Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [510,2,Mod(137,510)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(510, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([2, 1, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("510.137");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 510 = 2 \cdot 3 \cdot 5 \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 510.l (of order \(4\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(4.07237050309\) |
Analytic rank: | \(0\) |
Dimension: | \(28\) |
Relative dimension: | \(14\) over \(\Q(i)\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{4}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
137.1 | −0.707107 | + | 0.707107i | −1.70258 | − | 0.318145i | − | 1.00000i | 2.18694 | − | 0.466155i | 1.42887 | − | 0.978944i | −2.68155 | − | 2.68155i | 0.707107 | + | 0.707107i | 2.79757 | + | 1.08334i | −1.21678 | + | 1.87602i | |
137.2 | −0.707107 | + | 0.707107i | −1.58179 | + | 0.705653i | − | 1.00000i | −2.23394 | + | 0.0974809i | 0.619522 | − | 1.61746i | −3.25954 | − | 3.25954i | 0.707107 | + | 0.707107i | 2.00411 | − | 2.23239i | 1.51071 | − | 1.64857i | |
137.3 | −0.707107 | + | 0.707107i | −1.26117 | − | 1.18720i | − | 1.00000i | −2.17027 | + | 0.538469i | 1.73126 | − | 0.0523066i | 0.908386 | + | 0.908386i | 0.707107 | + | 0.707107i | 0.181113 | + | 2.99453i | 1.15385 | − | 1.91536i | |
137.4 | −0.707107 | + | 0.707107i | 0.209343 | + | 1.71935i | − | 1.00000i | −1.22996 | + | 1.86740i | −1.36379 | − | 1.06774i | 1.96777 | + | 1.96777i | 0.707107 | + | 0.707107i | −2.91235 | + | 0.719870i | −0.450736 | − | 2.19017i | |
137.5 | −0.707107 | + | 0.707107i | 1.33031 | − | 1.10918i | − | 1.00000i | 1.95694 | + | 1.08185i | −0.156362 | + | 1.72498i | 2.14663 | + | 2.14663i | 0.707107 | + | 0.707107i | 0.539441 | − | 2.95110i | −2.14875 | + | 0.618778i | |
137.6 | −0.707107 | + | 0.707107i | 1.44910 | + | 0.948737i | − | 1.00000i | 1.45929 | − | 1.69425i | −1.69553 | + | 0.353812i | 3.19962 | + | 3.19962i | 0.707107 | + | 0.707107i | 1.19980 | + | 2.74963i | 0.166138 | + | 2.22989i | |
137.7 | −0.707107 | + | 0.707107i | 1.55679 | − | 0.759217i | − | 1.00000i | 0.738113 | + | 2.11073i | −0.563968 | + | 1.63766i | −1.28132 | − | 1.28132i | 0.707107 | + | 0.707107i | 1.84718 | − | 2.36388i | −2.01444 | − | 0.970588i | |
137.8 | 0.707107 | − | 0.707107i | −1.71935 | − | 0.209343i | − | 1.00000i | 1.22996 | − | 1.86740i | −1.36379 | + | 1.06774i | 1.96777 | + | 1.96777i | −0.707107 | − | 0.707107i | 2.91235 | + | 0.719870i | −0.450736 | − | 2.19017i | |
137.9 | 0.707107 | − | 0.707107i | −0.948737 | − | 1.44910i | − | 1.00000i | −1.45929 | + | 1.69425i | −1.69553 | − | 0.353812i | 3.19962 | + | 3.19962i | −0.707107 | − | 0.707107i | −1.19980 | + | 2.74963i | 0.166138 | + | 2.22989i | |
137.10 | 0.707107 | − | 0.707107i | −0.705653 | + | 1.58179i | − | 1.00000i | 2.23394 | − | 0.0974809i | 0.619522 | + | 1.61746i | −3.25954 | − | 3.25954i | −0.707107 | − | 0.707107i | −2.00411 | − | 2.23239i | 1.51071 | − | 1.64857i | |
137.11 | 0.707107 | − | 0.707107i | 0.318145 | + | 1.70258i | − | 1.00000i | −2.18694 | + | 0.466155i | 1.42887 | + | 0.978944i | −2.68155 | − | 2.68155i | −0.707107 | − | 0.707107i | −2.79757 | + | 1.08334i | −1.21678 | + | 1.87602i | |
137.12 | 0.707107 | − | 0.707107i | 0.759217 | − | 1.55679i | − | 1.00000i | −0.738113 | − | 2.11073i | −0.563968 | − | 1.63766i | −1.28132 | − | 1.28132i | −0.707107 | − | 0.707107i | −1.84718 | − | 2.36388i | −2.01444 | − | 0.970588i | |
137.13 | 0.707107 | − | 0.707107i | 1.10918 | − | 1.33031i | − | 1.00000i | −1.95694 | − | 1.08185i | −0.156362 | − | 1.72498i | 2.14663 | + | 2.14663i | −0.707107 | − | 0.707107i | −0.539441 | − | 2.95110i | −2.14875 | + | 0.618778i | |
137.14 | 0.707107 | − | 0.707107i | 1.18720 | + | 1.26117i | − | 1.00000i | 2.17027 | − | 0.538469i | 1.73126 | + | 0.0523066i | 0.908386 | + | 0.908386i | −0.707107 | − | 0.707107i | −0.181113 | + | 2.99453i | 1.15385 | − | 1.91536i | |
443.1 | −0.707107 | − | 0.707107i | −1.70258 | + | 0.318145i | 1.00000i | 2.18694 | + | 0.466155i | 1.42887 | + | 0.978944i | −2.68155 | + | 2.68155i | 0.707107 | − | 0.707107i | 2.79757 | − | 1.08334i | −1.21678 | − | 1.87602i | ||
443.2 | −0.707107 | − | 0.707107i | −1.58179 | − | 0.705653i | 1.00000i | −2.23394 | − | 0.0974809i | 0.619522 | + | 1.61746i | −3.25954 | + | 3.25954i | 0.707107 | − | 0.707107i | 2.00411 | + | 2.23239i | 1.51071 | + | 1.64857i | ||
443.3 | −0.707107 | − | 0.707107i | −1.26117 | + | 1.18720i | 1.00000i | −2.17027 | − | 0.538469i | 1.73126 | + | 0.0523066i | 0.908386 | − | 0.908386i | 0.707107 | − | 0.707107i | 0.181113 | − | 2.99453i | 1.15385 | + | 1.91536i | ||
443.4 | −0.707107 | − | 0.707107i | 0.209343 | − | 1.71935i | 1.00000i | −1.22996 | − | 1.86740i | −1.36379 | + | 1.06774i | 1.96777 | − | 1.96777i | 0.707107 | − | 0.707107i | −2.91235 | − | 0.719870i | −0.450736 | + | 2.19017i | ||
443.5 | −0.707107 | − | 0.707107i | 1.33031 | + | 1.10918i | 1.00000i | 1.95694 | − | 1.08185i | −0.156362 | − | 1.72498i | 2.14663 | − | 2.14663i | 0.707107 | − | 0.707107i | 0.539441 | + | 2.95110i | −2.14875 | − | 0.618778i | ||
443.6 | −0.707107 | − | 0.707107i | 1.44910 | − | 0.948737i | 1.00000i | 1.45929 | + | 1.69425i | −1.69553 | − | 0.353812i | 3.19962 | − | 3.19962i | 0.707107 | − | 0.707107i | 1.19980 | − | 2.74963i | 0.166138 | − | 2.22989i | ||
See all 28 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
5.c | odd | 4 | 1 | inner |
15.e | even | 4 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 510.2.l.g | ✓ | 28 |
3.b | odd | 2 | 1 | inner | 510.2.l.g | ✓ | 28 |
5.c | odd | 4 | 1 | inner | 510.2.l.g | ✓ | 28 |
15.e | even | 4 | 1 | inner | 510.2.l.g | ✓ | 28 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
510.2.l.g | ✓ | 28 | 1.a | even | 1 | 1 | trivial |
510.2.l.g | ✓ | 28 | 3.b | odd | 2 | 1 | inner |
510.2.l.g | ✓ | 28 | 5.c | odd | 4 | 1 | inner |
510.2.l.g | ✓ | 28 | 15.e | even | 4 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(510, [\chi])\):
\( T_{7}^{14} - 2 T_{7}^{13} + 2 T_{7}^{12} - 8 T_{7}^{11} + 632 T_{7}^{10} - 1408 T_{7}^{9} + \cdots + 2420000 \) |
\( T_{23}^{28} + 5392 T_{23}^{24} + 7875112 T_{23}^{20} + 2956073312 T_{23}^{16} + 309746053520 T_{23}^{12} + \cdots + 959512576 \) |