Properties

Label 507.4.b.b
Level $507$
Weight $4$
Character orbit 507.b
Analytic conductor $29.914$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [507,4,Mod(337,507)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(507, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("507.337");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 507 = 3 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 507.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(29.9139683729\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 39)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 2i\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 3 q^{3} + 8 q^{4} - 6 \beta q^{5} - \beta q^{7} + 9 q^{9} + 18 \beta q^{11} - 24 q^{12} + 18 \beta q^{15} + 64 q^{16} + 78 q^{17} + 37 \beta q^{19} - 48 \beta q^{20} + 3 \beta q^{21} + 96 q^{23} - 19 q^{25} + \cdots + 162 \beta q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 6 q^{3} + 16 q^{4} + 18 q^{9} - 48 q^{12} + 128 q^{16} + 156 q^{17} + 192 q^{23} - 38 q^{25} - 54 q^{27} + 36 q^{29} - 48 q^{35} + 144 q^{36} - 1048 q^{43} - 384 q^{48} + 678 q^{49} - 468 q^{51} + 1116 q^{53}+ \cdots + 1776 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/507\mathbb{Z}\right)^\times\).

\(n\) \(170\) \(340\)
\(\chi(n)\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
337.1
1.00000i
1.00000i
0 −3.00000 8.00000 12.0000i 0 2.00000i 0 9.00000 0
337.2 0 −3.00000 8.00000 12.0000i 0 2.00000i 0 9.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 507.4.b.b 2
13.b even 2 1 inner 507.4.b.b 2
13.d odd 4 1 39.4.a.a 1
13.d odd 4 1 507.4.a.c 1
39.f even 4 1 117.4.a.a 1
39.f even 4 1 1521.4.a.f 1
52.f even 4 1 624.4.a.g 1
65.g odd 4 1 975.4.a.e 1
91.i even 4 1 1911.4.a.f 1
104.j odd 4 1 2496.4.a.o 1
104.m even 4 1 2496.4.a.f 1
156.l odd 4 1 1872.4.a.m 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
39.4.a.a 1 13.d odd 4 1
117.4.a.a 1 39.f even 4 1
507.4.a.c 1 13.d odd 4 1
507.4.b.b 2 1.a even 1 1 trivial
507.4.b.b 2 13.b even 2 1 inner
624.4.a.g 1 52.f even 4 1
975.4.a.e 1 65.g odd 4 1
1521.4.a.f 1 39.f even 4 1
1872.4.a.m 1 156.l odd 4 1
1911.4.a.f 1 91.i even 4 1
2496.4.a.f 1 104.m even 4 1
2496.4.a.o 1 104.j odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(507, [\chi])\):

\( T_{2} \) Copy content Toggle raw display
\( T_{5}^{2} + 144 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( (T + 3)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 144 \) Copy content Toggle raw display
$7$ \( T^{2} + 4 \) Copy content Toggle raw display
$11$ \( T^{2} + 1296 \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( (T - 78)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} + 5476 \) Copy content Toggle raw display
$23$ \( (T - 96)^{2} \) Copy content Toggle raw display
$29$ \( (T - 18)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} + 45796 \) Copy content Toggle raw display
$37$ \( T^{2} + 81796 \) Copy content Toggle raw display
$41$ \( T^{2} + 147456 \) Copy content Toggle raw display
$43$ \( (T + 524)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} + 90000 \) Copy content Toggle raw display
$53$ \( (T - 558)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} + 331776 \) Copy content Toggle raw display
$61$ \( (T - 74)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 1444 \) Copy content Toggle raw display
$71$ \( T^{2} + 207936 \) Copy content Toggle raw display
$73$ \( T^{2} + 465124 \) Copy content Toggle raw display
$79$ \( (T - 704)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 788544 \) Copy content Toggle raw display
$89$ \( T^{2} + 1040400 \) Copy content Toggle raw display
$97$ \( T^{2} + 12100 \) Copy content Toggle raw display
show more
show less