Properties

Label 975.2.bp.d.149.1
Level $975$
Weight $2$
Character 975.149
Analytic conductor $7.785$
Analytic rank $0$
Dimension $4$
CM discriminant -3
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [975,2,Mod(149,975)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(975, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([6, 6, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("975.149");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 975 = 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 975.bp (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.78541419707\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 39)
Sato-Tate group: $\mathrm{U}(1)[D_{12}]$

Embedding invariants

Embedding label 149.1
Root \(-0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 975.149
Dual form 975.2.bp.d.674.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.50000 + 0.866025i) q^{3} +(1.73205 - 1.00000i) q^{4} +(2.86603 + 0.767949i) q^{7} +(1.50000 + 2.59808i) q^{9} +3.46410 q^{12} +(2.50000 - 2.59808i) q^{13} +(2.00000 - 3.46410i) q^{16} +(-7.83013 - 2.09808i) q^{19} +(3.63397 + 3.63397i) q^{21} +5.19615i q^{27} +(5.73205 - 1.53590i) q^{28} +(-7.83013 + 7.83013i) q^{31} +(5.19615 + 3.00000i) q^{36} +(-0.562178 - 2.09808i) q^{37} +(6.00000 - 1.73205i) q^{39} +(-0.866025 - 1.50000i) q^{43} +(6.00000 - 3.46410i) q^{48} +(1.56218 + 0.901924i) q^{49} +(1.73205 - 7.00000i) q^{52} +(-9.92820 - 9.92820i) q^{57} +(4.33013 + 7.50000i) q^{61} +(2.30385 + 8.59808i) q^{63} -8.00000i q^{64} +(0.767949 - 0.205771i) q^{67} +(9.36603 - 9.36603i) q^{73} +(-15.6603 + 4.19615i) q^{76} -12.1244 q^{79} +(-4.50000 + 7.79423i) q^{81} +(9.92820 + 2.66025i) q^{84} +(9.16025 - 5.52628i) q^{91} +(-18.5263 + 4.96410i) q^{93} +(-4.40192 + 16.4282i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 6 q^{3} + 8 q^{7} + 6 q^{9} + 10 q^{13} + 8 q^{16} - 14 q^{19} + 18 q^{21} + 16 q^{28} - 14 q^{31} + 22 q^{37} + 24 q^{39} + 24 q^{48} - 18 q^{49} - 12 q^{57} + 30 q^{63} + 10 q^{67} + 34 q^{73} - 28 q^{76}+ \cdots - 28 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/975\mathbb{Z}\right)^\times\).

\(n\) \(301\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{5}{12}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(3\) 1.50000 + 0.866025i 0.866025 + 0.500000i
\(4\) 1.73205 1.00000i 0.866025 0.500000i
\(5\) 0 0
\(6\) 0 0
\(7\) 2.86603 + 0.767949i 1.08326 + 0.290258i 0.755929 0.654654i \(-0.227186\pi\)
0.327327 + 0.944911i \(0.393852\pi\)
\(8\) 0 0
\(9\) 1.50000 + 2.59808i 0.500000 + 0.866025i
\(10\) 0 0
\(11\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(12\) 3.46410 1.00000
\(13\) 2.50000 2.59808i 0.693375 0.720577i
\(14\) 0 0
\(15\) 0 0
\(16\) 2.00000 3.46410i 0.500000 0.866025i
\(17\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(18\) 0 0
\(19\) −7.83013 2.09808i −1.79635 0.481332i −0.802955 0.596040i \(-0.796740\pi\)
−0.993399 + 0.114708i \(0.963407\pi\)
\(20\) 0 0
\(21\) 3.63397 + 3.63397i 0.792998 + 0.792998i
\(22\) 0 0
\(23\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 5.19615i 1.00000i
\(28\) 5.73205 1.53590i 1.08326 0.290258i
\(29\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(30\) 0 0
\(31\) −7.83013 + 7.83013i −1.40633 + 1.40633i −0.628619 + 0.777714i \(0.716379\pi\)
−0.777714 + 0.628619i \(0.783621\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 5.19615 + 3.00000i 0.866025 + 0.500000i
\(37\) −0.562178 2.09808i −0.0924215 0.344922i 0.904194 0.427121i \(-0.140472\pi\)
−0.996616 + 0.0821995i \(0.973806\pi\)
\(38\) 0 0
\(39\) 6.00000 1.73205i 0.960769 0.277350i
\(40\) 0 0
\(41\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(42\) 0 0
\(43\) −0.866025 1.50000i −0.132068 0.228748i 0.792406 0.609994i \(-0.208828\pi\)
−0.924473 + 0.381246i \(0.875495\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(48\) 6.00000 3.46410i 0.866025 0.500000i
\(49\) 1.56218 + 0.901924i 0.223168 + 0.128846i
\(50\) 0 0
\(51\) 0 0
\(52\) 1.73205 7.00000i 0.240192 0.970725i
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −9.92820 9.92820i −1.31502 1.31502i
\(58\) 0 0
\(59\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(60\) 0 0
\(61\) 4.33013 + 7.50000i 0.554416 + 0.960277i 0.997949 + 0.0640184i \(0.0203916\pi\)
−0.443533 + 0.896258i \(0.646275\pi\)
\(62\) 0 0
\(63\) 2.30385 + 8.59808i 0.290258 + 1.08326i
\(64\) 8.00000i 1.00000i
\(65\) 0 0
\(66\) 0 0
\(67\) 0.767949 0.205771i 0.0938199 0.0251390i −0.211604 0.977356i \(-0.567869\pi\)
0.305424 + 0.952217i \(0.401202\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(72\) 0 0
\(73\) 9.36603 9.36603i 1.09621 1.09621i 0.101361 0.994850i \(-0.467680\pi\)
0.994850 0.101361i \(-0.0323196\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) −15.6603 + 4.19615i −1.79635 + 0.481332i
\(77\) 0 0
\(78\) 0 0
\(79\) −12.1244 −1.36410 −0.682048 0.731307i \(-0.738911\pi\)
−0.682048 + 0.731307i \(0.738911\pi\)
\(80\) 0 0
\(81\) −4.50000 + 7.79423i −0.500000 + 0.866025i
\(82\) 0 0
\(83\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(84\) 9.92820 + 2.66025i 1.08326 + 0.290258i
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(90\) 0 0
\(91\) 9.16025 5.52628i 0.960256 0.579311i
\(92\) 0 0
\(93\) −18.5263 + 4.96410i −1.92109 + 0.514753i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −4.40192 + 16.4282i −0.446948 + 1.66803i 0.263795 + 0.964579i \(0.415026\pi\)
−0.710742 + 0.703452i \(0.751641\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(102\) 0 0
\(103\) 15.5885 1.53598 0.767988 0.640464i \(-0.221258\pi\)
0.767988 + 0.640464i \(0.221258\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(108\) 5.19615 + 9.00000i 0.500000 + 0.866025i
\(109\) −5.16987 + 5.16987i −0.495184 + 0.495184i −0.909935 0.414751i \(-0.863869\pi\)
0.414751 + 0.909935i \(0.363869\pi\)
\(110\) 0 0
\(111\) 0.973721 3.63397i 0.0924215 0.344922i
\(112\) 8.39230 8.39230i 0.792998 0.792998i
\(113\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 10.5000 + 2.59808i 0.970725 + 0.240192i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 9.52628 5.50000i 0.866025 0.500000i
\(122\) 0 0
\(123\) 0 0
\(124\) −5.73205 + 21.3923i −0.514753 + 1.92109i
\(125\) 0 0
\(126\) 0 0
\(127\) −0.500000 + 0.866025i −0.0443678 + 0.0768473i −0.887357 0.461084i \(-0.847461\pi\)
0.842989 + 0.537931i \(0.180794\pi\)
\(128\) 0 0
\(129\) 3.00000i 0.264135i
\(130\) 0 0
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) 0 0
\(133\) −20.8301 12.0263i −1.80620 1.04281i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(138\) 0 0
\(139\) −3.50000 6.06218i −0.296866 0.514187i 0.678551 0.734553i \(-0.262608\pi\)
−0.975417 + 0.220366i \(0.929275\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 12.0000 1.00000
\(145\) 0 0
\(146\) 0 0
\(147\) 1.56218 + 2.70577i 0.128846 + 0.223168i
\(148\) −3.07180 3.07180i −0.252500 0.252500i
\(149\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(150\) 0 0
\(151\) −14.1244 14.1244i −1.14942 1.14942i −0.986666 0.162758i \(-0.947961\pi\)
−0.162758 0.986666i \(-0.552039\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 8.66025 9.00000i 0.693375 0.720577i
\(157\) 11.0000i 0.877896i 0.898513 + 0.438948i \(0.144649\pi\)
−0.898513 + 0.438948i \(0.855351\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −20.6244 5.52628i −1.61542 0.432852i −0.665771 0.746156i \(-0.731897\pi\)
−0.949653 + 0.313304i \(0.898564\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(168\) 0 0
\(169\) −0.500000 12.9904i −0.0384615 0.999260i
\(170\) 0 0
\(171\) −6.29423 23.4904i −0.481332 1.79635i
\(172\) −3.00000 1.73205i −0.228748 0.132068i
\(173\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(180\) 0 0
\(181\) 6.92820i 0.514969i 0.966282 + 0.257485i \(0.0828937\pi\)
−0.966282 + 0.257485i \(0.917106\pi\)
\(182\) 0 0
\(183\) 15.0000i 1.10883i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −3.99038 + 14.8923i −0.290258 + 1.08326i
\(190\) 0 0
\(191\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(192\) 6.92820 12.0000i 0.500000 0.866025i
\(193\) 7.06218 + 26.3564i 0.508347 + 1.89718i 0.436365 + 0.899770i \(0.356266\pi\)
0.0719816 + 0.997406i \(0.477068\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 3.60770 0.257693
\(197\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(198\) 0 0
\(199\) 14.7224 8.50000i 1.04365 0.602549i 0.122782 0.992434i \(-0.460818\pi\)
0.920864 + 0.389885i \(0.127485\pi\)
\(200\) 0 0
\(201\) 1.33013 + 0.356406i 0.0938199 + 0.0251390i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) −4.00000 13.8564i −0.277350 0.960769i
\(209\) 0 0
\(210\) 0 0
\(211\) 12.9904 22.5000i 0.894295 1.54896i 0.0596196 0.998221i \(-0.481011\pi\)
0.834675 0.550743i \(-0.185655\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −28.4545 + 16.4282i −1.93162 + 1.11522i
\(218\) 0 0
\(219\) 22.1603 5.93782i 1.49745 0.401241i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −12.0263 + 3.22243i −0.805339 + 0.215790i −0.637927 0.770097i \(-0.720208\pi\)
−0.167412 + 0.985887i \(0.553541\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(228\) −27.1244 7.26795i −1.79635 0.481332i
\(229\) −21.3923 21.3923i −1.41364 1.41364i −0.726900 0.686743i \(-0.759040\pi\)
−0.686743 0.726900i \(-0.740960\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −18.1865 10.5000i −1.18134 0.682048i
\(238\) 0 0
\(239\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(240\) 0 0
\(241\) −2.50962 + 9.36603i −0.161659 + 0.603319i 0.836784 + 0.547533i \(0.184433\pi\)
−0.998443 + 0.0557856i \(0.982234\pi\)
\(242\) 0 0
\(243\) −13.5000 + 7.79423i −0.866025 + 0.500000i
\(244\) 15.0000 + 8.66025i 0.960277 + 0.554416i
\(245\) 0 0
\(246\) 0 0
\(247\) −25.0263 + 15.0981i −1.59238 + 0.960668i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(252\) 12.5885 + 12.5885i 0.792998 + 0.792998i
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) −8.00000 13.8564i −0.500000 0.866025i
\(257\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(258\) 0 0
\(259\) 6.44486i 0.400464i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 1.12436 1.12436i 0.0686810 0.0686810i
\(269\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(270\) 0 0
\(271\) −9.16025 + 2.45448i −0.556446 + 0.149099i −0.526073 0.850439i \(-0.676336\pi\)
−0.0303728 + 0.999539i \(0.509669\pi\)
\(272\) 0 0
\(273\) 18.5263 0.356406i 1.12126 0.0215707i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −10.3923 18.0000i −0.624413 1.08152i −0.988654 0.150210i \(-0.952005\pi\)
0.364241 0.931305i \(-0.381328\pi\)
\(278\) 0 0
\(279\) −32.0885 8.59808i −1.92109 0.514753i
\(280\) 0 0
\(281\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(282\) 0 0
\(283\) −12.5000 + 21.6506i −0.743048 + 1.28700i 0.208053 + 0.978117i \(0.433287\pi\)
−0.951101 + 0.308879i \(0.900046\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −8.50000 + 14.7224i −0.500000 + 0.866025i
\(290\) 0 0
\(291\) −20.8301 + 20.8301i −1.22108 + 1.22108i
\(292\) 6.85641 25.5885i 0.401241 1.49745i
\(293\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −1.33013 4.96410i −0.0766672 0.286126i
\(302\) 0 0
\(303\) 0 0
\(304\) −22.9282 + 22.9282i −1.31502 + 1.31502i
\(305\) 0 0
\(306\) 0 0
\(307\) 16.6340 16.6340i 0.949351 0.949351i −0.0494267 0.998778i \(-0.515739\pi\)
0.998778 + 0.0494267i \(0.0157394\pi\)
\(308\) 0 0
\(309\) 23.3827 + 13.5000i 1.33019 + 0.767988i
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) 32.9090i 1.86012i −0.367402 0.930062i \(-0.619753\pi\)
0.367402 0.930062i \(-0.380247\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) −21.0000 + 12.1244i −1.18134 + 0.682048i
\(317\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 18.0000i 1.00000i
\(325\) 0 0
\(326\) 0 0
\(327\) −12.2321 + 3.27757i −0.676434 + 0.181250i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −34.1865 9.16025i −1.87906 0.503493i −0.999622 0.0274825i \(-0.991251\pi\)
−0.879440 0.476011i \(-0.842082\pi\)
\(332\) 0 0
\(333\) 4.60770 4.60770i 0.252500 0.252500i
\(334\) 0 0
\(335\) 0 0
\(336\) 19.8564 5.32051i 1.08326 0.290258i
\(337\) 29.0000 1.57973 0.789865 0.613280i \(-0.210150\pi\)
0.789865 + 0.613280i \(0.210150\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −10.9019 10.9019i −0.588649 0.588649i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(348\) 0 0
\(349\) 4.40192 1.17949i 0.235630 0.0631368i −0.139072 0.990282i \(-0.544412\pi\)
0.374701 + 0.927146i \(0.377745\pi\)
\(350\) 0 0
\(351\) 13.5000 + 12.9904i 0.720577 + 0.693375i
\(352\) 0 0
\(353\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(360\) 0 0
\(361\) 40.4545 + 23.3564i 2.12918 + 1.22928i
\(362\) 0 0
\(363\) 19.0526 1.00000
\(364\) 10.3397 18.7321i 0.541950 0.981826i
\(365\) 0 0
\(366\) 0 0
\(367\) 26.8468 + 15.5000i 1.40139 + 0.809093i 0.994535 0.104399i \(-0.0332919\pi\)
0.406855 + 0.913493i \(0.366625\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) −27.1244 + 27.1244i −1.40633 + 1.40633i
\(373\) 31.5000 18.1865i 1.63101 0.941663i 0.647225 0.762299i \(-0.275929\pi\)
0.983783 0.179364i \(-0.0574041\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 4.55256 + 16.9904i 0.233849 + 0.872737i 0.978664 + 0.205466i \(0.0658711\pi\)
−0.744815 + 0.667271i \(0.767462\pi\)
\(380\) 0 0
\(381\) −1.50000 + 0.866025i −0.0768473 + 0.0443678i
\(382\) 0 0
\(383\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 2.59808 4.50000i 0.132068 0.228748i
\(388\) 8.80385 + 32.8564i 0.446948 + 1.66803i
\(389\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −27.8923 7.47372i −1.39987 0.375095i −0.521575 0.853206i \(-0.674655\pi\)
−0.878300 + 0.478110i \(0.841322\pi\)
\(398\) 0 0
\(399\) −20.8301 36.0788i −1.04281 1.80620i
\(400\) 0 0
\(401\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(402\) 0 0
\(403\) 0.767949 + 39.9186i 0.0382543 + 1.98849i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 3.42820 + 0.918584i 0.169514 + 0.0454211i 0.342578 0.939490i \(-0.388700\pi\)
−0.173064 + 0.984911i \(0.555367\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 27.0000 15.5885i 1.33019 0.767988i
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 12.1244i 0.593732i
\(418\) 0 0
\(419\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(420\) 0 0
\(421\) 27.6865 27.6865i 1.34936 1.34936i 0.463002 0.886357i \(-0.346772\pi\)
0.886357 0.463002i \(-0.153228\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 6.65064 + 24.8205i 0.321847 + 1.20115i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(432\) 18.0000 + 10.3923i 0.866025 + 0.500000i
\(433\) 17.5000 + 30.3109i 0.840996 + 1.45665i 0.889053 + 0.457804i \(0.151364\pi\)
−0.0480569 + 0.998845i \(0.515303\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −3.78461 + 14.1244i −0.181250 + 0.676434i
\(437\) 0 0
\(438\) 0 0
\(439\) 34.5000 + 19.9186i 1.64660 + 0.950662i 0.978412 + 0.206666i \(0.0662612\pi\)
0.668184 + 0.743996i \(0.267072\pi\)
\(440\) 0 0
\(441\) 5.41154i 0.257693i
\(442\) 0 0
\(443\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(444\) −1.94744 7.26795i −0.0924215 0.344922i
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 6.14359 22.9282i 0.290258 1.08326i
\(449\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) −8.95448 33.4186i −0.420718 1.57014i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 36.2846 9.72243i 1.69732 0.454796i 0.725059 0.688686i \(-0.241812\pi\)
0.972263 + 0.233890i \(0.0751456\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(462\) 0 0
\(463\) 22.3660 22.3660i 1.03944 1.03944i 0.0402476 0.999190i \(-0.487185\pi\)
0.999190 0.0402476i \(-0.0128147\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(468\) 20.7846 6.00000i 0.960769 0.277350i
\(469\) 2.35898 0.108928
\(470\) 0 0
\(471\) −9.52628 + 16.5000i −0.438948 + 0.760280i
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(480\) 0 0
\(481\) −6.85641 3.78461i −0.312625 0.172563i
\(482\) 0 0
\(483\) 0 0
\(484\) 11.0000 19.0526i 0.500000 0.866025i
\(485\) 0 0
\(486\) 0 0
\(487\) −7.41858 + 27.6865i −0.336168 + 1.25460i 0.566429 + 0.824110i \(0.308325\pi\)
−0.902597 + 0.430486i \(0.858342\pi\)
\(488\) 0 0
\(489\) −26.1506 26.1506i −1.18257 1.18257i
\(490\) 0 0
\(491\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 11.4641 + 42.7846i 0.514753 + 1.92109i
\(497\) 0 0
\(498\) 0 0
\(499\) −0.411543 + 0.411543i −0.0184232 + 0.0184232i −0.716258 0.697835i \(-0.754147\pi\)
0.697835 + 0.716258i \(0.254147\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 10.5000 19.9186i 0.466321 0.884615i
\(508\) 2.00000i 0.0887357i
\(509\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(510\) 0 0
\(511\) 34.0359 19.6506i 1.50566 0.869293i
\(512\) 0 0
\(513\) 10.9019 40.6865i 0.481332 1.79635i
\(514\) 0 0
\(515\) 0 0
\(516\) −3.00000 5.19615i −0.132068 0.228748i
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 0 0
\(523\) 6.92820 + 4.00000i 0.302949 + 0.174908i 0.643767 0.765222i \(-0.277371\pi\)
−0.340818 + 0.940129i \(0.610704\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −11.5000 19.9186i −0.500000 0.866025i
\(530\) 0 0
\(531\) 0 0
\(532\) −48.1051 −2.08562
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 13.1506 + 13.1506i 0.565390 + 0.565390i 0.930834 0.365444i \(-0.119083\pi\)
−0.365444 + 0.930834i \(0.619083\pi\)
\(542\) 0 0
\(543\) −6.00000 + 10.3923i −0.257485 + 0.445976i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 41.0000i 1.75303i −0.481371 0.876517i \(-0.659861\pi\)
0.481371 0.876517i \(-0.340139\pi\)
\(548\) 0 0
\(549\) −12.9904 + 22.5000i −0.554416 + 0.960277i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) −34.7487 9.31089i −1.47767 0.395939i
\(554\) 0 0
\(555\) 0 0
\(556\) −12.1244 7.00000i −0.514187 0.296866i
\(557\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(558\) 0 0
\(559\) −6.06218 1.50000i −0.256403 0.0634432i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −18.8827 + 18.8827i −0.792998 + 0.792998i
\(568\) 0 0
\(569\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(570\) 0 0
\(571\) 16.0000i 0.669579i 0.942293 + 0.334790i \(0.108665\pi\)
−0.942293 + 0.334790i \(0.891335\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 20.7846 12.0000i 0.866025 0.500000i
\(577\) 16.0718 + 16.0718i 0.669078 + 0.669078i 0.957503 0.288425i \(-0.0931316\pi\)
−0.288425 + 0.957503i \(0.593132\pi\)
\(578\) 0 0
\(579\) −12.2321 + 45.6506i −0.508347 + 1.89718i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(588\) 5.41154 + 3.12436i 0.223168 + 0.128846i
\(589\) 77.7391 44.8827i 3.20318 1.84936i
\(590\) 0 0
\(591\) 0 0
\(592\) −8.39230 2.24871i −0.344922 0.0924215i
\(593\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 29.4449 1.20510
\(598\) 0 0
\(599\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(600\) 0 0
\(601\) −20.7846 + 36.0000i −0.847822 + 1.46847i 0.0353259 + 0.999376i \(0.488753\pi\)
−0.883148 + 0.469095i \(0.844580\pi\)
\(602\) 0 0
\(603\) 1.68653 + 1.68653i 0.0686810 + 0.0686810i
\(604\) −38.5885 10.3397i −1.57014 0.420718i
\(605\) 0 0
\(606\) 0 0
\(607\) 17.3205 10.0000i 0.703018 0.405887i −0.105453 0.994424i \(-0.533629\pi\)
0.808470 + 0.588537i \(0.200296\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 47.7487 12.7942i 1.92855 0.516754i 0.949156 0.314806i \(-0.101939\pi\)
0.979396 0.201948i \(-0.0647272\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(618\) 0 0
\(619\) 31.8827 + 31.8827i 1.28147 + 1.28147i 0.939829 + 0.341644i \(0.110984\pi\)
0.341644 + 0.939829i \(0.389016\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 6.00000 24.2487i 0.240192 0.970725i
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 11.0000 + 19.0526i 0.438948 + 0.760280i
\(629\) 0 0
\(630\) 0 0
\(631\) −9.00962 + 33.6244i −0.358667 + 1.33856i 0.517139 + 0.855901i \(0.326997\pi\)
−0.875806 + 0.482663i \(0.839670\pi\)
\(632\) 0 0
\(633\) 38.9711 22.5000i 1.54896 0.894295i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 6.24871 1.80385i 0.247583 0.0714710i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(642\) 0 0
\(643\) −5.11474 + 19.0885i −0.201706 + 0.752775i 0.788723 + 0.614749i \(0.210743\pi\)
−0.990429 + 0.138027i \(0.955924\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) −56.9090 −2.23044
\(652\) −41.2487 + 11.0526i −1.61542 + 0.432852i
\(653\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 38.3827 + 10.2846i 1.49745 + 0.401241i
\(658\) 0 0
\(659\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(660\) 0 0
\(661\) 44.1147 11.8205i 1.71586 0.459764i 0.739014 0.673690i \(-0.235292\pi\)
0.976850 + 0.213925i \(0.0686249\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) −20.8301 5.58142i −0.805339 0.215790i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −25.1147 + 43.5000i −0.968102 + 1.67680i −0.267063 + 0.963679i \(0.586053\pi\)
−0.701039 + 0.713123i \(0.747280\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) −13.8564 22.0000i −0.532939 0.846154i
\(677\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(678\) 0 0
\(679\) −25.2321 + 43.7032i −0.968317 + 1.67717i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(684\) −34.3923 34.3923i −1.31502 1.31502i
\(685\) 0 0
\(686\) 0 0
\(687\) −13.5622 50.6147i −0.517429 1.93107i
\(688\) −6.92820 −0.264135
\(689\) 0 0
\(690\) 0 0
\(691\) 1.48076 + 5.52628i 0.0563308 + 0.210230i 0.988355 0.152167i \(-0.0486252\pi\)
−0.932024 + 0.362397i \(0.881959\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(702\) 0 0
\(703\) 17.6077i 0.664087i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −8.74871 + 32.6506i −0.328565 + 1.22622i 0.582115 + 0.813107i \(0.302225\pi\)
−0.910679 + 0.413114i \(0.864441\pi\)
\(710\) 0 0
\(711\) −18.1865 31.5000i −0.682048 1.18134i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(720\) 0 0
\(721\) 44.6769 + 11.9711i 1.66386 + 0.445829i
\(722\) 0 0
\(723\) −11.8756 + 11.8756i −0.441660 + 0.441660i
\(724\) 6.92820 + 12.0000i 0.257485 + 0.445976i
\(725\) 0 0
\(726\) 0 0
\(727\) −49.0000 −1.81731 −0.908655 0.417548i \(-0.862889\pi\)
−0.908655 + 0.417548i \(0.862889\pi\)
\(728\) 0 0
\(729\) −27.0000 −1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) 15.0000 + 25.9808i 0.554416 + 0.960277i
\(733\) −30.3468 30.3468i −1.12088 1.12088i −0.991609 0.129275i \(-0.958735\pi\)
−0.129275 0.991609i \(-0.541265\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 46.4186 12.4378i 1.70754 0.457533i 0.732717 0.680534i \(-0.238252\pi\)
0.974818 + 0.223001i \(0.0715853\pi\)
\(740\) 0 0
\(741\) −50.6147 + 0.973721i −1.85938 + 0.0357705i
\(742\) 0 0
\(743\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −15.0000 8.66025i −0.547358 0.316017i 0.200698 0.979653i \(-0.435679\pi\)
−0.748056 + 0.663636i \(0.769012\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 7.98076 + 29.7846i 0.290258 + 1.08326i
\(757\) −42.0000 24.2487i −1.52652 0.881334i −0.999505 0.0314762i \(-0.989979\pi\)
−0.527011 0.849858i \(-0.676688\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(762\) 0 0
\(763\) −18.7872 + 10.8468i −0.680142 + 0.392680i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 27.7128i 1.00000i
\(769\) 9.77757 + 36.4904i 0.352588 + 1.31588i 0.883493 + 0.468445i \(0.155186\pi\)
−0.530904 + 0.847432i \(0.678148\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 38.5885 + 38.5885i 1.38883 + 1.38883i
\(773\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 5.58142 9.66730i 0.200232 0.346812i
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 6.24871 3.60770i 0.223168 0.128846i
\(785\) 0 0
\(786\) 0 0
\(787\) 51.3827 + 13.7679i 1.83159 + 0.490774i 0.998092 0.0617409i \(-0.0196653\pi\)
0.833503 + 0.552515i \(0.186332\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 30.3109 + 7.50000i 1.07637 + 0.266333i
\(794\) 0 0
\(795\) 0 0
\(796\) 17.0000 29.4449i 0.602549 1.04365i
\(797\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 2.66025 0.712813i 0.0938199 0.0251390i
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(810\) 0 0
\(811\) −17.3468 + 17.3468i −0.609128 + 0.609128i −0.942718 0.333590i \(-0.891740\pi\)
0.333590 + 0.942718i \(0.391740\pi\)
\(812\) 0 0
\(813\) −15.8660 4.25129i −0.556446 0.149099i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 3.63397 + 13.5622i 0.127137 + 0.474481i
\(818\) 0 0
\(819\) 28.0981 + 15.5096i 0.981826 + 0.541950i
\(820\) 0 0
\(821\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(822\) 0 0
\(823\) −12.1244 21.0000i −0.422628 0.732014i 0.573567 0.819159i \(-0.305559\pi\)
−0.996196 + 0.0871445i \(0.972226\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(828\) 0 0
\(829\) 45.8993 + 26.5000i 1.59415 + 0.920383i 0.992584 + 0.121560i \(0.0387897\pi\)
0.601566 + 0.798823i \(0.294544\pi\)
\(830\) 0 0
\(831\) 36.0000i 1.24883i
\(832\) −20.7846 20.0000i −0.720577 0.693375i
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −40.6865 40.6865i −1.40633 1.40633i
\(838\) 0 0
\(839\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(840\) 0 0
\(841\) −14.5000 25.1147i −0.500000 0.866025i
\(842\) 0 0
\(843\) 0 0
\(844\) 51.9615i 1.78859i
\(845\) 0 0
\(846\) 0 0
\(847\) 31.5263 8.44744i 1.08326 0.290258i
\(848\) 0 0
\(849\) −37.5000 + 21.6506i −1.28700 + 0.743048i
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 5.88269 5.88269i 0.201419 0.201419i −0.599189 0.800608i \(-0.704510\pi\)
0.800608 + 0.599189i \(0.204510\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(858\) 0 0
\(859\) −57.1577 −1.95019 −0.975097 0.221777i \(-0.928814\pi\)
−0.975097 + 0.221777i \(0.928814\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −25.5000 + 14.7224i −0.866025 + 0.500000i
\(868\) −32.8564 + 56.9090i −1.11522 + 1.93162i
\(869\) 0 0
\(870\) 0 0
\(871\) 1.38526 2.50962i 0.0469379 0.0850352i
\(872\) 0 0
\(873\) −49.2846 + 13.2058i −1.66803 + 0.446948i
\(874\) 0 0
\(875\) 0 0
\(876\) 32.4449 32.4449i 1.09621 1.09621i
\(877\) 15.0981 56.3468i 0.509826 1.90270i 0.0877308 0.996144i \(-0.472038\pi\)
0.422095 0.906552i \(-0.361295\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(882\) 0 0
\(883\) −55.0000 −1.85090 −0.925449 0.378873i \(-0.876312\pi\)
−0.925449 + 0.378873i \(0.876312\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(888\) 0 0
\(889\) −2.09808 + 2.09808i −0.0703672 + 0.0703672i
\(890\) 0 0
\(891\) 0 0
\(892\) −17.6077 + 17.6077i −0.589549 + 0.589549i
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 2.30385 8.59808i 0.0766672 0.286126i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −20.0000 + 34.6410i −0.664089 + 1.15024i 0.315442 + 0.948945i \(0.397847\pi\)
−0.979531 + 0.201291i \(0.935486\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) −54.2487 + 14.5359i −1.79635 + 0.481332i
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) −58.4449 15.6603i −1.93107 0.517429i
\(917\) 0 0
\(918\) 0 0
\(919\) −15.5885 27.0000i −0.514216 0.890648i −0.999864 0.0164935i \(-0.994750\pi\)
0.485648 0.874154i \(-0.338584\pi\)
\(920\) 0 0
\(921\) 39.3564 10.5455i 1.29684 0.347487i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 23.3827 + 40.5000i 0.767988 + 1.33019i
\(928\) 0 0
\(929\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(930\) 0 0
\(931\) −10.3397 10.3397i −0.338871 0.338871i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 55.4256i 1.81068i 0.424691 + 0.905338i \(0.360383\pi\)
−0.424691 + 0.905338i \(0.639617\pi\)
\(938\) 0 0
\(939\) 28.5000 49.3634i 0.930062 1.61092i
\(940\) 0 0
\(941\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(948\) −42.0000 −1.36410
\(949\) −0.918584 47.7487i −0.0298185 1.54999i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 91.6218i 2.95554i
\(962\) 0 0
\(963\) 0 0
\(964\) 5.01924 + 18.7321i 0.161659 + 0.603319i
\(965\) 0 0
\(966\) 0 0
\(967\) −19.4449 19.4449i −0.625305 0.625305i 0.321578 0.946883i \(-0.395787\pi\)
−0.946883 + 0.321578i \(0.895787\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(972\) −15.5885 + 27.0000i −0.500000 + 0.866025i
\(973\) −5.37564 20.0622i −0.172335 0.643164i
\(974\) 0 0
\(975\) 0 0
\(976\) 34.6410 1.10883
\(977\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −21.1865 5.67691i −0.676434 0.181250i
\(982\) 0 0
\(983\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) −28.2487 + 51.1769i −0.898711 + 1.62815i
\(989\) 0 0
\(990\) 0 0
\(991\) −22.0000 + 38.1051i −0.698853 + 1.21045i 0.270011 + 0.962857i \(0.412973\pi\)
−0.968864 + 0.247592i \(0.920361\pi\)
\(992\) 0 0
\(993\) −43.3468 43.3468i −1.37557 1.37557i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 51.0955 29.5000i 1.61821 0.934274i 0.630828 0.775923i \(-0.282715\pi\)
0.987383 0.158352i \(-0.0506179\pi\)
\(998\) 0 0
\(999\) 10.9019 2.92116i 0.344922 0.0924215i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 975.2.bp.d.149.1 4
3.2 odd 2 CM 975.2.bp.d.149.1 4
5.2 odd 4 39.2.k.a.32.1 yes 4
5.3 odd 4 975.2.bo.c.851.1 4
5.4 even 2 975.2.bp.a.149.1 4
13.11 odd 12 975.2.bp.a.674.1 4
15.2 even 4 39.2.k.a.32.1 yes 4
15.8 even 4 975.2.bo.c.851.1 4
15.14 odd 2 975.2.bp.a.149.1 4
20.7 even 4 624.2.cn.b.305.1 4
39.11 even 12 975.2.bp.a.674.1 4
60.47 odd 4 624.2.cn.b.305.1 4
65.2 even 12 507.2.k.c.89.1 4
65.7 even 12 507.2.f.c.437.1 4
65.12 odd 4 507.2.k.c.188.1 4
65.17 odd 12 507.2.f.b.239.1 4
65.22 odd 12 507.2.f.c.239.1 4
65.24 odd 12 inner 975.2.bp.d.674.1 4
65.32 even 12 507.2.f.b.437.1 4
65.37 even 12 39.2.k.a.11.1 4
65.42 odd 12 507.2.k.b.80.1 4
65.47 even 4 507.2.k.b.488.1 4
65.57 even 4 507.2.k.a.488.1 4
65.62 odd 12 507.2.k.a.80.1 4
65.63 even 12 975.2.bo.c.401.1 4
195.2 odd 12 507.2.k.c.89.1 4
195.17 even 12 507.2.f.b.239.1 4
195.32 odd 12 507.2.f.b.437.1 4
195.47 odd 4 507.2.k.b.488.1 4
195.62 even 12 507.2.k.a.80.1 4
195.77 even 4 507.2.k.c.188.1 4
195.89 even 12 inner 975.2.bp.d.674.1 4
195.107 even 12 507.2.k.b.80.1 4
195.122 odd 4 507.2.k.a.488.1 4
195.128 odd 12 975.2.bo.c.401.1 4
195.137 odd 12 507.2.f.c.437.1 4
195.152 even 12 507.2.f.c.239.1 4
195.167 odd 12 39.2.k.a.11.1 4
260.167 odd 12 624.2.cn.b.401.1 4
780.167 even 12 624.2.cn.b.401.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
39.2.k.a.11.1 4 65.37 even 12
39.2.k.a.11.1 4 195.167 odd 12
39.2.k.a.32.1 yes 4 5.2 odd 4
39.2.k.a.32.1 yes 4 15.2 even 4
507.2.f.b.239.1 4 65.17 odd 12
507.2.f.b.239.1 4 195.17 even 12
507.2.f.b.437.1 4 65.32 even 12
507.2.f.b.437.1 4 195.32 odd 12
507.2.f.c.239.1 4 65.22 odd 12
507.2.f.c.239.1 4 195.152 even 12
507.2.f.c.437.1 4 65.7 even 12
507.2.f.c.437.1 4 195.137 odd 12
507.2.k.a.80.1 4 65.62 odd 12
507.2.k.a.80.1 4 195.62 even 12
507.2.k.a.488.1 4 65.57 even 4
507.2.k.a.488.1 4 195.122 odd 4
507.2.k.b.80.1 4 65.42 odd 12
507.2.k.b.80.1 4 195.107 even 12
507.2.k.b.488.1 4 65.47 even 4
507.2.k.b.488.1 4 195.47 odd 4
507.2.k.c.89.1 4 65.2 even 12
507.2.k.c.89.1 4 195.2 odd 12
507.2.k.c.188.1 4 65.12 odd 4
507.2.k.c.188.1 4 195.77 even 4
624.2.cn.b.305.1 4 20.7 even 4
624.2.cn.b.305.1 4 60.47 odd 4
624.2.cn.b.401.1 4 260.167 odd 12
624.2.cn.b.401.1 4 780.167 even 12
975.2.bo.c.401.1 4 65.63 even 12
975.2.bo.c.401.1 4 195.128 odd 12
975.2.bo.c.851.1 4 5.3 odd 4
975.2.bo.c.851.1 4 15.8 even 4
975.2.bp.a.149.1 4 5.4 even 2
975.2.bp.a.149.1 4 15.14 odd 2
975.2.bp.a.674.1 4 13.11 odd 12
975.2.bp.a.674.1 4 39.11 even 12
975.2.bp.d.149.1 4 1.1 even 1 trivial
975.2.bp.d.149.1 4 3.2 odd 2 CM
975.2.bp.d.674.1 4 65.24 odd 12 inner
975.2.bp.d.674.1 4 195.89 even 12 inner