Properties

Label 510.2.l.g.137.11
Level $510$
Weight $2$
Character 510.137
Analytic conductor $4.072$
Analytic rank $0$
Dimension $28$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [510,2,Mod(137,510)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(510, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("510.137");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 510 = 2 \cdot 3 \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 510.l (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.07237050309\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 137.11
Character \(\chi\) \(=\) 510.137
Dual form 510.2.l.g.443.11

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.707107 - 0.707107i) q^{2} +(0.318145 + 1.70258i) q^{3} -1.00000i q^{4} +(-2.18694 + 0.466155i) q^{5} +(1.42887 + 0.978944i) q^{6} +(-2.68155 - 2.68155i) q^{7} +(-0.707107 - 0.707107i) q^{8} +(-2.79757 + 1.08334i) q^{9} +(-1.21678 + 1.87602i) q^{10} +4.10569i q^{11} +(1.70258 - 0.318145i) q^{12} +(-4.65342 + 4.65342i) q^{13} -3.79229 q^{14} +(-1.48943 - 3.57514i) q^{15} -1.00000 q^{16} +(0.707107 - 0.707107i) q^{17} +(-1.21214 + 2.74421i) q^{18} +2.50536i q^{19} +(0.466155 + 2.18694i) q^{20} +(3.71243 - 5.41868i) q^{21} +(2.90316 + 2.90316i) q^{22} +(-0.106861 - 0.106861i) q^{23} +(0.978944 - 1.42887i) q^{24} +(4.56540 - 2.03890i) q^{25} +6.58093i q^{26} +(-2.73450 - 4.41843i) q^{27} +(-2.68155 + 2.68155i) q^{28} +5.15029 q^{29} +(-3.58119 - 1.47482i) q^{30} -9.65153 q^{31} +(-0.707107 + 0.707107i) q^{32} +(-6.99028 + 1.30621i) q^{33} -1.00000i q^{34} +(7.11440 + 4.61437i) q^{35} +(1.08334 + 2.79757i) q^{36} +(-6.88398 - 6.88398i) q^{37} +(1.77156 + 1.77156i) q^{38} +(-9.40330 - 6.44237i) q^{39} +(1.87602 + 1.21678i) q^{40} +2.12724i q^{41} +(-1.20650 - 6.45667i) q^{42} +(4.80824 - 4.80824i) q^{43} +4.10569 q^{44} +(5.61310 - 3.67329i) q^{45} -0.151124 q^{46} +(3.75510 - 3.75510i) q^{47} +(-0.318145 - 1.70258i) q^{48} +7.38143i q^{49} +(1.78650 - 4.66995i) q^{50} +(1.42887 + 0.978944i) q^{51} +(4.65342 + 4.65342i) q^{52} +(3.13924 + 3.13924i) q^{53} +(-5.05789 - 1.19071i) q^{54} +(-1.91389 - 8.97890i) q^{55} +3.79229i q^{56} +(-4.26558 + 0.797070i) q^{57} +(3.64180 - 3.64180i) q^{58} +3.38536 q^{59} +(-3.57514 + 1.48943i) q^{60} -4.42559 q^{61} +(-6.82466 + 6.82466i) q^{62} +(10.4068 + 4.59679i) q^{63} +1.00000i q^{64} +(8.00753 - 12.3460i) q^{65} +(-4.01925 + 5.86650i) q^{66} +(7.73282 + 7.73282i) q^{67} +(-0.707107 - 0.707107i) q^{68} +(0.147942 - 0.215937i) q^{69} +(8.29349 - 1.76779i) q^{70} +12.4321i q^{71} +(2.74421 + 1.21214i) q^{72} +(-2.67504 + 2.67504i) q^{73} -9.73542 q^{74} +(4.92386 + 7.12430i) q^{75} +2.50536 q^{76} +(11.0096 - 11.0096i) q^{77} +(-11.2046 + 2.09369i) q^{78} +8.13948i q^{79} +(2.18694 - 0.466155i) q^{80} +(6.65276 - 6.06142i) q^{81} +(1.50419 + 1.50419i) q^{82} +(3.24742 + 3.24742i) q^{83} +(-5.41868 - 3.71243i) q^{84} +(-1.21678 + 1.87602i) q^{85} -6.79988i q^{86} +(1.63854 + 8.76878i) q^{87} +(2.90316 - 2.90316i) q^{88} -12.9925 q^{89} +(1.37165 - 6.56647i) q^{90} +24.9568 q^{91} +(-0.106861 + 0.106861i) q^{92} +(-3.07059 - 16.4325i) q^{93} -5.31052i q^{94} +(-1.16789 - 5.47907i) q^{95} +(-1.42887 - 0.978944i) q^{96} +(-5.96585 - 5.96585i) q^{97} +(5.21946 + 5.21946i) q^{98} +(-4.44785 - 11.4860i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q + 4 q^{7} - 12 q^{10} - 8 q^{13} + 8 q^{15} - 28 q^{16} - 16 q^{18} + 48 q^{21} + 20 q^{22} + 40 q^{25} - 36 q^{27} + 4 q^{28} - 12 q^{30} + 16 q^{31} + 8 q^{33} + 8 q^{37} - 8 q^{40} - 48 q^{42} + 48 q^{43}+ \cdots + 60 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/510\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(307\) \(341\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.707107 0.707107i 0.500000 0.500000i
\(3\) 0.318145 + 1.70258i 0.183681 + 0.982986i
\(4\) 1.00000i 0.500000i
\(5\) −2.18694 + 0.466155i −0.978029 + 0.208471i
\(6\) 1.42887 + 0.978944i 0.583334 + 0.399652i
\(7\) −2.68155 2.68155i −1.01353 1.01353i −0.999907 0.0136237i \(-0.995663\pi\)
−0.0136237 0.999907i \(-0.504337\pi\)
\(8\) −0.707107 0.707107i −0.250000 0.250000i
\(9\) −2.79757 + 1.08334i −0.932522 + 0.361112i
\(10\) −1.21678 + 1.87602i −0.384779 + 0.593250i
\(11\) 4.10569i 1.23791i 0.785425 + 0.618957i \(0.212444\pi\)
−0.785425 + 0.618957i \(0.787556\pi\)
\(12\) 1.70258 0.318145i 0.491493 0.0918407i
\(13\) −4.65342 + 4.65342i −1.29063 + 1.29063i −0.356228 + 0.934399i \(0.615937\pi\)
−0.934399 + 0.356228i \(0.884063\pi\)
\(14\) −3.79229 −1.01353
\(15\) −1.48943 3.57514i −0.384569 0.923096i
\(16\) −1.00000 −0.250000
\(17\) 0.707107 0.707107i 0.171499 0.171499i
\(18\) −1.21214 + 2.74421i −0.285705 + 0.646817i
\(19\) 2.50536i 0.574769i 0.957815 + 0.287385i \(0.0927858\pi\)
−0.957815 + 0.287385i \(0.907214\pi\)
\(20\) 0.466155 + 2.18694i 0.104235 + 0.489014i
\(21\) 3.71243 5.41868i 0.810120 1.18245i
\(22\) 2.90316 + 2.90316i 0.618957 + 0.618957i
\(23\) −0.106861 0.106861i −0.0222820 0.0222820i 0.695878 0.718160i \(-0.255015\pi\)
−0.718160 + 0.695878i \(0.755015\pi\)
\(24\) 0.978944 1.42887i 0.199826 0.291667i
\(25\) 4.56540 2.03890i 0.913080 0.407781i
\(26\) 6.58093i 1.29063i
\(27\) −2.73450 4.41843i −0.526255 0.850327i
\(28\) −2.68155 + 2.68155i −0.506765 + 0.506765i
\(29\) 5.15029 0.956384 0.478192 0.878255i \(-0.341292\pi\)
0.478192 + 0.878255i \(0.341292\pi\)
\(30\) −3.58119 1.47482i −0.653833 0.269263i
\(31\) −9.65153 −1.73347 −0.866733 0.498772i \(-0.833785\pi\)
−0.866733 + 0.498772i \(0.833785\pi\)
\(32\) −0.707107 + 0.707107i −0.125000 + 0.125000i
\(33\) −6.99028 + 1.30621i −1.21685 + 0.227382i
\(34\) 1.00000i 0.171499i
\(35\) 7.11440 + 4.61437i 1.20255 + 0.779971i
\(36\) 1.08334 + 2.79757i 0.180556 + 0.466261i
\(37\) −6.88398 6.88398i −1.13172 1.13172i −0.989891 0.141828i \(-0.954702\pi\)
−0.141828 0.989891i \(-0.545298\pi\)
\(38\) 1.77156 + 1.77156i 0.287385 + 0.287385i
\(39\) −9.40330 6.44237i −1.50573 1.03160i
\(40\) 1.87602 + 1.21678i 0.296625 + 0.192389i
\(41\) 2.12724i 0.332220i 0.986107 + 0.166110i \(0.0531206\pi\)
−0.986107 + 0.166110i \(0.946879\pi\)
\(42\) −1.20650 6.45667i −0.186167 0.996286i
\(43\) 4.80824 4.80824i 0.733250 0.733250i −0.238012 0.971262i \(-0.576496\pi\)
0.971262 + 0.238012i \(0.0764958\pi\)
\(44\) 4.10569 0.618957
\(45\) 5.61310 3.67329i 0.836752 0.547582i
\(46\) −0.151124 −0.0222820
\(47\) 3.75510 3.75510i 0.547738 0.547738i −0.378048 0.925786i \(-0.623405\pi\)
0.925786 + 0.378048i \(0.123405\pi\)
\(48\) −0.318145 1.70258i −0.0459203 0.245746i
\(49\) 7.38143i 1.05449i
\(50\) 1.78650 4.66995i 0.252650 0.660430i
\(51\) 1.42887 + 0.978944i 0.200082 + 0.137080i
\(52\) 4.65342 + 4.65342i 0.645314 + 0.645314i
\(53\) 3.13924 + 3.13924i 0.431208 + 0.431208i 0.889039 0.457831i \(-0.151374\pi\)
−0.457831 + 0.889039i \(0.651374\pi\)
\(54\) −5.05789 1.19071i −0.688291 0.162036i
\(55\) −1.91389 8.97890i −0.258069 1.21071i
\(56\) 3.79229i 0.506765i
\(57\) −4.26558 + 0.797070i −0.564990 + 0.105574i
\(58\) 3.64180 3.64180i 0.478192 0.478192i
\(59\) 3.38536 0.440736 0.220368 0.975417i \(-0.429274\pi\)
0.220368 + 0.975417i \(0.429274\pi\)
\(60\) −3.57514 + 1.48943i −0.461548 + 0.192285i
\(61\) −4.42559 −0.566638 −0.283319 0.959026i \(-0.591436\pi\)
−0.283319 + 0.959026i \(0.591436\pi\)
\(62\) −6.82466 + 6.82466i −0.866733 + 0.866733i
\(63\) 10.4068 + 4.59679i 1.31114 + 0.579142i
\(64\) 1.00000i 0.125000i
\(65\) 8.00753 12.3460i 0.993212 1.53133i
\(66\) −4.01925 + 5.86650i −0.494735 + 0.722117i
\(67\) 7.73282 + 7.73282i 0.944714 + 0.944714i 0.998550 0.0538356i \(-0.0171447\pi\)
−0.0538356 + 0.998550i \(0.517145\pi\)
\(68\) −0.707107 0.707107i −0.0857493 0.0857493i
\(69\) 0.147942 0.215937i 0.0178101 0.0259957i
\(70\) 8.29349 1.76779i 0.991262 0.211292i
\(71\) 12.4321i 1.47542i 0.675117 + 0.737711i \(0.264093\pi\)
−0.675117 + 0.737711i \(0.735907\pi\)
\(72\) 2.74421 + 1.21214i 0.323409 + 0.142852i
\(73\) −2.67504 + 2.67504i −0.313090 + 0.313090i −0.846106 0.533015i \(-0.821059\pi\)
0.533015 + 0.846106i \(0.321059\pi\)
\(74\) −9.73542 −1.13172
\(75\) 4.92386 + 7.12430i 0.568558 + 0.822643i
\(76\) 2.50536 0.287385
\(77\) 11.0096 11.0096i 1.25466 1.25466i
\(78\) −11.2046 + 2.09369i −1.26867 + 0.237064i
\(79\) 8.13948i 0.915764i 0.889013 + 0.457882i \(0.151392\pi\)
−0.889013 + 0.457882i \(0.848608\pi\)
\(80\) 2.18694 0.466155i 0.244507 0.0521177i
\(81\) 6.65276 6.06142i 0.739196 0.673491i
\(82\) 1.50419 + 1.50419i 0.166110 + 0.166110i
\(83\) 3.24742 + 3.24742i 0.356450 + 0.356450i 0.862503 0.506052i \(-0.168896\pi\)
−0.506052 + 0.862503i \(0.668896\pi\)
\(84\) −5.41868 3.71243i −0.591227 0.405060i
\(85\) −1.21678 + 1.87602i −0.131978 + 0.203483i
\(86\) 6.79988i 0.733250i
\(87\) 1.63854 + 8.76878i 0.175670 + 0.940112i
\(88\) 2.90316 2.90316i 0.309478 0.309478i
\(89\) −12.9925 −1.37720 −0.688602 0.725140i \(-0.741775\pi\)
−0.688602 + 0.725140i \(0.741775\pi\)
\(90\) 1.37165 6.56647i 0.144585 0.692167i
\(91\) 24.9568 2.61618
\(92\) −0.106861 + 0.106861i −0.0111410 + 0.0111410i
\(93\) −3.07059 16.4325i −0.318406 1.70397i
\(94\) 5.31052i 0.547738i
\(95\) −1.16789 5.47907i −0.119823 0.562141i
\(96\) −1.42887 0.978944i −0.145833 0.0999131i
\(97\) −5.96585 5.96585i −0.605740 0.605740i 0.336090 0.941830i \(-0.390896\pi\)
−0.941830 + 0.336090i \(0.890896\pi\)
\(98\) 5.21946 + 5.21946i 0.527245 + 0.527245i
\(99\) −4.44785 11.4860i −0.447026 1.15438i
\(100\) −2.03890 4.56540i −0.203890 0.456540i
\(101\) 1.25938i 0.125313i 0.998035 + 0.0626563i \(0.0199572\pi\)
−0.998035 + 0.0626563i \(0.980043\pi\)
\(102\) 1.70258 0.318145i 0.168581 0.0315011i
\(103\) −5.47938 + 5.47938i −0.539900 + 0.539900i −0.923499 0.383600i \(-0.874684\pi\)
0.383600 + 0.923499i \(0.374684\pi\)
\(104\) 6.58093 0.645314
\(105\) −5.59292 + 13.5809i −0.545813 + 1.32536i
\(106\) 4.43956 0.431208
\(107\) −0.869345 + 0.869345i −0.0840427 + 0.0840427i −0.747878 0.663836i \(-0.768927\pi\)
0.663836 + 0.747878i \(0.268927\pi\)
\(108\) −4.41843 + 2.73450i −0.425163 + 0.263128i
\(109\) 8.86411i 0.849027i 0.905422 + 0.424514i \(0.139555\pi\)
−0.905422 + 0.424514i \(0.860445\pi\)
\(110\) −7.70237 4.99572i −0.734392 0.476323i
\(111\) 9.53043 13.9106i 0.904588 1.32034i
\(112\) 2.68155 + 2.68155i 0.253383 + 0.253383i
\(113\) −0.684800 0.684800i −0.0644205 0.0644205i 0.674163 0.738583i \(-0.264505\pi\)
−0.738583 + 0.674163i \(0.764505\pi\)
\(114\) −2.45261 + 3.57984i −0.229708 + 0.335282i
\(115\) 0.283512 + 0.183884i 0.0264376 + 0.0171473i
\(116\) 5.15029i 0.478192i
\(117\) 7.97704 18.0595i 0.737477 1.66960i
\(118\) 2.39381 2.39381i 0.220368 0.220368i
\(119\) −3.79229 −0.347638
\(120\) −1.47482 + 3.58119i −0.134632 + 0.326916i
\(121\) −5.85673 −0.532430
\(122\) −3.12936 + 3.12936i −0.283319 + 0.283319i
\(123\) −3.62180 + 0.676773i −0.326567 + 0.0610225i
\(124\) 9.65153i 0.866733i
\(125\) −9.03380 + 6.58714i −0.808008 + 0.589172i
\(126\) 10.6092 4.10832i 0.945140 0.365999i
\(127\) −1.70292 1.70292i −0.151110 0.151110i 0.627504 0.778614i \(-0.284077\pi\)
−0.778614 + 0.627504i \(0.784077\pi\)
\(128\) 0.707107 + 0.707107i 0.0625000 + 0.0625000i
\(129\) 9.71614 + 6.65670i 0.855459 + 0.586090i
\(130\) −3.06773 14.3921i −0.269058 1.26227i
\(131\) 5.59261i 0.488629i 0.969696 + 0.244314i \(0.0785629\pi\)
−0.969696 + 0.244314i \(0.921437\pi\)
\(132\) 1.30621 + 6.99028i 0.113691 + 0.608426i
\(133\) 6.71825 6.71825i 0.582547 0.582547i
\(134\) 10.9359 0.944714
\(135\) 8.03986 + 8.38813i 0.691961 + 0.721935i
\(136\) −1.00000 −0.0857493
\(137\) −11.7917 + 11.7917i −1.00743 + 1.00743i −0.00745772 + 0.999972i \(0.502374\pi\)
−0.999972 + 0.00745772i \(0.997626\pi\)
\(138\) −0.0480794 0.257301i −0.00409279 0.0219029i
\(139\) 6.47789i 0.549448i 0.961523 + 0.274724i \(0.0885864\pi\)
−0.961523 + 0.274724i \(0.911414\pi\)
\(140\) 4.61437 7.11440i 0.389985 0.601277i
\(141\) 7.58804 + 5.19870i 0.639028 + 0.437809i
\(142\) 8.79084 + 8.79084i 0.737711 + 0.737711i
\(143\) −19.1055 19.1055i −1.59768 1.59768i
\(144\) 2.79757 1.08334i 0.233131 0.0902781i
\(145\) −11.2634 + 2.40083i −0.935371 + 0.199378i
\(146\) 3.78308i 0.313090i
\(147\) −12.5675 + 2.34837i −1.03655 + 0.193690i
\(148\) −6.88398 + 6.88398i −0.565860 + 0.565860i
\(149\) −0.129049 −0.0105721 −0.00528607 0.999986i \(-0.501683\pi\)
−0.00528607 + 0.999986i \(0.501683\pi\)
\(150\) 8.51933 + 1.55594i 0.695601 + 0.127042i
\(151\) 2.28103 0.185627 0.0928137 0.995683i \(-0.470414\pi\)
0.0928137 + 0.995683i \(0.470414\pi\)
\(152\) 1.77156 1.77156i 0.143692 0.143692i
\(153\) −1.21214 + 2.74421i −0.0979960 + 0.221857i
\(154\) 15.5700i 1.25466i
\(155\) 21.1073 4.49911i 1.69538 0.361377i
\(156\) −6.44237 + 9.40330i −0.515802 + 0.752866i
\(157\) −15.2974 15.2974i −1.22086 1.22086i −0.967326 0.253537i \(-0.918406\pi\)
−0.253537 0.967326i \(-0.581594\pi\)
\(158\) 5.75548 + 5.75548i 0.457882 + 0.457882i
\(159\) −4.34608 + 6.34355i −0.344666 + 0.503076i
\(160\) 1.21678 1.87602i 0.0961947 0.148312i
\(161\) 0.573105i 0.0451670i
\(162\) 0.418144 8.99028i 0.0328525 0.706343i
\(163\) −4.78667 + 4.78667i −0.374921 + 0.374921i −0.869266 0.494345i \(-0.835408\pi\)
0.494345 + 0.869266i \(0.335408\pi\)
\(164\) 2.12724 0.166110
\(165\) 14.6784 6.11515i 1.14271 0.476064i
\(166\) 4.59254 0.356450
\(167\) −0.157313 + 0.157313i −0.0121732 + 0.0121732i −0.713167 0.700994i \(-0.752740\pi\)
0.700994 + 0.713167i \(0.252740\pi\)
\(168\) −6.45667 + 1.20650i −0.498143 + 0.0930834i
\(169\) 30.3087i 2.33144i
\(170\) 0.466155 + 2.18694i 0.0357524 + 0.167731i
\(171\) −2.71415 7.00892i −0.207556 0.535985i
\(172\) −4.80824 4.80824i −0.366625 0.366625i
\(173\) −17.2500 17.2500i −1.31149 1.31149i −0.920315 0.391178i \(-0.872068\pi\)
−0.391178 0.920315i \(-0.627932\pi\)
\(174\) 7.35909 + 5.04184i 0.557891 + 0.382221i
\(175\) −17.7098 6.77493i −1.33873 0.512136i
\(176\) 4.10569i 0.309478i
\(177\) 1.07704 + 5.76384i 0.0809550 + 0.433237i
\(178\) −9.18709 + 9.18709i −0.688602 + 0.688602i
\(179\) 22.2732 1.66478 0.832389 0.554191i \(-0.186972\pi\)
0.832389 + 0.554191i \(0.186972\pi\)
\(180\) −3.67329 5.61310i −0.273791 0.418376i
\(181\) 9.38448 0.697543 0.348772 0.937208i \(-0.386599\pi\)
0.348772 + 0.937208i \(0.386599\pi\)
\(182\) 17.6471 17.6471i 1.30809 1.30809i
\(183\) −1.40798 7.53492i −0.104081 0.556998i
\(184\) 0.151124i 0.0111410i
\(185\) 18.2638 + 11.8458i 1.34278 + 0.870923i
\(186\) −13.7908 9.44831i −1.01119 0.692784i
\(187\) 2.90316 + 2.90316i 0.212300 + 0.212300i
\(188\) −3.75510 3.75510i −0.273869 0.273869i
\(189\) −4.51553 + 19.1809i −0.328456 + 1.39521i
\(190\) −4.70011 3.04847i −0.340982 0.221159i
\(191\) 4.09953i 0.296632i 0.988940 + 0.148316i \(0.0473852\pi\)
−0.988940 + 0.148316i \(0.952615\pi\)
\(192\) −1.70258 + 0.318145i −0.122873 + 0.0229602i
\(193\) 15.4487 15.4487i 1.11202 1.11202i 0.119146 0.992877i \(-0.461984\pi\)
0.992877 0.119146i \(-0.0380157\pi\)
\(194\) −8.43699 −0.605740
\(195\) 23.5676 + 9.70567i 1.68771 + 0.695037i
\(196\) 7.38143 0.527245
\(197\) −17.5206 + 17.5206i −1.24829 + 1.24829i −0.291821 + 0.956473i \(0.594261\pi\)
−0.956473 + 0.291821i \(0.905739\pi\)
\(198\) −11.2669 4.97669i −0.800704 0.353678i
\(199\) 1.60140i 0.113521i −0.998388 0.0567603i \(-0.981923\pi\)
0.998388 0.0567603i \(-0.0180771\pi\)
\(200\) −4.66995 1.78650i −0.330215 0.126325i
\(201\) −10.7056 + 15.6259i −0.755114 + 1.10217i
\(202\) 0.890513 + 0.890513i 0.0626563 + 0.0626563i
\(203\) −13.8108 13.8108i −0.969325 0.969325i
\(204\) 0.978944 1.42887i 0.0685398 0.100041i
\(205\) −0.991624 4.65215i −0.0692580 0.324920i
\(206\) 7.74902i 0.539900i
\(207\) 0.414717 + 0.183184i 0.0288248 + 0.0127322i
\(208\) 4.65342 4.65342i 0.322657 0.322657i
\(209\) −10.2863 −0.711515
\(210\) 5.64835 + 13.5579i 0.389773 + 0.935586i
\(211\) −9.57018 −0.658838 −0.329419 0.944184i \(-0.606853\pi\)
−0.329419 + 0.944184i \(0.606853\pi\)
\(212\) 3.13924 3.13924i 0.215604 0.215604i
\(213\) −21.1667 + 3.95522i −1.45032 + 0.271007i
\(214\) 1.22944i 0.0840427i
\(215\) −8.27394 + 12.7567i −0.564278 + 0.870001i
\(216\) −1.19071 + 5.05789i −0.0810178 + 0.344145i
\(217\) 25.8811 + 25.8811i 1.75692 + 1.75692i
\(218\) 6.26787 + 6.26787i 0.424514 + 0.424514i
\(219\) −5.40553 3.70343i −0.365272 0.250254i
\(220\) −8.97890 + 1.91389i −0.605357 + 0.129034i
\(221\) 6.58093i 0.442681i
\(222\) −3.09728 16.5753i −0.207876 1.11246i
\(223\) 17.8329 17.8329i 1.19418 1.19418i 0.218299 0.975882i \(-0.429949\pi\)
0.975882 0.218299i \(-0.0700509\pi\)
\(224\) 3.79229 0.253383
\(225\) −10.5632 + 10.6498i −0.704213 + 0.709989i
\(226\) −0.968453 −0.0644205
\(227\) −3.28982 + 3.28982i −0.218353 + 0.218353i −0.807804 0.589451i \(-0.799344\pi\)
0.589451 + 0.807804i \(0.299344\pi\)
\(228\) 0.797070 + 4.26558i 0.0527872 + 0.282495i
\(229\) 6.78275i 0.448217i 0.974564 + 0.224108i \(0.0719470\pi\)
−0.974564 + 0.224108i \(0.928053\pi\)
\(230\) 0.330499 0.0704472i 0.0217925 0.00464515i
\(231\) 22.2475 + 15.2421i 1.46377 + 1.00286i
\(232\) −3.64180 3.64180i −0.239096 0.239096i
\(233\) −6.89977 6.89977i −0.452019 0.452019i 0.444005 0.896024i \(-0.353557\pi\)
−0.896024 + 0.444005i \(0.853557\pi\)
\(234\) −7.12937 18.4106i −0.466061 1.20354i
\(235\) −6.46172 + 9.96264i −0.421516 + 0.649891i
\(236\) 3.38536i 0.220368i
\(237\) −13.8581 + 2.58954i −0.900183 + 0.168209i
\(238\) −2.68155 + 2.68155i −0.173819 + 0.173819i
\(239\) 10.3093 0.666854 0.333427 0.942776i \(-0.391795\pi\)
0.333427 + 0.942776i \(0.391795\pi\)
\(240\) 1.48943 + 3.57514i 0.0961424 + 0.230774i
\(241\) −14.8673 −0.957685 −0.478842 0.877901i \(-0.658943\pi\)
−0.478842 + 0.877901i \(0.658943\pi\)
\(242\) −4.14133 + 4.14133i −0.266215 + 0.266215i
\(243\) 12.4366 + 9.39846i 0.797808 + 0.602911i
\(244\) 4.42559i 0.283319i
\(245\) −3.44089 16.1427i −0.219830 1.03132i
\(246\) −2.08245 + 3.03955i −0.132772 + 0.193795i
\(247\) −11.6585 11.6585i −0.741813 0.741813i
\(248\) 6.82466 + 6.82466i 0.433367 + 0.433367i
\(249\) −4.49584 + 6.56214i −0.284912 + 0.415859i
\(250\) −1.73005 + 11.0457i −0.109418 + 0.698590i
\(251\) 19.2583i 1.21557i 0.794102 + 0.607785i \(0.207942\pi\)
−0.794102 + 0.607785i \(0.792058\pi\)
\(252\) 4.59679 10.4068i 0.289571 0.655569i
\(253\) 0.438738 0.438738i 0.0275832 0.0275832i
\(254\) −2.40829 −0.151110
\(255\) −3.58119 1.47482i −0.224263 0.0923566i
\(256\) 1.00000 0.0625000
\(257\) −20.5292 + 20.5292i −1.28058 + 1.28058i −0.340240 + 0.940339i \(0.610508\pi\)
−0.940339 + 0.340240i \(0.889492\pi\)
\(258\) 11.5773 2.16335i 0.720774 0.134684i
\(259\) 36.9195i 2.29406i
\(260\) −12.3460 8.00753i −0.765664 0.496606i
\(261\) −14.4083 + 5.57950i −0.891850 + 0.345362i
\(262\) 3.95457 + 3.95457i 0.244314 + 0.244314i
\(263\) 9.67629 + 9.67629i 0.596666 + 0.596666i 0.939424 0.342758i \(-0.111361\pi\)
−0.342758 + 0.939424i \(0.611361\pi\)
\(264\) 5.86650 + 4.01925i 0.361058 + 0.247367i
\(265\) −8.32870 5.40195i −0.511628 0.331839i
\(266\) 9.50105i 0.582547i
\(267\) −4.13351 22.1208i −0.252967 1.35377i
\(268\) 7.73282 7.73282i 0.472357 0.472357i
\(269\) 10.8355 0.660652 0.330326 0.943867i \(-0.392841\pi\)
0.330326 + 0.943867i \(0.392841\pi\)
\(270\) 11.6163 + 0.246261i 0.706948 + 0.0149869i
\(271\) 26.0695 1.58361 0.791805 0.610774i \(-0.209141\pi\)
0.791805 + 0.610774i \(0.209141\pi\)
\(272\) −0.707107 + 0.707107i −0.0428746 + 0.0428746i
\(273\) 7.93989 + 42.4909i 0.480544 + 2.57167i
\(274\) 16.6759i 1.00743i
\(275\) 8.37111 + 18.7441i 0.504797 + 1.13031i
\(276\) −0.215937 0.147942i −0.0129979 0.00890506i
\(277\) 2.68254 + 2.68254i 0.161178 + 0.161178i 0.783088 0.621910i \(-0.213643\pi\)
−0.621910 + 0.783088i \(0.713643\pi\)
\(278\) 4.58056 + 4.58056i 0.274724 + 0.274724i
\(279\) 27.0008 10.4559i 1.61650 0.625976i
\(280\) −1.76779 8.29349i −0.105646 0.495631i
\(281\) 19.6537i 1.17244i −0.810152 0.586220i \(-0.800615\pi\)
0.810152 0.586220i \(-0.199385\pi\)
\(282\) 9.04159 1.68952i 0.538419 0.100609i
\(283\) −7.74608 + 7.74608i −0.460457 + 0.460457i −0.898805 0.438349i \(-0.855564\pi\)
0.438349 + 0.898805i \(0.355564\pi\)
\(284\) 12.4321 0.737711
\(285\) 8.95701 3.73156i 0.530567 0.221039i
\(286\) −27.0193 −1.59768
\(287\) 5.70431 5.70431i 0.336715 0.336715i
\(288\) 1.21214 2.74421i 0.0714262 0.161704i
\(289\) 1.00000i 0.0588235i
\(290\) −6.26675 + 9.66204i −0.367997 + 0.567375i
\(291\) 8.25934 12.0554i 0.484171 0.706698i
\(292\) 2.67504 + 2.67504i 0.156545 + 0.156545i
\(293\) 6.15446 + 6.15446i 0.359547 + 0.359547i 0.863646 0.504099i \(-0.168175\pi\)
−0.504099 + 0.863646i \(0.668175\pi\)
\(294\) −7.22600 + 10.5471i −0.421429 + 0.615119i
\(295\) −7.40356 + 1.57810i −0.431052 + 0.0918805i
\(296\) 9.73542i 0.565860i
\(297\) 18.1407 11.2270i 1.05263 0.651459i
\(298\) −0.0912517 + 0.0912517i −0.00528607 + 0.00528607i
\(299\) 0.994537 0.0575156
\(300\) 7.12430 4.92386i 0.411321 0.284279i
\(301\) −25.7871 −1.48634
\(302\) 1.61293 1.61293i 0.0928137 0.0928137i
\(303\) −2.14419 + 0.400665i −0.123180 + 0.0230176i
\(304\) 2.50536i 0.143692i
\(305\) 9.67849 2.06301i 0.554189 0.118128i
\(306\) 1.08334 + 2.79757i 0.0619303 + 0.159926i
\(307\) −1.40907 1.40907i −0.0804197 0.0804197i 0.665753 0.746172i \(-0.268111\pi\)
−0.746172 + 0.665753i \(0.768111\pi\)
\(308\) −11.0096 11.0096i −0.627332 0.627332i
\(309\) −11.0723 7.58585i −0.629883 0.431544i
\(310\) 11.7438 18.1065i 0.667001 1.02838i
\(311\) 1.72157i 0.0976211i −0.998808 0.0488106i \(-0.984457\pi\)
0.998808 0.0488106i \(-0.0155431\pi\)
\(312\) 2.09369 + 11.2046i 0.118532 + 0.634334i
\(313\) 3.06674 3.06674i 0.173342 0.173342i −0.615104 0.788446i \(-0.710886\pi\)
0.788446 + 0.615104i \(0.210886\pi\)
\(314\) −21.6337 −1.22086
\(315\) −24.9019 5.20171i −1.40307 0.293083i
\(316\) 8.13948 0.457882
\(317\) −0.177452 + 0.177452i −0.00996668 + 0.00996668i −0.712073 0.702106i \(-0.752243\pi\)
0.702106 + 0.712073i \(0.252243\pi\)
\(318\) 1.41242 + 7.55871i 0.0792048 + 0.423871i
\(319\) 21.1455i 1.18392i
\(320\) −0.466155 2.18694i −0.0260588 0.122254i
\(321\) −1.75671 1.20355i −0.0980499 0.0671757i
\(322\) 0.405247 + 0.405247i 0.0225835 + 0.0225835i
\(323\) 1.77156 + 1.77156i 0.0985721 + 0.0985721i
\(324\) −6.06142 6.65276i −0.336745 0.369598i
\(325\) −11.7569 + 30.7326i −0.652153 + 1.70474i
\(326\) 6.76938i 0.374921i
\(327\) −15.0919 + 2.82008i −0.834582 + 0.155951i
\(328\) 1.50419 1.50419i 0.0830549 0.0830549i
\(329\) −20.1390 −1.11030
\(330\) 6.05514 14.7033i 0.333325 0.809388i
\(331\) −24.3775 −1.33991 −0.669953 0.742403i \(-0.733686\pi\)
−0.669953 + 0.742403i \(0.733686\pi\)
\(332\) 3.24742 3.24742i 0.178225 0.178225i
\(333\) 26.7161 + 11.8007i 1.46403 + 0.646675i
\(334\) 0.222474i 0.0121732i
\(335\) −20.5159 13.3065i −1.12090 0.727012i
\(336\) −3.71243 + 5.41868i −0.202530 + 0.295613i
\(337\) −0.685998 0.685998i −0.0373687 0.0373687i 0.688176 0.725544i \(-0.258412\pi\)
−0.725544 + 0.688176i \(0.758412\pi\)
\(338\) −21.4315 21.4315i −1.16572 1.16572i
\(339\) 0.948061 1.38379i 0.0514916 0.0751573i
\(340\) 1.87602 + 1.21678i 0.101741 + 0.0659890i
\(341\) 39.6262i 2.14588i
\(342\) −6.87525 3.03686i −0.371771 0.164214i
\(343\) 1.02282 1.02282i 0.0552269 0.0552269i
\(344\) −6.79988 −0.366625
\(345\) −0.222880 + 0.541204i −0.0119995 + 0.0291374i
\(346\) −24.3952 −1.31149
\(347\) 19.5689 19.5689i 1.05051 1.05051i 0.0518581 0.998654i \(-0.483486\pi\)
0.998654 0.0518581i \(-0.0165144\pi\)
\(348\) 8.76878 1.63854i 0.470056 0.0878350i
\(349\) 10.9262i 0.584869i −0.956286 0.292434i \(-0.905535\pi\)
0.956286 0.292434i \(-0.0944653\pi\)
\(350\) −17.3133 + 7.73210i −0.925435 + 0.413298i
\(351\) 33.2856 + 7.83601i 1.77665 + 0.418255i
\(352\) −2.90316 2.90316i −0.154739 0.154739i
\(353\) 5.82919 + 5.82919i 0.310256 + 0.310256i 0.845009 0.534752i \(-0.179595\pi\)
−0.534752 + 0.845009i \(0.679595\pi\)
\(354\) 4.83723 + 3.31407i 0.257096 + 0.176141i
\(355\) −5.79529 27.1883i −0.307582 1.44300i
\(356\) 12.9925i 0.688602i
\(357\) −1.20650 6.45667i −0.0638547 0.341723i
\(358\) 15.7495 15.7495i 0.832389 0.832389i
\(359\) −30.4881 −1.60910 −0.804549 0.593886i \(-0.797593\pi\)
−0.804549 + 0.593886i \(0.797593\pi\)
\(360\) −6.56647 1.37165i −0.346083 0.0722926i
\(361\) 12.7232 0.669640
\(362\) 6.63583 6.63583i 0.348772 0.348772i
\(363\) −1.86329 9.97155i −0.0977974 0.523371i
\(364\) 24.9568i 1.30809i
\(365\) 4.60317 7.09714i 0.240941 0.371481i
\(366\) −6.32359 4.33240i −0.330539 0.226458i
\(367\) 19.2408 + 19.2408i 1.00436 + 1.00436i 0.999990 + 0.00437114i \(0.00139138\pi\)
0.00437114 + 0.999990i \(0.498609\pi\)
\(368\) 0.106861 + 0.106861i 0.00557051 + 0.00557051i
\(369\) −2.30452 5.95110i −0.119969 0.309802i
\(370\) 21.2908 4.53821i 1.10685 0.235930i
\(371\) 16.8361i 0.874085i
\(372\) −16.4325 + 3.07059i −0.851987 + 0.159203i
\(373\) 3.79471 3.79471i 0.196483 0.196483i −0.602008 0.798490i \(-0.705632\pi\)
0.798490 + 0.602008i \(0.205632\pi\)
\(374\) 4.10569 0.212300
\(375\) −14.0892 13.2851i −0.727563 0.686040i
\(376\) −5.31052 −0.273869
\(377\) −23.9665 + 23.9665i −1.23434 + 1.23434i
\(378\) 10.3700 + 16.7559i 0.533376 + 0.861832i
\(379\) 19.1599i 0.984179i −0.870545 0.492090i \(-0.836233\pi\)
0.870545 0.492090i \(-0.163767\pi\)
\(380\) −5.47907 + 1.16789i −0.281070 + 0.0599113i
\(381\) 2.35758 3.44114i 0.120783 0.176295i
\(382\) 2.89881 + 2.89881i 0.148316 + 0.148316i
\(383\) 3.11794 + 3.11794i 0.159319 + 0.159319i 0.782265 0.622946i \(-0.214064\pi\)
−0.622946 + 0.782265i \(0.714064\pi\)
\(384\) −0.978944 + 1.42887i −0.0499565 + 0.0729167i
\(385\) −18.9452 + 29.2096i −0.965536 + 1.48866i
\(386\) 21.8478i 1.11202i
\(387\) −8.24243 + 18.6603i −0.418986 + 0.948558i
\(388\) −5.96585 + 5.96585i −0.302870 + 0.302870i
\(389\) −1.74726 −0.0885897 −0.0442949 0.999019i \(-0.514104\pi\)
−0.0442949 + 0.999019i \(0.514104\pi\)
\(390\) 23.5277 9.80185i 1.19137 0.496336i
\(391\) −0.151124 −0.00764267
\(392\) 5.21946 5.21946i 0.263622 0.263622i
\(393\) −9.52188 + 1.77926i −0.480315 + 0.0897520i
\(394\) 24.7779i 1.24829i
\(395\) −3.79426 17.8006i −0.190910 0.895643i
\(396\) −11.4860 + 4.44785i −0.577191 + 0.223513i
\(397\) 13.2172 + 13.2172i 0.663353 + 0.663353i 0.956169 0.292816i \(-0.0945922\pi\)
−0.292816 + 0.956169i \(0.594592\pi\)
\(398\) −1.13236 1.13236i −0.0567603 0.0567603i
\(399\) 13.5758 + 9.30099i 0.679638 + 0.465632i
\(400\) −4.56540 + 2.03890i −0.228270 + 0.101945i
\(401\) 10.7765i 0.538154i −0.963119 0.269077i \(-0.913281\pi\)
0.963119 0.269077i \(-0.0867186\pi\)
\(402\) 3.47919 + 18.6192i 0.173526 + 0.928641i
\(403\) 44.9127 44.9127i 2.23726 2.23726i
\(404\) 1.25938 0.0626563
\(405\) −11.7236 + 16.3572i −0.582551 + 0.812794i
\(406\) −19.5314 −0.969325
\(407\) 28.2635 28.2635i 1.40097 1.40097i
\(408\) −0.318145 1.70258i −0.0157505 0.0842903i
\(409\) 29.1789i 1.44280i 0.692516 + 0.721402i \(0.256502\pi\)
−0.692516 + 0.721402i \(0.743498\pi\)
\(410\) −3.99075 2.58838i −0.197089 0.127831i
\(411\) −23.8277 16.3248i −1.17534 0.805243i
\(412\) 5.47938 + 5.47938i 0.269950 + 0.269950i
\(413\) −9.07800 9.07800i −0.446699 0.446699i
\(414\) 0.422780 0.163718i 0.0207785 0.00804631i
\(415\) −8.61570 5.58810i −0.422928 0.274309i
\(416\) 6.58093i 0.322657i
\(417\) −11.0291 + 2.06091i −0.540099 + 0.100923i
\(418\) −7.27348 + 7.27348i −0.355757 + 0.355757i
\(419\) 16.5097 0.806549 0.403275 0.915079i \(-0.367872\pi\)
0.403275 + 0.915079i \(0.367872\pi\)
\(420\) 13.5809 + 5.59292i 0.662680 + 0.272907i
\(421\) −13.7223 −0.668785 −0.334393 0.942434i \(-0.608531\pi\)
−0.334393 + 0.942434i \(0.608531\pi\)
\(422\) −6.76714 + 6.76714i −0.329419 + 0.329419i
\(423\) −6.43711 + 14.5732i −0.312983 + 0.708573i
\(424\) 4.43956i 0.215604i
\(425\) 1.78650 4.66995i 0.0866581 0.226526i
\(426\) −12.1704 + 17.7639i −0.589655 + 0.860663i
\(427\) 11.8674 + 11.8674i 0.574306 + 0.574306i
\(428\) 0.869345 + 0.869345i 0.0420214 + 0.0420214i
\(429\) 26.4504 38.6071i 1.27704 1.86397i
\(430\) 3.16980 + 14.8709i 0.152861 + 0.717139i
\(431\) 27.9472i 1.34617i 0.739565 + 0.673085i \(0.235031\pi\)
−0.739565 + 0.673085i \(0.764969\pi\)
\(432\) 2.73450 + 4.41843i 0.131564 + 0.212582i
\(433\) −9.74815 + 9.74815i −0.468466 + 0.468466i −0.901417 0.432951i \(-0.857472\pi\)
0.432951 + 0.901417i \(0.357472\pi\)
\(434\) 36.6014 1.75692
\(435\) −7.67100 18.4130i −0.367796 0.882835i
\(436\) 8.86411 0.424514
\(437\) 0.267725 0.267725i 0.0128070 0.0128070i
\(438\) −6.44101 + 1.20357i −0.307763 + 0.0575089i
\(439\) 12.9879i 0.619880i −0.950756 0.309940i \(-0.899691\pi\)
0.950756 0.309940i \(-0.100309\pi\)
\(440\) −4.99572 + 7.70237i −0.238162 + 0.367196i
\(441\) −7.99657 20.6500i −0.380789 0.983335i
\(442\) 4.65342 + 4.65342i 0.221341 + 0.221341i
\(443\) −0.368153 0.368153i −0.0174915 0.0174915i 0.698307 0.715798i \(-0.253937\pi\)
−0.715798 + 0.698307i \(0.753937\pi\)
\(444\) −13.9106 9.53043i −0.660170 0.452294i
\(445\) 28.4138 6.05652i 1.34694 0.287107i
\(446\) 25.2196i 1.19418i
\(447\) −0.0410565 0.219717i −0.00194190 0.0103923i
\(448\) 2.68155 2.68155i 0.126691 0.126691i
\(449\) 0.488249 0.0230419 0.0115209 0.999934i \(-0.496333\pi\)
0.0115209 + 0.999934i \(0.496333\pi\)
\(450\) 0.0612673 + 14.9999i 0.00288817 + 0.707101i
\(451\) −8.73381 −0.411259
\(452\) −0.684800 + 0.684800i −0.0322103 + 0.0322103i
\(453\) 0.725699 + 3.88364i 0.0340963 + 0.182469i
\(454\) 4.65251i 0.218353i
\(455\) −54.5789 + 11.6337i −2.55870 + 0.545397i
\(456\) 3.57984 + 2.45261i 0.167641 + 0.114854i
\(457\) −11.5449 11.5449i −0.540047 0.540047i 0.383495 0.923543i \(-0.374720\pi\)
−0.923543 + 0.383495i \(0.874720\pi\)
\(458\) 4.79613 + 4.79613i 0.224108 + 0.224108i
\(459\) −5.05789 1.19071i −0.236082 0.0555778i
\(460\) 0.183884 0.283512i 0.00857365 0.0132188i
\(461\) 26.9391i 1.25468i 0.778746 + 0.627339i \(0.215856\pi\)
−0.778746 + 0.627339i \(0.784144\pi\)
\(462\) 26.5091 4.95351i 1.23332 0.230458i
\(463\) −14.7097 + 14.7097i −0.683618 + 0.683618i −0.960814 0.277195i \(-0.910595\pi\)
0.277195 + 0.960814i \(0.410595\pi\)
\(464\) −5.15029 −0.239096
\(465\) 14.3753 + 34.5055i 0.666638 + 1.60016i
\(466\) −9.75775 −0.452019
\(467\) −3.30218 + 3.30218i −0.152807 + 0.152807i −0.779370 0.626564i \(-0.784461\pi\)
0.626564 + 0.779370i \(0.284461\pi\)
\(468\) −18.0595 7.97704i −0.834800 0.368739i
\(469\) 41.4719i 1.91499i
\(470\) 2.47552 + 11.6138i 0.114187 + 0.535703i
\(471\) 21.1782 30.9118i 0.975841 1.42434i
\(472\) −2.39381 2.39381i −0.110184 0.110184i
\(473\) 19.7412 + 19.7412i 0.907700 + 0.907700i
\(474\) −7.96810 + 11.6303i −0.365987 + 0.534196i
\(475\) 5.10819 + 11.4380i 0.234380 + 0.524810i
\(476\) 3.79229i 0.173819i
\(477\) −12.1831 5.38138i −0.557825 0.246396i
\(478\) 7.28978 7.28978i 0.333427 0.333427i
\(479\) 16.2896 0.744289 0.372145 0.928175i \(-0.378623\pi\)
0.372145 + 0.928175i \(0.378623\pi\)
\(480\) 3.58119 + 1.47482i 0.163458 + 0.0673158i
\(481\) 64.0681 2.92125
\(482\) −10.5127 + 10.5127i −0.478842 + 0.478842i
\(483\) −0.975759 + 0.182331i −0.0443986 + 0.00829634i
\(484\) 5.85673i 0.266215i
\(485\) 15.8280 + 10.2659i 0.718711 + 0.466152i
\(486\) 15.4397 2.14829i 0.700360 0.0974486i
\(487\) −4.05412 4.05412i −0.183710 0.183710i 0.609260 0.792970i \(-0.291466\pi\)
−0.792970 + 0.609260i \(0.791466\pi\)
\(488\) 3.12936 + 3.12936i 0.141660 + 0.141660i
\(489\) −9.67256 6.62684i −0.437408 0.299676i
\(490\) −13.8477 8.98156i −0.625576 0.405745i
\(491\) 9.15619i 0.413213i −0.978424 0.206607i \(-0.933758\pi\)
0.978424 0.206607i \(-0.0662420\pi\)
\(492\) 0.676773 + 3.62180i 0.0305113 + 0.163284i
\(493\) 3.64180 3.64180i 0.164019 0.164019i
\(494\) −16.4876 −0.741813
\(495\) 15.0814 + 23.0457i 0.677859 + 1.03583i
\(496\) 9.65153 0.433367
\(497\) 33.3374 33.3374i 1.49539 1.49539i
\(498\) 1.46110 + 7.81917i 0.0654733 + 0.350386i
\(499\) 9.51732i 0.426054i 0.977046 + 0.213027i \(0.0683322\pi\)
−0.977046 + 0.213027i \(0.931668\pi\)
\(500\) 6.58714 + 9.03380i 0.294586 + 0.404004i
\(501\) −0.317886 0.217789i −0.0142021 0.00973011i
\(502\) 13.6176 + 13.6176i 0.607785 + 0.607785i
\(503\) −25.6641 25.6641i −1.14430 1.14430i −0.987654 0.156650i \(-0.949930\pi\)
−0.156650 0.987654i \(-0.550070\pi\)
\(504\) −4.10832 10.6092i −0.182999 0.472570i
\(505\) −0.587064 2.75418i −0.0261240 0.122559i
\(506\) 0.620469i 0.0275832i
\(507\) 51.6030 9.64257i 2.29177 0.428242i
\(508\) −1.70292 + 1.70292i −0.0755549 + 0.0755549i
\(509\) 35.3731 1.56788 0.783941 0.620835i \(-0.213206\pi\)
0.783941 + 0.620835i \(0.213206\pi\)
\(510\) −3.57514 + 1.48943i −0.158310 + 0.0659531i
\(511\) 14.3465 0.634653
\(512\) 0.707107 0.707107i 0.0312500 0.0312500i
\(513\) 11.0698 6.85092i 0.488742 0.302475i
\(514\) 29.0327i 1.28058i
\(515\) 9.42883 14.5373i 0.415484 0.640591i
\(516\) 6.65670 9.71614i 0.293045 0.427729i
\(517\) 15.4173 + 15.4173i 0.678052 + 0.678052i
\(518\) 26.1060 + 26.1060i 1.14703 + 1.14703i
\(519\) 23.8815 34.8575i 1.04828 1.53008i
\(520\) −14.3921 + 3.06773i −0.631135 + 0.134529i
\(521\) 12.3503i 0.541076i −0.962709 0.270538i \(-0.912798\pi\)
0.962709 0.270538i \(-0.0872016\pi\)
\(522\) −6.24289 + 14.1335i −0.273244 + 0.618606i
\(523\) 2.65510 2.65510i 0.116099 0.116099i −0.646670 0.762770i \(-0.723839\pi\)
0.762770 + 0.646670i \(0.223839\pi\)
\(524\) 5.59261 0.244314
\(525\) 5.90058 32.3077i 0.257522 1.41003i
\(526\) 13.6843 0.596666
\(527\) −6.82466 + 6.82466i −0.297287 + 0.297287i
\(528\) 6.99028 1.30621i 0.304213 0.0568454i
\(529\) 22.9772i 0.999007i
\(530\) −9.70904 + 2.06952i −0.421734 + 0.0898942i
\(531\) −9.47076 + 3.66748i −0.410996 + 0.159155i
\(532\) −6.71825 6.71825i −0.291273 0.291273i
\(533\) −9.89896 9.89896i −0.428772 0.428772i
\(534\) −18.5646 12.7189i −0.803369 0.550402i
\(535\) 1.49595 2.30645i 0.0646758 0.0997167i
\(536\) 10.9359i 0.472357i
\(537\) 7.08612 + 37.9220i 0.305789 + 1.63645i
\(538\) 7.66186 7.66186i 0.330326 0.330326i
\(539\) −30.3059 −1.30537
\(540\) 8.38813 8.03986i 0.360967 0.345980i
\(541\) −27.6909 −1.19052 −0.595262 0.803532i \(-0.702952\pi\)
−0.595262 + 0.803532i \(0.702952\pi\)
\(542\) 18.4339 18.4339i 0.791805 0.791805i
\(543\) 2.98563 + 15.9778i 0.128126 + 0.685675i
\(544\) 1.00000i 0.0428746i
\(545\) −4.13204 19.3853i −0.176997 0.830373i
\(546\) 35.6600 + 24.4313i 1.52611 + 1.04556i
\(547\) −2.76042 2.76042i −0.118027 0.118027i 0.645626 0.763654i \(-0.276596\pi\)
−0.763654 + 0.645626i \(0.776596\pi\)
\(548\) 11.7917 + 11.7917i 0.503715 + 0.503715i
\(549\) 12.3809 4.79440i 0.528403 0.204620i
\(550\) 19.1734 + 7.33483i 0.817556 + 0.312758i
\(551\) 12.9033i 0.549700i
\(552\) −0.257301 + 0.0480794i −0.0109515 + 0.00204640i
\(553\) 21.8264 21.8264i 0.928155 0.928155i
\(554\) 3.79368 0.161178
\(555\) −14.3579 + 34.8644i −0.609461 + 1.47991i
\(556\) 6.47789 0.274724
\(557\) 32.6785 32.6785i 1.38463 1.38463i 0.548452 0.836182i \(-0.315217\pi\)
0.836182 0.548452i \(-0.184783\pi\)
\(558\) 11.6990 26.4859i 0.495260 1.12124i
\(559\) 44.7496i 1.89270i
\(560\) −7.11440 4.61437i −0.300638 0.194993i
\(561\) −4.01925 + 5.86650i −0.169693 + 0.247684i
\(562\) −13.8973 13.8973i −0.586220 0.586220i
\(563\) −8.56925 8.56925i −0.361151 0.361151i 0.503086 0.864237i \(-0.332198\pi\)
−0.864237 + 0.503086i \(0.832198\pi\)
\(564\) 5.19870 7.58804i 0.218905 0.319514i
\(565\) 1.81684 + 1.17839i 0.0764349 + 0.0495753i
\(566\) 10.9546i 0.460457i
\(567\) −34.0937 1.58572i −1.43180 0.0665940i
\(568\) 8.79084 8.79084i 0.368855 0.368855i
\(569\) −16.0012 −0.670807 −0.335404 0.942075i \(-0.608873\pi\)
−0.335404 + 0.942075i \(0.608873\pi\)
\(570\) 3.69495 8.97218i 0.154764 0.375803i
\(571\) −34.8888 −1.46005 −0.730025 0.683420i \(-0.760492\pi\)
−0.730025 + 0.683420i \(0.760492\pi\)
\(572\) −19.1055 + 19.1055i −0.798842 + 0.798842i
\(573\) −6.97979 + 1.30425i −0.291585 + 0.0544857i
\(574\) 8.06711i 0.336715i
\(575\) −0.705741 0.269983i −0.0294314 0.0112591i
\(576\) −1.08334 2.79757i −0.0451390 0.116565i
\(577\) −11.9919 11.9919i −0.499229 0.499229i 0.411969 0.911198i \(-0.364841\pi\)
−0.911198 + 0.411969i \(0.864841\pi\)
\(578\) −0.707107 0.707107i −0.0294118 0.0294118i
\(579\) 31.2176 + 21.3878i 1.29736 + 0.888845i
\(580\) 2.40083 + 11.2634i 0.0996891 + 0.467686i
\(581\) 17.4162i 0.722547i
\(582\) −2.68419 14.3647i −0.111263 0.595434i
\(583\) −12.8888 + 12.8888i −0.533798 + 0.533798i
\(584\) 3.78308 0.156545
\(585\) −9.02677 + 43.2135i −0.373211 + 1.78666i
\(586\) 8.70372 0.359547
\(587\) −13.3609 + 13.3609i −0.551465 + 0.551465i −0.926863 0.375399i \(-0.877506\pi\)
0.375399 + 0.926863i \(0.377506\pi\)
\(588\) 2.34837 + 12.5675i 0.0968451 + 0.518274i
\(589\) 24.1806i 0.996344i
\(590\) −4.11923 + 6.35100i −0.169586 + 0.261466i
\(591\) −35.4044 24.2562i −1.45634 0.997767i
\(592\) 6.88398 + 6.88398i 0.282930 + 0.282930i
\(593\) 9.96226 + 9.96226i 0.409101 + 0.409101i 0.881425 0.472324i \(-0.156585\pi\)
−0.472324 + 0.881425i \(0.656585\pi\)
\(594\) 4.88871 20.7661i 0.200586 0.852045i
\(595\) 8.29349 1.76779i 0.340000 0.0724724i
\(596\) 0.129049i 0.00528607i
\(597\) 2.72652 0.509479i 0.111589 0.0208516i
\(598\) 0.703244 0.703244i 0.0287578 0.0287578i
\(599\) −24.4461 −0.998839 −0.499419 0.866360i \(-0.666453\pi\)
−0.499419 + 0.866360i \(0.666453\pi\)
\(600\) 1.55594 8.51933i 0.0635211 0.347800i
\(601\) 24.4345 0.996706 0.498353 0.866974i \(-0.333938\pi\)
0.498353 + 0.866974i \(0.333938\pi\)
\(602\) −18.2342 + 18.2342i −0.743171 + 0.743171i
\(603\) −30.0103 13.2558i −1.22212 0.539819i
\(604\) 2.28103i 0.0928137i
\(605\) 12.8083 2.73014i 0.520732 0.110996i
\(606\) −1.23286 + 1.79948i −0.0500814 + 0.0730990i
\(607\) −11.9863 11.9863i −0.486510 0.486510i 0.420693 0.907203i \(-0.361787\pi\)
−0.907203 + 0.420693i \(0.861787\pi\)
\(608\) −1.77156 1.77156i −0.0718462 0.0718462i
\(609\) 19.1201 27.9078i 0.774786 1.13088i
\(610\) 5.38496 8.30249i 0.218031 0.336158i
\(611\) 34.9482i 1.41385i
\(612\) 2.74421 + 1.21214i 0.110928 + 0.0489980i
\(613\) 15.3999 15.3999i 0.621995 0.621995i −0.324047 0.946041i \(-0.605043\pi\)
0.946041 + 0.324047i \(0.105043\pi\)
\(614\) −1.99272 −0.0804197
\(615\) 7.60518 3.16838i 0.306671 0.127761i
\(616\) −15.5700 −0.627332
\(617\) −18.1477 + 18.1477i −0.730599 + 0.730599i −0.970739 0.240139i \(-0.922807\pi\)
0.240139 + 0.970739i \(0.422807\pi\)
\(618\) −13.1933 + 2.46531i −0.530714 + 0.0991695i
\(619\) 27.6016i 1.10940i 0.832050 + 0.554701i \(0.187167\pi\)
−0.832050 + 0.554701i \(0.812833\pi\)
\(620\) −4.49911 21.1073i −0.180689 0.847690i
\(621\) −0.179945 + 0.764368i −0.00722096 + 0.0306730i
\(622\) −1.21733 1.21733i −0.0488106 0.0488106i
\(623\) 34.8401 + 34.8401i 1.39584 + 1.39584i
\(624\) 9.40330 + 6.44237i 0.376433 + 0.257901i
\(625\) 16.6857 18.6168i 0.667430 0.744673i
\(626\) 4.33702i 0.173342i
\(627\) −3.27252 17.5132i −0.130692 0.699409i
\(628\) −15.2974 + 15.2974i −0.610431 + 0.610431i
\(629\) −9.73542 −0.388176
\(630\) −21.2865 + 13.9302i −0.848074 + 0.554991i
\(631\) −1.37990 −0.0549328 −0.0274664 0.999623i \(-0.508744\pi\)
−0.0274664 + 0.999623i \(0.508744\pi\)
\(632\) 5.75548 5.75548i 0.228941 0.228941i
\(633\) −3.04471 16.2940i −0.121016 0.647629i
\(634\) 0.250955i 0.00996668i
\(635\) 4.51801 + 2.93036i 0.179292 + 0.116288i
\(636\) 6.34355 + 4.34608i 0.251538 + 0.172333i
\(637\) −34.3489 34.3489i −1.36095 1.36095i
\(638\) 14.9521 + 14.9521i 0.591960 + 0.591960i
\(639\) −13.4682 34.7797i −0.532793 1.37586i
\(640\) −1.87602 1.21678i −0.0741562 0.0480974i
\(641\) 17.2377i 0.680847i −0.940272 0.340424i \(-0.889430\pi\)
0.940272 0.340424i \(-0.110570\pi\)
\(642\) −2.09322 + 0.391141i −0.0826128 + 0.0154371i
\(643\) 0.301754 0.301754i 0.0119000 0.0119000i −0.701132 0.713032i \(-0.747322\pi\)
0.713032 + 0.701132i \(0.247322\pi\)
\(644\) 0.573105 0.0225835
\(645\) −24.3517 10.0286i −0.958846 0.394875i
\(646\) 2.50536 0.0985721
\(647\) −28.9532 + 28.9532i −1.13827 + 1.13827i −0.149507 + 0.988761i \(0.547769\pi\)
−0.988761 + 0.149507i \(0.952231\pi\)
\(648\) −8.99028 0.418144i −0.353172 0.0164262i
\(649\) 13.8992i 0.545593i
\(650\) 13.4179 + 30.0446i 0.526293 + 1.17845i
\(651\) −35.8307 + 52.2986i −1.40432 + 2.04974i
\(652\) 4.78667 + 4.78667i 0.187461 + 0.187461i
\(653\) 23.5931 + 23.5931i 0.923270 + 0.923270i 0.997259 0.0739895i \(-0.0235731\pi\)
−0.0739895 + 0.997259i \(0.523573\pi\)
\(654\) −8.67746 + 12.6657i −0.339316 + 0.495266i
\(655\) −2.60702 12.2307i −0.101865 0.477893i
\(656\) 2.12724i 0.0830549i
\(657\) 4.58564 10.3816i 0.178903 0.405024i
\(658\) −14.2404 + 14.2404i −0.555149 + 0.555149i
\(659\) 16.1089 0.627514 0.313757 0.949503i \(-0.398412\pi\)
0.313757 + 0.949503i \(0.398412\pi\)
\(660\) −6.11515 14.6784i −0.238032 0.571357i
\(661\) −17.9070 −0.696502 −0.348251 0.937401i \(-0.613224\pi\)
−0.348251 + 0.937401i \(0.613224\pi\)
\(662\) −17.2375 + 17.2375i −0.669953 + 0.669953i
\(663\) −11.2046 + 2.09369i −0.435150 + 0.0813123i
\(664\) 4.59254i 0.178225i
\(665\) −11.5607 + 17.8242i −0.448303 + 0.691191i
\(666\) 27.2355 10.5467i 1.05535 0.408678i
\(667\) −0.550364 0.550364i −0.0213102 0.0213102i
\(668\) 0.157313 + 0.157313i 0.00608661 + 0.00608661i
\(669\) 36.0355 + 24.6885i 1.39321 + 0.954514i
\(670\) −23.9160 + 5.09780i −0.923957 + 0.196945i
\(671\) 18.1701i 0.701449i
\(672\) 1.20650 + 6.45667i 0.0465417 + 0.249072i
\(673\) −19.4682 + 19.4682i −0.750442 + 0.750442i −0.974562 0.224119i \(-0.928049\pi\)
0.224119 + 0.974562i \(0.428049\pi\)
\(674\) −0.970148 −0.0373687
\(675\) −21.4928 14.5965i −0.827260 0.561819i
\(676\) −30.3087 −1.16572
\(677\) 14.4315 14.4315i 0.554648 0.554648i −0.373131 0.927779i \(-0.621716\pi\)
0.927779 + 0.373131i \(0.121716\pi\)
\(678\) −0.308109 1.64887i −0.0118329 0.0633245i
\(679\) 31.9955i 1.22787i
\(680\) 2.18694 0.466155i 0.0838653 0.0178762i
\(681\) −6.64784 4.55455i −0.254746 0.174531i
\(682\) −28.0200 28.0200i −1.07294 1.07294i
\(683\) 19.4121 + 19.4121i 0.742785 + 0.742785i 0.973113 0.230328i \(-0.0739800\pi\)
−0.230328 + 0.973113i \(0.573980\pi\)
\(684\) −7.00892 + 2.71415i −0.267993 + 0.103778i
\(685\) 20.2909 31.2844i 0.775276 1.19531i
\(686\) 1.44648i 0.0552269i
\(687\) −11.5482 + 2.15790i −0.440591 + 0.0823291i
\(688\) −4.80824 + 4.80824i −0.183312 + 0.183312i
\(689\) −29.2164 −1.11306
\(690\) 0.225089 + 0.540289i 0.00856899 + 0.0205684i
\(691\) 8.43576 0.320911 0.160456 0.987043i \(-0.448704\pi\)
0.160456 + 0.987043i \(0.448704\pi\)
\(692\) −17.2500 + 17.2500i −0.655747 + 0.655747i
\(693\) −18.8730 + 42.7273i −0.716927 + 1.62308i
\(694\) 27.6746i 1.05051i
\(695\) −3.01970 14.1668i −0.114544 0.537376i
\(696\) 5.04184 7.35909i 0.191111 0.278946i
\(697\) 1.50419 + 1.50419i 0.0569752 + 0.0569752i
\(698\) −7.72602 7.72602i −0.292434 0.292434i
\(699\) 9.55229 13.9426i 0.361301 0.527356i
\(700\) −6.77493 + 17.7098i −0.256068 + 0.669366i
\(701\) 16.8028i 0.634631i −0.948320 0.317316i \(-0.897219\pi\)
0.948320 0.317316i \(-0.102781\pi\)
\(702\) 29.0774 17.9956i 1.09745 0.679199i
\(703\) 17.2469 17.2469i 0.650478 0.650478i
\(704\) −4.10569 −0.154739
\(705\) −19.0180 7.83203i −0.716258 0.294971i
\(706\) 8.24371 0.310256
\(707\) 3.37708 3.37708i 0.127008 0.127008i
\(708\) 5.76384 1.07704i 0.216619 0.0404775i
\(709\) 24.7534i 0.929634i −0.885407 0.464817i \(-0.846120\pi\)
0.885407 0.464817i \(-0.153880\pi\)
\(710\) −23.3229 15.1271i −0.875293 0.567711i
\(711\) −8.81781 22.7708i −0.330694 0.853970i
\(712\) 9.18709 + 9.18709i 0.344301 + 0.344301i
\(713\) 1.03137 + 1.03137i 0.0386251 + 0.0386251i
\(714\) −5.41868 3.71243i −0.202789 0.138934i
\(715\) 50.6888 + 32.8765i 1.89565 + 1.22951i
\(716\) 22.2732i 0.832389i
\(717\) 3.27986 + 17.5524i 0.122489 + 0.655508i
\(718\) −21.5583 + 21.5583i −0.804549 + 0.804549i
\(719\) 43.9400 1.63869 0.819343 0.573304i \(-0.194338\pi\)
0.819343 + 0.573304i \(0.194338\pi\)
\(720\) −5.61310 + 3.67329i −0.209188 + 0.136895i
\(721\) 29.3865 1.09441
\(722\) 8.99663 8.99663i 0.334820 0.334820i
\(723\) −4.72995 25.3127i −0.175909 0.941391i
\(724\) 9.38448i 0.348772i
\(725\) 23.5131 10.5009i 0.873255 0.389995i
\(726\) −8.36850 5.73341i −0.310584 0.212787i
\(727\) 10.2955 + 10.2955i 0.381840 + 0.381840i 0.871765 0.489924i \(-0.162976\pi\)
−0.489924 + 0.871765i \(0.662976\pi\)
\(728\) −17.6471 17.6471i −0.654045 0.654045i
\(729\) −12.0450 + 24.1644i −0.446111 + 0.894978i
\(730\) −1.76350 8.27337i −0.0652702 0.306211i
\(731\) 6.79988i 0.251503i
\(732\) −7.53492 + 1.40798i −0.278499 + 0.0520405i
\(733\) −32.7437 + 32.7437i −1.20941 + 1.20941i −0.238198 + 0.971217i \(0.576557\pi\)
−0.971217 + 0.238198i \(0.923443\pi\)
\(734\) 27.2106 1.00436
\(735\) 26.3896 10.9941i 0.973395 0.405524i
\(736\) 0.151124 0.00557051
\(737\) −31.7486 + 31.7486i −1.16947 + 1.16947i
\(738\) −5.83761 2.57852i −0.214885 0.0949168i
\(739\) 5.04676i 0.185648i −0.995683 0.0928241i \(-0.970411\pi\)
0.995683 0.0928241i \(-0.0295894\pi\)
\(740\) 11.8458 18.2638i 0.435462 0.671392i
\(741\) 16.1405 23.5587i 0.592934 0.865449i
\(742\) −11.9049 11.9049i −0.437042 0.437042i
\(743\) 4.48784 + 4.48784i 0.164643 + 0.164643i 0.784620 0.619977i \(-0.212858\pi\)
−0.619977 + 0.784620i \(0.712858\pi\)
\(744\) −9.44831 + 13.7908i −0.346392 + 0.505595i
\(745\) 0.282223 0.0601570i 0.0103399 0.00220398i
\(746\) 5.36653i 0.196483i
\(747\) −12.6029 5.56682i −0.461116 0.203679i
\(748\) 2.90316 2.90316i 0.106150 0.106150i
\(749\) 4.66238 0.170360
\(750\) −19.3566 + 0.568575i −0.706802 + 0.0207614i
\(751\) 19.0153 0.693879 0.346940 0.937887i \(-0.387221\pi\)
0.346940 + 0.937887i \(0.387221\pi\)
\(752\) −3.75510 + 3.75510i −0.136934 + 0.136934i
\(753\) −32.7887 + 6.12693i −1.19489 + 0.223278i
\(754\) 33.8937i 1.23434i
\(755\) −4.98847 + 1.06331i −0.181549 + 0.0386979i
\(756\) 19.1809 + 4.51553i 0.697604 + 0.164228i
\(757\) −4.31391 4.31391i −0.156792 0.156792i 0.624352 0.781143i \(-0.285363\pi\)
−0.781143 + 0.624352i \(0.785363\pi\)
\(758\) −13.5481 13.5481i −0.492090 0.492090i
\(759\) 0.886570 + 0.607405i 0.0321804 + 0.0220474i
\(760\) −3.04847 + 4.70011i −0.110580 + 0.170491i
\(761\) 31.1782i 1.13021i 0.825019 + 0.565105i \(0.191164\pi\)
−0.825019 + 0.565105i \(0.808836\pi\)
\(762\) −0.766188 4.10032i −0.0277561 0.148539i
\(763\) 23.7695 23.7695i 0.860515 0.860515i
\(764\) 4.09953 0.148316
\(765\) 1.37165 6.56647i 0.0495923 0.237411i
\(766\) 4.40943 0.159319
\(767\) −15.7535 + 15.7535i −0.568826 + 0.568826i
\(768\) 0.318145 + 1.70258i 0.0114801 + 0.0614366i
\(769\) 40.1055i 1.44624i −0.690721 0.723121i \(-0.742707\pi\)
0.690721 0.723121i \(-0.257293\pi\)
\(770\) 7.25801 + 34.0506i 0.261561 + 1.22710i
\(771\) −41.4840 28.4214i −1.49401 1.02357i
\(772\) −15.4487 15.4487i −0.556011 0.556011i
\(773\) 24.1301 + 24.1301i 0.867901 + 0.867901i 0.992240 0.124339i \(-0.0396811\pi\)
−0.124339 + 0.992240i \(0.539681\pi\)
\(774\) 7.36656 + 19.0231i 0.264786 + 0.683772i
\(775\) −44.0631 + 19.6785i −1.58279 + 0.706874i
\(776\) 8.43699i 0.302870i
\(777\) −62.8584 + 11.7458i −2.25503 + 0.421377i
\(778\) −1.23550 + 1.23550i −0.0442949 + 0.0442949i
\(779\) −5.32951 −0.190950
\(780\) 9.70567 23.5676i 0.347519 0.843854i
\(781\) −51.0425 −1.82644
\(782\) −0.106861 + 0.106861i −0.00382134 + 0.00382134i
\(783\) −14.0835 22.7562i −0.503302 0.813239i
\(784\) 7.38143i 0.263622i
\(785\) 40.5853 + 26.3235i 1.44855 + 0.939525i
\(786\) −5.47486 + 7.99112i −0.195282 + 0.285034i
\(787\) 24.8399 + 24.8399i 0.885447 + 0.885447i 0.994082 0.108635i \(-0.0346479\pi\)
−0.108635 + 0.994082i \(0.534648\pi\)
\(788\) 17.5206 + 17.5206i 0.624147 + 0.624147i
\(789\) −13.3962 + 19.5531i −0.476918 + 0.696110i
\(790\) −15.2698 9.90394i −0.543276 0.352367i
\(791\) 3.67265i 0.130584i
\(792\) −4.97669 + 11.2669i −0.176839 + 0.400352i
\(793\) 20.5941 20.5941i 0.731319 0.731319i
\(794\) 18.6920 0.663353
\(795\) 6.54753 15.8989i 0.232217 0.563876i
\(796\) −1.60140 −0.0567603
\(797\) 19.6674 19.6674i 0.696654 0.696654i −0.267033 0.963687i \(-0.586043\pi\)
0.963687 + 0.267033i \(0.0860433\pi\)
\(798\) 16.1763 3.02272i 0.572635 0.107003i
\(799\) 5.31052i 0.187873i
\(800\) −1.78650 + 4.66995i −0.0631624 + 0.165108i
\(801\) 36.3474 14.0753i 1.28427 0.497325i
\(802\) −7.62015 7.62015i −0.269077 0.269077i
\(803\) −10.9829 10.9829i −0.387579 0.387579i
\(804\) 15.6259 + 10.7056i 0.551084 + 0.377557i
\(805\) −0.267156 1.25335i −0.00941601 0.0441747i
\(806\) 63.5161i 2.23726i
\(807\) 3.44727 + 18.4483i 0.121350 + 0.649412i
\(808\) 0.890513 0.890513i 0.0313281 0.0313281i
\(809\) −8.25845 −0.290352 −0.145176 0.989406i \(-0.546375\pi\)
−0.145176 + 0.989406i \(0.546375\pi\)
\(810\) 3.27641 + 19.8561i 0.115121 + 0.697673i
\(811\) −45.8241 −1.60910 −0.804551 0.593883i \(-0.797594\pi\)
−0.804551 + 0.593883i \(0.797594\pi\)
\(812\) −13.8108 + 13.8108i −0.484662 + 0.484662i
\(813\) 8.29390 + 44.3855i 0.290880 + 1.55667i
\(814\) 39.9706i 1.40097i
\(815\) 8.23683 12.6995i 0.288524 0.444844i
\(816\) −1.42887 0.978944i −0.0500204 0.0342699i
\(817\) 12.0464 + 12.0464i 0.421450 + 0.421450i
\(818\) 20.6326 + 20.6326i 0.721402 + 0.721402i
\(819\) −69.8183 + 27.0366i −2.43965 + 0.944735i
\(820\) −4.65215 + 0.991624i −0.162460 + 0.0346290i
\(821\) 27.1005i 0.945814i −0.881112 0.472907i \(-0.843205\pi\)
0.881112 0.472907i \(-0.156795\pi\)
\(822\) −28.3921 + 5.30537i −0.990289 + 0.185046i
\(823\) 6.78813 6.78813i 0.236619 0.236619i −0.578829 0.815449i \(-0.696490\pi\)
0.815449 + 0.578829i \(0.196490\pi\)
\(824\) 7.74902 0.269950
\(825\) −29.2502 + 20.2159i −1.01836 + 0.703826i
\(826\) −12.8382 −0.446699
\(827\) 2.55296 2.55296i 0.0887750 0.0887750i −0.661325 0.750100i \(-0.730005\pi\)
0.750100 + 0.661325i \(0.230005\pi\)
\(828\) 0.183184 0.414717i 0.00636608 0.0144124i
\(829\) 13.1146i 0.455488i −0.973721 0.227744i \(-0.926865\pi\)
0.973721 0.227744i \(-0.0731350\pi\)
\(830\) −10.0436 + 2.14083i −0.348619 + 0.0743095i
\(831\) −3.71380 + 5.42067i −0.128830 + 0.188041i
\(832\) −4.65342 4.65342i −0.161328 0.161328i
\(833\) 5.21946 + 5.21946i 0.180843 + 0.180843i
\(834\) −6.34150 + 9.25607i −0.219588 + 0.320511i
\(835\) 0.270701 0.417365i 0.00936800 0.0144435i
\(836\) 10.2863i 0.355757i
\(837\) 26.3921 + 42.6446i 0.912246 + 1.47401i
\(838\) 11.6741 11.6741i 0.403275 0.403275i
\(839\) 12.9994 0.448790 0.224395 0.974498i \(-0.427959\pi\)
0.224395 + 0.974498i \(0.427959\pi\)
\(840\) 13.5579 5.64835i 0.467793 0.194886i
\(841\) −2.47454 −0.0853291
\(842\) −9.70315 + 9.70315i −0.334393 + 0.334393i
\(843\) 33.4620 6.25273i 1.15249 0.215356i
\(844\) 9.57018i 0.329419i
\(845\) 14.1285 + 66.2832i 0.486036 + 2.28021i
\(846\) 5.75308 + 14.8565i 0.197795 + 0.510778i
\(847\) 15.7051 + 15.7051i 0.539634 + 0.539634i
\(848\) −3.13924 3.13924i −0.107802 0.107802i
\(849\) −15.6527 10.7239i −0.537200 0.368045i
\(850\) −2.03890 4.56540i −0.0699338 0.156592i
\(851\) 1.47126i 0.0504340i
\(852\) 3.95522 + 21.1667i 0.135504 + 0.725159i
\(853\) −13.0775 + 13.0775i −0.447765 + 0.447765i −0.894611 0.446846i \(-0.852547\pi\)
0.446846 + 0.894611i \(0.352547\pi\)
\(854\) 16.7831 0.574306
\(855\) 9.20292 + 14.0629i 0.314733 + 0.480940i
\(856\) 1.22944 0.0420214
\(857\) −4.02020 + 4.02020i −0.137328 + 0.137328i −0.772429 0.635101i \(-0.780958\pi\)
0.635101 + 0.772429i \(0.280958\pi\)
\(858\) −8.59607 46.0026i −0.293465 1.57050i
\(859\) 6.71895i 0.229248i 0.993409 + 0.114624i \(0.0365663\pi\)
−0.993409 + 0.114624i \(0.963434\pi\)
\(860\) 12.7567 + 8.27394i 0.435000 + 0.282139i
\(861\) 11.5269 + 7.89725i 0.392834 + 0.269138i
\(862\) 19.7617 + 19.7617i 0.673085 + 0.673085i
\(863\) 28.6838 + 28.6838i 0.976408 + 0.976408i 0.999728 0.0233202i \(-0.00742372\pi\)
−0.0233202 + 0.999728i \(0.507424\pi\)
\(864\) 5.05789 + 1.19071i 0.172073 + 0.0405089i
\(865\) 45.7659 + 29.6835i 1.55609 + 1.00927i
\(866\) 13.7860i 0.468466i
\(867\) 1.70258 0.318145i 0.0578227 0.0108048i
\(868\) 25.8811 25.8811i 0.878461 0.878461i
\(869\) −33.4182 −1.13364
\(870\) −18.4442 7.59573i −0.625315 0.257519i
\(871\) −71.9681 −2.43855
\(872\) 6.26787 6.26787i 0.212257 0.212257i
\(873\) 23.1529 + 10.2268i 0.783607 + 0.346126i
\(874\) 0.378620i 0.0128070i
\(875\) 41.8883 + 6.56085i 1.41608 + 0.221797i
\(876\) −3.70343 + 5.40553i −0.125127 + 0.182636i
\(877\) 36.6209 + 36.6209i 1.23660 + 1.23660i 0.961382 + 0.275218i \(0.0887501\pi\)
0.275218 + 0.961382i \(0.411250\pi\)
\(878\) −9.18385 9.18385i −0.309940 0.309940i
\(879\) −8.52045 + 12.4365i −0.287388 + 0.419472i
\(880\) 1.91389 + 8.97890i 0.0645172 + 0.302679i
\(881\) 22.9253i 0.772373i −0.922421 0.386186i \(-0.873792\pi\)
0.922421 0.386186i \(-0.126208\pi\)
\(882\) −20.2562 8.94735i −0.682062 0.301273i
\(883\) −27.7206 + 27.7206i −0.932874 + 0.932874i −0.997885 0.0650109i \(-0.979292\pi\)
0.0650109 + 0.997885i \(0.479292\pi\)
\(884\) 6.58093 0.221341
\(885\) −5.04225 12.1031i −0.169493 0.406841i
\(886\) −0.520648 −0.0174915
\(887\) 27.7458 27.7458i 0.931612 0.931612i −0.0661947 0.997807i \(-0.521086\pi\)
0.997807 + 0.0661947i \(0.0210858\pi\)
\(888\) −16.5753 + 3.09728i −0.556232 + 0.103938i
\(889\) 9.13294i 0.306309i
\(890\) 15.8090 24.3742i 0.529919 0.817026i
\(891\) 24.8863 + 27.3142i 0.833723 + 0.915060i
\(892\) −17.8329 17.8329i −0.597091 0.597091i
\(893\) 9.40789 + 9.40789i 0.314823 + 0.314823i
\(894\) −0.184395 0.126332i −0.00616708 0.00422518i
\(895\) −48.7102 + 10.3828i −1.62820 + 0.347058i
\(896\) 3.79229i 0.126691i
\(897\) 0.316408 + 1.69328i 0.0105645 + 0.0565370i
\(898\) 0.345244 0.345244i 0.0115209 0.0115209i
\(899\) −49.7082 −1.65786
\(900\) 10.6498 + 10.5632i 0.354995 + 0.352106i
\(901\) 4.43956 0.147903
\(902\) −6.17574 + 6.17574i −0.205630 + 0.205630i
\(903\) −8.20404 43.9046i −0.273014 1.46105i
\(904\) 0.968453i 0.0322103i
\(905\) −20.5233 + 4.37462i −0.682217 + 0.145417i
\(906\) 3.25929 + 2.23300i 0.108283 + 0.0741864i
\(907\) 23.9025 + 23.9025i 0.793670 + 0.793670i 0.982089 0.188419i \(-0.0603363\pi\)
−0.188419 + 0.982089i \(0.560336\pi\)
\(908\) 3.28982 + 3.28982i 0.109177 + 0.109177i
\(909\) −1.36433 3.52319i −0.0452519 0.116857i
\(910\) −30.3669 + 46.8194i −1.00665 + 1.55205i
\(911\) 47.8142i 1.58416i 0.610420 + 0.792078i \(0.291001\pi\)
−0.610420 + 0.792078i \(0.708999\pi\)
\(912\) 4.26558 0.797070i 0.141248 0.0263936i
\(913\) −13.3329 + 13.3329i −0.441255 + 0.441255i
\(914\) −16.3269 −0.540047
\(915\) 6.59161 + 15.8221i 0.217912 + 0.523062i
\(916\) 6.78275 0.224108
\(917\) 14.9969 14.9969i 0.495240 0.495240i
\(918\) −4.41843 + 2.73450i −0.145830 + 0.0902520i
\(919\) 13.8669i 0.457426i −0.973494 0.228713i \(-0.926548\pi\)
0.973494 0.228713i \(-0.0734518\pi\)
\(920\) −0.0704472 0.330499i −0.00232257 0.0108962i
\(921\) 1.95076 2.84734i 0.0642798 0.0938230i
\(922\) 19.0488 + 19.0488i 0.627339 + 0.627339i
\(923\) −57.8519 57.8519i −1.90422 1.90422i
\(924\) 15.2421 22.2475i 0.501429 0.731887i
\(925\) −45.4639 17.3923i −1.49484 0.571857i
\(926\) 20.8027i 0.683618i
\(927\) 9.39292 21.2650i 0.308504 0.698433i
\(928\) −3.64180 + 3.64180i −0.119548 + 0.119548i
\(929\) −38.1864 −1.25286 −0.626428 0.779480i \(-0.715484\pi\)
−0.626428 + 0.779480i \(0.715484\pi\)
\(930\) 34.5640 + 14.2342i 1.13340 + 0.466759i
\(931\) −18.4931 −0.606088
\(932\) −6.89977 + 6.89977i −0.226010 + 0.226010i
\(933\) 2.93111 0.547709i 0.0959602 0.0179312i
\(934\) 4.66999i 0.152807i
\(935\) −7.70237 4.99572i −0.251894 0.163377i
\(936\) −18.4106 + 7.12937i −0.601769 + 0.233031i
\(937\) −37.9865 37.9865i −1.24096 1.24096i −0.959602 0.281362i \(-0.909214\pi\)
−0.281362 0.959602i \(-0.590786\pi\)
\(938\) −29.3251 29.3251i −0.957497 0.957497i
\(939\) 6.19704 + 4.24570i 0.202233 + 0.138553i
\(940\) 9.96264 + 6.46172i 0.324945 + 0.210758i
\(941\) 4.51739i 0.147263i −0.997286 0.0736314i \(-0.976541\pi\)
0.997286 0.0736314i \(-0.0234588\pi\)
\(942\) −6.88268 36.8332i −0.224250 1.20009i
\(943\) 0.227319 0.227319i 0.00740252 0.00740252i
\(944\) −3.38536 −0.110184
\(945\) 0.933890 44.0525i 0.0303795 1.43303i
\(946\) 27.9182 0.907700
\(947\) −3.20617 + 3.20617i −0.104186 + 0.104186i −0.757279 0.653092i \(-0.773471\pi\)
0.653092 + 0.757279i \(0.273471\pi\)
\(948\) 2.58954 + 13.8581i 0.0841044 + 0.450091i
\(949\) 24.8962i 0.808166i
\(950\) 11.6999 + 4.47584i 0.379595 + 0.145215i
\(951\) −0.358581 0.245670i −0.0116278 0.00796641i
\(952\) 2.68155 + 2.68155i 0.0869096 + 0.0869096i
\(953\) 15.9434 + 15.9434i 0.516458 + 0.516458i 0.916498 0.400039i \(-0.131004\pi\)
−0.400039 + 0.916498i \(0.631004\pi\)
\(954\) −12.4200 + 4.80954i −0.402111 + 0.155714i
\(955\) −1.91102 8.96542i −0.0618390 0.290114i
\(956\) 10.3093i 0.333427i
\(957\) −36.0019 + 6.72735i −1.16378 + 0.217464i
\(958\) 11.5185 11.5185i 0.372145 0.372145i
\(959\) 63.2399 2.04212
\(960\) 3.57514 1.48943i 0.115387 0.0480712i
\(961\) 62.1521 2.00491
\(962\) 45.3030 45.3030i 1.46063 1.46063i
\(963\) 1.49026 3.37384i 0.0480229 0.108721i
\(964\) 14.8673i 0.478842i
\(965\) −26.5839 + 40.9869i −0.855766 + 1.31941i
\(966\) −0.561038 + 0.818893i −0.0180511 + 0.0263475i
\(967\) −0.705954 0.705954i −0.0227020 0.0227020i 0.695665 0.718367i \(-0.255110\pi\)
−0.718367 + 0.695665i \(0.755110\pi\)
\(968\) 4.14133 + 4.14133i 0.133107 + 0.133107i
\(969\) −2.45261 + 3.57984i −0.0787892 + 0.115001i
\(970\) 18.4512 3.93294i 0.592432 0.126279i
\(971\) 2.23995i 0.0718835i 0.999354 + 0.0359417i \(0.0114431\pi\)
−0.999354 + 0.0359417i \(0.988557\pi\)
\(972\) 9.39846 12.4366i 0.301456 0.398904i
\(973\) 17.3708 17.3708i 0.556882 0.556882i
\(974\) −5.73339 −0.183710
\(975\) −56.0652 10.2396i −1.79552 0.327928i
\(976\) 4.42559 0.141660
\(977\) 19.5421 19.5421i 0.625208 0.625208i −0.321651 0.946858i \(-0.604238\pi\)
0.946858 + 0.321651i \(0.104238\pi\)
\(978\) −11.5254 + 2.15365i −0.368542 + 0.0688661i
\(979\) 53.3433i 1.70486i
\(980\) −16.1427 + 3.44089i −0.515661 + 0.109915i
\(981\) −9.60282 24.7979i −0.306594 0.791737i
\(982\) −6.47441 6.47441i −0.206607 0.206607i
\(983\) −11.7978 11.7978i −0.376292 0.376292i 0.493471 0.869763i \(-0.335728\pi\)
−0.869763 + 0.493471i \(0.835728\pi\)
\(984\) 3.03955 + 2.08245i 0.0968974 + 0.0663861i
\(985\) 30.1492 46.4839i 0.960634 1.48110i
\(986\) 5.15029i 0.164019i
\(987\) −6.40713 34.2883i −0.203941 1.09141i
\(988\) −11.6585 + 11.6585i −0.370907 + 0.370907i
\(989\) −1.02763 −0.0326766
\(990\) 26.9599 + 5.63160i 0.856843 + 0.178984i
\(991\) 31.6663 1.00591 0.502957 0.864311i \(-0.332245\pi\)
0.502957 + 0.864311i \(0.332245\pi\)
\(992\) 6.82466 6.82466i 0.216683 0.216683i
\(993\) −7.75558 41.5046i −0.246116 1.31711i
\(994\) 47.1462i 1.49539i
\(995\) 0.746502 + 3.50217i 0.0236657 + 0.111026i
\(996\) 6.56214 + 4.49584i 0.207929 + 0.142456i
\(997\) −5.05187 5.05187i −0.159994 0.159994i 0.622570 0.782564i \(-0.286089\pi\)
−0.782564 + 0.622570i \(0.786089\pi\)
\(998\) 6.72976 + 6.72976i 0.213027 + 0.213027i
\(999\) −11.5921 + 49.2406i −0.366758 + 1.55790i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 510.2.l.g.137.11 yes 28
3.2 odd 2 inner 510.2.l.g.137.1 28
5.3 odd 4 inner 510.2.l.g.443.1 yes 28
15.8 even 4 inner 510.2.l.g.443.11 yes 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
510.2.l.g.137.1 28 3.2 odd 2 inner
510.2.l.g.137.11 yes 28 1.1 even 1 trivial
510.2.l.g.443.1 yes 28 5.3 odd 4 inner
510.2.l.g.443.11 yes 28 15.8 even 4 inner