Properties

Label 51.5.c.c.50.10
Level $51$
Weight $5$
Character 51.50
Analytic conductor $5.272$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [51,5,Mod(50,51)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(51, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("51.50");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 51 = 3 \cdot 17 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 51.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.27186811728\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 200 x^{18} + 22051 x^{16} + 1226808 x^{14} + 5013252 x^{12} - 3569195664 x^{10} + \cdots + 12\!\cdots\!01 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4}\cdot 3^{10} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 50.10
Root \(-5.02953 + 7.46350i\) of defining polynomial
Character \(\chi\) \(=\) 51.50
Dual form 51.5.c.c.50.12

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.93178i q^{2} +(5.02953 + 7.46350i) q^{3} +12.2682 q^{4} -4.62649 q^{5} +(14.4178 - 9.71595i) q^{6} +58.0263i q^{7} -54.6080i q^{8} +(-30.4076 + 75.0758i) q^{9} +8.93735i q^{10} +163.508 q^{11} +(61.7034 + 91.5639i) q^{12} -81.9293 q^{13} +112.094 q^{14} +(-23.2691 - 34.5298i) q^{15} +90.8010 q^{16} +(44.7750 - 285.510i) q^{17} +(145.030 + 58.7408i) q^{18} +524.957 q^{19} -56.7588 q^{20} +(-433.079 + 291.845i) q^{21} -315.862i q^{22} -767.157 q^{23} +(407.567 - 274.653i) q^{24} -603.596 q^{25} +158.269i q^{26} +(-713.264 + 150.649i) q^{27} +711.880i q^{28} -462.049 q^{29} +(-66.7039 + 44.9507i) q^{30} -637.845i q^{31} -1049.14i q^{32} +(822.369 + 1220.34i) q^{33} +(-551.543 - 86.4954i) q^{34} -268.458i q^{35} +(-373.047 + 921.047i) q^{36} -1178.23i q^{37} -1014.10i q^{38} +(-412.066 - 611.479i) q^{39} +252.643i q^{40} -1299.93 q^{41} +(563.781 + 836.614i) q^{42} +1446.33 q^{43} +2005.95 q^{44} +(140.680 - 347.337i) q^{45} +1481.98i q^{46} -3326.42i q^{47} +(456.687 + 677.693i) q^{48} -966.054 q^{49} +1166.01i q^{50} +(2356.10 - 1101.81i) q^{51} -1005.13 q^{52} -257.237i q^{53} +(291.021 + 1377.87i) q^{54} -756.468 q^{55} +3168.70 q^{56} +(2640.29 + 3918.02i) q^{57} +892.577i q^{58} +4907.54i q^{59} +(-285.470 - 423.619i) q^{60} +3608.73i q^{61} -1232.18 q^{62} +(-4356.37 - 1764.44i) q^{63} -573.882 q^{64} +379.045 q^{65} +(2357.43 - 1588.64i) q^{66} +1636.77 q^{67} +(549.309 - 3502.71i) q^{68} +(-3858.44 - 5725.67i) q^{69} -518.602 q^{70} +1219.27 q^{71} +(4099.74 + 1660.50i) q^{72} -7484.07i q^{73} -2276.08 q^{74} +(-3035.80 - 4504.93i) q^{75} +6440.29 q^{76} +9487.77i q^{77} +(-1181.24 + 796.021i) q^{78} +2592.01i q^{79} -420.090 q^{80} +(-4711.75 - 4565.75i) q^{81} +2511.18i q^{82} +4314.37i q^{83} +(-5313.12 + 3580.42i) q^{84} +(-207.151 + 1320.91i) q^{85} -2793.99i q^{86} +(-2323.89 - 3448.50i) q^{87} -8928.85i q^{88} +1095.43i q^{89} +(-670.979 - 271.763i) q^{90} -4754.05i q^{91} -9411.65 q^{92} +(4760.55 - 3208.06i) q^{93} -6425.91 q^{94} -2428.71 q^{95} +(7830.22 - 5276.66i) q^{96} -4255.19i q^{97} +1866.20i q^{98} +(-4971.89 + 12275.5i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 168 q^{4} - 400 q^{9} - 308 q^{13} - 72 q^{15} + 600 q^{16} - 124 q^{18} - 548 q^{19} + 16 q^{21} + 3200 q^{25} - 2580 q^{30} + 4088 q^{33} - 2072 q^{34} + 4588 q^{36} - 464 q^{42} + 9028 q^{43}+ \cdots - 13736 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/51\mathbb{Z}\right)^\times\).

\(n\) \(35\) \(37\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.93178i 0.482945i −0.970408 0.241472i \(-0.922370\pi\)
0.970408 0.241472i \(-0.0776304\pi\)
\(3\) 5.02953 + 7.46350i 0.558837 + 0.829278i
\(4\) 12.2682 0.766764
\(5\) −4.62649 −0.185059 −0.0925297 0.995710i \(-0.529495\pi\)
−0.0925297 + 0.995710i \(0.529495\pi\)
\(6\) 14.4178 9.71595i 0.400495 0.269887i
\(7\) 58.0263i 1.18421i 0.805861 + 0.592105i \(0.201703\pi\)
−0.805861 + 0.592105i \(0.798297\pi\)
\(8\) 54.6080i 0.853250i
\(9\) −30.4076 + 75.0758i −0.375403 + 0.926862i
\(10\) 8.93735i 0.0893735i
\(11\) 163.508 1.35131 0.675653 0.737220i \(-0.263862\pi\)
0.675653 + 0.737220i \(0.263862\pi\)
\(12\) 61.7034 + 91.5639i 0.428496 + 0.635860i
\(13\) −81.9293 −0.484789 −0.242394 0.970178i \(-0.577933\pi\)
−0.242394 + 0.970178i \(0.577933\pi\)
\(14\) 112.094 0.571909
\(15\) −23.2691 34.5298i −0.103418 0.153466i
\(16\) 90.8010 0.354691
\(17\) 44.7750 285.510i 0.154931 0.987925i
\(18\) 145.030 + 58.7408i 0.447623 + 0.181299i
\(19\) 524.957 1.45417 0.727087 0.686545i \(-0.240873\pi\)
0.727087 + 0.686545i \(0.240873\pi\)
\(20\) −56.7588 −0.141897
\(21\) −433.079 + 291.845i −0.982039 + 0.661781i
\(22\) 315.862i 0.652606i
\(23\) −767.157 −1.45020 −0.725101 0.688643i \(-0.758207\pi\)
−0.725101 + 0.688643i \(0.758207\pi\)
\(24\) 407.567 274.653i 0.707581 0.476828i
\(25\) −603.596 −0.965753
\(26\) 158.269i 0.234126i
\(27\) −713.264 + 150.649i −0.978415 + 0.206652i
\(28\) 711.880i 0.908010i
\(29\) −462.049 −0.549405 −0.274702 0.961529i \(-0.588579\pi\)
−0.274702 + 0.961529i \(0.588579\pi\)
\(30\) −66.7039 + 44.9507i −0.0741154 + 0.0499452i
\(31\) 637.845i 0.663730i −0.943327 0.331865i \(-0.892322\pi\)
0.943327 0.331865i \(-0.107678\pi\)
\(32\) 1049.14i 1.02455i
\(33\) 822.369 + 1220.34i 0.755160 + 1.12061i
\(34\) −551.543 86.4954i −0.477114 0.0748230i
\(35\) 268.458i 0.219149i
\(36\) −373.047 + 921.047i −0.287845 + 0.710684i
\(37\) 1178.23i 0.860651i −0.902674 0.430325i \(-0.858399\pi\)
0.902674 0.430325i \(-0.141601\pi\)
\(38\) 1014.10i 0.702286i
\(39\) −412.066 611.479i −0.270918 0.402024i
\(40\) 252.643i 0.157902i
\(41\) −1299.93 −0.773307 −0.386654 0.922225i \(-0.626369\pi\)
−0.386654 + 0.922225i \(0.626369\pi\)
\(42\) 563.781 + 836.614i 0.319604 + 0.474271i
\(43\) 1446.33 0.782224 0.391112 0.920343i \(-0.372091\pi\)
0.391112 + 0.920343i \(0.372091\pi\)
\(44\) 2005.95 1.03613
\(45\) 140.680 347.337i 0.0694718 0.171525i
\(46\) 1481.98i 0.700368i
\(47\) 3326.42i 1.50585i −0.658108 0.752924i \(-0.728643\pi\)
0.658108 0.752924i \(-0.271357\pi\)
\(48\) 456.687 + 677.693i 0.198215 + 0.294138i
\(49\) −966.054 −0.402355
\(50\) 1166.01i 0.466406i
\(51\) 2356.10 1101.81i 0.905845 0.423609i
\(52\) −1005.13 −0.371718
\(53\) 257.237i 0.0915758i −0.998951 0.0457879i \(-0.985420\pi\)
0.998951 0.0457879i \(-0.0145798\pi\)
\(54\) 291.021 + 1377.87i 0.0998014 + 0.472520i
\(55\) −756.468 −0.250072
\(56\) 3168.70 1.01043
\(57\) 2640.29 + 3918.02i 0.812647 + 1.20591i
\(58\) 892.577i 0.265332i
\(59\) 4907.54i 1.40981i 0.709303 + 0.704904i \(0.249010\pi\)
−0.709303 + 0.704904i \(0.750990\pi\)
\(60\) −285.470 423.619i −0.0792972 0.117672i
\(61\) 3608.73i 0.969829i 0.874562 + 0.484915i \(0.161149\pi\)
−0.874562 + 0.484915i \(0.838851\pi\)
\(62\) −1232.18 −0.320545
\(63\) −4356.37 1764.44i −1.09760 0.444556i
\(64\) −573.882 −0.140108
\(65\) 379.045 0.0897147
\(66\) 2357.43 1588.64i 0.541192 0.364701i
\(67\) 1636.77 0.364618 0.182309 0.983241i \(-0.441643\pi\)
0.182309 + 0.983241i \(0.441643\pi\)
\(68\) 549.309 3502.71i 0.118795 0.757506i
\(69\) −3858.44 5725.67i −0.810426 1.20262i
\(70\) −518.602 −0.105837
\(71\) 1219.27 0.241871 0.120935 0.992660i \(-0.461411\pi\)
0.120935 + 0.992660i \(0.461411\pi\)
\(72\) 4099.74 + 1660.50i 0.790845 + 0.320312i
\(73\) 7484.07i 1.40440i −0.711977 0.702202i \(-0.752200\pi\)
0.711977 0.702202i \(-0.247800\pi\)
\(74\) −2276.08 −0.415647
\(75\) −3035.80 4504.93i −0.539698 0.800877i
\(76\) 6440.29 1.11501
\(77\) 9487.77i 1.60023i
\(78\) −1181.24 + 796.021i −0.194156 + 0.130838i
\(79\) 2592.01i 0.415319i 0.978201 + 0.207660i \(0.0665847\pi\)
−0.978201 + 0.207660i \(0.933415\pi\)
\(80\) −420.090 −0.0656390
\(81\) −4711.75 4565.75i −0.718146 0.695893i
\(82\) 2511.18i 0.373465i
\(83\) 4314.37i 0.626269i 0.949709 + 0.313135i \(0.101379\pi\)
−0.949709 + 0.313135i \(0.898621\pi\)
\(84\) −5313.12 + 3580.42i −0.752993 + 0.507430i
\(85\) −207.151 + 1320.91i −0.0286714 + 0.182825i
\(86\) 2793.99i 0.377771i
\(87\) −2323.89 3448.50i −0.307028 0.455609i
\(88\) 8928.85i 1.15300i
\(89\) 1095.43i 0.138294i 0.997606 + 0.0691471i \(0.0220278\pi\)
−0.997606 + 0.0691471i \(0.977972\pi\)
\(90\) −670.979 271.763i −0.0828369 0.0335510i
\(91\) 4754.05i 0.574092i
\(92\) −9411.65 −1.11196
\(93\) 4760.55 3208.06i 0.550417 0.370917i
\(94\) −6425.91 −0.727242
\(95\) −2428.71 −0.269109
\(96\) 7830.22 5276.66i 0.849633 0.572554i
\(97\) 4255.19i 0.452246i −0.974099 0.226123i \(-0.927395\pi\)
0.974099 0.226123i \(-0.0726052\pi\)
\(98\) 1866.20i 0.194315i
\(99\) −4971.89 + 12275.5i −0.507284 + 1.25247i
\(100\) −7405.05 −0.740505
\(101\) 2593.06i 0.254196i 0.991890 + 0.127098i \(0.0405663\pi\)
−0.991890 + 0.127098i \(0.959434\pi\)
\(102\) −2128.45 4551.47i −0.204580 0.437473i
\(103\) 7610.50 0.717362 0.358681 0.933460i \(-0.383227\pi\)
0.358681 + 0.933460i \(0.383227\pi\)
\(104\) 4473.99i 0.413646i
\(105\) 2003.64 1350.22i 0.181736 0.122469i
\(106\) −496.924 −0.0442261
\(107\) −7007.07 −0.612025 −0.306012 0.952028i \(-0.598995\pi\)
−0.306012 + 0.952028i \(0.598995\pi\)
\(108\) −8750.49 + 1848.20i −0.750213 + 0.158453i
\(109\) 19775.5i 1.66446i 0.554427 + 0.832232i \(0.312937\pi\)
−0.554427 + 0.832232i \(0.687063\pi\)
\(110\) 1461.33i 0.120771i
\(111\) 8793.73 5925.95i 0.713719 0.480964i
\(112\) 5268.85i 0.420029i
\(113\) 22646.0 1.77352 0.886758 0.462234i \(-0.152952\pi\)
0.886758 + 0.462234i \(0.152952\pi\)
\(114\) 7568.75 5100.46i 0.582390 0.392464i
\(115\) 3549.24 0.268373
\(116\) −5668.53 −0.421264
\(117\) 2491.27 6150.91i 0.181991 0.449332i
\(118\) 9480.29 0.680859
\(119\) 16567.1 + 2598.13i 1.16991 + 0.183471i
\(120\) −1885.60 + 1270.68i −0.130945 + 0.0882414i
\(121\) 12093.9 0.826028
\(122\) 6971.28 0.468374
\(123\) −6538.04 9702.02i −0.432153 0.641287i
\(124\) 7825.22i 0.508924i
\(125\) 5684.08 0.363781
\(126\) −3408.51 + 8415.55i −0.214696 + 0.530080i
\(127\) −27486.1 −1.70414 −0.852071 0.523426i \(-0.824654\pi\)
−0.852071 + 0.523426i \(0.824654\pi\)
\(128\) 15677.6i 0.956882i
\(129\) 7274.37 + 10794.7i 0.437135 + 0.648681i
\(130\) 732.231i 0.0433273i
\(131\) 217.363 0.0126661 0.00633304 0.999980i \(-0.497984\pi\)
0.00633304 + 0.999980i \(0.497984\pi\)
\(132\) 10089.0 + 14971.4i 0.579029 + 0.859242i
\(133\) 30461.3i 1.72205i
\(134\) 3161.88i 0.176090i
\(135\) 3299.91 696.976i 0.181065 0.0382428i
\(136\) −15591.2 2445.07i −0.842947 0.132195i
\(137\) 20151.7i 1.07367i 0.843688 + 0.536834i \(0.180380\pi\)
−0.843688 + 0.536834i \(0.819620\pi\)
\(138\) −11060.7 + 7453.65i −0.580799 + 0.391391i
\(139\) 22261.3i 1.15218i −0.817386 0.576090i \(-0.804578\pi\)
0.817386 0.576090i \(-0.195422\pi\)
\(140\) 3293.50i 0.168036i
\(141\) 24826.7 16730.3i 1.24877 0.841523i
\(142\) 2355.36i 0.116810i
\(143\) −13396.1 −0.655098
\(144\) −2761.04 + 6816.96i −0.133152 + 0.328750i
\(145\) 2137.66 0.101672
\(146\) −14457.6 −0.678250
\(147\) −4858.80 7210.14i −0.224851 0.333664i
\(148\) 14454.8i 0.659916i
\(149\) 2236.95i 0.100759i −0.998730 0.0503796i \(-0.983957\pi\)
0.998730 0.0503796i \(-0.0160431\pi\)
\(150\) −8702.54 + 5864.50i −0.386780 + 0.260645i
\(151\) −4703.53 −0.206286 −0.103143 0.994667i \(-0.532890\pi\)
−0.103143 + 0.994667i \(0.532890\pi\)
\(152\) 28666.9i 1.24077i
\(153\) 20073.4 + 12043.2i 0.857509 + 0.514469i
\(154\) 18328.3 0.772823
\(155\) 2950.98i 0.122830i
\(156\) −5055.32 7501.76i −0.207730 0.308258i
\(157\) 4228.69 0.171556 0.0857781 0.996314i \(-0.472662\pi\)
0.0857781 + 0.996314i \(0.472662\pi\)
\(158\) 5007.19 0.200576
\(159\) 1919.88 1293.78i 0.0759418 0.0511760i
\(160\) 4853.81i 0.189602i
\(161\) 44515.3i 1.71734i
\(162\) −8820.03 + 9102.07i −0.336078 + 0.346825i
\(163\) 24397.3i 0.918261i 0.888369 + 0.459131i \(0.151839\pi\)
−0.888369 + 0.459131i \(0.848161\pi\)
\(164\) −15947.8 −0.592944
\(165\) −3804.68 5645.89i −0.139749 0.207379i
\(166\) 8334.41 0.302454
\(167\) −54558.2 −1.95626 −0.978131 0.207988i \(-0.933309\pi\)
−0.978131 + 0.207988i \(0.933309\pi\)
\(168\) 15937.1 + 23649.6i 0.564664 + 0.837925i
\(169\) −21848.6 −0.764980
\(170\) 2551.71 + 400.170i 0.0882944 + 0.0138467i
\(171\) −15962.7 + 39411.6i −0.545901 + 1.34782i
\(172\) 17743.9 0.599781
\(173\) 21855.7 0.730252 0.365126 0.930958i \(-0.381026\pi\)
0.365126 + 0.930958i \(0.381026\pi\)
\(174\) −6661.75 + 4489.25i −0.220034 + 0.148277i
\(175\) 35024.4i 1.14365i
\(176\) 14846.7 0.479297
\(177\) −36627.4 + 24682.6i −1.16912 + 0.787852i
\(178\) 2116.13 0.0667885
\(179\) 14369.1i 0.448459i −0.974536 0.224230i \(-0.928013\pi\)
0.974536 0.224230i \(-0.0719866\pi\)
\(180\) 1725.90 4261.21i 0.0532685 0.131519i
\(181\) 59229.9i 1.80794i −0.427597 0.903969i \(-0.640640\pi\)
0.427597 0.903969i \(-0.359360\pi\)
\(182\) −9183.79 −0.277255
\(183\) −26933.8 + 18150.2i −0.804258 + 0.541976i
\(184\) 41892.9i 1.23738i
\(185\) 5451.07i 0.159272i
\(186\) −6197.27 9196.34i −0.179132 0.265821i
\(187\) 7321.07 46683.2i 0.209359 1.33499i
\(188\) 40809.2i 1.15463i
\(189\) −8741.61 41388.1i −0.244719 1.15865i
\(190\) 4691.73i 0.129965i
\(191\) 57570.2i 1.57809i 0.614337 + 0.789043i \(0.289423\pi\)
−0.614337 + 0.789043i \(0.710577\pi\)
\(192\) −2886.36 4283.17i −0.0782975 0.116188i
\(193\) 50923.2i 1.36710i 0.729902 + 0.683551i \(0.239566\pi\)
−0.729902 + 0.683551i \(0.760434\pi\)
\(194\) −8220.08 −0.218410
\(195\) 1906.42 + 2829.00i 0.0501359 + 0.0743984i
\(196\) −11851.8 −0.308511
\(197\) −16795.4 −0.432770 −0.216385 0.976308i \(-0.569427\pi\)
−0.216385 + 0.976308i \(0.569427\pi\)
\(198\) 23713.6 + 9604.59i 0.604876 + 0.244990i
\(199\) 18089.3i 0.456789i 0.973569 + 0.228394i \(0.0733475\pi\)
−0.973569 + 0.228394i \(0.926652\pi\)
\(200\) 32961.1i 0.824029i
\(201\) 8232.19 + 12216.0i 0.203762 + 0.302370i
\(202\) 5009.21 0.122763
\(203\) 26811.0i 0.650611i
\(204\) 28905.2 13517.2i 0.694570 0.324808i
\(205\) 6014.11 0.143108
\(206\) 14701.8i 0.346447i
\(207\) 23327.4 57594.9i 0.544409 1.34414i
\(208\) −7439.26 −0.171950
\(209\) 85834.7 1.96504
\(210\) −2608.32 3870.58i −0.0591457 0.0877683i
\(211\) 35276.8i 0.792364i 0.918172 + 0.396182i \(0.129665\pi\)
−0.918172 + 0.396182i \(0.870335\pi\)
\(212\) 3155.84i 0.0702171i
\(213\) 6132.36 + 9100.03i 0.135166 + 0.200578i
\(214\) 13536.1i 0.295574i
\(215\) −6691.43 −0.144758
\(216\) 8226.64 + 38949.9i 0.176326 + 0.834832i
\(217\) 37011.8 0.785996
\(218\) 38201.9 0.803845
\(219\) 55857.4 37641.4i 1.16464 0.784833i
\(220\) −9280.51 −0.191746
\(221\) −3668.38 + 23391.7i −0.0751086 + 0.478935i
\(222\) −11447.6 16987.5i −0.232279 0.344687i
\(223\) −51868.5 −1.04302 −0.521511 0.853244i \(-0.674632\pi\)
−0.521511 + 0.853244i \(0.674632\pi\)
\(224\) 60877.5 1.21328
\(225\) 18353.9 45315.4i 0.362546 0.895120i
\(226\) 43747.1i 0.856511i
\(227\) −84661.3 −1.64298 −0.821491 0.570221i \(-0.806858\pi\)
−0.821491 + 0.570221i \(0.806858\pi\)
\(228\) 32391.7 + 48067.1i 0.623108 + 0.924652i
\(229\) 70220.4 1.33904 0.669518 0.742796i \(-0.266501\pi\)
0.669518 + 0.742796i \(0.266501\pi\)
\(230\) 6856.35i 0.129610i
\(231\) −70812.0 + 47719.0i −1.32704 + 0.894268i
\(232\) 25231.6i 0.468779i
\(233\) 36195.4 0.666716 0.333358 0.942800i \(-0.391818\pi\)
0.333358 + 0.942800i \(0.391818\pi\)
\(234\) −11882.2 4812.59i −0.217003 0.0878916i
\(235\) 15389.6i 0.278671i
\(236\) 60206.8i 1.08099i
\(237\) −19345.5 + 13036.6i −0.344415 + 0.232096i
\(238\) 5019.01 32004.0i 0.0886062 0.565003i
\(239\) 33333.6i 0.583561i 0.956485 + 0.291780i \(0.0942477\pi\)
−0.956485 + 0.291780i \(0.905752\pi\)
\(240\) −2112.85 3135.34i −0.0366815 0.0544329i
\(241\) 3970.76i 0.0683660i −0.999416 0.0341830i \(-0.989117\pi\)
0.999416 0.0341830i \(-0.0108829\pi\)
\(242\) 23362.7i 0.398926i
\(243\) 10378.6 58129.8i 0.175762 0.984433i
\(244\) 44272.8i 0.743630i
\(245\) 4469.43 0.0744595
\(246\) −18742.2 + 12630.1i −0.309706 + 0.208706i
\(247\) −43009.4 −0.704967
\(248\) −34831.4 −0.566328
\(249\) −32200.3 + 21699.3i −0.519351 + 0.349982i
\(250\) 10980.4i 0.175686i
\(251\) 84826.3i 1.34643i −0.739448 0.673214i \(-0.764913\pi\)
0.739448 0.673214i \(-0.235087\pi\)
\(252\) −53445.0 21646.6i −0.841600 0.340869i
\(253\) −125436. −1.95967
\(254\) 53097.1i 0.823007i
\(255\) −10900.5 + 5097.49i −0.167635 + 0.0783928i
\(256\) −39467.7 −0.602229
\(257\) 65272.2i 0.988239i 0.869394 + 0.494119i \(0.164509\pi\)
−0.869394 + 0.494119i \(0.835491\pi\)
\(258\) 20853.0 14052.5i 0.313277 0.211112i
\(259\) 68368.4 1.01919
\(260\) 4650.20 0.0687900
\(261\) 14049.8 34688.7i 0.206248 0.509222i
\(262\) 419.897i 0.00611702i
\(263\) 50611.7i 0.731711i 0.930672 + 0.365855i \(0.119224\pi\)
−0.930672 + 0.365855i \(0.880776\pi\)
\(264\) 66640.4 44907.9i 0.956158 0.644340i
\(265\) 1190.10i 0.0169470i
\(266\) 58844.6 0.831655
\(267\) −8175.73 + 5509.49i −0.114684 + 0.0772839i
\(268\) 20080.3 0.279576
\(269\) −74743.0 −1.03292 −0.516459 0.856312i \(-0.672750\pi\)
−0.516459 + 0.856312i \(0.672750\pi\)
\(270\) −1346.40 6374.69i −0.0184692 0.0874443i
\(271\) 41504.3 0.565138 0.282569 0.959247i \(-0.408813\pi\)
0.282569 + 0.959247i \(0.408813\pi\)
\(272\) 4065.61 25924.6i 0.0549526 0.350409i
\(273\) 35481.9 23910.7i 0.476081 0.320824i
\(274\) 38928.6 0.518523
\(275\) −98692.7 −1.30503
\(276\) −47336.2 70243.8i −0.621406 0.922126i
\(277\) 23671.9i 0.308513i −0.988031 0.154256i \(-0.950702\pi\)
0.988031 0.154256i \(-0.0492982\pi\)
\(278\) −43003.9 −0.556440
\(279\) 47886.7 + 19395.3i 0.615186 + 0.249166i
\(280\) −14659.9 −0.186989
\(281\) 84730.4i 1.07307i 0.843879 + 0.536533i \(0.180266\pi\)
−0.843879 + 0.536533i \(0.819734\pi\)
\(282\) −32319.3 47959.7i −0.406409 0.603085i
\(283\) 110801.i 1.38348i −0.722149 0.691738i \(-0.756845\pi\)
0.722149 0.691738i \(-0.243155\pi\)
\(284\) 14958.3 0.185458
\(285\) −12215.3 18126.6i −0.150388 0.223166i
\(286\) 25878.3i 0.316376i
\(287\) 75430.1i 0.915759i
\(288\) 78764.7 + 31901.7i 0.949613 + 0.384617i
\(289\) −79511.4 25567.4i −0.951993 0.306120i
\(290\) 4129.50i 0.0491022i
\(291\) 31758.6 21401.6i 0.375038 0.252732i
\(292\) 91816.3i 1.07685i
\(293\) 64767.6i 0.754436i 0.926125 + 0.377218i \(0.123119\pi\)
−0.926125 + 0.377218i \(0.876881\pi\)
\(294\) −13928.4 + 9386.13i −0.161141 + 0.108591i
\(295\) 22704.7i 0.260898i
\(296\) −64340.8 −0.734350
\(297\) −116624. + 24632.3i −1.32214 + 0.279250i
\(298\) −4321.30 −0.0486611
\(299\) 62852.6 0.703041
\(300\) −37243.9 55267.6i −0.413821 0.614084i
\(301\) 83925.3i 0.926318i
\(302\) 9086.18i 0.0996248i
\(303\) −19353.3 + 13041.9i −0.210799 + 0.142054i
\(304\) 47666.6 0.515783
\(305\) 16695.8i 0.179476i
\(306\) 23264.8 38777.4i 0.248460 0.414130i
\(307\) 78685.6 0.834869 0.417435 0.908707i \(-0.362929\pi\)
0.417435 + 0.908707i \(0.362929\pi\)
\(308\) 116398.i 1.22700i
\(309\) 38277.2 + 56800.9i 0.400889 + 0.594893i
\(310\) 5700.64 0.0593199
\(311\) 97228.4 1.00525 0.502623 0.864506i \(-0.332368\pi\)
0.502623 + 0.864506i \(0.332368\pi\)
\(312\) −33391.6 + 22502.1i −0.343027 + 0.231161i
\(313\) 87641.4i 0.894583i 0.894388 + 0.447291i \(0.147611\pi\)
−0.894388 + 0.447291i \(0.852389\pi\)
\(314\) 8168.90i 0.0828522i
\(315\) 20154.7 + 8163.16i 0.203121 + 0.0822692i
\(316\) 31799.4i 0.318452i
\(317\) −78037.3 −0.776576 −0.388288 0.921538i \(-0.626933\pi\)
−0.388288 + 0.921538i \(0.626933\pi\)
\(318\) −2499.30 3708.79i −0.0247152 0.0366757i
\(319\) −75548.8 −0.742414
\(320\) 2655.06 0.0259283
\(321\) −35242.3 52297.3i −0.342022 0.507538i
\(322\) −85993.7 −0.829383
\(323\) 23504.9 149881.i 0.225296 1.43662i
\(324\) −57804.9 56013.7i −0.550648 0.533586i
\(325\) 49452.1 0.468186
\(326\) 47130.2 0.443470
\(327\) −147594. + 99461.5i −1.38030 + 0.930164i
\(328\) 70986.6i 0.659824i
\(329\) 193020. 1.78324
\(330\) −10906.6 + 7349.80i −0.100153 + 0.0674913i
\(331\) 156868. 1.43178 0.715891 0.698212i \(-0.246021\pi\)
0.715891 + 0.698212i \(0.246021\pi\)
\(332\) 52929.7i 0.480201i
\(333\) 88456.7 + 35827.2i 0.797705 + 0.323091i
\(334\) 105394.i 0.944767i
\(335\) −7572.50 −0.0674760
\(336\) −39324.0 + 26499.8i −0.348321 + 0.234728i
\(337\) 471.180i 0.00414884i −0.999998 0.00207442i \(-0.999340\pi\)
0.999998 0.00207442i \(-0.000660309\pi\)
\(338\) 42206.7i 0.369443i
\(339\) 113899. + 169019.i 0.991106 + 1.47074i
\(340\) −2541.37 + 16205.2i −0.0219842 + 0.140184i
\(341\) 104293.i 0.896903i
\(342\) 76134.5 + 30836.4i 0.650923 + 0.263640i
\(343\) 83264.6i 0.707738i
\(344\) 78981.3i 0.667432i
\(345\) 17851.0 + 26489.7i 0.149977 + 0.222556i
\(346\) 42220.4i 0.352671i
\(347\) 73350.4 0.609177 0.304589 0.952484i \(-0.401481\pi\)
0.304589 + 0.952484i \(0.401481\pi\)
\(348\) −28510.0 42307.0i −0.235418 0.349345i
\(349\) −27633.5 −0.226874 −0.113437 0.993545i \(-0.536186\pi\)
−0.113437 + 0.993545i \(0.536186\pi\)
\(350\) −67659.5 −0.552322
\(351\) 58437.2 12342.6i 0.474324 0.100182i
\(352\) 171542.i 1.38448i
\(353\) 147168.i 1.18104i −0.807023 0.590521i \(-0.798922\pi\)
0.807023 0.590521i \(-0.201078\pi\)
\(354\) 47681.4 + 70756.1i 0.380489 + 0.564621i
\(355\) −5640.94 −0.0447605
\(356\) 13439.0i 0.106039i
\(357\) 63933.7 + 136716.i 0.501642 + 1.07271i
\(358\) −27757.9 −0.216581
\(359\) 185845.i 1.44199i −0.692941 0.720994i \(-0.743686\pi\)
0.692941 0.720994i \(-0.256314\pi\)
\(360\) −18967.4 7682.27i −0.146353 0.0592768i
\(361\) 145259. 1.11462
\(362\) −114419. −0.873135
\(363\) 60826.6 + 90262.6i 0.461615 + 0.685007i
\(364\) 58323.8i 0.440193i
\(365\) 34625.0i 0.259898i
\(366\) 35062.3 + 52030.1i 0.261745 + 0.388412i
\(367\) 41786.8i 0.310246i −0.987895 0.155123i \(-0.950423\pi\)
0.987895 0.155123i \(-0.0495774\pi\)
\(368\) −69658.6 −0.514374
\(369\) 39527.8 97593.3i 0.290302 0.716749i
\(370\) 10530.3 0.0769194
\(371\) 14926.5 0.108445
\(372\) 58403.5 39357.2i 0.422040 0.284406i
\(373\) −63558.2 −0.456829 −0.228415 0.973564i \(-0.573354\pi\)
−0.228415 + 0.973564i \(0.573354\pi\)
\(374\) −90181.8 14142.7i −0.644726 0.101109i
\(375\) 28588.3 + 42423.1i 0.203294 + 0.301675i
\(376\) −181649. −1.28486
\(377\) 37855.4 0.266345
\(378\) −79952.7 + 16886.9i −0.559564 + 0.118186i
\(379\) 47660.7i 0.331805i 0.986142 + 0.165902i \(0.0530536\pi\)
−0.986142 + 0.165902i \(0.946946\pi\)
\(380\) −29795.9 −0.206343
\(381\) −138242. 205143.i −0.952338 1.41321i
\(382\) 111213. 0.762129
\(383\) 27055.7i 0.184442i −0.995739 0.0922212i \(-0.970603\pi\)
0.995739 0.0922212i \(-0.0293967\pi\)
\(384\) 117009. 78850.8i 0.793521 0.534741i
\(385\) 43895.0i 0.296138i
\(386\) 98372.4 0.660235
\(387\) −43979.5 + 108585.i −0.293649 + 0.725013i
\(388\) 52203.6i 0.346766i
\(389\) 13739.0i 0.0907934i −0.998969 0.0453967i \(-0.985545\pi\)
0.998969 0.0453967i \(-0.0144552\pi\)
\(390\) 5465.00 3682.78i 0.0359303 0.0242129i
\(391\) −34349.4 + 219031.i −0.224681 + 1.43269i
\(392\) 52754.3i 0.343309i
\(393\) 1093.23 + 1622.29i 0.00707827 + 0.0105037i
\(394\) 32445.0i 0.209004i
\(395\) 11991.9i 0.0768588i
\(396\) −60996.3 + 150599.i −0.388967 + 0.960352i
\(397\) 196373.i 1.24595i −0.782240 0.622977i \(-0.785923\pi\)
0.782240 0.622977i \(-0.214077\pi\)
\(398\) 34944.5 0.220604
\(399\) −227348. + 153206.i −1.42806 + 0.962345i
\(400\) −54807.1 −0.342544
\(401\) −139747. −0.869065 −0.434533 0.900656i \(-0.643086\pi\)
−0.434533 + 0.900656i \(0.643086\pi\)
\(402\) 23598.7 15902.8i 0.146028 0.0984059i
\(403\) 52258.1i 0.321769i
\(404\) 31812.2i 0.194909i
\(405\) 21798.9 + 21123.4i 0.132900 + 0.128781i
\(406\) −51793.0 −0.314209
\(407\) 192650.i 1.16300i
\(408\) −60167.4 128662.i −0.361444 0.772912i
\(409\) −203317. −1.21542 −0.607710 0.794159i \(-0.707912\pi\)
−0.607710 + 0.794159i \(0.707912\pi\)
\(410\) 11617.9i 0.0691132i
\(411\) −150402. + 101354.i −0.890369 + 0.600005i
\(412\) 93367.3 0.550048
\(413\) −284766. −1.66951
\(414\) −111261. 45063.4i −0.649144 0.262920i
\(415\) 19960.4i 0.115897i
\(416\) 85954.9i 0.496688i
\(417\) 166147. 111964.i 0.955477 0.643881i
\(418\) 165814.i 0.949004i
\(419\) 234819. 1.33753 0.668767 0.743472i \(-0.266822\pi\)
0.668767 + 0.743472i \(0.266822\pi\)
\(420\) 24581.0 16564.8i 0.139348 0.0939046i
\(421\) 193384. 1.09108 0.545540 0.838085i \(-0.316325\pi\)
0.545540 + 0.838085i \(0.316325\pi\)
\(422\) 68147.1 0.382668
\(423\) 249733. + 101148.i 1.39571 + 0.565299i
\(424\) −14047.2 −0.0781371
\(425\) −27026.0 + 172333.i −0.149625 + 0.954092i
\(426\) 17579.2 11846.4i 0.0968682 0.0652779i
\(427\) −209402. −1.14848
\(428\) −85964.3 −0.469279
\(429\) −67376.1 99981.7i −0.366093 0.543258i
\(430\) 12926.4i 0.0699101i
\(431\) 19605.1 0.105539 0.0527696 0.998607i \(-0.483195\pi\)
0.0527696 + 0.998607i \(0.483195\pi\)
\(432\) −64765.1 + 13679.1i −0.347035 + 0.0732976i
\(433\) 234164. 1.24895 0.624474 0.781046i \(-0.285314\pi\)
0.624474 + 0.781046i \(0.285314\pi\)
\(434\) 71498.6i 0.379593i
\(435\) 10751.5 + 15954.5i 0.0568183 + 0.0843147i
\(436\) 242610.i 1.27625i
\(437\) −402724. −2.10885
\(438\) −72714.9 107904.i −0.379031 0.562458i
\(439\) 267368.i 1.38733i −0.720296 0.693667i \(-0.755994\pi\)
0.720296 0.693667i \(-0.244006\pi\)
\(440\) 41309.2i 0.213374i
\(441\) 29375.4 72527.3i 0.151045 0.372927i
\(442\) 45187.5 + 7086.50i 0.231299 + 0.0362733i
\(443\) 141083.i 0.718896i 0.933165 + 0.359448i \(0.117035\pi\)
−0.933165 + 0.359448i \(0.882965\pi\)
\(444\) 107883. 72700.9i 0.547254 0.368786i
\(445\) 5067.98i 0.0255927i
\(446\) 100198.i 0.503722i
\(447\) 16695.5 11250.8i 0.0835573 0.0563079i
\(448\) 33300.3i 0.165917i
\(449\) 121188. 0.601129 0.300564 0.953762i \(-0.402825\pi\)
0.300564 + 0.953762i \(0.402825\pi\)
\(450\) −87539.4 35455.7i −0.432294 0.175090i
\(451\) −212549. −1.04498
\(452\) 277827. 1.35987
\(453\) −23656.5 35104.8i −0.115280 0.171068i
\(454\) 163547.i 0.793470i
\(455\) 21994.6i 0.106241i
\(456\) 213955. 144181.i 1.02895 0.693391i
\(457\) −172678. −0.826808 −0.413404 0.910548i \(-0.635660\pi\)
−0.413404 + 0.910548i \(0.635660\pi\)
\(458\) 135650.i 0.646680i
\(459\) 11075.5 + 210390.i 0.0525700 + 0.998617i
\(460\) 43542.9 0.205779
\(461\) 217522.i 1.02353i 0.859125 + 0.511766i \(0.171008\pi\)
−0.859125 + 0.511766i \(0.828992\pi\)
\(462\) 92182.7 + 136793.i 0.431882 + 0.640885i
\(463\) 189076. 0.882010 0.441005 0.897505i \(-0.354622\pi\)
0.441005 + 0.897505i \(0.354622\pi\)
\(464\) −41954.5 −0.194869
\(465\) −22024.6 + 14842.0i −0.101860 + 0.0686417i
\(466\) 69921.5i 0.321987i
\(467\) 328940.i 1.50829i −0.656711 0.754143i \(-0.728053\pi\)
0.656711 0.754143i \(-0.271947\pi\)
\(468\) 30563.5 75460.7i 0.139544 0.344532i
\(469\) 94975.8i 0.431785i
\(470\) 29729.4 0.134583
\(471\) 21268.3 + 31560.8i 0.0958720 + 0.142268i
\(472\) 267991. 1.20292
\(473\) 236487. 1.05702
\(474\) 25183.8 + 37371.2i 0.112090 + 0.166334i
\(475\) −316862. −1.40437
\(476\) 203249. + 31874.4i 0.897046 + 0.140679i
\(477\) 19312.2 + 7821.95i 0.0848782 + 0.0343778i
\(478\) 64393.1 0.281828
\(479\) −190153. −0.828766 −0.414383 0.910102i \(-0.636003\pi\)
−0.414383 + 0.910102i \(0.636003\pi\)
\(480\) −36226.4 + 24412.4i −0.157233 + 0.105957i
\(481\) 96531.6i 0.417234i
\(482\) −7670.64 −0.0330170
\(483\) 332240. 223891.i 1.42415 0.959715i
\(484\) 148370. 0.633369
\(485\) 19686.6i 0.0836924i
\(486\) −112294. 20049.1i −0.475427 0.0848833i
\(487\) 214235.i 0.903302i 0.892195 + 0.451651i \(0.149165\pi\)
−0.892195 + 0.451651i \(0.850835\pi\)
\(488\) 197066. 0.827507
\(489\) −182089. + 122707.i −0.761493 + 0.513158i
\(490\) 8633.96i 0.0359599i
\(491\) 187012.i 0.775723i 0.921718 + 0.387862i \(0.126786\pi\)
−0.921718 + 0.387862i \(0.873214\pi\)
\(492\) −80210.1 119027.i −0.331359 0.491716i
\(493\) −20688.2 + 131920.i −0.0851196 + 0.542771i
\(494\) 83084.6i 0.340460i
\(495\) 23002.4 56792.4i 0.0938776 0.231782i
\(496\) 57916.9i 0.235419i
\(497\) 70749.8i 0.286426i
\(498\) 41918.2 + 62203.9i 0.169022 + 0.250818i
\(499\) 7806.07i 0.0313496i 0.999877 + 0.0156748i \(0.00498964\pi\)
−0.999877 + 0.0156748i \(0.995010\pi\)
\(500\) 69733.6 0.278934
\(501\) −274402. 407195.i −1.09323 1.62228i
\(502\) −163866. −0.650251
\(503\) 403115. 1.59328 0.796641 0.604453i \(-0.206608\pi\)
0.796641 + 0.604453i \(0.206608\pi\)
\(504\) −96352.6 + 237893.i −0.379317 + 0.936527i
\(505\) 11996.7i 0.0470414i
\(506\) 242315.i 0.946411i
\(507\) −109888. 163067.i −0.427499 0.634381i
\(508\) −337206. −1.30668
\(509\) 239308.i 0.923680i 0.886963 + 0.461840i \(0.152811\pi\)
−0.886963 + 0.461840i \(0.847189\pi\)
\(510\) 9847.23 + 21057.3i 0.0378594 + 0.0809586i
\(511\) 434273. 1.66311
\(512\) 174598.i 0.666038i
\(513\) −374433. + 79084.3i −1.42279 + 0.300508i
\(514\) 126091. 0.477265
\(515\) −35209.9 −0.132755
\(516\) 89243.6 + 132432.i 0.335180 + 0.497385i
\(517\) 543896.i 2.03486i
\(518\) 132073.i 0.492214i
\(519\) 109924. + 163120.i 0.408092 + 0.605581i
\(520\) 20698.9i 0.0765490i
\(521\) −283337. −1.04383 −0.521913 0.852999i \(-0.674781\pi\)
−0.521913 + 0.852999i \(0.674781\pi\)
\(522\) −67011.0 27141.1i −0.245926 0.0996064i
\(523\) 67135.1 0.245441 0.122720 0.992441i \(-0.460838\pi\)
0.122720 + 0.992441i \(0.460838\pi\)
\(524\) 2666.65 0.00971190
\(525\) 261405. 176157.i 0.948407 0.639117i
\(526\) 97770.7 0.353376
\(527\) −182111. 28559.5i −0.655716 0.102832i
\(528\) 74671.9 + 110808.i 0.267849 + 0.397470i
\(529\) 308688. 1.10308
\(530\) 2299.01 0.00818445
\(531\) −368438. 149227.i −1.30670 0.529245i
\(532\) 373707.i 1.32041i
\(533\) 106502. 0.374891
\(534\) 10643.1 + 15793.7i 0.0373239 + 0.0553862i
\(535\) 32418.1 0.113261
\(536\) 89380.8i 0.311110i
\(537\) 107244. 72269.8i 0.371897 0.250616i
\(538\) 144387.i 0.498843i
\(539\) −157958. −0.543704
\(540\) 40484.0 8550.66i 0.138834 0.0293232i
\(541\) 537673.i 1.83706i −0.395348 0.918531i \(-0.629376\pi\)
0.395348 0.918531i \(-0.370624\pi\)
\(542\) 80177.2i 0.272931i
\(543\) 442062. 297899.i 1.49928 1.01034i
\(544\) −299539. 46975.0i −1.01218 0.158734i
\(545\) 91491.1i 0.308025i
\(546\) −46190.1 68543.2i −0.154940 0.229921i
\(547\) 581155.i 1.94230i 0.238460 + 0.971152i \(0.423358\pi\)
−0.238460 + 0.971152i \(0.576642\pi\)
\(548\) 247225.i 0.823250i
\(549\) −270929. 109733.i −0.898898 0.364076i
\(550\) 190653.i 0.630257i
\(551\) −242556. −0.798930
\(552\) −312667. + 210702.i −1.02614 + 0.691496i
\(553\) −150405. −0.491826
\(554\) −45728.9 −0.148995
\(555\) −40684.0 + 27416.3i −0.132080 + 0.0890068i
\(556\) 273106.i 0.883450i
\(557\) 528535.i 1.70358i 0.523881 + 0.851791i \(0.324483\pi\)
−0.523881 + 0.851791i \(0.675517\pi\)
\(558\) 37467.5 92506.6i 0.120333 0.297101i
\(559\) −118497. −0.379213
\(560\) 24376.2i 0.0777304i
\(561\) 385242. 180154.i 1.22407 0.572425i
\(562\) 163680. 0.518232
\(563\) 188127.i 0.593520i 0.954952 + 0.296760i \(0.0959061\pi\)
−0.954952 + 0.296760i \(0.904094\pi\)
\(564\) 304580. 205251.i 0.957509 0.645250i
\(565\) −104772. −0.328206
\(566\) −214044. −0.668143
\(567\) 264934. 273406.i 0.824083 0.850436i
\(568\) 66581.9i 0.206376i
\(569\) 108905.i 0.336374i 0.985755 + 0.168187i \(0.0537913\pi\)
−0.985755 + 0.168187i \(0.946209\pi\)
\(570\) −35016.7 + 23597.2i −0.107777 + 0.0726291i
\(571\) 311068.i 0.954076i −0.878883 0.477038i \(-0.841710\pi\)
0.878883 0.477038i \(-0.158290\pi\)
\(572\) −164346. −0.502305
\(573\) −429675. + 289551.i −1.30867 + 0.881893i
\(574\) −145714. −0.442261
\(575\) 463052. 1.40054
\(576\) 17450.4 43084.7i 0.0525969 0.129861i
\(577\) −279948. −0.840863 −0.420432 0.907324i \(-0.638121\pi\)
−0.420432 + 0.907324i \(0.638121\pi\)
\(578\) −49390.7 + 153599.i −0.147839 + 0.459760i
\(579\) −380065. + 256120.i −1.13371 + 0.763988i
\(580\) 26225.3 0.0779588
\(581\) −250347. −0.741635
\(582\) −41343.2 61350.6i −0.122056 0.181123i
\(583\) 42060.2i 0.123747i
\(584\) −408690. −1.19831
\(585\) −11525.8 + 28457.1i −0.0336791 + 0.0831531i
\(586\) 125117. 0.364351
\(587\) 268348.i 0.778794i −0.921070 0.389397i \(-0.872683\pi\)
0.921070 0.389397i \(-0.127317\pi\)
\(588\) −59608.8 88455.6i −0.172407 0.255841i
\(589\) 334841.i 0.965180i
\(590\) −43860.4 −0.125999
\(591\) −84472.9 125352.i −0.241848 0.358887i
\(592\) 106985.i 0.305266i
\(593\) 15008.5i 0.0426804i −0.999772 0.0213402i \(-0.993207\pi\)
0.999772 0.0213402i \(-0.00679332\pi\)
\(594\) 47584.2 + 225293.i 0.134862 + 0.638520i
\(595\) −76647.5 12020.2i −0.216503 0.0339530i
\(596\) 27443.4i 0.0772585i
\(597\) −135009. + 90980.6i −0.378804 + 0.255270i
\(598\) 121417.i 0.339530i
\(599\) 518440.i 1.44492i −0.691411 0.722462i \(-0.743010\pi\)
0.691411 0.722462i \(-0.256990\pi\)
\(600\) −246005. + 165779.i −0.683348 + 0.460498i
\(601\) 72059.1i 0.199499i 0.995013 + 0.0997493i \(0.0318041\pi\)
−0.995013 + 0.0997493i \(0.968196\pi\)
\(602\) 162125. 0.447360
\(603\) −49770.3 + 122882.i −0.136879 + 0.337951i
\(604\) −57703.9 −0.158173
\(605\) −55952.1 −0.152864
\(606\) 25194.0 + 37386.2i 0.0686044 + 0.101804i
\(607\) 461533.i 1.25264i 0.779567 + 0.626318i \(0.215439\pi\)
−0.779567 + 0.626318i \(0.784561\pi\)
\(608\) 550751.i 1.48987i
\(609\) 200104. 134847.i 0.539537 0.363585i
\(610\) −32252.5 −0.0866770
\(611\) 272531.i 0.730018i
\(612\) 246265. + 147749.i 0.657507 + 0.394476i
\(613\) −331132. −0.881211 −0.440606 0.897701i \(-0.645236\pi\)
−0.440606 + 0.897701i \(0.645236\pi\)
\(614\) 152003.i 0.403196i
\(615\) 30248.1 + 44886.3i 0.0799739 + 0.118676i
\(616\) 518108. 1.36540
\(617\) 648965. 1.70471 0.852355 0.522963i \(-0.175173\pi\)
0.852355 + 0.522963i \(0.175173\pi\)
\(618\) 109727. 73943.2i 0.287300 0.193607i
\(619\) 336455.i 0.878104i −0.898462 0.439052i \(-0.855314\pi\)
0.898462 0.439052i \(-0.144686\pi\)
\(620\) 36203.3i 0.0941813i
\(621\) 547185. 115571.i 1.41890 0.299687i
\(622\) 187824.i 0.485478i
\(623\) −63563.7 −0.163770
\(624\) −37416.0 55522.9i −0.0960922 0.142595i
\(625\) 350950. 0.898432
\(626\) 169304. 0.432034
\(627\) 431708. + 640627.i 1.09813 + 1.62956i
\(628\) 51878.5 0.131543
\(629\) −336397. 52755.3i −0.850259 0.133341i
\(630\) 15769.4 38934.4i 0.0397315 0.0980963i
\(631\) −206498. −0.518630 −0.259315 0.965793i \(-0.583497\pi\)
−0.259315 + 0.965793i \(0.583497\pi\)
\(632\) 141544. 0.354371
\(633\) −263289. + 177426.i −0.657090 + 0.442802i
\(634\) 150751.i 0.375043i
\(635\) 127164. 0.315368
\(636\) 23553.6 15872.4i 0.0582294 0.0392399i
\(637\) 79148.1 0.195057
\(638\) 145944.i 0.358545i
\(639\) −37075.1 + 91537.7i −0.0907989 + 0.224181i
\(640\) 72532.0i 0.177080i
\(641\) 603583. 1.46900 0.734499 0.678610i \(-0.237417\pi\)
0.734499 + 0.678610i \(0.237417\pi\)
\(642\) −101027. + 68080.3i −0.245113 + 0.165178i
\(643\) 635208.i 1.53636i 0.640232 + 0.768181i \(0.278838\pi\)
−0.640232 + 0.768181i \(0.721162\pi\)
\(644\) 546123.i 1.31680i
\(645\) −33654.8 49941.5i −0.0808960 0.120044i
\(646\) −289537. 45406.4i −0.693807 0.108806i
\(647\) 394267.i 0.941850i −0.882173 0.470925i \(-0.843920\pi\)
0.882173 0.470925i \(-0.156080\pi\)
\(648\) −249327. + 257299.i −0.593770 + 0.612758i
\(649\) 802422.i 1.90508i
\(650\) 95530.7i 0.226108i
\(651\) 186152. + 276237.i 0.439244 + 0.651809i
\(652\) 299311.i 0.704090i
\(653\) 328888. 0.771297 0.385649 0.922646i \(-0.373978\pi\)
0.385649 + 0.922646i \(0.373978\pi\)
\(654\) 192138. + 285120.i 0.449218 + 0.666610i
\(655\) −1005.62 −0.00234398
\(656\) −118035. −0.274286
\(657\) 561873. + 227573.i 1.30169 + 0.527217i
\(658\) 372872.i 0.861207i
\(659\) 542143.i 1.24837i −0.781277 0.624185i \(-0.785431\pi\)
0.781277 0.624185i \(-0.214569\pi\)
\(660\) −46676.6 69265.1i −0.107155 0.159011i
\(661\) −425926. −0.974835 −0.487418 0.873169i \(-0.662061\pi\)
−0.487418 + 0.873169i \(0.662061\pi\)
\(662\) 303033.i 0.691472i
\(663\) −193034. + 90270.2i −0.439143 + 0.205361i
\(664\) 235599. 0.534364
\(665\) 140929.i 0.318681i
\(666\) 69210.2 170879.i 0.156035 0.385247i
\(667\) 354464. 0.796747
\(668\) −669333. −1.49999
\(669\) −260874. 387120.i −0.582879 0.864955i
\(670\) 14628.4i 0.0325872i
\(671\) 590057.i 1.31054i
\(672\) 306185. + 454359.i 0.678025 + 1.00614i
\(673\) 448839.i 0.990970i 0.868617 + 0.495485i \(0.165010\pi\)
−0.868617 + 0.495485i \(0.834990\pi\)
\(674\) −910.215 −0.00200366
\(675\) 430523. 90931.1i 0.944907 0.199574i
\(676\) −268044. −0.586559
\(677\) −464891. −1.01432 −0.507159 0.861853i \(-0.669304\pi\)
−0.507159 + 0.861853i \(0.669304\pi\)
\(678\) 326507. 220028.i 0.710285 0.478650i
\(679\) 246913. 0.535555
\(680\) 72132.2 + 11312.1i 0.155995 + 0.0244639i
\(681\) −425807. 631869.i −0.918159 1.36249i
\(682\) −201471. −0.433155
\(683\) 35930.1 0.0770223 0.0385112 0.999258i \(-0.487738\pi\)
0.0385112 + 0.999258i \(0.487738\pi\)
\(684\) −195834. + 483510.i −0.418577 + 1.03346i
\(685\) 93231.4i 0.198692i
\(686\) 160849. 0.341798
\(687\) 353176. + 524090.i 0.748302 + 1.11043i
\(688\) 131328. 0.277448
\(689\) 21075.2i 0.0443949i
\(690\) 51172.3 34484.2i 0.107482 0.0724306i
\(691\) 452399.i 0.947469i −0.880668 0.473735i \(-0.842906\pi\)
0.880668 0.473735i \(-0.157094\pi\)
\(692\) 268131. 0.559931
\(693\) −712302. 288500.i −1.48319 0.600731i
\(694\) 141697.i 0.294199i
\(695\) 102991.i 0.213222i
\(696\) −188316. + 126903.i −0.388748 + 0.261971i
\(697\) −58204.3 + 371144.i −0.119809 + 0.763970i
\(698\) 53381.8i 0.109568i
\(699\) 182046. + 270144.i 0.372586 + 0.552893i
\(700\) 429688.i 0.876914i
\(701\) 363829.i 0.740392i 0.928954 + 0.370196i \(0.120709\pi\)
−0.928954 + 0.370196i \(0.879291\pi\)
\(702\) −23843.1 112888.i −0.0483826 0.229072i
\(703\) 618521.i 1.25154i
\(704\) −93834.4 −0.189329
\(705\) −114860. + 77402.6i −0.231096 + 0.155732i
\(706\) −284297. −0.570378
\(707\) −150465. −0.301022
\(708\) −449353. + 302812.i −0.896441 + 0.604097i
\(709\) 169327.i 0.336847i −0.985715 0.168424i \(-0.946132\pi\)
0.985715 0.168424i \(-0.0538677\pi\)
\(710\) 10897.1i 0.0216168i
\(711\) −194597. 78816.8i −0.384944 0.155912i
\(712\) 59819.2 0.118000
\(713\) 489327.i 0.962543i
\(714\) 264105. 123506.i 0.518061 0.242265i
\(715\) 61976.8 0.121232
\(716\) 176283.i 0.343863i
\(717\) −248785. + 167652.i −0.483934 + 0.326115i
\(718\) −359011. −0.696401
\(719\) −72185.0 −0.139633 −0.0698167 0.997560i \(-0.522241\pi\)
−0.0698167 + 0.997560i \(0.522241\pi\)
\(720\) 12773.9 31538.6i 0.0246410 0.0608383i
\(721\) 441609.i 0.849508i
\(722\) 280608.i 0.538302i
\(723\) 29635.8 19971.1i 0.0566944 0.0382054i
\(724\) 726646.i 1.38626i
\(725\) 278891. 0.530589
\(726\) 174368. 117504.i 0.330821 0.222935i
\(727\) 659191. 1.24722 0.623609 0.781736i \(-0.285666\pi\)
0.623609 + 0.781736i \(0.285666\pi\)
\(728\) −259609. −0.489844
\(729\) 486051. 214905.i 0.914590 0.404382i
\(730\) 66887.8 0.125517
\(731\) 64759.4 412943.i 0.121190 0.772779i
\(732\) −330430. + 222671.i −0.616676 + 0.415568i
\(733\) 591647. 1.10117 0.550586 0.834779i \(-0.314404\pi\)
0.550586 + 0.834779i \(0.314404\pi\)
\(734\) −80722.8 −0.149832
\(735\) 22479.2 + 33357.6i 0.0416107 + 0.0617476i
\(736\) 804851.i 1.48580i
\(737\) 267625. 0.492711
\(738\) −188529. 76358.9i −0.346150 0.140200i
\(739\) 899639. 1.64733 0.823663 0.567080i \(-0.191927\pi\)
0.823663 + 0.567080i \(0.191927\pi\)
\(740\) 66874.9i 0.122124i
\(741\) −216317. 321000.i −0.393962 0.584614i
\(742\) 28834.7i 0.0523730i
\(743\) −475668. −0.861641 −0.430821 0.902438i \(-0.641776\pi\)
−0.430821 + 0.902438i \(0.641776\pi\)
\(744\) −175186. 259964.i −0.316485 0.469643i
\(745\) 10349.2i 0.0186464i
\(746\) 122780.i 0.220623i
\(747\) −323905. 131190.i −0.580465 0.235103i
\(748\) 89816.5 572721.i 0.160529 1.02362i
\(749\) 406595.i 0.724766i
\(750\) 81952.1 55226.2i 0.145693 0.0981800i
\(751\) 706267.i 1.25224i −0.779725 0.626122i \(-0.784641\pi\)
0.779725 0.626122i \(-0.215359\pi\)
\(752\) 302042.i 0.534111i
\(753\) 633101. 426637.i 1.11656 0.752434i
\(754\) 73128.2i 0.128630i
\(755\) 21760.8 0.0381752
\(756\) −107244. 507759.i −0.187642 0.888410i
\(757\) −607747. −1.06055 −0.530275 0.847826i \(-0.677911\pi\)
−0.530275 + 0.847826i \(0.677911\pi\)
\(758\) 92070.1 0.160243
\(759\) −630886. 936193.i −1.09513 1.62511i
\(760\) 132627.i 0.229617i
\(761\) 634919.i 1.09635i 0.836364 + 0.548174i \(0.184677\pi\)
−0.836364 + 0.548174i \(0.815323\pi\)
\(762\) −396290. + 267054.i −0.682501 + 0.459927i
\(763\) −1.14750e6 −1.97108
\(764\) 706284.i 1.21002i
\(765\) −92869.4 55717.7i −0.158690 0.0952073i
\(766\) −52265.6 −0.0890755
\(767\) 402071.i 0.683459i
\(768\) −198504. 294567.i −0.336548 0.499415i
\(769\) 178949. 0.302605 0.151302 0.988488i \(-0.451653\pi\)
0.151302 + 0.988488i \(0.451653\pi\)
\(770\) −84795.5 −0.143018
\(771\) −487159. + 328289.i −0.819524 + 0.552264i
\(772\) 624738.i 1.04825i
\(773\) 781464.i 1.30783i 0.756570 + 0.653913i \(0.226874\pi\)
−0.756570 + 0.653913i \(0.773126\pi\)
\(774\) 209761. + 84958.7i 0.350141 + 0.141816i
\(775\) 385000.i 0.640999i
\(776\) −232367. −0.385879
\(777\) 343861. + 510268.i 0.569562 + 0.845193i
\(778\) −26540.6 −0.0438482
\(779\) −682407. −1.12452
\(780\) 23388.4 + 34706.8i 0.0384424 + 0.0570460i
\(781\) 199361. 0.326842
\(782\) 423120. + 66355.5i 0.691911 + 0.108508i
\(783\) 329563. 69607.3i 0.537545 0.113535i
\(784\) −87718.7 −0.142712
\(785\) −19564.0 −0.0317481
\(786\) 3133.90 2111.88i 0.00507271 0.00341842i
\(787\) 669529.i 1.08099i −0.841349 0.540493i \(-0.818238\pi\)
0.841349 0.540493i \(-0.181762\pi\)
\(788\) −206050. −0.331833
\(789\) −377740. + 254553.i −0.606791 + 0.408907i
\(790\) −23165.7 −0.0371186
\(791\) 1.31407e6i 2.10022i
\(792\) 670340. + 271505.i 1.06867 + 0.432840i
\(793\) 295661.i 0.470162i
\(794\) −379350. −0.601727
\(795\) −8882.32 + 5985.65i −0.0140537 + 0.00947059i
\(796\) 221923.i 0.350249i
\(797\) 295124.i 0.464610i −0.972643 0.232305i \(-0.925373\pi\)
0.972643 0.232305i \(-0.0746267\pi\)
\(798\) 295961. + 439186.i 0.464760 + 0.689673i
\(799\) −949727. 148940.i −1.48767 0.233302i
\(800\) 633254.i 0.989459i
\(801\) −82240.2 33309.4i −0.128180 0.0519160i
\(802\) 269960.i 0.419711i
\(803\) 1.22371e6i 1.89778i
\(804\) 100994. + 149869.i 0.156237 + 0.231846i
\(805\) 205949.i 0.317811i
\(806\) 100951. 0.155397
\(807\) −375923. 557845.i −0.577233 0.856576i
\(808\) 141602. 0.216893
\(809\) −473318. −0.723196 −0.361598 0.932334i \(-0.617769\pi\)
−0.361598 + 0.932334i \(0.617769\pi\)
\(810\) 40805.7 42110.6i 0.0621944 0.0641832i
\(811\) 88499.7i 0.134555i 0.997734 + 0.0672775i \(0.0214313\pi\)
−0.997734 + 0.0672775i \(0.978569\pi\)
\(812\) 328924.i 0.498865i
\(813\) 208747. + 309767.i 0.315820 + 0.468657i
\(814\) −372158. −0.561666
\(815\) 112874.i 0.169933i
\(816\) 213937. 100045.i 0.321296 0.150250i
\(817\) 759262. 1.13749
\(818\) 392763.i 0.586981i
\(819\) 356914. + 144559.i 0.532104 + 0.215516i
\(820\) 73782.4 0.109730
\(821\) 610628. 0.905921 0.452960 0.891531i \(-0.350368\pi\)
0.452960 + 0.891531i \(0.350368\pi\)
\(822\) 195793. + 290544.i 0.289770 + 0.429999i
\(823\) 9305.04i 0.0137378i −0.999976 0.00686892i \(-0.997814\pi\)
0.999976 0.00686892i \(-0.00218646\pi\)
\(824\) 415594.i 0.612089i
\(825\) −496378. 736593.i −0.729298 1.08223i
\(826\) 550106.i 0.806281i
\(827\) 402805. 0.588957 0.294478 0.955658i \(-0.404854\pi\)
0.294478 + 0.955658i \(0.404854\pi\)
\(828\) 286186. 706587.i 0.417434 1.03064i
\(829\) 474627. 0.690627 0.345313 0.938487i \(-0.387773\pi\)
0.345313 + 0.938487i \(0.387773\pi\)
\(830\) −38559.0 −0.0559719
\(831\) 176675. 119059.i 0.255843 0.172408i
\(832\) 47017.8 0.0679228
\(833\) −43255.0 + 275818.i −0.0623371 + 0.397496i
\(834\) −216289. 320959.i −0.310959 0.461443i
\(835\) 252413. 0.362025
\(836\) 1.05304e6 1.50672
\(837\) 96090.7 + 454952.i 0.137161 + 0.649403i
\(838\) 453619.i 0.645956i
\(839\) 533860. 0.758408 0.379204 0.925313i \(-0.376198\pi\)
0.379204 + 0.925313i \(0.376198\pi\)
\(840\) −73732.7 109414.i −0.104496 0.155066i
\(841\) −493791. −0.698155
\(842\) 373575.i 0.526932i
\(843\) −632385. + 426154.i −0.889870 + 0.599669i
\(844\) 432784.i 0.607556i
\(845\) 101082. 0.141567
\(846\) 195396. 482430.i 0.273008 0.674052i
\(847\) 701763.i 0.978191i
\(848\) 23357.3i 0.0324812i
\(849\) 826965. 557278.i 1.14729 0.773137i
\(850\) 332909. + 52208.2i 0.460774 + 0.0722605i
\(851\) 903888.i 1.24812i
\(852\) 75233.2 + 111641.i 0.103641 + 0.153796i
\(853\) 263569.i 0.362240i −0.983461 0.181120i \(-0.942028\pi\)
0.983461 0.181120i \(-0.0579722\pi\)
\(854\) 404518.i 0.554654i
\(855\) 73851.2 182337.i 0.101024 0.249427i
\(856\) 382642.i 0.522210i
\(857\) 444768. 0.605580 0.302790 0.953057i \(-0.402082\pi\)
0.302790 + 0.953057i \(0.402082\pi\)
\(858\) −193143. + 130156.i −0.262364 + 0.176803i
\(859\) 83933.7 0.113750 0.0568748 0.998381i \(-0.481886\pi\)
0.0568748 + 0.998381i \(0.481886\pi\)
\(860\) −82092.0 −0.110995
\(861\) 562973. 379378.i 0.759418 0.511760i
\(862\) 37872.7i 0.0509696i
\(863\) 632283.i 0.848965i 0.905436 + 0.424482i \(0.139544\pi\)
−0.905436 + 0.424482i \(0.860456\pi\)
\(864\) 158051. + 748311.i 0.211724 + 1.00243i
\(865\) −101115. −0.135140
\(866\) 452353.i 0.603173i
\(867\) −209083. 722025.i −0.278150 0.960538i
\(868\) 454069. 0.602674
\(869\) 423814.i 0.561224i
\(870\) 30820.5 20769.4i 0.0407194 0.0274401i
\(871\) −134099. −0.176763
\(872\) 1.07990e6 1.42020
\(873\) 319462. + 129390.i 0.419170 + 0.169774i
\(874\) 777975.i 1.01846i
\(875\) 329826.i 0.430793i
\(876\) 685271. 461793.i 0.893005 0.601782i
\(877\) 124932.i 0.162433i 0.996696 + 0.0812166i \(0.0258805\pi\)
−0.996696 + 0.0812166i \(0.974119\pi\)
\(878\) −516497. −0.670006
\(879\) −483393. + 325751.i −0.625637 + 0.421607i
\(880\) −68688.0 −0.0886984
\(881\) −95751.6 −0.123366 −0.0616828 0.998096i \(-0.519647\pi\)
−0.0616828 + 0.998096i \(0.519647\pi\)
\(882\) −140107. 56746.8i −0.180103 0.0729464i
\(883\) −1.06600e6 −1.36722 −0.683608 0.729849i \(-0.739590\pi\)
−0.683608 + 0.729849i \(0.739590\pi\)
\(884\) −45004.5 + 286974.i −0.0575906 + 0.367230i
\(885\) 169456. 114194.i 0.216357 0.145800i
\(886\) 272540. 0.347187
\(887\) 376657. 0.478740 0.239370 0.970928i \(-0.423059\pi\)
0.239370 + 0.970928i \(0.423059\pi\)
\(888\) −323604. 480208.i −0.410382 0.608980i
\(889\) 1.59492e6i 2.01806i
\(890\) −9790.23 −0.0123598
\(891\) −770410. 746537.i −0.970435 0.940364i
\(892\) −636334. −0.799752
\(893\) 1.74623e6i 2.18977i
\(894\) −21734.1 32252.0i −0.0271936 0.0403536i
\(895\) 66478.4i 0.0829916i
\(896\) 909711. 1.13315
\(897\) 316119. + 469100.i 0.392885 + 0.583016i
\(898\) 234109.i 0.290312i
\(899\) 294716.i 0.364656i
\(900\) 225170. 555940.i 0.277987 0.686346i
\(901\) −73443.7 11517.8i −0.0904701 0.0141879i
\(902\) 410598.i 0.504665i
\(903\) −626376. + 422105.i −0.768174 + 0.517660i
\(904\) 1.23665e6i 1.51325i
\(905\) 274026.i 0.334576i
\(906\) −67814.7 + 45699.2i −0.0826166 + 0.0556740i
\(907\) 295686.i 0.359432i −0.983719 0.179716i \(-0.942482\pi\)
0.983719 0.179716i \(-0.0575179\pi\)
\(908\) −1.03864e6 −1.25978
\(909\) −194676. 78848.6i −0.235605 0.0954259i
\(910\) 42488.6 0.0513086
\(911\) −1.13846e6 −1.37177 −0.685883 0.727712i \(-0.740584\pi\)
−0.685883 + 0.727712i \(0.740584\pi\)
\(912\) 239741. + 355760.i 0.288239 + 0.427728i
\(913\) 705434.i 0.846281i
\(914\) 333576.i 0.399303i
\(915\) 124609. 83971.8i 0.148835 0.100298i
\(916\) 861479. 1.02672
\(917\) 12612.8i 0.0149993i
\(918\) 406427. 21395.4i 0.482277 0.0253884i
\(919\) −949089. −1.12377 −0.561883 0.827217i \(-0.689923\pi\)
−0.561883 + 0.827217i \(0.689923\pi\)
\(920\) 193817.i 0.228990i
\(921\) 395752. + 587270.i 0.466556 + 0.692338i
\(922\) 420204. 0.494309
\(923\) −99894.0 −0.117256
\(924\) −868737. + 585428.i −1.01752 + 0.685693i
\(925\) 711175.i 0.831176i
\(926\) 365252.i 0.425962i
\(927\) −231417. + 571364.i −0.269300 + 0.664896i
\(928\) 484752.i 0.562890i
\(929\) 503990. 0.583970 0.291985 0.956423i \(-0.405684\pi\)
0.291985 + 0.956423i \(0.405684\pi\)
\(930\) 28671.6 + 42546.7i 0.0331501 + 0.0491927i
\(931\) −507137. −0.585094
\(932\) 444053. 0.511214
\(933\) 489013. + 725664.i 0.561769 + 0.833628i
\(934\) −635440. −0.728419
\(935\) −33870.8 + 215979.i −0.0387438 + 0.247052i
\(936\) −335889. 136043.i −0.383392 0.155284i
\(937\) −333432. −0.379776 −0.189888 0.981806i \(-0.560812\pi\)
−0.189888 + 0.981806i \(0.560812\pi\)
\(938\) 183472. 0.208528
\(939\) −654111. + 440795.i −0.741858 + 0.499926i
\(940\) 188803.i 0.213675i
\(941\) −1.38397e6 −1.56295 −0.781477 0.623934i \(-0.785533\pi\)
−0.781477 + 0.623934i \(0.785533\pi\)
\(942\) 60968.6 41085.7i 0.0687075 0.0463009i
\(943\) 997250. 1.12145
\(944\) 445610.i 0.500047i
\(945\) 40442.9 + 191481.i 0.0452876 + 0.214419i
\(946\) 456840.i 0.510484i
\(947\) −1.38608e6 −1.54556 −0.772782 0.634672i \(-0.781135\pi\)
−0.772782 + 0.634672i \(0.781135\pi\)
\(948\) −237334. + 159936.i −0.264085 + 0.177963i
\(949\) 613165.i 0.680839i
\(950\) 612107.i 0.678235i
\(951\) −392491. 582432.i −0.433979 0.643997i
\(952\) 141878. 904697.i 0.156546 0.998227i
\(953\) 547126.i 0.602423i −0.953557 0.301211i \(-0.902609\pi\)
0.953557 0.301211i \(-0.0973910\pi\)
\(954\) 15110.3 37307.0i 0.0166026 0.0409915i
\(955\) 266348.i 0.292040i
\(956\) 408944.i 0.447454i
\(957\) −379975. 563858.i −0.414888 0.615667i
\(958\) 367334.i 0.400249i
\(959\) −1.16933e6 −1.27145
\(960\) 13353.7 + 19816.0i 0.0144897 + 0.0215018i
\(961\) 516675. 0.559462
\(962\) 186478. 0.201501
\(963\) 213068. 526061.i 0.229756 0.567262i
\(964\) 48714.2i 0.0524206i
\(965\) 235596.i 0.252995i
\(966\) −432508. 641814.i −0.463490 0.687788i
\(967\) 508950. 0.544279 0.272140 0.962258i \(-0.412269\pi\)
0.272140 + 0.962258i \(0.412269\pi\)
\(968\) 660422.i 0.704808i
\(969\) 1.23685e6 578401.i 1.31726 0.616001i
\(970\) 38030.1 0.0404188
\(971\) 1.17767e6i 1.24907i −0.780997 0.624534i \(-0.785289\pi\)
0.780997 0.624534i \(-0.214711\pi\)
\(972\) 127327. 713149.i 0.134768 0.754828i
\(973\) 1.29174e6 1.36442
\(974\) 413855. 0.436245
\(975\) 248721. + 369086.i 0.261640 + 0.388256i
\(976\) 327677.i 0.343990i
\(977\) 1.47205e6i 1.54217i −0.636731 0.771086i \(-0.719714\pi\)
0.636731 0.771086i \(-0.280286\pi\)
\(978\) 237043. + 351756.i 0.247827 + 0.367759i
\(979\) 179111.i 0.186878i
\(980\) 54832.0 0.0570929
\(981\) −1.48466e6 601326.i −1.54273 0.624844i
\(982\) 361266. 0.374632
\(983\) −80357.7 −0.0831611 −0.0415806 0.999135i \(-0.513239\pi\)
−0.0415806 + 0.999135i \(0.513239\pi\)
\(984\) −529808. + 357029.i −0.547178 + 0.368734i
\(985\) 77703.6 0.0800882
\(986\) 254840. + 39965.1i 0.262128 + 0.0411081i
\(987\) 970799. + 1.44060e6i 0.996541 + 1.47880i
\(988\) −527649. −0.540544
\(989\) −1.10956e6 −1.13438
\(990\) −109710. 44435.5i −0.111938 0.0453377i
\(991\) 1.79395e6i 1.82669i −0.407192 0.913343i \(-0.633492\pi\)
0.407192 0.913343i \(-0.366508\pi\)
\(992\) −669185. −0.680022
\(993\) 788970. + 1.17078e6i 0.800133 + 1.18734i
\(994\) 136673. 0.138328
\(995\) 83689.8i 0.0845330i
\(996\) −395040. + 266211.i −0.398220 + 0.268354i
\(997\) 562411.i 0.565800i 0.959149 + 0.282900i \(0.0912965\pi\)
−0.959149 + 0.282900i \(0.908703\pi\)
\(998\) 15079.6 0.0151401
\(999\) 177499. + 840390.i 0.177855 + 0.842073i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 51.5.c.c.50.10 yes 20
3.2 odd 2 inner 51.5.c.c.50.11 yes 20
17.16 even 2 inner 51.5.c.c.50.9 20
51.50 odd 2 inner 51.5.c.c.50.12 yes 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
51.5.c.c.50.9 20 17.16 even 2 inner
51.5.c.c.50.10 yes 20 1.1 even 1 trivial
51.5.c.c.50.11 yes 20 3.2 odd 2 inner
51.5.c.c.50.12 yes 20 51.50 odd 2 inner