126\) 0 0
\(127\) 0.866025 0.500000i 0.0768473 0.0443678i −0.461084 0.887357i \(-0.652539\pi\)
0.537931 + 0.842989i \(0.319206\pi\)
\(128\) 0 0
\(129\) 3.00000i 0.264135i
\(130\) 0 0
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) 0 0
\(133\) −12.0263 20.8301i −1.04281 1.80620i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(138\) 0 0
\(139\) 3.50000 6.06218i 0.296866 0.514187i −0.678551 0.734553i \(-0.737392\pi\)
0.975417 + 0.220366i \(0.0707252\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) −12.0000 −1.00000
\(145\) 0 0
\(146\) 0 0
\(147\) 2.70577 + 1.56218i 0.223168 + 0.128846i
\(148\) −3.07180 + 3.07180i −0.252500 + 0.252500i
\(149\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(150\) 0 0
\(151\) −14.1244 14.1244i −1.14942 1.14942i −0.986666 0.162758i \(-0.947961\pi\)
−0.162758 0.986666i \(-0.552039\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −11.0000 −0.877896 −0.438948 0.898513i \(-0.644649\pi\)
−0.438948 + 0.898513i \(0.644649\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 20.6244 5.52628i 1.61542 0.432852i 0.665771 0.746156i \(-0.268103\pi\)
0.949653 + 0.313304i \(0.101436\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) 23.4904 + 6.29423i 1.79635 + 0.481332i
\(172\) 1.73205 + 3.00000i 0.132068 + 0.228748i
\(173\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(174\) 0 0
\(175\) −3.83975 14.3301i −0.290258 1.08326i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(180\) 0 0
\(181\) 6.92820i 0.514969i 0.966282 + 0.257485i \(0.0828937\pi\)
−0.966282 + 0.257485i \(0.917106\pi\)
\(182\) 0 0
\(183\) 15.0000 1.10883
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −14.8923 + 3.99038i −1.08326 + 0.290258i
\(190\) 0 0
\(191\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(192\) −12.0000 + 6.92820i −0.866025 + 0.500000i
\(193\) −7.06218 + 26.3564i −0.508347 + 1.89718i −0.0719816 + 0.997406i \(0.522932\pi\)
−0.436365 + 0.899770i \(0.643734\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 3.60770 0.257693
\(197\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(198\) 0 0
\(199\) 14.7224 + 8.50000i 1.04365 + 0.602549i 0.920864 0.389885i \(-0.127485\pi\)
0.122782 + 0.992434i \(0.460818\pi\)
\(200\) 0 0
\(201\) −0.356406 1.33013i −0.0251390 0.0938199i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 12.9904 + 22.5000i 0.894295 + 1.54896i 0.834675 + 0.550743i \(0.185655\pi\)
0.0596196 + 0.998221i \(0.481011\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −16.4282 + 28.4545i −1.11522 + 1.93162i
\(218\) 0 0
\(219\) 5.93782 22.1603i 0.401241 1.49745i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −12.0263 3.22243i −0.805339 0.215790i −0.167412 0.985887i \(-0.553541\pi\)
−0.637927 + 0.770097i \(0.720208\pi\)
\(224\) 0 0
\(225\) 12.9904 + 7.50000i 0.866025 + 0.500000i
\(226\) 0 0
\(227\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(228\) 27.1244 7.26795i 1.79635 0.481332i
\(229\) 21.3923 + 21.3923i 1.41364 + 1.41364i 0.726900 + 0.686743i \(0.240960\pi\)
0.686743 + 0.726900i \(0.259040\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 10.5000 + 18.1865i 0.682048 + 1.18134i
\(238\) 0 0
\(239\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(240\) 0 0
\(241\) 9.36603 2.50962i 0.603319 0.161659i 0.0557856 0.998443i \(-0.482234\pi\)
0.547533 + 0.836784i \(0.315567\pi\)
\(242\) 0 0
\(243\) 7.79423 13.5000i 0.500000 0.866025i
\(244\) 15.0000 8.66025i 0.960277 0.554416i
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(252\) −12.5885 + 12.5885i −0.792998 + 0.792998i
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) −8.00000 + 13.8564i −0.500000 + 0.866025i
\(257\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(258\) 0 0
\(259\) 6.44486i 0.400464i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) −1.12436 1.12436i −0.0686810 0.0686810i
\(269\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(270\) 0 0
\(271\) 2.45448 9.16025i 0.149099 0.556446i −0.850439 0.526073i \(-0.823664\pi\)
0.999539 0.0303728i \(-0.00966946\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −18.0000 10.3923i −1.08152 0.624413i −0.150210 0.988654i \(-0.547995\pi\)
−0.931305 + 0.364241i \(0.881328\pi\)
\(278\) 0 0
\(279\) −8.59808 32.0885i −0.514753 1.92109i
\(280\) 0 0
\(281\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(282\) 0 0
\(283\) −21.6506 + 12.5000i −1.28700 + 0.743048i −0.978117 0.208053i \(-0.933287\pi\)
−0.308879 + 0.951101i \(0.599954\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 8.50000 + 14.7224i 0.500000 + 0.866025i
\(290\) 0 0
\(291\) −20.8301 + 20.8301i −1.22108 + 1.22108i
\(292\) −6.85641 25.5885i −0.401241 1.49745i
\(293\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 17.3205 1.00000
\(301\) 4.96410 + 1.33013i 0.286126 + 0.0766672i
\(302\) 0 0
\(303\) 0 0
\(304\) 22.9282 22.9282i 1.31502 1.31502i
\(305\) 0 0
\(306\) 0 0
\(307\) 16.6340 + 16.6340i 0.949351 + 0.949351i 0.998778 0.0494267i \(-0.0157394\pi\)
−0.0494267 + 0.998778i \(0.515739\pi\)
\(308\) 0 0
\(309\) 23.3827 13.5000i 1.33019 0.767988i
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) −32.9090 −1.86012 −0.930062 0.367402i \(-0.880247\pi\)
−0.930062 + 0.367402i \(0.880247\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 21.0000 + 12.1244i 1.18134 + 0.682048i
\(317\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 18.0000i 1.00000i
\(325\) 0 0
\(326\) 0 0
\(327\) 12.2321 + 3.27757i 0.676434 + 0.181250i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 9.16025 + 34.1865i 0.503493 + 1.87906i 0.476011 + 0.879440i \(0.342082\pi\)
0.0274825 + 0.999622i \(0.491251\pi\)
\(332\) 0 0
\(333\) −4.60770 4.60770i −0.252500 0.252500i
\(334\) 0 0
\(335\) 0 0
\(336\) −5.32051 + 19.8564i −0.290258 + 1.08326i
\(337\) 29.0000i 1.57973i 0.613280 + 0.789865i \(0.289850\pi\)
−0.613280 + 0.789865i \(0.710150\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −10.9019 + 10.9019i −0.588649 + 0.588649i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(348\) 0 0
\(349\) 1.17949 4.40192i 0.0631368 0.235630i −0.927146 0.374701i \(-0.877745\pi\)
0.990282 + 0.139072i \(0.0444119\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(360\) 0 0
\(361\) −40.4545 + 23.3564i −2.12918 + 1.22928i
\(362\) 0 0
\(363\) 19.0526i 1.00000i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −15.5000 26.8468i −0.809093 1.40139i −0.913493 0.406855i \(-0.866625\pi\)
0.104399 0.994535i \(-0.466708\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) −27.1244 27.1244i −1.40633 1.40633i
\(373\) −18.1865 + 31.5000i −0.941663 + 1.63101i −0.179364 + 0.983783i \(0.557404\pi\)
−0.762299 + 0.647225i \(0.775929\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 16.9904 + 4.55256i 0.872737 + 0.233849i 0.667271 0.744815i \(-0.267462\pi\)
0.205466 + 0.978664i \(0.434129\pi\)
\(380\) 0 0
\(381\) 1.50000 + 0.866025i 0.0768473 + 0.0443678i
\(382\) 0 0
\(383\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −4.50000 + 2.59808i −0.228748 + 0.132068i
\(388\) −8.80385 + 32.8564i −0.446948 + 1.66803i
\(389\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −27.8923 + 7.47372i −1.39987 + 0.375095i −0.878300 0.478110i \(-0.841322\pi\)
−0.521575 + 0.853206i \(0.674655\pi\)
\(398\) 0 0
\(399\) 20.8301 36.0788i 1.04281 1.80620i
\(400\) 17.3205 10.0000i 0.866025 0.500000i
\(401\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0.918584 + 3.42820i 0.0454211 + 0.169514i 0.984911 0.173064i \(-0.0553667\pi\)
−0.939490 + 0.342578i \(0.888700\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 15.5885 27.0000i 0.767988 1.33019i
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 12.1244 0.593732
\(418\) 0 0
\(419\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(420\) 0 0
\(421\) 27.6865 27.6865i 1.34936 1.34936i 0.463002 0.886357i \(-0.346772\pi\)
0.886357 0.463002i \(-0.153228\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 6.65064 24.8205i 0.321847 1.20115i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(432\) −10.3923 18.0000i −0.500000 0.866025i
\(433\) −30.3109 17.5000i −1.45665 0.840996i −0.457804 0.889053i \(-0.651364\pi\)
−0.998845 + 0.0480569i \(0.984697\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 14.1244 3.78461i 0.676434 0.181250i
\(437\) 0 0
\(438\) 0 0
\(439\) 34.5000 19.9186i 1.64660 0.950662i 0.668184 0.743996i \(-0.267072\pi\)
0.978412 0.206666i \(-0.0662612\pi\)
\(440\) 0 0
\(441\) 5.41154i 0.257693i
\(442\) 0 0
\(443\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(444\) −7.26795 1.94744i −0.344922 0.0924215i
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 6.14359 + 22.9282i 0.290258 + 1.08326i
\(449\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 8.95448 33.4186i 0.420718 1.57014i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −36.2846 9.72243i −1.69732 0.454796i −0.725059 0.688686i \(-0.758188\pi\)
−0.972263 + 0.233890i \(0.924854\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(462\) 0 0
\(463\) −22.3660 22.3660i −1.03944 1.03944i −0.999190 0.0402476i \(-0.987185\pi\)
−0.0402476 0.999190i \(-0.512815\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(468\) 0 0
\(469\) −2.35898 −0.108928
\(470\) 0 0
\(471\) −9.52628 16.5000i −0.438948 0.760280i
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) −39.1506 + 10.4904i −1.79635 + 0.481332i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) −11.0000 19.0526i −0.500000 0.866025i
\(485\) 0 0
\(486\) 0 0
\(487\) 7.41858 + 27.6865i 0.336168 + 1.25460i 0.902597 + 0.430486i \(0.141658\pi\)
−0.566429 + 0.824110i \(0.691675\pi\)
\(488\) 0 0
\(489\) 26.1506 + 26.1506i 1.18257 + 1.18257i
\(490\) 0 0
\(491\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) −42.7846 11.4641i −1.92109 0.514753i
\(497\) 0 0
\(498\) 0 0
\(499\) 0.411543 0.411543i 0.0184232 0.0184232i −0.697835 0.716258i \(-0.745853\pi\)
0.716258 + 0.697835i \(0.245853\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 2.00000 0.0887357
\(509\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(510\) 0 0
\(511\) −34.0359 19.6506i −1.50566 0.869293i
\(512\) 0 0
\(513\) 10.9019 + 40.6865i 0.481332 + 1.79635i
\(514\) 0 0
\(515\) 0 0
\(516\) −3.00000 + 5.19615i −0.132068 + 0.228748i
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 0 0
\(523\) 4.00000 + 6.92820i 0.174908 + 0.302949i 0.940129 0.340818i \(-0.110704\pi\)
−0.765222 + 0.643767i \(0.777371\pi\)
\(524\) 0 0
\(525\) 18.1699 18.1699i 0.792998 0.792998i
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 11.5000 19.9186i 0.500000 0.866025i
\(530\) 0 0
\(531\) 0 0
\(532\) 48.1051i 2.08562i
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 13.1506 + 13.1506i 0.565390 + 0.565390i 0.930834 0.365444i \(-0.119083\pi\)
−0.365444 + 0.930834i \(0.619083\pi\)
\(542\) 0 0
\(543\) −10.3923 + 6.00000i −0.445976 + 0.257485i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 41.0000 1.75303 0.876517 0.481371i \(-0.159861\pi\)
0.876517 + 0.481371i \(0.159861\pi\)
\(548\) 0 0
\(549\) 12.9904 + 22.5000i 0.554416 + 0.960277i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 34.7487 9.31089i 1.47767 0.395939i
\(554\) 0 0
\(555\) 0 0
\(556\) 12.1244 7.00000i 0.514187 0.296866i
\(557\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −18.8827 18.8827i −0.792998 0.792998i
\(568\) 0 0
\(569\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(570\) 0 0
\(571\) 16.0000i 0.669579i 0.942293 + 0.334790i \(0.108665\pi\)
−0.942293 + 0.334790i \(0.891335\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) −20.7846 12.0000i −0.866025 0.500000i
\(577\) −16.0718 + 16.0718i −0.669078 + 0.669078i −0.957503 0.288425i \(-0.906868\pi\)
0.288425 + 0.957503i \(0.406868\pi\)
\(578\) 0 0
\(579\) −45.6506 + 12.2321i −1.89718 + 0.508347i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(588\) 3.12436 + 5.41154i 0.128846 + 0.223168i
\(589\) 77.7391 + 44.8827i 3.20318 + 1.84936i
\(590\) 0 0
\(591\) 0 0
\(592\) −8.39230 + 2.24871i −0.344922 + 0.0924215i
\(593\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 29.4449i 1.20510i
\(598\) 0 0
\(599\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(600\) 0 0
\(601\) −20.7846 36.0000i −0.847822 1.46847i −0.883148 0.469095i \(-0.844580\pi\)
0.0353259 0.999376i \(-0.488753\pi\)
\(602\) 0 0
\(603\) 1.68653 1.68653i 0.0686810 0.0686810i
\(604\) −10.3397 38.5885i −0.420718 1.57014i
\(605\) 0 0
\(606\) 0 0
\(607\) 10.0000 17.3205i 0.405887 0.703018i −0.588537 0.808470i \(-0.700296\pi\)
0.994424 + 0.105453i \(0.0336291\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 47.7487 + 12.7942i 1.92855 + 0.516754i 0.979396 + 0.201948i \(0.0647272\pi\)
0.949156 + 0.314806i \(0.101939\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(618\) 0 0
\(619\) −31.8827 31.8827i −1.28147 1.28147i −0.939829 0.341644i \(-0.889016\pi\)
−0.341644 0.939829i \(-0.610984\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −25.0000 −1.00000
\(626\) 0 0
\(627\) 0 0
\(628\) −19.0526 11.0000i −0.760280 0.438948i
\(629\) 0 0
\(630\) 0 0
\(631\) 33.6244 9.00962i 1.33856 0.358667i 0.482663 0.875806i \(-0.339670\pi\)
0.855901 + 0.517139i \(0.173003\pi\)
\(632\) 0 0
\(633\) −22.5000 + 38.9711i −0.894295 + 1.54896i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(642\) 0 0
\(643\) −5.11474 19.0885i −0.201706 0.752775i −0.990429 0.138027i \(-0.955924\pi\)
0.788723 0.614749i \(-0.210743\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) −56.9090 −2.23044
\(652\) 41.2487 + 11.0526i 1.61542 + 0.432852i
\(653\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 38.3827 10.2846i 1.49745 0.401241i
\(658\) 0 0
\(659\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(660\) 0 0
\(661\) −11.8205 + 44.1147i −0.459764 + 1.71586i 0.213925 + 0.976850i \(0.431375\pi\)
−0.673690 + 0.739014i \(0.735292\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) −5.58142 20.8301i −0.215790 0.805339i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −43.5000 + 25.1147i −1.67680 + 0.968102i −0.713123 + 0.701039i \(0.752720\pi\)
−0.963679 + 0.267063i \(0.913947\pi\)
\(674\) 0 0
\(675\) 25.9808i 1.00000i
\(676\) 0 0
\(677\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(678\) 0 0
\(679\) 25.2321 + 43.7032i 0.968317 + 1.67717i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(684\) 34.3923 + 34.3923i 1.31502 + 1.31502i
\(685\) 0 0
\(686\) 0 0
\(687\) −13.5622 + 50.6147i −0.517429 + 1.93107i
\(688\) 6.92820i 0.264135i
\(689\) 0 0
\(690\) 0 0
\(691\) −5.52628 1.48076i −0.210230 0.0563308i 0.152167 0.988355i \(-0.451375\pi\)
−0.362397 + 0.932024i \(0.618041\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 7.67949 28.6603i 0.290258 1.08326i
\(701\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(702\) 0 0
\(703\) 17.6077 0.664087
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −32.6506 + 8.74871i −1.22622 + 0.328565i −0.813107 0.582115i \(-0.802225\pi\)
−0.413114 + 0.910679i \(0.635559\pi\)
\(710\) 0 0
\(711\) −18.1865 + 31.5000i −0.682048 + 1.18134i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(720\) 0 0
\(721\) −11.9711 44.6769i −0.445829 1.66386i
\(722\) 0 0
\(723\) 11.8756 + 11.8756i 0.441660 + 0.441660i
\(724\) −6.92820 + 12.0000i −0.257485 + 0.445976i
\(725\) 0 0
\(726\) 0 0
\(727\) 49.0000i 1.81731i −0.417548 0.908655i \(-0.637111\pi\)
0.417548 0.908655i \(-0.362889\pi\)
\(728\) 0 0
\(729\) 27.0000 1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) 25.9808 + 15.0000i 0.960277 + 0.554416i
\(733\) −30.3468 + 30.3468i −1.12088 + 1.12088i −0.129275 + 0.991609i \(0.541265\pi\)
−0.991609 + 0.129275i \(0.958735\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 12.4378 46.4186i 0.457533 1.70754i −0.223001 0.974818i \(-0.571585\pi\)
0.680534 0.732717i \(-0.261748\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 15.0000 8.66025i 0.547358 0.316017i −0.200698 0.979653i \(-0.564321\pi\)
0.748056 + 0.663636i \(0.230988\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) −29.7846 7.98076i −1.08326 0.290258i
\(757\) 24.2487 + 42.0000i 0.881334 + 1.52652i 0.849858 + 0.527011i \(0.176688\pi\)
0.0314762 + 0.999505i \(0.489979\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(762\) 0 0
\(763\) 10.8468 18.7872i 0.392680 0.680142i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) −27.7128 −1.00000
\(769\) 36.4904 + 9.77757i 1.31588 + 0.352588i 0.847432 0.530904i \(-0.178148\pi\)
0.468445 + 0.883493i \(0.344814\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −38.5885 + 38.5885i −1.38883 + 1.38883i
\(773\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(774\) 0 0
\(775\) 39.1506 + 39.1506i 1.40633 + 1.40633i
\(776\) 0 0
\(777\) −9.66730 + 5.58142i −0.346812 + 0.200232i
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 6.24871 + 3.60770i 0.223168 + 0.128846i
\(785\) 0 0
\(786\) 0 0
\(787\) 51.3827 13.7679i 1.83159 0.490774i 0.833503 0.552515i \(-0.186332\pi\)
0.998092 + 0.0617409i \(0.0196653\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 17.0000 + 29.4449i 0.602549 + 1.04365i
\(797\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0.712813 2.66025i 0.0251390 0.0938199i
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(810\) 0 0
\(811\) −17.3468 + 17.3468i −0.609128 + 0.609128i −0.942718 0.333590i \(-0.891740\pi\)
0.333590 + 0.942718i \(0.391740\pi\)
\(812\) 0 0
\(813\) 15.8660 4.25129i 0.556446 0.149099i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 3.63397 13.5622i 0.127137 0.474481i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(822\) 0 0
\(823\) 21.0000 + 12.1244i 0.732014 + 0.422628i 0.819159 0.573567i \(-0.194441\pi\)
−0.0871445 + 0.996196i \(0.527774\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(828\) 0 0
\(829\) 45.8993 26.5000i 1.59415 0.920383i 0.601566 0.798823i \(-0.294544\pi\)
0.992584 0.121560i \(-0.0387897\pi\)
\(830\) 0 0
\(831\) 36.0000i 1.24883i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 40.6865 40.6865i 1.40633 1.40633i
\(838\) 0 0
\(839\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(840\) 0 0
\(841\) −14.5000 + 25.1147i −0.500000 + 0.866025i
\(842\) 0 0
\(843\) 0 0
\(844\) 51.9615i 1.78859i
\(845\) 0 0
\(846\) 0 0
\(847\) −31.5263 8.44744i −1.08326 0.290258i
\(848\) 0 0
\(849\) −37.5000 21.6506i −1.28700 0.743048i
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) −5.88269 5.88269i −0.201419 0.201419i 0.599189 0.800608i \(-0.295490\pi\)
−0.800608 + 0.599189i \(0.795490\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(858\) 0 0
\(859\) 57.1577 1.95019 0.975097 0.221777i \(-0.0711857\pi\)
0.975097 + 0.221777i \(0.0711857\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −14.7224 + 25.5000i −0.500000 + 0.866025i
\(868\) −56.9090 + 32.8564i −1.93162 + 1.11522i
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) −49.2846 13.2058i −1.66803 0.446948i
\(874\) 0 0
\(875\) 0 0
\(876\) 32.4449 32.4449i 1.09621 1.09621i
\(877\) −15.0981 56.3468i −0.509826 1.90270i −0.422095 0.906552i \(-0.638705\pi\)
−0.0877308 0.996144i \(-0.527962\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(882\) 0 0
\(883\) 55.0000i 1.85090i 0.378873 + 0.925449i \(0.376312\pi\)
−0.378873 + 0.925449i \(0.623688\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(888\) 0 0
\(889\) 2.09808 2.09808i 0.0703672 0.0703672i
\(890\) 0 0
\(891\) 0 0
\(892\) −17.6077 17.6077i −0.589549 0.589549i
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 15.0000 + 25.9808i 0.500000 + 0.866025i
\(901\) 0 0
\(902\) 0 0
\(903\) 2.30385 + 8.59808i 0.0766672 + 0.286126i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 34.6410 20.0000i 1.15024 0.664089i 0.201291 0.979531i \(-0.435486\pi\)
0.948945 + 0.315442i \(0.102153\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 54.2487 + 14.5359i 1.79635 + 0.481332i
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 15.6603 + 58.4449i 0.517429 + 1.93107i
\(917\) 0 0
\(918\) 0 0
\(919\) 15.5885 27.0000i 0.514216 0.890648i −0.485648 0.874154i \(-0.661416\pi\)
0.999864 0.0164935i \(-0.00525028\pi\)
\(920\) 0 0
\(921\) −10.5455 + 39.3564i −0.347487 + 1.29684i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 10.4904 + 2.81089i 0.344922 + 0.0924215i
\(926\) 0 0
\(927\) 40.5000 + 23.3827i 1.33019 + 0.767988i
\(928\) 0 0
\(929\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(930\) 0 0
\(931\) −10.3397 10.3397i −0.338871 0.338871i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −55.4256 −1.81068 −0.905338 0.424691i \(-0.860383\pi\)
−0.905338 + 0.424691i \(0.860383\pi\)
\(938\) 0 0
\(939\) −28.5000 49.3634i −0.930062 1.61092i
\(940\) 0 0
\(941\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(948\) 42.0000i 1.36410i
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 91.6218i 2.95554i
\(962\) 0 0
\(963\) 0 0
\(964\) 18.7321 + 5.01924i 0.603319 + 0.161659i
\(965\) 0 0
\(966\) 0 0
\(967\) 19.4449 19.4449i 0.625305 0.625305i −0.321578 0.946883i \(-0.604213\pi\)
0.946883 + 0.321578i \(0.104213\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(972\) 27.0000 15.5885i 0.866025 0.500000i
\(973\) 5.37564 20.0622i 0.172335 0.643164i
\(974\) 0 0
\(975\) 0 0
\(976\) 34.6410 1.10883
\(977\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 5.67691 + 21.1865i 0.181250 + 0.676434i
\(982\) 0 0
\(983\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −22.0000 38.1051i −0.698853 1.21045i −0.968864 0.247592i \(-0.920361\pi\)
0.270011 0.962857i \(-0.412973\pi\)
\(992\) 0 0
\(993\) −43.3468 + 43.3468i −1.37557 + 1.37557i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 29.5000 51.0955i 0.934274 1.61821i 0.158352 0.987383i \(-0.449382\pi\)
0.775923 0.630828i \(-0.217285\pi\)
\(998\) 0 0
\(999\) 2.92116 10.9019i 0.0924215 0.344922i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 507.2.k.b.80.1 4
3.2 odd 2 CM 507.2.k.b.80.1 4
13.2 odd 12 507.2.f.b.437.1 4
13.3 even 3 507.2.f.c.239.1 4
13.4 even 6 507.2.k.c.188.1 4
13.5 odd 4 507.2.k.c.89.1 4
13.6 odd 12 507.2.k.a.488.1 4
13.7 odd 12 inner 507.2.k.b.488.1 4
13.8 odd 4 39.2.k.a.11.1 4
13.9 even 3 39.2.k.a.32.1 yes 4
13.10 even 6 507.2.f.b.239.1 4
13.11 odd 12 507.2.f.c.437.1 4
13.12 even 2 507.2.k.a.80.1 4
39.2 even 12 507.2.f.b.437.1 4
39.5 even 4 507.2.k.c.89.1 4
39.8 even 4 39.2.k.a.11.1 4
39.11 even 12 507.2.f.c.437.1 4
39.17 odd 6 507.2.k.c.188.1 4
39.20 even 12 inner 507.2.k.b.488.1 4
39.23 odd 6 507.2.f.b.239.1 4
39.29 odd 6 507.2.f.c.239.1 4
39.32 even 12 507.2.k.a.488.1 4
39.35 odd 6 39.2.k.a.32.1 yes 4
39.38 odd 2 507.2.k.a.80.1 4
52.35 odd 6 624.2.cn.b.305.1 4
52.47 even 4 624.2.cn.b.401.1 4
65.8 even 4 975.2.bp.a.674.1 4
65.9 even 6 975.2.bo.c.851.1 4
65.22 odd 12 975.2.bp.a.149.1 4
65.34 odd 4 975.2.bo.c.401.1 4
65.47 even 4 975.2.bp.d.674.1 4
65.48 odd 12 975.2.bp.d.149.1 4
156.35 even 6 624.2.cn.b.305.1 4
156.47 odd 4 624.2.cn.b.401.1 4
195.8 odd 4 975.2.bp.a.674.1 4
195.47 odd 4 975.2.bp.d.674.1 4
195.74 odd 6 975.2.bo.c.851.1 4
195.113 even 12 975.2.bp.d.149.1 4
195.152 even 12 975.2.bp.a.149.1 4
195.164 even 4 975.2.bo.c.401.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
39.2.k.a.11.1 4 13.8 odd 4
39.2.k.a.11.1 4 39.8 even 4
39.2.k.a.32.1 yes 4 13.9 even 3
39.2.k.a.32.1 yes 4 39.35 odd 6
507.2.f.b.239.1 4 13.10 even 6
507.2.f.b.239.1 4 39.23 odd 6
507.2.f.b.437.1 4 13.2 odd 12
507.2.f.b.437.1 4 39.2 even 12
507.2.f.c.239.1 4 13.3 even 3
507.2.f.c.239.1 4 39.29 odd 6
507.2.f.c.437.1 4 13.11 odd 12
507.2.f.c.437.1 4 39.11 even 12
507.2.k.a.80.1 4 13.12 even 2
507.2.k.a.80.1 4 39.38 odd 2
507.2.k.a.488.1 4 13.6 odd 12
507.2.k.a.488.1 4 39.32 even 12
507.2.k.b.80.1 4 1.1 even 1 trivial
507.2.k.b.80.1 4 3.2 odd 2 CM
507.2.k.b.488.1 4 13.7 odd 12 inner
507.2.k.b.488.1 4 39.20 even 12 inner
507.2.k.c.89.1 4 13.5 odd 4
507.2.k.c.89.1 4 39.5 even 4
507.2.k.c.188.1 4 13.4 even 6
507.2.k.c.188.1 4 39.17 odd 6
624.2.cn.b.305.1 4 52.35 odd 6
624.2.cn.b.305.1 4 156.35 even 6
624.2.cn.b.401.1 4 52.47 even 4
624.2.cn.b.401.1 4 156.47 odd 4
975.2.bo.c.401.1 4 65.34 odd 4
975.2.bo.c.401.1 4 195.164 even 4
975.2.bo.c.851.1 4 65.9 even 6
975.2.bo.c.851.1 4 195.74 odd 6
975.2.bp.a.149.1 4 65.22 odd 12
975.2.bp.a.149.1 4 195.152 even 12
975.2.bp.a.674.1 4 65.8 even 4
975.2.bp.a.674.1 4 195.8 odd 4
975.2.bp.d.149.1 4 65.48 odd 12
975.2.bp.d.149.1 4 195.113 even 12
975.2.bp.d.674.1 4 65.47 even 4
975.2.bp.d.674.1 4 195.47 odd 4