Properties

Label 510.2.l.g.137.12
Level $510$
Weight $2$
Character 510.137
Analytic conductor $4.072$
Analytic rank $0$
Dimension $28$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [510,2,Mod(137,510)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(510, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("510.137");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 510 = 2 \cdot 3 \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 510.l (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.07237050309\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 137.12
Character \(\chi\) \(=\) 510.137
Dual form 510.2.l.g.443.12

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.707107 - 0.707107i) q^{2} +(0.759217 - 1.55679i) q^{3} -1.00000i q^{4} +(-0.738113 - 2.11073i) q^{5} +(-0.563968 - 1.63766i) q^{6} +(-1.28132 - 1.28132i) q^{7} +(-0.707107 - 0.707107i) q^{8} +(-1.84718 - 2.36388i) q^{9} +(-2.01444 - 0.970588i) q^{10} +6.49808i q^{11} +(-1.55679 - 0.759217i) q^{12} +(3.68142 - 3.68142i) q^{13} -1.81207 q^{14} +(-3.84635 - 0.453418i) q^{15} -1.00000 q^{16} +(0.707107 - 0.707107i) q^{17} +(-2.97767 - 0.365364i) q^{18} +3.69058i q^{19} +(-2.11073 + 0.738113i) q^{20} +(-2.96755 + 1.02195i) q^{21} +(4.59483 + 4.59483i) q^{22} +(-5.32876 - 5.32876i) q^{23} +(-1.63766 + 0.563968i) q^{24} +(-3.91038 + 3.11592i) q^{25} -5.20631i q^{26} +(-5.08247 + 1.08097i) q^{27} +(-1.28132 + 1.28132i) q^{28} +5.82957 q^{29} +(-3.04040 + 2.39917i) q^{30} +8.83803 q^{31} +(-0.707107 + 0.707107i) q^{32} +(10.1161 + 4.93345i) q^{33} -1.00000i q^{34} +(-1.75877 + 3.65029i) q^{35} +(-2.36388 + 1.84718i) q^{36} +(0.321811 + 0.321811i) q^{37} +(2.60964 + 2.60964i) q^{38} +(-2.93619 - 8.52618i) q^{39} +(-0.970588 + 2.01444i) q^{40} -5.74285i q^{41} +(-1.37575 + 2.82100i) q^{42} +(3.47671 - 3.47671i) q^{43} +6.49808 q^{44} +(-3.62609 + 5.64371i) q^{45} -7.53601 q^{46} +(2.21244 - 2.21244i) q^{47} +(-0.759217 + 1.55679i) q^{48} -3.71642i q^{49} +(-0.561767 + 4.96834i) q^{50} +(-0.563968 - 1.63766i) q^{51} +(-3.68142 - 3.68142i) q^{52} +(-2.73273 - 2.73273i) q^{53} +(-2.82949 + 4.35821i) q^{54} +(13.7157 - 4.79632i) q^{55} +1.81207i q^{56} +(5.74546 + 2.80196i) q^{57} +(4.12213 - 4.12213i) q^{58} +8.30098 q^{59} +(-0.453418 + 3.84635i) q^{60} -11.1278 q^{61} +(6.24943 - 6.24943i) q^{62} +(-0.662064 + 5.39573i) q^{63} +1.00000i q^{64} +(-10.4878 - 5.05318i) q^{65} +(10.6417 - 3.66470i) q^{66} +(1.83091 + 1.83091i) q^{67} +(-0.707107 - 0.707107i) q^{68} +(-12.3414 + 4.25007i) q^{69} +(1.33751 + 3.82479i) q^{70} +4.09434i q^{71} +(-0.365364 + 2.97767i) q^{72} +(-4.36323 + 4.36323i) q^{73} +0.455109 q^{74} +(1.88200 + 8.45329i) q^{75} +3.69058 q^{76} +(8.32614 - 8.32614i) q^{77} +(-8.10512 - 3.95272i) q^{78} +6.14323i q^{79} +(0.738113 + 2.11073i) q^{80} +(-2.17587 + 8.73302i) q^{81} +(-4.06081 - 4.06081i) q^{82} +(1.86990 + 1.86990i) q^{83} +(1.02195 + 2.96755i) q^{84} +(-2.01444 - 0.970588i) q^{85} -4.91680i q^{86} +(4.42591 - 9.07541i) q^{87} +(4.59483 - 4.59483i) q^{88} +7.94509 q^{89} +(1.42667 + 6.55474i) q^{90} -9.43417 q^{91} +(-5.32876 + 5.32876i) q^{92} +(6.70999 - 13.7589i) q^{93} -3.12886i q^{94} +(7.78983 - 2.72407i) q^{95} +(0.563968 + 1.63766i) q^{96} +(9.26552 + 9.26552i) q^{97} +(-2.62790 - 2.62790i) q^{98} +(15.3607 - 12.0031i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q + 4 q^{7} - 12 q^{10} - 8 q^{13} + 8 q^{15} - 28 q^{16} - 16 q^{18} + 48 q^{21} + 20 q^{22} + 40 q^{25} - 36 q^{27} + 4 q^{28} - 12 q^{30} + 16 q^{31} + 8 q^{33} + 8 q^{37} - 8 q^{40} - 48 q^{42} + 48 q^{43}+ \cdots + 60 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/510\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(307\) \(341\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.707107 0.707107i 0.500000 0.500000i
\(3\) 0.759217 1.55679i 0.438334 0.898812i
\(4\) 1.00000i 0.500000i
\(5\) −0.738113 2.11073i −0.330094 0.943948i
\(6\) −0.563968 1.63766i −0.230239 0.668573i
\(7\) −1.28132 1.28132i −0.484295 0.484295i 0.422205 0.906500i \(-0.361256\pi\)
−0.906500 + 0.422205i \(0.861256\pi\)
\(8\) −0.707107 0.707107i −0.250000 0.250000i
\(9\) −1.84718 2.36388i −0.615726 0.787960i
\(10\) −2.01444 0.970588i −0.637021 0.306927i
\(11\) 6.49808i 1.95924i 0.200852 + 0.979622i \(0.435629\pi\)
−0.200852 + 0.979622i \(0.564371\pi\)
\(12\) −1.55679 0.759217i −0.449406 0.219167i
\(13\) 3.68142 3.68142i 1.02104 1.02104i 0.0212670 0.999774i \(-0.493230\pi\)
0.999774 0.0212670i \(-0.00677001\pi\)
\(14\) −1.81207 −0.484295
\(15\) −3.84635 0.453418i −0.993123 0.117072i
\(16\) −1.00000 −0.250000
\(17\) 0.707107 0.707107i 0.171499 0.171499i
\(18\) −2.97767 0.365364i −0.701843 0.0861171i
\(19\) 3.69058i 0.846678i 0.905971 + 0.423339i \(0.139142\pi\)
−0.905971 + 0.423339i \(0.860858\pi\)
\(20\) −2.11073 + 0.738113i −0.471974 + 0.165047i
\(21\) −2.96755 + 1.02195i −0.647573 + 0.223007i
\(22\) 4.59483 + 4.59483i 0.979622 + 0.979622i
\(23\) −5.32876 5.32876i −1.11112 1.11112i −0.992999 0.118125i \(-0.962312\pi\)
−0.118125 0.992999i \(-0.537688\pi\)
\(24\) −1.63766 + 0.563968i −0.334287 + 0.115119i
\(25\) −3.91038 + 3.11592i −0.782075 + 0.623184i
\(26\) 5.20631i 1.02104i
\(27\) −5.08247 + 1.08097i −0.978122 + 0.208032i
\(28\) −1.28132 + 1.28132i −0.242148 + 0.242148i
\(29\) 5.82957 1.08252 0.541262 0.840854i \(-0.317947\pi\)
0.541262 + 0.840854i \(0.317947\pi\)
\(30\) −3.04040 + 2.39917i −0.555098 + 0.438026i
\(31\) 8.83803 1.58736 0.793679 0.608337i \(-0.208163\pi\)
0.793679 + 0.608337i \(0.208163\pi\)
\(32\) −0.707107 + 0.707107i −0.125000 + 0.125000i
\(33\) 10.1161 + 4.93345i 1.76099 + 0.858804i
\(34\) 1.00000i 0.171499i
\(35\) −1.75877 + 3.65029i −0.297286 + 0.617012i
\(36\) −2.36388 + 1.84718i −0.393980 + 0.307863i
\(37\) 0.321811 + 0.321811i 0.0529054 + 0.0529054i 0.733065 0.680159i \(-0.238089\pi\)
−0.680159 + 0.733065i \(0.738089\pi\)
\(38\) 2.60964 + 2.60964i 0.423339 + 0.423339i
\(39\) −2.93619 8.52618i −0.470167 1.36528i
\(40\) −0.970588 + 2.01444i −0.153463 + 0.318511i
\(41\) 5.74285i 0.896883i −0.893812 0.448441i \(-0.851979\pi\)
0.893812 0.448441i \(-0.148021\pi\)
\(42\) −1.37575 + 2.82100i −0.212283 + 0.435290i
\(43\) 3.47671 3.47671i 0.530193 0.530193i −0.390437 0.920630i \(-0.627676\pi\)
0.920630 + 0.390437i \(0.127676\pi\)
\(44\) 6.49808 0.979622
\(45\) −3.62609 + 5.64371i −0.540546 + 0.841315i
\(46\) −7.53601 −1.11112
\(47\) 2.21244 2.21244i 0.322717 0.322717i −0.527092 0.849809i \(-0.676718\pi\)
0.849809 + 0.527092i \(0.176718\pi\)
\(48\) −0.759217 + 1.55679i −0.109584 + 0.224703i
\(49\) 3.71642i 0.530917i
\(50\) −0.561767 + 4.96834i −0.0794459 + 0.702630i
\(51\) −0.563968 1.63766i −0.0789713 0.229319i
\(52\) −3.68142 3.68142i −0.510520 0.510520i
\(53\) −2.73273 2.73273i −0.375370 0.375370i 0.494059 0.869429i \(-0.335513\pi\)
−0.869429 + 0.494059i \(0.835513\pi\)
\(54\) −2.82949 + 4.35821i −0.385045 + 0.593077i
\(55\) 13.7157 4.79632i 1.84942 0.646735i
\(56\) 1.81207i 0.242148i
\(57\) 5.74546 + 2.80196i 0.761004 + 0.371128i
\(58\) 4.12213 4.12213i 0.541262 0.541262i
\(59\) 8.30098 1.08070 0.540348 0.841442i \(-0.318293\pi\)
0.540348 + 0.841442i \(0.318293\pi\)
\(60\) −0.453418 + 3.84635i −0.0585360 + 0.496562i
\(61\) −11.1278 −1.42477 −0.712383 0.701791i \(-0.752384\pi\)
−0.712383 + 0.701791i \(0.752384\pi\)
\(62\) 6.24943 6.24943i 0.793679 0.793679i
\(63\) −0.662064 + 5.39573i −0.0834122 + 0.679798i
\(64\) 1.00000i 0.125000i
\(65\) −10.4878 5.05318i −1.30085 0.626770i
\(66\) 10.6417 3.66470i 1.30990 0.451094i
\(67\) 1.83091 + 1.83091i 0.223681 + 0.223681i 0.810047 0.586366i \(-0.199442\pi\)
−0.586366 + 0.810047i \(0.699442\pi\)
\(68\) −0.707107 0.707107i −0.0857493 0.0857493i
\(69\) −12.3414 + 4.25007i −1.48574 + 0.511648i
\(70\) 1.33751 + 3.82479i 0.159863 + 0.457149i
\(71\) 4.09434i 0.485909i 0.970038 + 0.242954i \(0.0781165\pi\)
−0.970038 + 0.242954i \(0.921883\pi\)
\(72\) −0.365364 + 2.97767i −0.0430586 + 0.350922i
\(73\) −4.36323 + 4.36323i −0.510678 + 0.510678i −0.914734 0.404056i \(-0.867600\pi\)
0.404056 + 0.914734i \(0.367600\pi\)
\(74\) 0.455109 0.0529054
\(75\) 1.88200 + 8.45329i 0.217314 + 0.976102i
\(76\) 3.69058 0.423339
\(77\) 8.32614 8.32614i 0.948852 0.948852i
\(78\) −8.10512 3.95272i −0.917724 0.447557i
\(79\) 6.14323i 0.691167i 0.938388 + 0.345584i \(0.112319\pi\)
−0.938388 + 0.345584i \(0.887681\pi\)
\(80\) 0.738113 + 2.11073i 0.0825236 + 0.235987i
\(81\) −2.17587 + 8.73302i −0.241763 + 0.970335i
\(82\) −4.06081 4.06081i −0.448441 0.448441i
\(83\) 1.86990 + 1.86990i 0.205248 + 0.205248i 0.802244 0.596996i \(-0.203639\pi\)
−0.596996 + 0.802244i \(0.703639\pi\)
\(84\) 1.02195 + 2.96755i 0.111504 + 0.323787i
\(85\) −2.01444 0.970588i −0.218496 0.105275i
\(86\) 4.91680i 0.530193i
\(87\) 4.42591 9.07541i 0.474508 0.972986i
\(88\) 4.59483 4.59483i 0.489811 0.489811i
\(89\) 7.94509 0.842178 0.421089 0.907019i \(-0.361648\pi\)
0.421089 + 0.907019i \(0.361648\pi\)
\(90\) 1.42667 + 6.55474i 0.150384 + 0.690930i
\(91\) −9.43417 −0.988970
\(92\) −5.32876 + 5.32876i −0.555562 + 0.555562i
\(93\) 6.70999 13.7589i 0.695793 1.42674i
\(94\) 3.12886i 0.322717i
\(95\) 7.78983 2.72407i 0.799220 0.279484i
\(96\) 0.563968 + 1.63766i 0.0575597 + 0.167143i
\(97\) 9.26552 + 9.26552i 0.940771 + 0.940771i 0.998341 0.0575706i \(-0.0183354\pi\)
−0.0575706 + 0.998341i \(0.518335\pi\)
\(98\) −2.62790 2.62790i −0.265458 0.265458i
\(99\) 15.3607 12.0031i 1.54381 1.20636i
\(100\) 3.11592 + 3.91038i 0.311592 + 0.391038i
\(101\) 2.51702i 0.250453i 0.992128 + 0.125226i \(0.0399657\pi\)
−0.992128 + 0.125226i \(0.960034\pi\)
\(102\) −1.55679 0.759217i −0.154145 0.0751737i
\(103\) 10.0675 10.0675i 0.991976 0.991976i −0.00799239 0.999968i \(-0.502544\pi\)
0.999968 + 0.00799239i \(0.00254408\pi\)
\(104\) −5.20631 −0.510520
\(105\) 4.34745 + 5.50940i 0.424267 + 0.537662i
\(106\) −3.86467 −0.375370
\(107\) −1.47204 + 1.47204i −0.142308 + 0.142308i −0.774672 0.632364i \(-0.782085\pi\)
0.632364 + 0.774672i \(0.282085\pi\)
\(108\) 1.08097 + 5.08247i 0.104016 + 0.489061i
\(109\) 0.539843i 0.0517076i 0.999666 + 0.0258538i \(0.00823043\pi\)
−0.999666 + 0.0258538i \(0.991770\pi\)
\(110\) 6.30695 13.0900i 0.601344 1.24808i
\(111\) 0.745316 0.256667i 0.0707423 0.0243618i
\(112\) 1.28132 + 1.28132i 0.121074 + 0.121074i
\(113\) 0.595666 + 0.595666i 0.0560355 + 0.0560355i 0.734569 0.678534i \(-0.237384\pi\)
−0.678534 + 0.734569i \(0.737384\pi\)
\(114\) 6.04393 2.08137i 0.566066 0.194938i
\(115\) −7.31436 + 15.1808i −0.682067 + 1.41562i
\(116\) 5.82957i 0.541262i
\(117\) −15.5027 1.90220i −1.43322 0.175858i
\(118\) 5.86968 5.86968i 0.540348 0.540348i
\(119\) −1.81207 −0.166112
\(120\) 2.39917 + 3.04040i 0.219013 + 0.277549i
\(121\) −31.2250 −2.83863
\(122\) −7.86853 + 7.86853i −0.712383 + 0.712383i
\(123\) −8.94040 4.36007i −0.806129 0.393134i
\(124\) 8.83803i 0.793679i
\(125\) 9.46317 + 5.95386i 0.846412 + 0.532529i
\(126\) 3.34721 + 4.28351i 0.298193 + 0.381605i
\(127\) 9.28606 + 9.28606i 0.824004 + 0.824004i 0.986680 0.162675i \(-0.0520123\pi\)
−0.162675 + 0.986680i \(0.552012\pi\)
\(128\) 0.707107 + 0.707107i 0.0625000 + 0.0625000i
\(129\) −2.77292 8.05207i −0.244142 0.708945i
\(130\) −10.9891 + 3.84284i −0.963809 + 0.337040i
\(131\) 2.43636i 0.212866i −0.994320 0.106433i \(-0.966057\pi\)
0.994320 0.106433i \(-0.0339430\pi\)
\(132\) 4.93345 10.1161i 0.429402 0.880496i
\(133\) 4.72884 4.72884i 0.410042 0.410042i
\(134\) 2.58929 0.223681
\(135\) 6.03307 + 9.92986i 0.519244 + 0.854626i
\(136\) −1.00000 −0.0857493
\(137\) 11.2010 11.2010i 0.956963 0.956963i −0.0421487 0.999111i \(-0.513420\pi\)
0.999111 + 0.0421487i \(0.0134203\pi\)
\(138\) −5.72147 + 11.7320i −0.487044 + 0.998691i
\(139\) 14.3172i 1.21437i 0.794562 + 0.607183i \(0.207701\pi\)
−0.794562 + 0.607183i \(0.792299\pi\)
\(140\) 3.65029 + 1.75877i 0.308506 + 0.148643i
\(141\) −1.76457 5.12401i −0.148604 0.431520i
\(142\) 2.89513 + 2.89513i 0.242954 + 0.242954i
\(143\) 23.9221 + 23.9221i 2.00047 + 2.00047i
\(144\) 1.84718 + 2.36388i 0.153932 + 0.196990i
\(145\) −4.30288 12.3047i −0.357335 1.02185i
\(146\) 6.17054i 0.510678i
\(147\) −5.78567 2.82157i −0.477194 0.232719i
\(148\) 0.321811 0.321811i 0.0264527 0.0264527i
\(149\) 16.0846 1.31771 0.658853 0.752272i \(-0.271042\pi\)
0.658853 + 0.752272i \(0.271042\pi\)
\(150\) 7.30815 + 4.64660i 0.596708 + 0.379394i
\(151\) −15.7917 −1.28511 −0.642556 0.766238i \(-0.722126\pi\)
−0.642556 + 0.766238i \(0.722126\pi\)
\(152\) 2.60964 2.60964i 0.211670 0.211670i
\(153\) −2.97767 0.365364i −0.240730 0.0295379i
\(154\) 11.7749i 0.948852i
\(155\) −6.52347 18.6547i −0.523978 1.49838i
\(156\) −8.52618 + 2.93619i −0.682641 + 0.235083i
\(157\) 14.3701 + 14.3701i 1.14686 + 1.14686i 0.987168 + 0.159688i \(0.0510488\pi\)
0.159688 + 0.987168i \(0.448951\pi\)
\(158\) 4.34392 + 4.34392i 0.345584 + 0.345584i
\(159\) −6.32903 + 2.17955i −0.501925 + 0.172849i
\(160\) 2.01444 + 0.970588i 0.159255 + 0.0767317i
\(161\) 13.6557i 1.07622i
\(162\) 4.63661 + 7.71375i 0.364286 + 0.606049i
\(163\) −2.93966 + 2.93966i −0.230252 + 0.230252i −0.812798 0.582546i \(-0.802057\pi\)
0.582546 + 0.812798i \(0.302057\pi\)
\(164\) −5.74285 −0.448441
\(165\) 2.94634 24.9939i 0.229373 1.94577i
\(166\) 2.64443 0.205248
\(167\) −14.5022 + 14.5022i −1.12221 + 1.12221i −0.130806 + 0.991408i \(0.541757\pi\)
−0.991408 + 0.130806i \(0.958243\pi\)
\(168\) 2.82100 + 1.37575i 0.217645 + 0.106142i
\(169\) 14.1056i 1.08505i
\(170\) −2.11073 + 0.738113i −0.161886 + 0.0566107i
\(171\) 8.72410 6.81717i 0.667149 0.521322i
\(172\) −3.47671 3.47671i −0.265096 0.265096i
\(173\) −5.79516 5.79516i −0.440598 0.440598i 0.451615 0.892213i \(-0.350848\pi\)
−0.892213 + 0.451615i \(0.850848\pi\)
\(174\) −3.28769 9.54687i −0.249239 0.723747i
\(175\) 9.00296 + 1.01796i 0.680560 + 0.0769505i
\(176\) 6.49808i 0.489811i
\(177\) 6.30225 12.9229i 0.473706 0.971342i
\(178\) 5.61803 5.61803i 0.421089 0.421089i
\(179\) 3.27890 0.245076 0.122538 0.992464i \(-0.460897\pi\)
0.122538 + 0.992464i \(0.460897\pi\)
\(180\) 5.64371 + 3.62609i 0.420657 + 0.270273i
\(181\) 3.17612 0.236079 0.118039 0.993009i \(-0.462339\pi\)
0.118039 + 0.993009i \(0.462339\pi\)
\(182\) −6.67097 + 6.67097i −0.494485 + 0.494485i
\(183\) −8.44841 + 17.3236i −0.624524 + 1.28060i
\(184\) 7.53601i 0.555562i
\(185\) 0.441724 0.916790i 0.0324762 0.0674037i
\(186\) −4.98436 14.4737i −0.365471 1.06126i
\(187\) 4.59483 + 4.59483i 0.336007 + 0.336007i
\(188\) −2.21244 2.21244i −0.161358 0.161358i
\(189\) 7.89736 + 5.12723i 0.574449 + 0.372951i
\(190\) 3.58204 7.43445i 0.259868 0.539352i
\(191\) 2.99609i 0.216790i −0.994108 0.108395i \(-0.965429\pi\)
0.994108 0.108395i \(-0.0345711\pi\)
\(192\) 1.55679 + 0.759217i 0.112351 + 0.0547918i
\(193\) −18.0972 + 18.0972i −1.30267 + 1.30267i −0.376081 + 0.926587i \(0.622728\pi\)
−0.926587 + 0.376081i \(0.877272\pi\)
\(194\) 13.1034 0.940771
\(195\) −15.8292 + 12.4908i −1.13355 + 0.894484i
\(196\) −3.71642 −0.265458
\(197\) −2.19929 + 2.19929i −0.156693 + 0.156693i −0.781100 0.624406i \(-0.785341\pi\)
0.624406 + 0.781100i \(0.285341\pi\)
\(198\) 2.37416 19.3491i 0.168724 1.37508i
\(199\) 3.05251i 0.216386i −0.994130 0.108193i \(-0.965493\pi\)
0.994130 0.108193i \(-0.0345065\pi\)
\(200\) 4.96834 + 0.561767i 0.351315 + 0.0397229i
\(201\) 4.24039 1.46028i 0.299094 0.103000i
\(202\) 1.77980 + 1.77980i 0.125226 + 0.125226i
\(203\) −7.46957 7.46957i −0.524261 0.524261i
\(204\) −1.63766 + 0.563968i −0.114659 + 0.0394856i
\(205\) −12.1216 + 4.23887i −0.846610 + 0.296056i
\(206\) 14.2375i 0.991976i
\(207\) −2.75339 + 22.4397i −0.191374 + 1.55967i
\(208\) −3.68142 + 3.68142i −0.255260 + 0.255260i
\(209\) −23.9817 −1.65885
\(210\) 6.96984 + 0.821624i 0.480965 + 0.0566974i
\(211\) 4.12951 0.284288 0.142144 0.989846i \(-0.454600\pi\)
0.142144 + 0.989846i \(0.454600\pi\)
\(212\) −2.73273 + 2.73273i −0.187685 + 0.187685i
\(213\) 6.37402 + 3.10849i 0.436740 + 0.212990i
\(214\) 2.08178i 0.142308i
\(215\) −9.90460 4.77219i −0.675488 0.325461i
\(216\) 4.35821 + 2.82949i 0.296538 + 0.192523i
\(217\) −11.3244 11.3244i −0.768749 0.768749i
\(218\) 0.381727 + 0.381727i 0.0258538 + 0.0258538i
\(219\) 3.47999 + 10.1053i 0.235156 + 0.682851i
\(220\) −4.79632 13.7157i −0.323368 0.924712i
\(221\) 5.20631i 0.350214i
\(222\) 0.345527 0.708509i 0.0231902 0.0475520i
\(223\) −8.15006 + 8.15006i −0.545768 + 0.545768i −0.925214 0.379446i \(-0.876115\pi\)
0.379446 + 0.925214i \(0.376115\pi\)
\(224\) 1.81207 0.121074
\(225\) 14.5888 + 3.48801i 0.972588 + 0.232534i
\(226\) 0.842399 0.0560355
\(227\) −0.935113 + 0.935113i −0.0620656 + 0.0620656i −0.737458 0.675393i \(-0.763974\pi\)
0.675393 + 0.737458i \(0.263974\pi\)
\(228\) 2.80196 5.74546i 0.185564 0.380502i
\(229\) 3.24836i 0.214658i 0.994224 + 0.107329i \(0.0342297\pi\)
−0.994224 + 0.107329i \(0.965770\pi\)
\(230\) 5.56243 + 15.9065i 0.366776 + 1.04884i
\(231\) −6.64069 19.2834i −0.436925 1.26875i
\(232\) −4.12213 4.12213i −0.270631 0.270631i
\(233\) −4.21980 4.21980i −0.276448 0.276448i 0.555241 0.831689i \(-0.312626\pi\)
−0.831689 + 0.555241i \(0.812626\pi\)
\(234\) −12.3071 + 9.61698i −0.804540 + 0.628681i
\(235\) −6.30289 3.03683i −0.411155 0.198101i
\(236\) 8.30098i 0.540348i
\(237\) 9.56371 + 4.66405i 0.621229 + 0.302962i
\(238\) −1.28132 + 1.28132i −0.0830559 + 0.0830559i
\(239\) −18.6750 −1.20798 −0.603992 0.796991i \(-0.706424\pi\)
−0.603992 + 0.796991i \(0.706424\pi\)
\(240\) 3.84635 + 0.453418i 0.248281 + 0.0292680i
\(241\) −7.33380 −0.472411 −0.236206 0.971703i \(-0.575904\pi\)
−0.236206 + 0.971703i \(0.575904\pi\)
\(242\) −22.0794 + 22.0794i −1.41932 + 1.41932i
\(243\) 11.9435 + 10.0176i 0.766176 + 0.642631i
\(244\) 11.1278i 0.712383i
\(245\) −7.84436 + 2.74314i −0.501158 + 0.175253i
\(246\) −9.40485 + 3.23878i −0.599632 + 0.206497i
\(247\) 13.5866 + 13.5866i 0.864493 + 0.864493i
\(248\) −6.24943 6.24943i −0.396839 0.396839i
\(249\) 4.33069 1.49137i 0.274446 0.0945120i
\(250\) 10.9015 2.48146i 0.689470 0.156941i
\(251\) 9.88473i 0.623919i −0.950095 0.311959i \(-0.899015\pi\)
0.950095 0.311959i \(-0.100985\pi\)
\(252\) 5.39573 + 0.662064i 0.339899 + 0.0417061i
\(253\) 34.6267 34.6267i 2.17696 2.17696i
\(254\) 13.1325 0.824004
\(255\) −3.04040 + 2.39917i −0.190397 + 0.150242i
\(256\) 1.00000 0.0625000
\(257\) −17.0277 + 17.0277i −1.06216 + 1.06216i −0.0642262 + 0.997935i \(0.520458\pi\)
−0.997935 + 0.0642262i \(0.979542\pi\)
\(258\) −7.65442 3.73292i −0.476544 0.232402i
\(259\) 0.824688i 0.0512436i
\(260\) −5.05318 + 10.4878i −0.313385 + 0.650425i
\(261\) −10.7683 13.7804i −0.666538 0.852986i
\(262\) −1.72277 1.72277i −0.106433 0.106433i
\(263\) 7.82956 + 7.82956i 0.482792 + 0.482792i 0.906022 0.423230i \(-0.139104\pi\)
−0.423230 + 0.906022i \(0.639104\pi\)
\(264\) −3.66470 10.6417i −0.225547 0.654949i
\(265\) −3.75100 + 7.78514i −0.230422 + 0.478237i
\(266\) 6.68758i 0.410042i
\(267\) 6.03205 12.3688i 0.369155 0.756960i
\(268\) 1.83091 1.83091i 0.111840 0.111840i
\(269\) −13.3600 −0.814575 −0.407287 0.913300i \(-0.633525\pi\)
−0.407287 + 0.913300i \(0.633525\pi\)
\(270\) 11.2875 + 2.75545i 0.686935 + 0.167691i
\(271\) 24.9500 1.51560 0.757802 0.652485i \(-0.226273\pi\)
0.757802 + 0.652485i \(0.226273\pi\)
\(272\) −0.707107 + 0.707107i −0.0428746 + 0.0428746i
\(273\) −7.16259 + 14.6870i −0.433500 + 0.888898i
\(274\) 15.8406i 0.956963i
\(275\) −20.2475 25.4099i −1.22097 1.53228i
\(276\) 4.25007 + 12.3414i 0.255824 + 0.742868i
\(277\) −9.08452 9.08452i −0.545836 0.545836i 0.379398 0.925234i \(-0.376131\pi\)
−0.925234 + 0.379398i \(0.876131\pi\)
\(278\) 10.1238 + 10.1238i 0.607183 + 0.607183i
\(279\) −16.3254 20.8921i −0.977377 1.25077i
\(280\) 3.82479 1.33751i 0.228575 0.0799315i
\(281\) 9.55817i 0.570193i 0.958499 + 0.285096i \(0.0920256\pi\)
−0.958499 + 0.285096i \(0.907974\pi\)
\(282\) −4.87097 2.37548i −0.290062 0.141458i
\(283\) −0.229619 + 0.229619i −0.0136494 + 0.0136494i −0.713899 0.700249i \(-0.753072\pi\)
0.700249 + 0.713899i \(0.253072\pi\)
\(284\) 4.09434 0.242954
\(285\) 1.67338 14.1953i 0.0991223 0.840856i
\(286\) 33.8310 2.00047
\(287\) −7.35845 + 7.35845i −0.434356 + 0.434356i
\(288\) 2.97767 + 0.365364i 0.175461 + 0.0215293i
\(289\) 1.00000i 0.0588235i
\(290\) −11.7433 5.65811i −0.689591 0.332256i
\(291\) 21.4590 7.38991i 1.25795 0.433204i
\(292\) 4.36323 + 4.36323i 0.255339 + 0.255339i
\(293\) −5.91163 5.91163i −0.345361 0.345361i 0.513017 0.858378i \(-0.328528\pi\)
−0.858378 + 0.513017i \(0.828528\pi\)
\(294\) −6.08624 + 2.09594i −0.354957 + 0.122238i
\(295\) −6.12707 17.5211i −0.356732 1.02012i
\(296\) 0.455109i 0.0264527i
\(297\) −7.02419 33.0263i −0.407585 1.91638i
\(298\) 11.3736 11.3736i 0.658853 0.658853i
\(299\) −39.2348 −2.26901
\(300\) 8.45329 1.88200i 0.488051 0.108657i
\(301\) −8.90958 −0.513539
\(302\) −11.1664 + 11.1664i −0.642556 + 0.642556i
\(303\) 3.91847 + 1.91096i 0.225110 + 0.109782i
\(304\) 3.69058i 0.211670i
\(305\) 8.21357 + 23.4878i 0.470307 + 1.34491i
\(306\) −2.36388 + 1.84718i −0.135134 + 0.105596i
\(307\) −15.1291 15.1291i −0.863461 0.863461i 0.128278 0.991738i \(-0.459055\pi\)
−0.991738 + 0.128278i \(0.959055\pi\)
\(308\) −8.32614 8.32614i −0.474426 0.474426i
\(309\) −8.02951 23.3163i −0.456783 1.32642i
\(310\) −17.8037 8.57808i −1.01118 0.487202i
\(311\) 5.15391i 0.292251i 0.989266 + 0.146126i \(0.0466804\pi\)
−0.989266 + 0.146126i \(0.953320\pi\)
\(312\) −3.95272 + 8.10512i −0.223779 + 0.458862i
\(313\) −7.31819 + 7.31819i −0.413648 + 0.413648i −0.883007 0.469359i \(-0.844485\pi\)
0.469359 + 0.883007i \(0.344485\pi\)
\(314\) 20.3223 1.14686
\(315\) 11.8776 2.58522i 0.669228 0.145661i
\(316\) 6.14323 0.345584
\(317\) 10.9391 10.9391i 0.614403 0.614403i −0.329687 0.944090i \(-0.606943\pi\)
0.944090 + 0.329687i \(0.106943\pi\)
\(318\) −2.93412 + 6.01647i −0.164538 + 0.337387i
\(319\) 37.8810i 2.12093i
\(320\) 2.11073 0.738113i 0.117993 0.0412618i
\(321\) 1.17406 + 3.40926i 0.0655296 + 0.190286i
\(322\) 9.65607 + 9.65607i 0.538112 + 0.538112i
\(323\) 2.60964 + 2.60964i 0.145204 + 0.145204i
\(324\) 8.73302 + 2.17587i 0.485168 + 0.120881i
\(325\) −2.92473 + 25.8667i −0.162235 + 1.43483i
\(326\) 4.15730i 0.230252i
\(327\) 0.840421 + 0.409858i 0.0464754 + 0.0226652i
\(328\) −4.06081 + 4.06081i −0.224221 + 0.224221i
\(329\) −5.66970 −0.312581
\(330\) −15.5900 19.7567i −0.858199 1.08757i
\(331\) −2.04286 −0.112286 −0.0561428 0.998423i \(-0.517880\pi\)
−0.0561428 + 0.998423i \(0.517880\pi\)
\(332\) 1.86990 1.86990i 0.102624 0.102624i
\(333\) 0.166281 1.35516i 0.00911212 0.0742626i
\(334\) 20.5092i 1.12221i
\(335\) 2.51314 5.21597i 0.137307 0.284979i
\(336\) 2.96755 1.02195i 0.161893 0.0557518i
\(337\) −10.2776 10.2776i −0.559857 0.559857i 0.369410 0.929267i \(-0.379560\pi\)
−0.929267 + 0.369410i \(0.879560\pi\)
\(338\) −9.97419 9.97419i −0.542524 0.542524i
\(339\) 1.37957 0.475086i 0.0749277 0.0258031i
\(340\) −0.970588 + 2.01444i −0.0526375 + 0.109248i
\(341\) 57.4302i 3.11002i
\(342\) 1.34841 10.9893i 0.0729135 0.594235i
\(343\) −13.7312 + 13.7312i −0.741415 + 0.741415i
\(344\) −4.91680 −0.265096
\(345\) 18.0801 + 22.9124i 0.973402 + 1.23356i
\(346\) −8.19559 −0.440598
\(347\) 12.5864 12.5864i 0.675672 0.675672i −0.283346 0.959018i \(-0.591444\pi\)
0.959018 + 0.283346i \(0.0914445\pi\)
\(348\) −9.07541 4.42591i −0.486493 0.237254i
\(349\) 35.1750i 1.88287i −0.337191 0.941436i \(-0.609477\pi\)
0.337191 0.941436i \(-0.390523\pi\)
\(350\) 7.08586 5.64625i 0.378755 0.301805i
\(351\) −14.7312 + 22.6902i −0.786294 + 1.21111i
\(352\) −4.59483 4.59483i −0.244905 0.244905i
\(353\) −15.3680 15.3680i −0.817959 0.817959i 0.167853 0.985812i \(-0.446316\pi\)
−0.985812 + 0.167853i \(0.946316\pi\)
\(354\) −4.68149 13.5942i −0.248818 0.722524i
\(355\) 8.64205 3.02209i 0.458672 0.160396i
\(356\) 7.94509i 0.421089i
\(357\) −1.37575 + 2.82100i −0.0728125 + 0.149303i
\(358\) 2.31853 2.31853i 0.122538 0.122538i
\(359\) 23.0689 1.21753 0.608766 0.793350i \(-0.291665\pi\)
0.608766 + 0.793350i \(0.291665\pi\)
\(360\) 6.55474 1.42667i 0.345465 0.0751922i
\(361\) 5.37959 0.283136
\(362\) 2.24585 2.24585i 0.118039 0.118039i
\(363\) −23.7065 + 48.6107i −1.24427 + 2.55140i
\(364\) 9.43417i 0.494485i
\(365\) 12.4302 + 5.98905i 0.650625 + 0.313481i
\(366\) 6.27571 + 18.2236i 0.328037 + 0.952561i
\(367\) 20.8900 + 20.8900i 1.09045 + 1.09045i 0.995480 + 0.0949673i \(0.0302747\pi\)
0.0949673 + 0.995480i \(0.469725\pi\)
\(368\) 5.32876 + 5.32876i 0.277781 + 0.277781i
\(369\) −13.5754 + 10.6081i −0.706708 + 0.552234i
\(370\) −0.335922 0.960614i −0.0174638 0.0499399i
\(371\) 7.00304i 0.363580i
\(372\) −13.7589 6.70999i −0.713368 0.347897i
\(373\) −3.69848 + 3.69848i −0.191500 + 0.191500i −0.796344 0.604844i \(-0.793236\pi\)
0.604844 + 0.796344i \(0.293236\pi\)
\(374\) 6.49808 0.336007
\(375\) 16.4535 10.2119i 0.849655 0.527339i
\(376\) −3.12886 −0.161358
\(377\) 21.4611 21.4611i 1.10530 1.10530i
\(378\) 9.20978 1.95878i 0.473700 0.100749i
\(379\) 5.61661i 0.288506i 0.989541 + 0.144253i \(0.0460779\pi\)
−0.989541 + 0.144253i \(0.953922\pi\)
\(380\) −2.72407 7.78983i −0.139742 0.399610i
\(381\) 21.5066 7.40629i 1.10181 0.379436i
\(382\) −2.11856 2.11856i −0.108395 0.108395i
\(383\) 1.33891 + 1.33891i 0.0684149 + 0.0684149i 0.740486 0.672071i \(-0.234595\pi\)
−0.672071 + 0.740486i \(0.734595\pi\)
\(384\) 1.63766 0.563968i 0.0835716 0.0287799i
\(385\) −23.7199 11.4286i −1.20888 0.582456i
\(386\) 25.5934i 1.30267i
\(387\) −14.6406 1.79642i −0.744224 0.0913174i
\(388\) 9.26552 9.26552i 0.470385 0.470385i
\(389\) 3.22857 0.163695 0.0818475 0.996645i \(-0.473918\pi\)
0.0818475 + 0.996645i \(0.473918\pi\)
\(390\) −2.36063 + 20.0253i −0.119535 + 1.01402i
\(391\) −7.53601 −0.381112
\(392\) −2.62790 + 2.62790i −0.132729 + 0.132729i
\(393\) −3.79290 1.84973i −0.191326 0.0933065i
\(394\) 3.11027i 0.156693i
\(395\) 12.9667 4.53440i 0.652426 0.228150i
\(396\) −12.0031 15.3607i −0.603179 0.771903i
\(397\) −13.5989 13.5989i −0.682508 0.682508i 0.278057 0.960565i \(-0.410310\pi\)
−0.960565 + 0.278057i \(0.910310\pi\)
\(398\) −2.15845 2.15845i −0.108193 0.108193i
\(399\) −3.77158 10.9520i −0.188815 0.548286i
\(400\) 3.91038 3.11592i 0.195519 0.155796i
\(401\) 27.4995i 1.37326i −0.727007 0.686630i \(-0.759089\pi\)
0.727007 0.686630i \(-0.240911\pi\)
\(402\) 1.96584 4.03098i 0.0980470 0.201047i
\(403\) 32.5365 32.5365i 1.62076 1.62076i
\(404\) 2.51702 0.125226
\(405\) 20.0391 1.85329i 0.995751 0.0920906i
\(406\) −10.5636 −0.524261
\(407\) −2.09115 + 2.09115i −0.103655 + 0.103655i
\(408\) −0.759217 + 1.55679i −0.0375869 + 0.0770725i
\(409\) 10.1786i 0.503300i −0.967818 0.251650i \(-0.919027\pi\)
0.967818 0.251650i \(-0.0809731\pi\)
\(410\) −5.57394 + 11.5686i −0.275277 + 0.571333i
\(411\) −8.93356 25.9415i −0.440660 1.27960i
\(412\) −10.0675 10.0675i −0.495988 0.495988i
\(413\) −10.6363 10.6363i −0.523376 0.523376i
\(414\) 13.9203 + 17.8142i 0.684148 + 0.875521i
\(415\) 2.56665 5.32705i 0.125992 0.261494i
\(416\) 5.20631i 0.255260i
\(417\) 22.2888 + 10.8698i 1.09149 + 0.532298i
\(418\) −16.9576 + 16.9576i −0.829424 + 0.829424i
\(419\) −23.5704 −1.15149 −0.575746 0.817629i \(-0.695288\pi\)
−0.575746 + 0.817629i \(0.695288\pi\)
\(420\) 5.50940 4.34745i 0.268831 0.212134i
\(421\) 12.7315 0.620498 0.310249 0.950655i \(-0.399588\pi\)
0.310249 + 0.950655i \(0.399588\pi\)
\(422\) 2.92001 2.92001i 0.142144 0.142144i
\(423\) −9.31670 1.14317i −0.452993 0.0555829i
\(424\) 3.86467i 0.187685i
\(425\) −0.561767 + 4.96834i −0.0272497 + 0.241000i
\(426\) 6.70515 2.30907i 0.324865 0.111875i
\(427\) 14.2583 + 14.2583i 0.690008 + 0.690008i
\(428\) 1.47204 + 1.47204i 0.0711539 + 0.0711539i
\(429\) 55.4037 19.0796i 2.67492 0.921171i
\(430\) −10.3781 + 3.62916i −0.500474 + 0.175014i
\(431\) 1.82801i 0.0880521i 0.999030 + 0.0440260i \(0.0140185\pi\)
−0.999030 + 0.0440260i \(0.985982\pi\)
\(432\) 5.08247 1.08097i 0.244531 0.0520080i
\(433\) −0.830323 + 0.830323i −0.0399028 + 0.0399028i −0.726777 0.686874i \(-0.758982\pi\)
0.686874 + 0.726777i \(0.258982\pi\)
\(434\) −16.0151 −0.768749
\(435\) −22.4226 2.64323i −1.07508 0.126733i
\(436\) 0.539843 0.0258538
\(437\) 19.6662 19.6662i 0.940764 0.940764i
\(438\) 9.60623 + 4.68478i 0.459003 + 0.223848i
\(439\) 17.5478i 0.837513i 0.908099 + 0.418756i \(0.137534\pi\)
−0.908099 + 0.418756i \(0.862466\pi\)
\(440\) −13.0900 6.30695i −0.624040 0.300672i
\(441\) −8.78516 + 6.86488i −0.418341 + 0.326899i
\(442\) −3.68142 3.68142i −0.175107 0.175107i
\(443\) 5.89316 + 5.89316i 0.279993 + 0.279993i 0.833106 0.553113i \(-0.186560\pi\)
−0.553113 + 0.833106i \(0.686560\pi\)
\(444\) −0.256667 0.745316i −0.0121809 0.0353711i
\(445\) −5.86438 16.7700i −0.277998 0.794972i
\(446\) 11.5259i 0.545768i
\(447\) 12.2117 25.0404i 0.577596 1.18437i
\(448\) 1.28132 1.28132i 0.0605369 0.0605369i
\(449\) −24.7722 −1.16907 −0.584537 0.811367i \(-0.698724\pi\)
−0.584537 + 0.811367i \(0.698724\pi\)
\(450\) 12.7823 7.84946i 0.602561 0.370027i
\(451\) 37.3175 1.75721
\(452\) 0.595666 0.595666i 0.0280178 0.0280178i
\(453\) −11.9894 + 24.5844i −0.563309 + 1.15507i
\(454\) 1.32245i 0.0620656i
\(455\) 6.96349 + 19.9130i 0.326453 + 0.933536i
\(456\) −2.08137 6.04393i −0.0974691 0.283033i
\(457\) 17.4510 + 17.4510i 0.816322 + 0.816322i 0.985573 0.169251i \(-0.0541348\pi\)
−0.169251 + 0.985573i \(0.554135\pi\)
\(458\) 2.29694 + 2.29694i 0.107329 + 0.107329i
\(459\) −2.82949 + 4.35821i −0.132069 + 0.203424i
\(460\) 15.1808 + 7.31436i 0.707809 + 0.341034i
\(461\) 21.0958i 0.982527i 0.871011 + 0.491264i \(0.163465\pi\)
−0.871011 + 0.491264i \(0.836535\pi\)
\(462\) −18.3311 8.93974i −0.852840 0.415914i
\(463\) 3.49416 3.49416i 0.162388 0.162388i −0.621236 0.783624i \(-0.713369\pi\)
0.783624 + 0.621236i \(0.213369\pi\)
\(464\) −5.82957 −0.270631
\(465\) −33.9942 4.00732i −1.57644 0.185835i
\(466\) −5.96770 −0.276448
\(467\) −15.2682 + 15.2682i −0.706527 + 0.706527i −0.965803 0.259276i \(-0.916516\pi\)
0.259276 + 0.965803i \(0.416516\pi\)
\(468\) −1.90220 + 15.5027i −0.0879291 + 0.716611i
\(469\) 4.69197i 0.216655i
\(470\) −6.60418 + 2.30945i −0.304628 + 0.106527i
\(471\) 33.2811 11.4611i 1.53351 0.528101i
\(472\) −5.86968 5.86968i −0.270174 0.270174i
\(473\) 22.5919 + 22.5919i 1.03878 + 1.03878i
\(474\) 10.0605 3.46458i 0.462096 0.159134i
\(475\) −11.4996 14.4316i −0.527636 0.662166i
\(476\) 1.81207i 0.0830559i
\(477\) −1.41201 + 11.5077i −0.0646516 + 0.526902i
\(478\) −13.2052 + 13.2052i −0.603992 + 0.603992i
\(479\) 15.2872 0.698488 0.349244 0.937032i \(-0.386438\pi\)
0.349244 + 0.937032i \(0.386438\pi\)
\(480\) 3.04040 2.39917i 0.138774 0.109506i
\(481\) 2.36944 0.108037
\(482\) −5.18578 + 5.18578i −0.236206 + 0.236206i
\(483\) 21.2591 + 10.3677i 0.967323 + 0.471746i
\(484\) 31.2250i 1.41932i
\(485\) 12.7180 26.3960i 0.577496 1.19858i
\(486\) 15.5289 1.36180i 0.704403 0.0617727i
\(487\) 15.8219 + 15.8219i 0.716961 + 0.716961i 0.967982 0.251021i \(-0.0807663\pi\)
−0.251021 + 0.967982i \(0.580766\pi\)
\(488\) 7.86853 + 7.86853i 0.356192 + 0.356192i
\(489\) 2.34458 + 6.80826i 0.106026 + 0.307880i
\(490\) −3.60711 + 7.48649i −0.162953 + 0.338205i
\(491\) 30.0697i 1.35703i 0.734588 + 0.678514i \(0.237376\pi\)
−0.734588 + 0.678514i \(0.762624\pi\)
\(492\) −4.36007 + 8.94040i −0.196567 + 0.403064i
\(493\) 4.12213 4.12213i 0.185651 0.185651i
\(494\) 19.2143 0.864493
\(495\) −36.6732 23.5626i −1.64834 1.05906i
\(496\) −8.83803 −0.396839
\(497\) 5.24618 5.24618i 0.235323 0.235323i
\(498\) 2.00770 4.11682i 0.0899672 0.184479i
\(499\) 7.40716i 0.331590i 0.986160 + 0.165795i \(0.0530190\pi\)
−0.986160 + 0.165795i \(0.946981\pi\)
\(500\) 5.95386 9.46317i 0.266265 0.423206i
\(501\) 11.5665 + 33.5872i 0.516755 + 1.50056i
\(502\) −6.98956 6.98956i −0.311959 0.311959i
\(503\) 3.66020 + 3.66020i 0.163200 + 0.163200i 0.783983 0.620782i \(-0.213185\pi\)
−0.620782 + 0.783983i \(0.713185\pi\)
\(504\) 4.28351 3.34721i 0.190803 0.149097i
\(505\) 5.31275 1.85785i 0.236414 0.0826730i
\(506\) 48.9695i 2.17696i
\(507\) −21.9595 10.7092i −0.975255 0.475614i
\(508\) 9.28606 9.28606i 0.412002 0.412002i
\(509\) 30.3898 1.34701 0.673503 0.739185i \(-0.264789\pi\)
0.673503 + 0.739185i \(0.264789\pi\)
\(510\) −0.453418 + 3.84635i −0.0200777 + 0.170319i
\(511\) 11.1814 0.494637
\(512\) 0.707107 0.707107i 0.0312500 0.0312500i
\(513\) −3.98939 18.7573i −0.176136 0.828154i
\(514\) 24.0809i 1.06216i
\(515\) −28.6806 13.8188i −1.26382 0.608928i
\(516\) −8.05207 + 2.77292i −0.354473 + 0.122071i
\(517\) 14.3766 + 14.3766i 0.632281 + 0.632281i
\(518\) −0.583143 0.583143i −0.0256218 0.0256218i
\(519\) −13.4216 + 4.62205i −0.589143 + 0.202885i
\(520\) 3.84284 + 10.9891i 0.168520 + 0.481905i
\(521\) 2.86672i 0.125593i −0.998026 0.0627965i \(-0.979998\pi\)
0.998026 0.0627965i \(-0.0200019\pi\)
\(522\) −17.3585 2.12992i −0.759762 0.0932239i
\(523\) 2.08882 2.08882i 0.0913378 0.0913378i −0.659962 0.751299i \(-0.729427\pi\)
0.751299 + 0.659962i \(0.229427\pi\)
\(524\) −2.43636 −0.106433
\(525\) 8.41995 13.2429i 0.367477 0.577966i
\(526\) 11.0727 0.482792
\(527\) 6.24943 6.24943i 0.272229 0.272229i
\(528\) −10.1161 4.93345i −0.440248 0.214701i
\(529\) 33.7914i 1.46919i
\(530\) 2.85257 + 8.15728i 0.123908 + 0.354330i
\(531\) −15.3334 19.6225i −0.665413 0.851545i
\(532\) −4.72884 4.72884i −0.205021 0.205021i
\(533\) −21.1418 21.1418i −0.915754 0.915754i
\(534\) −4.48077 13.0114i −0.193902 0.563058i
\(535\) 4.19362 + 2.02055i 0.181306 + 0.0873562i
\(536\) 2.58929i 0.111840i
\(537\) 2.48939 5.10455i 0.107425 0.220277i
\(538\) −9.44696 + 9.44696i −0.407287 + 0.407287i
\(539\) 24.1495 1.04019
\(540\) 9.92986 6.03307i 0.427313 0.259622i
\(541\) 24.7247 1.06300 0.531499 0.847059i \(-0.321629\pi\)
0.531499 + 0.847059i \(0.321629\pi\)
\(542\) 17.6423 17.6423i 0.757802 0.757802i
\(543\) 2.41136 4.94454i 0.103481 0.212191i
\(544\) 1.00000i 0.0428746i
\(545\) 1.13946 0.398465i 0.0488092 0.0170684i
\(546\) 5.32057 + 15.4500i 0.227699 + 0.661199i
\(547\) −28.6480 28.6480i −1.22490 1.22490i −0.965869 0.259029i \(-0.916597\pi\)
−0.259029 0.965869i \(-0.583403\pi\)
\(548\) −11.2010 11.2010i −0.478481 0.478481i
\(549\) 20.5550 + 26.3048i 0.877266 + 1.12266i
\(550\) −32.2847 3.65040i −1.37662 0.155654i
\(551\) 21.5145i 0.916550i
\(552\) 11.7320 + 5.72147i 0.499346 + 0.243522i
\(553\) 7.87147 7.87147i 0.334729 0.334729i
\(554\) −12.8474 −0.545836
\(555\) −1.09188 1.38371i −0.0463478 0.0587353i
\(556\) 14.3172 0.607183
\(557\) −8.74085 + 8.74085i −0.370362 + 0.370362i −0.867609 0.497247i \(-0.834344\pi\)
0.497247 + 0.867609i \(0.334344\pi\)
\(558\) −26.3167 3.22910i −1.11408 0.136699i
\(559\) 25.5984i 1.08270i
\(560\) 1.75877 3.65029i 0.0743216 0.154253i
\(561\) 10.6417 3.66470i 0.449291 0.154724i
\(562\) 6.75865 + 6.75865i 0.285096 + 0.285096i
\(563\) 24.3107 + 24.3107i 1.02458 + 1.02458i 0.999690 + 0.0248847i \(0.00792187\pi\)
0.0248847 + 0.999690i \(0.492078\pi\)
\(564\) −5.12401 + 1.76457i −0.215760 + 0.0743020i
\(565\) 0.817622 1.69696i 0.0343976 0.0713917i
\(566\) 0.324730i 0.0136494i
\(567\) 13.9778 8.40184i 0.587013 0.352844i
\(568\) 2.89513 2.89513i 0.121477 0.121477i
\(569\) 4.68960 0.196598 0.0982992 0.995157i \(-0.468660\pi\)
0.0982992 + 0.995157i \(0.468660\pi\)
\(570\) −8.85432 11.2208i −0.370867 0.469989i
\(571\) 33.2162 1.39005 0.695027 0.718984i \(-0.255393\pi\)
0.695027 + 0.718984i \(0.255393\pi\)
\(572\) 23.9221 23.9221i 1.00023 1.00023i
\(573\) −4.66428 2.27469i −0.194853 0.0950263i
\(574\) 10.4064i 0.434356i
\(575\) 37.4415 + 4.23348i 1.56142 + 0.176548i
\(576\) 2.36388 1.84718i 0.0984950 0.0769658i
\(577\) −9.66775 9.66775i −0.402474 0.402474i 0.476630 0.879104i \(-0.341858\pi\)
−0.879104 + 0.476630i \(0.841858\pi\)
\(578\) −0.707107 0.707107i −0.0294118 0.0294118i
\(579\) 14.4338 + 41.9133i 0.599849 + 1.74186i
\(580\) −12.3047 + 4.30288i −0.510923 + 0.178668i
\(581\) 4.79189i 0.198801i
\(582\) 9.94834 20.3992i 0.412372 0.845576i
\(583\) 17.7575 17.7575i 0.735441 0.735441i
\(584\) 6.17054 0.255339
\(585\) 7.42769 + 34.1260i 0.307097 + 1.41094i
\(586\) −8.36031 −0.345361
\(587\) 12.2501 12.2501i 0.505616 0.505616i −0.407561 0.913178i \(-0.633621\pi\)
0.913178 + 0.407561i \(0.133621\pi\)
\(588\) −2.82157 + 5.78567i −0.116359 + 0.238597i
\(589\) 32.6175i 1.34398i
\(590\) −16.7218 8.05683i −0.688426 0.331695i
\(591\) 1.75409 + 5.09357i 0.0721537 + 0.209522i
\(592\) −0.321811 0.321811i −0.0132263 0.0132263i
\(593\) 8.26080 + 8.26080i 0.339230 + 0.339230i 0.856078 0.516847i \(-0.172895\pi\)
−0.516847 + 0.856078i \(0.672895\pi\)
\(594\) −28.3200 18.3863i −1.16198 0.754397i
\(595\) 1.33751 + 3.82479i 0.0548326 + 0.156801i
\(596\) 16.0846i 0.658853i
\(597\) −4.75211 2.31752i −0.194491 0.0948496i
\(598\) −27.7432 + 27.7432i −1.13450 + 1.13450i
\(599\) −43.7205 −1.78637 −0.893186 0.449687i \(-0.851536\pi\)
−0.893186 + 0.449687i \(0.851536\pi\)
\(600\) 4.64660 7.30815i 0.189697 0.298354i
\(601\) 11.0485 0.450679 0.225339 0.974280i \(-0.427651\pi\)
0.225339 + 0.974280i \(0.427651\pi\)
\(602\) −6.30002 + 6.30002i −0.256770 + 0.256770i
\(603\) 0.946035 7.71006i 0.0385255 0.313978i
\(604\) 15.7917i 0.642556i
\(605\) 23.0476 + 65.9076i 0.937017 + 2.67952i
\(606\) 4.12203 1.41952i 0.167446 0.0576640i
\(607\) −18.0435 18.0435i −0.732363 0.732363i 0.238724 0.971087i \(-0.423271\pi\)
−0.971087 + 0.238724i \(0.923271\pi\)
\(608\) −2.60964 2.60964i −0.105835 0.105835i
\(609\) −17.2996 + 5.95751i −0.701014 + 0.241411i
\(610\) 22.4162 + 10.8005i 0.907607 + 0.437299i
\(611\) 16.2898i 0.659014i
\(612\) −0.365364 + 2.97767i −0.0147690 + 0.120365i
\(613\) 9.22703 9.22703i 0.372676 0.372676i −0.495775 0.868451i \(-0.665116\pi\)
0.868451 + 0.495775i \(0.165116\pi\)
\(614\) −21.3957 −0.863461
\(615\) −2.60391 + 22.0890i −0.105000 + 0.890715i
\(616\) −11.7749 −0.474426
\(617\) 11.0633 11.0633i 0.445393 0.445393i −0.448426 0.893820i \(-0.648015\pi\)
0.893820 + 0.448426i \(0.148015\pi\)
\(618\) −22.1648 10.8094i −0.891600 0.434817i
\(619\) 10.7472i 0.431966i −0.976397 0.215983i \(-0.930704\pi\)
0.976397 0.215983i \(-0.0692955\pi\)
\(620\) −18.6547 + 6.52347i −0.749191 + 0.261989i
\(621\) 32.8435 + 21.3231i 1.31796 + 0.855666i
\(622\) 3.64436 + 3.64436i 0.146126 + 0.146126i
\(623\) −10.1802 10.1802i −0.407863 0.407863i
\(624\) 2.93619 + 8.52618i 0.117542 + 0.341320i
\(625\) 5.58210 24.3688i 0.223284 0.974753i
\(626\) 10.3495i 0.413648i
\(627\) −18.2073 + 37.3344i −0.727130 + 1.49099i
\(628\) 14.3701 14.3701i 0.573428 0.573428i
\(629\) 0.455109 0.0181464
\(630\) 6.57072 10.2268i 0.261784 0.407445i
\(631\) −46.0274 −1.83232 −0.916161 0.400810i \(-0.868729\pi\)
−0.916161 + 0.400810i \(0.868729\pi\)
\(632\) 4.34392 4.34392i 0.172792 0.172792i
\(633\) 3.13520 6.42878i 0.124613 0.255521i
\(634\) 15.4703i 0.614403i
\(635\) 12.7462 26.4545i 0.505818 1.04982i
\(636\) 2.17955 + 6.32903i 0.0864247 + 0.250962i
\(637\) −13.6817 13.6817i −0.542087 0.542087i
\(638\) 26.7859 + 26.7859i 1.06046 + 1.06046i
\(639\) 9.67853 7.56297i 0.382877 0.299187i
\(640\) 0.970588 2.01444i 0.0383659 0.0796276i
\(641\) 26.9523i 1.06455i 0.846571 + 0.532275i \(0.178663\pi\)
−0.846571 + 0.532275i \(0.821337\pi\)
\(642\) 3.24090 + 1.58053i 0.127908 + 0.0623784i
\(643\) −16.2541 + 16.2541i −0.640998 + 0.640998i −0.950801 0.309803i \(-0.899737\pi\)
0.309803 + 0.950801i \(0.399737\pi\)
\(644\) 13.6557 0.538112
\(645\) −14.9490 + 11.7962i −0.588618 + 0.464476i
\(646\) 3.69058 0.145204
\(647\) −24.5465 + 24.5465i −0.965021 + 0.965021i −0.999409 0.0343878i \(-0.989052\pi\)
0.0343878 + 0.999409i \(0.489052\pi\)
\(648\) 7.71375 4.63661i 0.303025 0.182143i
\(649\) 53.9404i 2.11735i
\(650\) 16.2224 + 20.3586i 0.636296 + 0.798531i
\(651\) −26.2273 + 9.03200i −1.02793 + 0.353992i
\(652\) 2.93966 + 2.93966i 0.115126 + 0.115126i
\(653\) −11.0523 11.0523i −0.432511 0.432511i 0.456971 0.889482i \(-0.348934\pi\)
−0.889482 + 0.456971i \(0.848934\pi\)
\(654\) 0.884081 0.304454i 0.0345703 0.0119051i
\(655\) −5.14251 + 1.79831i −0.200934 + 0.0702658i
\(656\) 5.74285i 0.224221i
\(657\) 18.3738 + 2.25449i 0.716831 + 0.0879562i
\(658\) −4.00908 + 4.00908i −0.156290 + 0.156290i
\(659\) −5.66672 −0.220744 −0.110372 0.993890i \(-0.535204\pi\)
−0.110372 + 0.993890i \(0.535204\pi\)
\(660\) −24.9939 2.94634i −0.972885 0.114686i
\(661\) −13.9792 −0.543726 −0.271863 0.962336i \(-0.587640\pi\)
−0.271863 + 0.962336i \(0.587640\pi\)
\(662\) −1.44452 + 1.44452i −0.0561428 + 0.0561428i
\(663\) −8.10512 3.95272i −0.314777 0.153511i
\(664\) 2.64443i 0.102624i
\(665\) −13.4717 6.49089i −0.522411 0.251706i
\(666\) −0.840668 1.07582i −0.0325752 0.0416873i
\(667\) −31.0644 31.0644i −1.20282 1.20282i
\(668\) 14.5022 + 14.5022i 0.561107 + 0.561107i
\(669\) 6.50025 + 18.8756i 0.251314 + 0.729772i
\(670\) −1.91119 5.46530i −0.0738358 0.211143i
\(671\) 72.3092i 2.79146i
\(672\) 1.37575 2.82100i 0.0530708 0.108823i
\(673\) −1.19595 + 1.19595i −0.0461005 + 0.0461005i −0.729781 0.683681i \(-0.760378\pi\)
0.683681 + 0.729781i \(0.260378\pi\)
\(674\) −14.5347 −0.559857
\(675\) 16.5062 20.0635i 0.635323 0.772246i
\(676\) −14.1056 −0.542524
\(677\) 2.57786 2.57786i 0.0990753 0.0990753i −0.655832 0.754907i \(-0.727682\pi\)
0.754907 + 0.655832i \(0.227682\pi\)
\(678\) 0.639564 1.31144i 0.0245623 0.0503654i
\(679\) 23.7443i 0.911221i
\(680\) 0.738113 + 2.11073i 0.0283054 + 0.0809429i
\(681\) 0.745819 + 2.16573i 0.0285798 + 0.0829908i
\(682\) 40.6093 + 40.6093i 1.55501 + 1.55501i
\(683\) 20.4838 + 20.4838i 0.783790 + 0.783790i 0.980468 0.196678i \(-0.0630153\pi\)
−0.196678 + 0.980468i \(0.563015\pi\)
\(684\) −6.81717 8.72410i −0.260661 0.333574i
\(685\) −31.9098 15.3746i −1.21921 0.587435i
\(686\) 19.4189i 0.741415i
\(687\) 5.05701 + 2.46621i 0.192937 + 0.0940918i
\(688\) −3.47671 + 3.47671i −0.132548 + 0.132548i
\(689\) −20.1207 −0.766536
\(690\) 28.9861 + 3.41696i 1.10348 + 0.130082i
\(691\) −35.8550 −1.36399 −0.681994 0.731358i \(-0.738887\pi\)
−0.681994 + 0.731358i \(0.738887\pi\)
\(692\) −5.79516 + 5.79516i −0.220299 + 0.220299i
\(693\) −35.0619 4.30214i −1.33189 0.163425i
\(694\) 17.7998i 0.675672i
\(695\) 30.2197 10.5677i 1.14630 0.400855i
\(696\) −9.54687 + 3.28769i −0.361873 + 0.124620i
\(697\) −4.06081 4.06081i −0.153814 0.153814i
\(698\) −24.8725 24.8725i −0.941436 0.941436i
\(699\) −9.77308 + 3.36559i −0.369652 + 0.127298i
\(700\) 1.01796 9.00296i 0.0384752 0.340280i
\(701\) 23.4780i 0.886753i −0.896336 0.443376i \(-0.853781\pi\)
0.896336 0.443376i \(-0.146219\pi\)
\(702\) 5.62784 + 26.4609i 0.212409 + 0.998703i
\(703\) −1.18767 + 1.18767i −0.0447938 + 0.0447938i
\(704\) −6.49808 −0.244905
\(705\) −9.51296 + 7.50665i −0.358279 + 0.282717i
\(706\) −21.7337 −0.817959
\(707\) 3.22512 3.22512i 0.121293 0.121293i
\(708\) −12.9229 6.30225i −0.485671 0.236853i
\(709\) 10.0107i 0.375960i 0.982173 + 0.187980i \(0.0601939\pi\)
−0.982173 + 0.187980i \(0.939806\pi\)
\(710\) 3.97392 8.24779i 0.149138 0.309534i
\(711\) 14.5219 11.3476i 0.544612 0.425570i
\(712\) −5.61803 5.61803i −0.210544 0.210544i
\(713\) −47.0958 47.0958i −1.76375 1.76375i
\(714\) 1.02195 + 2.96755i 0.0382454 + 0.111058i
\(715\) 32.8359 68.1504i 1.22799 2.54868i
\(716\) 3.27890i 0.122538i
\(717\) −14.1784 + 29.0730i −0.529501 + 1.08575i
\(718\) 16.3122 16.3122i 0.608766 0.608766i
\(719\) 15.5803 0.581046 0.290523 0.956868i \(-0.406171\pi\)
0.290523 + 0.956868i \(0.406171\pi\)
\(720\) 3.62609 5.64371i 0.135136 0.210329i
\(721\) −25.7993 −0.960818
\(722\) 3.80394 3.80394i 0.141568 0.141568i
\(723\) −5.56794 + 11.4172i −0.207074 + 0.424609i
\(724\) 3.17612i 0.118039i
\(725\) −22.7958 + 18.1645i −0.846616 + 0.674612i
\(726\) 17.6099 + 51.1360i 0.653564 + 1.89783i
\(727\) −23.9979 23.9979i −0.890031 0.890031i 0.104494 0.994525i \(-0.466678\pi\)
−0.994525 + 0.104494i \(0.966678\pi\)
\(728\) 6.67097 + 6.67097i 0.247243 + 0.247243i
\(729\) 24.6630 10.9880i 0.913445 0.406961i
\(730\) 13.0244 4.55456i 0.482053 0.168572i
\(731\) 4.91680i 0.181855i
\(732\) 17.3236 + 8.44841i 0.640299 + 0.312262i
\(733\) 17.9045 17.9045i 0.661319 0.661319i −0.294372 0.955691i \(-0.595110\pi\)
0.955691 + 0.294372i \(0.0951105\pi\)
\(734\) 29.5429 1.09045
\(735\) −1.68509 + 14.2946i −0.0621555 + 0.527266i
\(736\) 7.53601 0.277781
\(737\) −11.8974 + 11.8974i −0.438245 + 0.438245i
\(738\) −2.09823 + 17.1003i −0.0772370 + 0.629471i
\(739\) 32.1498i 1.18265i −0.806433 0.591325i \(-0.798605\pi\)
0.806433 0.591325i \(-0.201395\pi\)
\(740\) −0.916790 0.441724i −0.0337019 0.0162381i
\(741\) 31.4666 10.8363i 1.15595 0.398080i
\(742\) 4.95190 + 4.95190i 0.181790 + 0.181790i
\(743\) −7.34355 7.34355i −0.269409 0.269409i 0.559453 0.828862i \(-0.311011\pi\)
−0.828862 + 0.559453i \(0.811011\pi\)
\(744\) −14.4737 + 4.98436i −0.530632 + 0.182736i
\(745\) −11.8723 33.9504i −0.434967 1.24385i
\(746\) 5.23045i 0.191500i
\(747\) 0.966181 7.87424i 0.0353507 0.288104i
\(748\) 4.59483 4.59483i 0.168004 0.168004i
\(749\) 3.77233 0.137838
\(750\) 4.41349 18.8553i 0.161158 0.688497i
\(751\) 32.5184 1.18661 0.593306 0.804977i \(-0.297822\pi\)
0.593306 + 0.804977i \(0.297822\pi\)
\(752\) −2.21244 + 2.21244i −0.0806792 + 0.0806792i
\(753\) −15.3884 7.50466i −0.560786 0.273485i
\(754\) 30.3505i 1.10530i
\(755\) 11.6561 + 33.3321i 0.424208 + 1.21308i
\(756\) 5.12723 7.89736i 0.186475 0.287224i
\(757\) 2.53775 + 2.53775i 0.0922362 + 0.0922362i 0.751719 0.659483i \(-0.229225\pi\)
−0.659483 + 0.751719i \(0.729225\pi\)
\(758\) 3.97154 + 3.97154i 0.144253 + 0.144253i
\(759\) −27.6172 80.1956i −1.00244 2.91092i
\(760\) −7.43445 3.58204i −0.269676 0.129934i
\(761\) 29.9525i 1.08578i 0.839805 + 0.542889i \(0.182670\pi\)
−0.839805 + 0.542889i \(0.817330\pi\)
\(762\) 9.97040 20.4445i 0.361189 0.740625i
\(763\) 0.691714 0.691714i 0.0250417 0.0250417i
\(764\) −2.99609 −0.108395
\(765\) 1.42667 + 6.55474i 0.0515814 + 0.236987i
\(766\) 1.89350 0.0684149
\(767\) 30.5594 30.5594i 1.10343 1.10343i
\(768\) 0.759217 1.55679i 0.0273959 0.0561757i
\(769\) 43.2504i 1.55965i 0.625997 + 0.779825i \(0.284692\pi\)
−0.625997 + 0.779825i \(0.715308\pi\)
\(770\) −24.8537 + 8.69124i −0.895667 + 0.313211i
\(771\) 13.5808 + 39.4363i 0.489102 + 1.42027i
\(772\) 18.0972 + 18.0972i 0.651334 + 0.651334i
\(773\) −13.8584 13.8584i −0.498453 0.498453i 0.412503 0.910956i \(-0.364655\pi\)
−0.910956 + 0.412503i \(0.864655\pi\)
\(774\) −11.6227 + 9.08221i −0.417771 + 0.326453i
\(775\) −34.5600 + 27.5386i −1.24143 + 0.989215i
\(776\) 13.1034i 0.470385i
\(777\) −1.28387 0.626118i −0.0460584 0.0224618i
\(778\) 2.28294 2.28294i 0.0818475 0.0818475i
\(779\) 21.1945 0.759371
\(780\) 12.4908 + 15.8292i 0.447242 + 0.566777i
\(781\) −26.6053 −0.952013
\(782\) −5.32876 + 5.32876i −0.190556 + 0.190556i
\(783\) −29.6286 + 6.30157i −1.05884 + 0.225200i
\(784\) 3.71642i 0.132729i
\(785\) 19.7246 40.9381i 0.704001 1.46114i
\(786\) −3.98994 + 1.37403i −0.142316 + 0.0490100i
\(787\) −5.13983 5.13983i −0.183215 0.183215i 0.609540 0.792755i \(-0.291354\pi\)
−0.792755 + 0.609540i \(0.791354\pi\)
\(788\) 2.19929 + 2.19929i 0.0783465 + 0.0783465i
\(789\) 18.1333 6.24463i 0.645563 0.222315i
\(790\) 5.96254 12.3752i 0.212138 0.440288i
\(791\) 1.52648i 0.0542755i
\(792\) −19.3491 2.37416i −0.687541 0.0843622i
\(793\) −40.9660 + 40.9660i −1.45475 + 1.45475i
\(794\) −19.2317 −0.682508
\(795\) 9.27198 + 11.7501i 0.328843 + 0.416734i
\(796\) −3.05251 −0.108193
\(797\) −36.7267 + 36.7267i −1.30093 + 1.30093i −0.373159 + 0.927767i \(0.621725\pi\)
−0.927767 + 0.373159i \(0.878275\pi\)
\(798\) −10.4111 5.07733i −0.368551 0.179736i
\(799\) 3.12886i 0.110691i
\(800\) 0.561767 4.96834i 0.0198615 0.175657i
\(801\) −14.6760 18.7812i −0.518551 0.663603i
\(802\) −19.4451 19.4451i −0.686630 0.686630i
\(803\) −28.3526 28.3526i −1.00054 1.00054i
\(804\) −1.46028 4.24039i −0.0515000 0.149547i
\(805\) 28.8236 10.0795i 1.01590 0.355255i
\(806\) 46.0135i 1.62076i
\(807\) −10.1432 + 20.7987i −0.357056 + 0.732149i
\(808\) 1.77980 1.77980i 0.0626132 0.0626132i
\(809\) −1.52541 −0.0536305 −0.0268153 0.999640i \(-0.508537\pi\)
−0.0268153 + 0.999640i \(0.508537\pi\)
\(810\) 12.8593 15.4803i 0.451830 0.543921i
\(811\) 42.9829 1.50933 0.754667 0.656107i \(-0.227798\pi\)
0.754667 + 0.656107i \(0.227798\pi\)
\(812\) −7.46957 + 7.46957i −0.262131 + 0.262131i
\(813\) 18.9425 38.8418i 0.664341 1.36224i
\(814\) 2.95733i 0.103655i
\(815\) 8.37462 + 4.03503i 0.293350 + 0.141341i
\(816\) 0.563968 + 1.63766i 0.0197428 + 0.0573297i
\(817\) 12.8311 + 12.8311i 0.448903 + 0.448903i
\(818\) −7.19736 7.19736i −0.251650 0.251650i
\(819\) 17.4266 + 22.3013i 0.608935 + 0.779269i
\(820\) 4.23887 + 12.1216i 0.148028 + 0.423305i
\(821\) 17.0867i 0.596331i −0.954514 0.298166i \(-0.903625\pi\)
0.954514 0.298166i \(-0.0963748\pi\)
\(822\) −24.6604 12.0264i −0.860130 0.419470i
\(823\) −22.2865 + 22.2865i −0.776858 + 0.776858i −0.979295 0.202438i \(-0.935114\pi\)
0.202438 + 0.979295i \(0.435114\pi\)
\(824\) −14.2375 −0.495988
\(825\) −54.9301 + 12.2294i −1.91242 + 0.425772i
\(826\) −15.0419 −0.523376
\(827\) 22.1828 22.1828i 0.771372 0.771372i −0.206974 0.978346i \(-0.566362\pi\)
0.978346 + 0.206974i \(0.0663617\pi\)
\(828\) 22.4397 + 2.75339i 0.779835 + 0.0956868i
\(829\) 33.6590i 1.16902i −0.811385 0.584512i \(-0.801286\pi\)
0.811385 0.584512i \(-0.198714\pi\)
\(830\) −1.95189 5.58169i −0.0677511 0.193743i
\(831\) −21.0398 + 7.24555i −0.729862 + 0.251345i
\(832\) 3.68142 + 3.68142i 0.127630 + 0.127630i
\(833\) −2.62790 2.62790i −0.0910514 0.0910514i
\(834\) 23.4467 8.07442i 0.811893 0.279594i
\(835\) 41.3145 + 19.9060i 1.42975 + 0.688875i
\(836\) 23.9817i 0.829424i
\(837\) −44.9190 + 9.55360i −1.55263 + 0.330221i
\(838\) −16.6668 + 16.6668i −0.575746 + 0.575746i
\(839\) −8.84920 −0.305508 −0.152754 0.988264i \(-0.548814\pi\)
−0.152754 + 0.988264i \(0.548814\pi\)
\(840\) 0.821624 6.96984i 0.0283487 0.240482i
\(841\) 4.98391 0.171859
\(842\) 9.00256 9.00256i 0.310249 0.310249i
\(843\) 14.8801 + 7.25673i 0.512496 + 0.249935i
\(844\) 4.12951i 0.142144i
\(845\) −29.7732 + 10.4116i −1.02423 + 0.358168i
\(846\) −7.39625 + 5.77956i −0.254288 + 0.198705i
\(847\) 40.0093 + 40.0093i 1.37474 + 1.37474i
\(848\) 2.73273 + 2.73273i 0.0938425 + 0.0938425i
\(849\) 0.183137 + 0.531798i 0.00628525 + 0.0182513i
\(850\) 3.11592 + 3.91038i 0.106875 + 0.134125i
\(851\) 3.42971i 0.117569i
\(852\) 3.10849 6.37402i 0.106495 0.218370i
\(853\) −13.2125 + 13.2125i −0.452387 + 0.452387i −0.896146 0.443759i \(-0.853645\pi\)
0.443759 + 0.896146i \(0.353645\pi\)
\(854\) 20.1643 0.690008
\(855\) −20.8286 13.3824i −0.712323 0.457668i
\(856\) 2.08178 0.0711539
\(857\) −8.31831 + 8.31831i −0.284148 + 0.284148i −0.834761 0.550613i \(-0.814394\pi\)
0.550613 + 0.834761i \(0.314394\pi\)
\(858\) 25.6851 52.6677i 0.876874 1.79804i
\(859\) 46.0675i 1.57180i −0.618352 0.785901i \(-0.712199\pi\)
0.618352 0.785901i \(-0.287801\pi\)
\(860\) −4.77219 + 9.90460i −0.162730 + 0.337744i
\(861\) 5.86889 + 17.0422i 0.200011 + 0.580797i
\(862\) 1.29260 + 1.29260i 0.0440260 + 0.0440260i
\(863\) −14.1932 14.1932i −0.483142 0.483142i 0.422991 0.906134i \(-0.360980\pi\)
−0.906134 + 0.422991i \(0.860980\pi\)
\(864\) 2.82949 4.35821i 0.0962613 0.148269i
\(865\) −7.95454 + 16.5095i −0.270462 + 0.561340i
\(866\) 1.17425i 0.0399028i
\(867\) −1.55679 0.759217i −0.0528713 0.0257844i
\(868\) −11.3244 + 11.3244i −0.384375 + 0.384375i
\(869\) −39.9192 −1.35416
\(870\) −17.7242 + 13.9861i −0.600907 + 0.474173i
\(871\) 13.4807 0.456775
\(872\) 0.381727 0.381727i 0.0129269 0.0129269i
\(873\) 4.78752 39.0176i 0.162033 1.32055i
\(874\) 27.8123i 0.940764i
\(875\) −4.49657 19.7542i −0.152012 0.667814i
\(876\) 10.1053 3.47999i 0.341425 0.117578i
\(877\) 12.9910 + 12.9910i 0.438675 + 0.438675i 0.891566 0.452891i \(-0.149607\pi\)
−0.452891 + 0.891566i \(0.649607\pi\)
\(878\) 12.4082 + 12.4082i 0.418756 + 0.418756i
\(879\) −13.6914 + 4.71494i −0.461798 + 0.159031i
\(880\) −13.7157 + 4.79632i −0.462356 + 0.161684i
\(881\) 28.3494i 0.955115i −0.878601 0.477557i \(-0.841522\pi\)
0.878601 0.477557i \(-0.158478\pi\)
\(882\) −1.35784 + 11.0663i −0.0457210 + 0.372620i
\(883\) 5.28177 5.28177i 0.177746 0.177746i −0.612627 0.790372i \(-0.709887\pi\)
0.790372 + 0.612627i \(0.209887\pi\)
\(884\) −5.20631 −0.175107
\(885\) −31.9285 3.76382i −1.07326 0.126519i
\(886\) 8.33419 0.279993
\(887\) 20.3751 20.3751i 0.684130 0.684130i −0.276798 0.960928i \(-0.589273\pi\)
0.960928 + 0.276798i \(0.0892732\pi\)
\(888\) −0.708509 0.345527i −0.0237760 0.0115951i
\(889\) 23.7969i 0.798122i
\(890\) −16.0049 7.71141i −0.536485 0.258487i
\(891\) −56.7478 14.1389i −1.90112 0.473672i
\(892\) 8.15006 + 8.15006i 0.272884 + 0.272884i
\(893\) 8.16518 + 8.16518i 0.273237 + 0.273237i
\(894\) −9.07122 26.3412i −0.303387 0.880982i
\(895\) −2.42020 6.92087i −0.0808983 0.231339i
\(896\) 1.81207i 0.0605369i
\(897\) −29.7877 + 61.0802i −0.994583 + 2.03941i
\(898\) −17.5166 + 17.5166i −0.584537 + 0.584537i
\(899\) 51.5219 1.71835
\(900\) 3.48801 14.5888i 0.116267 0.486294i
\(901\) −3.86467 −0.128751
\(902\) 26.3874 26.3874i 0.878606 0.878606i
\(903\) −6.76430 + 13.8703i −0.225102 + 0.461575i
\(904\) 0.842399i 0.0280178i
\(905\) −2.34433 6.70393i −0.0779283 0.222846i
\(906\) 8.90602 + 25.8615i 0.295883 + 0.859192i
\(907\) −16.2795 16.2795i −0.540551 0.540551i 0.383139 0.923691i \(-0.374843\pi\)
−0.923691 + 0.383139i \(0.874843\pi\)
\(908\) 0.935113 + 0.935113i 0.0310328 + 0.0310328i
\(909\) 5.94993 4.64938i 0.197347 0.154210i
\(910\) 19.0046 + 9.15669i 0.629995 + 0.303541i
\(911\) 22.2450i 0.737011i −0.929626 0.368505i \(-0.879870\pi\)
0.929626 0.368505i \(-0.120130\pi\)
\(912\) −5.74546 2.80196i −0.190251 0.0927820i
\(913\) −12.1507 + 12.1507i −0.402130 + 0.402130i
\(914\) 24.6794 0.816322
\(915\) 42.8014 + 5.04554i 1.41497 + 0.166800i
\(916\) 3.24836 0.107329
\(917\) −3.12177 + 3.12177i −0.103090 + 0.103090i
\(918\) 1.08097 + 5.08247i 0.0356772 + 0.167747i
\(919\) 11.5245i 0.380160i −0.981769 0.190080i \(-0.939125\pi\)
0.981769 0.190080i \(-0.0608747\pi\)
\(920\) 15.9065 5.56243i 0.524422 0.183388i
\(921\) −35.0390 + 12.0665i −1.15457 + 0.397604i
\(922\) 14.9169 + 14.9169i 0.491264 + 0.491264i
\(923\) 15.0730 + 15.0730i 0.496133 + 0.496133i
\(924\) −19.2834 + 6.64069i −0.634377 + 0.218463i
\(925\) −2.26114 0.255665i −0.0743458 0.00840623i
\(926\) 4.94149i 0.162388i
\(927\) −42.3946 5.20188i −1.39242 0.170852i
\(928\) −4.12213 + 4.12213i −0.135316 + 0.135316i
\(929\) 43.7020 1.43382 0.716908 0.697167i \(-0.245557\pi\)
0.716908 + 0.697167i \(0.245557\pi\)
\(930\) −26.8711 + 21.2039i −0.881138 + 0.695303i
\(931\) 13.7157 0.449515
\(932\) −4.21980 + 4.21980i −0.138224 + 0.138224i
\(933\) 8.02354 + 3.91293i 0.262679 + 0.128104i
\(934\) 21.5925i 0.706527i
\(935\) 6.30695 13.0900i 0.206259 0.428088i
\(936\) 9.61698 + 12.3071i 0.314341 + 0.402270i
\(937\) −5.07640 5.07640i −0.165839 0.165839i 0.619309 0.785148i \(-0.287413\pi\)
−0.785148 + 0.619309i \(0.787413\pi\)
\(938\) −3.31773 3.31773i −0.108328 0.108328i
\(939\) 5.83677 + 16.9490i 0.190476 + 0.553108i
\(940\) −3.03683 + 6.30289i −0.0990505 + 0.205578i
\(941\) 24.1628i 0.787686i −0.919178 0.393843i \(-0.871145\pi\)
0.919178 0.393843i \(-0.128855\pi\)
\(942\) 15.4291 31.6376i 0.502706 1.03081i
\(943\) −30.6023 + 30.6023i −0.996548 + 0.996548i
\(944\) −8.30098 −0.270174
\(945\) 4.99305 20.4537i 0.162424 0.665358i
\(946\) 31.9498 1.03878
\(947\) −2.56616 + 2.56616i −0.0833889 + 0.0833889i −0.747571 0.664182i \(-0.768780\pi\)
0.664182 + 0.747571i \(0.268780\pi\)
\(948\) 4.66405 9.56371i 0.151481 0.310615i
\(949\) 32.1257i 1.04285i
\(950\) −18.3361 2.07325i −0.594901 0.0672651i
\(951\) −8.72474 25.3351i −0.282919 0.821547i
\(952\) 1.28132 + 1.28132i 0.0415280 + 0.0415280i
\(953\) 26.7418 + 26.7418i 0.866252 + 0.866252i 0.992055 0.125803i \(-0.0401509\pi\)
−0.125803 + 0.992055i \(0.540151\pi\)
\(954\) 7.13873 + 9.13562i 0.231125 + 0.295777i
\(955\) −6.32395 + 2.21146i −0.204638 + 0.0715610i
\(956\) 18.6750i 0.603992i
\(957\) 58.9727 + 28.7599i 1.90632 + 0.929676i
\(958\) 10.8097 10.8097i 0.349244 0.349244i
\(959\) −28.7041 −0.926905
\(960\) 0.453418 3.84635i 0.0146340 0.124140i
\(961\) 47.1108 1.51970
\(962\) 1.67545 1.67545i 0.0540186 0.0540186i
\(963\) 6.19886 + 0.760609i 0.199756 + 0.0245103i
\(964\) 7.33380i 0.236206i
\(965\) 51.5562 + 24.8406i 1.65965 + 0.799647i
\(966\) 22.3635 7.70140i 0.719534 0.247788i
\(967\) −8.15916 8.15916i −0.262381 0.262381i 0.563640 0.826021i \(-0.309401\pi\)
−0.826021 + 0.563640i \(0.809401\pi\)
\(968\) 22.0794 + 22.0794i 0.709659 + 0.709659i
\(969\) 6.04393 2.08137i 0.194159 0.0668632i
\(970\) −9.67181 27.6578i −0.310543 0.888039i
\(971\) 54.0041i 1.73307i 0.499112 + 0.866537i \(0.333660\pi\)
−0.499112 + 0.866537i \(0.666340\pi\)
\(972\) 10.0176 11.9435i 0.321315 0.383088i
\(973\) 18.3449 18.3449i 0.588112 0.588112i
\(974\) 22.3756 0.716961
\(975\) 38.0485 + 24.1916i 1.21853 + 0.774753i
\(976\) 11.1278 0.356192
\(977\) −0.724617 + 0.724617i −0.0231825 + 0.0231825i −0.718603 0.695421i \(-0.755218\pi\)
0.695421 + 0.718603i \(0.255218\pi\)
\(978\) 6.47204 + 3.15630i 0.206953 + 0.100927i
\(979\) 51.6278i 1.65003i
\(980\) 2.74314 + 7.84436i 0.0876263 + 0.250579i
\(981\) 1.27612 0.997186i 0.0407435 0.0318377i
\(982\) 21.2625 + 21.2625i 0.678514 + 0.678514i
\(983\) −31.7083 31.7083i −1.01134 1.01134i −0.999935 0.0114026i \(-0.996370\pi\)
−0.0114026 0.999935i \(-0.503630\pi\)
\(984\) 3.23878 + 9.40485i 0.103249 + 0.299816i
\(985\) 6.26544 + 3.01879i 0.199634 + 0.0961866i
\(986\) 5.82957i 0.185651i
\(987\) −4.30453 + 8.82652i −0.137015 + 0.280951i
\(988\) 13.5866 13.5866i 0.432246 0.432246i
\(989\) −37.0531 −1.17822
\(990\) −42.5932 + 9.27062i −1.35370 + 0.294640i
\(991\) 2.78104 0.0883425 0.0441713 0.999024i \(-0.485935\pi\)
0.0441713 + 0.999024i \(0.485935\pi\)
\(992\) −6.24943 + 6.24943i −0.198420 + 0.198420i
\(993\) −1.55097 + 3.18029i −0.0492186 + 0.100924i
\(994\) 7.41921i 0.235323i
\(995\) −6.44302 + 2.25310i −0.204258 + 0.0714279i
\(996\) −1.49137 4.33069i −0.0472560 0.137223i
\(997\) 13.8822 + 13.8822i 0.439654 + 0.439654i 0.891896 0.452241i \(-0.149375\pi\)
−0.452241 + 0.891896i \(0.649375\pi\)
\(998\) 5.23765 + 5.23765i 0.165795 + 0.165795i
\(999\) −1.98346 1.28773i −0.0627539 0.0407419i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 510.2.l.g.137.12 yes 28
3.2 odd 2 inner 510.2.l.g.137.7 28
5.3 odd 4 inner 510.2.l.g.443.7 yes 28
15.8 even 4 inner 510.2.l.g.443.12 yes 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
510.2.l.g.137.7 28 3.2 odd 2 inner
510.2.l.g.137.12 yes 28 1.1 even 1 trivial
510.2.l.g.443.7 yes 28 5.3 odd 4 inner
510.2.l.g.443.12 yes 28 15.8 even 4 inner