Properties

Label 507.4.a.a
Level $507$
Weight $4$
Character orbit 507.a
Self dual yes
Analytic conductor $29.914$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [507,4,Mod(1,507)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(507, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("507.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 507 = 3 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 507.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(29.9139683729\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 39)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - 3 q^{2} + 3 q^{3} + q^{4} + 9 q^{5} - 9 q^{6} - 2 q^{7} + 21 q^{8} + 9 q^{9} - 27 q^{10} - 30 q^{11} + 3 q^{12} + 6 q^{14} + 27 q^{15} - 71 q^{16} - 111 q^{17} - 27 q^{18} + 46 q^{19} + 9 q^{20} - 6 q^{21}+ \cdots - 270 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−3.00000 3.00000 1.00000 9.00000 −9.00000 −2.00000 21.0000 9.00000 −27.0000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 507.4.a.a 1
3.b odd 2 1 1521.4.a.j 1
13.b even 2 1 507.4.a.e 1
13.d odd 4 2 507.4.b.c 2
13.e even 6 2 39.4.e.a 2
39.d odd 2 1 1521.4.a.c 1
39.h odd 6 2 117.4.g.b 2
52.i odd 6 2 624.4.q.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
39.4.e.a 2 13.e even 6 2
117.4.g.b 2 39.h odd 6 2
507.4.a.a 1 1.a even 1 1 trivial
507.4.a.e 1 13.b even 2 1
507.4.b.c 2 13.d odd 4 2
624.4.q.b 2 52.i odd 6 2
1521.4.a.c 1 39.d odd 2 1
1521.4.a.j 1 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(507))\):

\( T_{2} + 3 \) Copy content Toggle raw display
\( T_{5} - 9 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T + 3 \) Copy content Toggle raw display
$3$ \( T - 3 \) Copy content Toggle raw display
$5$ \( T - 9 \) Copy content Toggle raw display
$7$ \( T + 2 \) Copy content Toggle raw display
$11$ \( T + 30 \) Copy content Toggle raw display
$13$ \( T \) Copy content Toggle raw display
$17$ \( T + 111 \) Copy content Toggle raw display
$19$ \( T - 46 \) Copy content Toggle raw display
$23$ \( T + 6 \) Copy content Toggle raw display
$29$ \( T + 105 \) Copy content Toggle raw display
$31$ \( T - 100 \) Copy content Toggle raw display
$37$ \( T + 17 \) Copy content Toggle raw display
$41$ \( T - 231 \) Copy content Toggle raw display
$43$ \( T + 514 \) Copy content Toggle raw display
$47$ \( T - 162 \) Copy content Toggle raw display
$53$ \( T - 639 \) Copy content Toggle raw display
$59$ \( T + 600 \) Copy content Toggle raw display
$61$ \( T - 233 \) Copy content Toggle raw display
$67$ \( T + 926 \) Copy content Toggle raw display
$71$ \( T - 930 \) Copy content Toggle raw display
$73$ \( T - 253 \) Copy content Toggle raw display
$79$ \( T + 1324 \) Copy content Toggle raw display
$83$ \( T + 810 \) Copy content Toggle raw display
$89$ \( T + 498 \) Copy content Toggle raw display
$97$ \( T + 1358 \) Copy content Toggle raw display
show more
show less