Properties

Label 52.3.k.a.33.2
Level $52$
Weight $3$
Character 52.33
Analytic conductor $1.417$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [52,3,Mod(33,52)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(52, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([0, 11]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("52.33");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 52 = 2^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 52.k (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.41689737467\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{12})\)
Coefficient field: 8.0.44991500544.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 38x^{6} + 555x^{4} - 3674x^{2} + 9409 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 33.2
Root \(2.83160 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 52.33
Dual form 52.3.k.a.41.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.84881 - 3.20224i) q^{3} +(-2.68502 - 2.68502i) q^{5} +(3.21484 + 0.861413i) q^{7} +(-2.33621 - 4.04644i) q^{9} +(3.45758 + 12.9039i) q^{11} +(10.7063 - 7.37401i) q^{13} +(-13.5622 + 3.63397i) q^{15} +(-18.0473 + 10.4196i) q^{17} +(-8.17703 + 30.5171i) q^{19} +(8.70208 - 8.70208i) q^{21} +(-20.2227 - 11.6756i) q^{23} -10.5813i q^{25} +16.0018 q^{27} +(16.7306 - 28.9782i) q^{29} +(15.6552 + 15.6552i) q^{31} +(47.7137 + 12.7848i) q^{33} +(-6.31900 - 10.9448i) q^{35} +(-4.36965 - 16.3078i) q^{37} +(-3.81948 - 47.9171i) q^{39} +(-58.8233 + 15.7617i) q^{41} +(43.5891 - 25.1662i) q^{43} +(-4.59199 + 17.1375i) q^{45} +(1.03863 - 1.03863i) q^{47} +(-32.8421 - 18.9614i) q^{49} +77.0557i q^{51} -63.7629 q^{53} +(25.3635 - 43.9309i) q^{55} +(82.6052 + 82.6052i) q^{57} +(-26.8080 - 7.18318i) q^{59} +(46.2192 + 80.0541i) q^{61} +(-4.02488 - 15.0211i) q^{63} +(-48.5459 - 8.94714i) q^{65} +(-40.1854 + 10.7676i) q^{67} +(-74.7758 + 43.1718i) q^{69} +(15.6576 - 58.4350i) q^{71} +(36.8238 - 36.8238i) q^{73} +(-33.8838 - 19.5628i) q^{75} +44.4623i q^{77} -106.238 q^{79} +(50.6101 - 87.6593i) q^{81} +(96.6176 + 96.6176i) q^{83} +(76.4344 + 20.4805i) q^{85} +(-61.8634 - 107.151i) q^{87} +(-6.66127 - 24.8602i) q^{89} +(40.7709 - 14.4837i) q^{91} +(79.0750 - 21.1881i) q^{93} +(103.895 - 59.9836i) q^{95} +(4.20302 - 15.6859i) q^{97} +(44.1371 - 44.1371i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 6 q^{5} + 4 q^{7} - 6 q^{9} + 24 q^{11} + 18 q^{13} - 60 q^{15} - 54 q^{17} - 50 q^{19} - 54 q^{21} - 24 q^{23} + 36 q^{27} + 108 q^{29} + 176 q^{31} + 114 q^{33} - 30 q^{35} + 104 q^{37} + 120 q^{39}+ \cdots + 182 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/52\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(41\)
\(\chi(n)\) \(1\) \(e\left(\frac{11}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.84881 3.20224i 0.616271 1.06741i −0.373890 0.927473i \(-0.621976\pi\)
0.990160 0.139939i \(-0.0446906\pi\)
\(4\) 0 0
\(5\) −2.68502 2.68502i −0.537005 0.537005i 0.385643 0.922648i \(-0.373980\pi\)
−0.922648 + 0.385643i \(0.873980\pi\)
\(6\) 0 0
\(7\) 3.21484 + 0.861413i 0.459262 + 0.123059i 0.481030 0.876704i \(-0.340263\pi\)
−0.0217677 + 0.999763i \(0.506929\pi\)
\(8\) 0 0
\(9\) −2.33621 4.04644i −0.259579 0.449604i
\(10\) 0 0
\(11\) 3.45758 + 12.9039i 0.314326 + 1.17308i 0.924616 + 0.380902i \(0.124386\pi\)
−0.610290 + 0.792178i \(0.708947\pi\)
\(12\) 0 0
\(13\) 10.7063 7.37401i 0.823558 0.567232i
\(14\) 0 0
\(15\) −13.5622 + 3.63397i −0.904145 + 0.242265i
\(16\) 0 0
\(17\) −18.0473 + 10.4196i −1.06161 + 0.612919i −0.925876 0.377827i \(-0.876671\pi\)
−0.135730 + 0.990746i \(0.543338\pi\)
\(18\) 0 0
\(19\) −8.17703 + 30.5171i −0.430370 + 1.60616i 0.321539 + 0.946896i \(0.395800\pi\)
−0.751909 + 0.659267i \(0.770867\pi\)
\(20\) 0 0
\(21\) 8.70208 8.70208i 0.414385 0.414385i
\(22\) 0 0
\(23\) −20.2227 11.6756i −0.879246 0.507633i −0.00883654 0.999961i \(-0.502813\pi\)
−0.870410 + 0.492328i \(0.836146\pi\)
\(24\) 0 0
\(25\) 10.5813i 0.423252i
\(26\) 0 0
\(27\) 16.0018 0.592658
\(28\) 0 0
\(29\) 16.7306 28.9782i 0.576917 0.999249i −0.418914 0.908026i \(-0.637589\pi\)
0.995831 0.0912228i \(-0.0290776\pi\)
\(30\) 0 0
\(31\) 15.6552 + 15.6552i 0.505005 + 0.505005i 0.912989 0.407984i \(-0.133768\pi\)
−0.407984 + 0.912989i \(0.633768\pi\)
\(32\) 0 0
\(33\) 47.7137 + 12.7848i 1.44587 + 0.387420i
\(34\) 0 0
\(35\) −6.31900 10.9448i −0.180543 0.312709i
\(36\) 0 0
\(37\) −4.36965 16.3078i −0.118099 0.440750i 0.881401 0.472368i \(-0.156601\pi\)
−0.999500 + 0.0316179i \(0.989934\pi\)
\(38\) 0 0
\(39\) −3.81948 47.9171i −0.0979354 1.22864i
\(40\) 0 0
\(41\) −58.8233 + 15.7617i −1.43472 + 0.384431i −0.890680 0.454631i \(-0.849771\pi\)
−0.544036 + 0.839062i \(0.683104\pi\)
\(42\) 0 0
\(43\) 43.5891 25.1662i 1.01370 0.585260i 0.101427 0.994843i \(-0.467659\pi\)
0.912273 + 0.409583i \(0.134326\pi\)
\(44\) 0 0
\(45\) −4.59199 + 17.1375i −0.102044 + 0.380834i
\(46\) 0 0
\(47\) 1.03863 1.03863i 0.0220986 0.0220986i −0.695971 0.718070i \(-0.745026\pi\)
0.718070 + 0.695971i \(0.245026\pi\)
\(48\) 0 0
\(49\) −32.8421 18.9614i −0.670247 0.386967i
\(50\) 0 0
\(51\) 77.0557i 1.51090i
\(52\) 0 0
\(53\) −63.7629 −1.20307 −0.601537 0.798845i \(-0.705445\pi\)
−0.601537 + 0.798845i \(0.705445\pi\)
\(54\) 0 0
\(55\) 25.3635 43.9309i 0.461155 0.798744i
\(56\) 0 0
\(57\) 82.6052 + 82.6052i 1.44921 + 1.44921i
\(58\) 0 0
\(59\) −26.8080 7.18318i −0.454373 0.121749i 0.0243720 0.999703i \(-0.492241\pi\)
−0.478745 + 0.877954i \(0.658908\pi\)
\(60\) 0 0
\(61\) 46.2192 + 80.0541i 0.757692 + 1.31236i 0.944025 + 0.329875i \(0.107007\pi\)
−0.186332 + 0.982487i \(0.559660\pi\)
\(62\) 0 0
\(63\) −4.02488 15.0211i −0.0638871 0.238430i
\(64\) 0 0
\(65\) −48.5459 8.94714i −0.746861 0.137648i
\(66\) 0 0
\(67\) −40.1854 + 10.7676i −0.599782 + 0.160711i −0.545920 0.837837i \(-0.683820\pi\)
−0.0538618 + 0.998548i \(0.517153\pi\)
\(68\) 0 0
\(69\) −74.7758 + 43.1718i −1.08371 + 0.625679i
\(70\) 0 0
\(71\) 15.6576 58.4350i 0.220530 0.823028i −0.763617 0.645670i \(-0.776578\pi\)
0.984146 0.177358i \(-0.0567551\pi\)
\(72\) 0 0
\(73\) 36.8238 36.8238i 0.504436 0.504436i −0.408378 0.912813i \(-0.633905\pi\)
0.912813 + 0.408378i \(0.133905\pi\)
\(74\) 0 0
\(75\) −33.8838 19.5628i −0.451785 0.260838i
\(76\) 0 0
\(77\) 44.4623i 0.577432i
\(78\) 0 0
\(79\) −106.238 −1.34479 −0.672394 0.740193i \(-0.734734\pi\)
−0.672394 + 0.740193i \(0.734734\pi\)
\(80\) 0 0
\(81\) 50.6101 87.6593i 0.624816 1.08221i
\(82\) 0 0
\(83\) 96.6176 + 96.6176i 1.16407 + 1.16407i 0.983577 + 0.180490i \(0.0577685\pi\)
0.180490 + 0.983577i \(0.442232\pi\)
\(84\) 0 0
\(85\) 76.4344 + 20.4805i 0.899228 + 0.240947i
\(86\) 0 0
\(87\) −61.8634 107.151i −0.711073 1.23162i
\(88\) 0 0
\(89\) −6.66127 24.8602i −0.0748457 0.279328i 0.918353 0.395763i \(-0.129520\pi\)
−0.993198 + 0.116435i \(0.962853\pi\)
\(90\) 0 0
\(91\) 40.7709 14.4837i 0.448032 0.159162i
\(92\) 0 0
\(93\) 79.0750 21.1881i 0.850268 0.227829i
\(94\) 0 0
\(95\) 103.895 59.9836i 1.09363 0.631406i
\(96\) 0 0
\(97\) 4.20302 15.6859i 0.0433302 0.161710i −0.940871 0.338766i \(-0.889991\pi\)
0.984201 + 0.177056i \(0.0566572\pi\)
\(98\) 0 0
\(99\) 44.1371 44.1371i 0.445829 0.445829i
\(100\) 0 0
\(101\) −3.92304 2.26497i −0.0388420 0.0224254i 0.480453 0.877020i \(-0.340472\pi\)
−0.519295 + 0.854595i \(0.673805\pi\)
\(102\) 0 0
\(103\) 93.5979i 0.908718i 0.890819 + 0.454359i \(0.150132\pi\)
−0.890819 + 0.454359i \(0.849868\pi\)
\(104\) 0 0
\(105\) −46.7305 −0.445053
\(106\) 0 0
\(107\) 22.5382 39.0373i 0.210637 0.364834i −0.741277 0.671199i \(-0.765779\pi\)
0.951914 + 0.306365i \(0.0991128\pi\)
\(108\) 0 0
\(109\) −101.429 101.429i −0.930540 0.930540i 0.0671997 0.997740i \(-0.478594\pi\)
−0.997740 + 0.0671997i \(0.978594\pi\)
\(110\) 0 0
\(111\) −60.3000 16.1573i −0.543243 0.145561i
\(112\) 0 0
\(113\) 44.2717 + 76.6808i 0.391785 + 0.678591i 0.992685 0.120733i \(-0.0385244\pi\)
−0.600900 + 0.799324i \(0.705191\pi\)
\(114\) 0 0
\(115\) 22.9492 + 85.6475i 0.199558 + 0.744761i
\(116\) 0 0
\(117\) −54.8505 26.0949i −0.468808 0.223034i
\(118\) 0 0
\(119\) −66.9948 + 17.9512i −0.562981 + 0.150850i
\(120\) 0 0
\(121\) −49.7661 + 28.7325i −0.411290 + 0.237459i
\(122\) 0 0
\(123\) −58.2807 + 217.507i −0.473827 + 1.76835i
\(124\) 0 0
\(125\) −95.5366 + 95.5366i −0.764293 + 0.764293i
\(126\) 0 0
\(127\) −34.4109 19.8671i −0.270952 0.156434i 0.358368 0.933580i \(-0.383333\pi\)
−0.629320 + 0.777146i \(0.716667\pi\)
\(128\) 0 0
\(129\) 186.110i 1.44271i
\(130\) 0 0
\(131\) 152.325 1.16279 0.581393 0.813623i \(-0.302508\pi\)
0.581393 + 0.813623i \(0.302508\pi\)
\(132\) 0 0
\(133\) −52.5757 + 91.0637i −0.395306 + 0.684690i
\(134\) 0 0
\(135\) −42.9651 42.9651i −0.318260 0.318260i
\(136\) 0 0
\(137\) 148.196 + 39.7091i 1.08173 + 0.289847i 0.755302 0.655377i \(-0.227490\pi\)
0.326423 + 0.945224i \(0.394157\pi\)
\(138\) 0 0
\(139\) 4.30884 + 7.46314i 0.0309989 + 0.0536916i 0.881109 0.472914i \(-0.156798\pi\)
−0.850110 + 0.526606i \(0.823465\pi\)
\(140\) 0 0
\(141\) −1.40571 5.24619i −0.00996959 0.0372070i
\(142\) 0 0
\(143\) 132.171 + 112.656i 0.924274 + 0.787804i
\(144\) 0 0
\(145\) −122.729 + 32.8852i −0.846408 + 0.226794i
\(146\) 0 0
\(147\) −121.438 + 70.1121i −0.826107 + 0.476953i
\(148\) 0 0
\(149\) 33.7641 126.009i 0.226604 0.845699i −0.755151 0.655551i \(-0.772436\pi\)
0.981755 0.190148i \(-0.0608969\pi\)
\(150\) 0 0
\(151\) 23.2789 23.2789i 0.154165 0.154165i −0.625810 0.779975i \(-0.715232\pi\)
0.779975 + 0.625810i \(0.215232\pi\)
\(152\) 0 0
\(153\) 84.3247 + 48.6849i 0.551142 + 0.318202i
\(154\) 0 0
\(155\) 84.0689i 0.542380i
\(156\) 0 0
\(157\) 222.657 1.41820 0.709100 0.705108i \(-0.249101\pi\)
0.709100 + 0.705108i \(0.249101\pi\)
\(158\) 0 0
\(159\) −117.886 + 204.184i −0.741419 + 1.28418i
\(160\) 0 0
\(161\) −54.9551 54.9551i −0.341336 0.341336i
\(162\) 0 0
\(163\) −241.914 64.8207i −1.48414 0.397673i −0.576383 0.817180i \(-0.695536\pi\)
−0.907752 + 0.419507i \(0.862203\pi\)
\(164\) 0 0
\(165\) −93.7847 162.440i −0.568392 0.984484i
\(166\) 0 0
\(167\) −15.6933 58.5680i −0.0939716 0.350707i 0.902890 0.429872i \(-0.141441\pi\)
−0.996862 + 0.0791650i \(0.974775\pi\)
\(168\) 0 0
\(169\) 60.2478 157.896i 0.356496 0.934297i
\(170\) 0 0
\(171\) 142.589 38.2065i 0.833852 0.223430i
\(172\) 0 0
\(173\) 101.900 58.8317i 0.589015 0.340068i −0.175693 0.984445i \(-0.556217\pi\)
0.764708 + 0.644377i \(0.222883\pi\)
\(174\) 0 0
\(175\) 9.11488 34.0172i 0.0520850 0.194384i
\(176\) 0 0
\(177\) −72.5652 + 72.5652i −0.409973 + 0.409973i
\(178\) 0 0
\(179\) 76.9010 + 44.3988i 0.429614 + 0.248038i 0.699182 0.714943i \(-0.253548\pi\)
−0.269568 + 0.962981i \(0.586881\pi\)
\(180\) 0 0
\(181\) 262.618i 1.45093i −0.688260 0.725465i \(-0.741625\pi\)
0.688260 0.725465i \(-0.258375\pi\)
\(182\) 0 0
\(183\) 341.803 1.86777
\(184\) 0 0
\(185\) −32.0541 + 55.5193i −0.173265 + 0.300104i
\(186\) 0 0
\(187\) −196.854 196.854i −1.05269 1.05269i
\(188\) 0 0
\(189\) 51.4430 + 13.7841i 0.272185 + 0.0729319i
\(190\) 0 0
\(191\) 49.9048 + 86.4376i 0.261282 + 0.452553i 0.966583 0.256355i \(-0.0825216\pi\)
−0.705301 + 0.708908i \(0.749188\pi\)
\(192\) 0 0
\(193\) 43.2915 + 161.566i 0.224308 + 0.837130i 0.982680 + 0.185308i \(0.0593283\pi\)
−0.758372 + 0.651822i \(0.774005\pi\)
\(194\) 0 0
\(195\) −118.403 + 138.914i −0.607196 + 0.712379i
\(196\) 0 0
\(197\) 327.442 87.7378i 1.66214 0.445370i 0.699166 0.714959i \(-0.253555\pi\)
0.962975 + 0.269589i \(0.0868880\pi\)
\(198\) 0 0
\(199\) 16.3309 9.42867i 0.0820650 0.0473802i −0.458406 0.888743i \(-0.651579\pi\)
0.540471 + 0.841363i \(0.318246\pi\)
\(200\) 0 0
\(201\) −39.8147 + 148.590i −0.198083 + 0.739256i
\(202\) 0 0
\(203\) 78.7483 78.7483i 0.387923 0.387923i
\(204\) 0 0
\(205\) 200.262 + 115.622i 0.976890 + 0.564008i
\(206\) 0 0
\(207\) 109.106i 0.527084i
\(208\) 0 0
\(209\) −422.062 −2.01943
\(210\) 0 0
\(211\) −14.0901 + 24.4047i −0.0667776 + 0.115662i −0.897481 0.441053i \(-0.854605\pi\)
0.830704 + 0.556715i \(0.187938\pi\)
\(212\) 0 0
\(213\) −158.175 158.175i −0.742604 0.742604i
\(214\) 0 0
\(215\) −184.610 49.4660i −0.858649 0.230074i
\(216\) 0 0
\(217\) 36.8432 + 63.8143i 0.169784 + 0.294075i
\(218\) 0 0
\(219\) −49.8382 185.999i −0.227572 0.849310i
\(220\) 0 0
\(221\) −116.385 + 244.636i −0.526628 + 1.10695i
\(222\) 0 0
\(223\) −126.883 + 33.9983i −0.568984 + 0.152459i −0.531831 0.846851i \(-0.678496\pi\)
−0.0371534 + 0.999310i \(0.511829\pi\)
\(224\) 0 0
\(225\) −42.8166 + 24.7202i −0.190296 + 0.109867i
\(226\) 0 0
\(227\) 89.8897 335.473i 0.395990 1.47785i −0.424098 0.905616i \(-0.639409\pi\)
0.820088 0.572237i \(-0.193924\pi\)
\(228\) 0 0
\(229\) −309.147 + 309.147i −1.34999 + 1.34999i −0.464320 + 0.885668i \(0.653701\pi\)
−0.885668 + 0.464320i \(0.846299\pi\)
\(230\) 0 0
\(231\) 142.379 + 82.2024i 0.616358 + 0.355855i
\(232\) 0 0
\(233\) 213.648i 0.916945i 0.888709 + 0.458473i \(0.151603\pi\)
−0.888709 + 0.458473i \(0.848397\pi\)
\(234\) 0 0
\(235\) −5.57751 −0.0237341
\(236\) 0 0
\(237\) −196.415 + 340.200i −0.828754 + 1.43544i
\(238\) 0 0
\(239\) 5.07685 + 5.07685i 0.0212420 + 0.0212420i 0.717648 0.696406i \(-0.245219\pi\)
−0.696406 + 0.717648i \(0.745219\pi\)
\(240\) 0 0
\(241\) −57.9552 15.5290i −0.240478 0.0644358i 0.136567 0.990631i \(-0.456393\pi\)
−0.377045 + 0.926195i \(0.623060\pi\)
\(242\) 0 0
\(243\) −115.129 199.410i −0.473783 0.820617i
\(244\) 0 0
\(245\) 37.2700 + 139.094i 0.152122 + 0.567729i
\(246\) 0 0
\(247\) 137.488 + 387.022i 0.556632 + 1.56689i
\(248\) 0 0
\(249\) 488.020 130.765i 1.95992 0.525159i
\(250\) 0 0
\(251\) 112.415 64.9026i 0.447867 0.258576i −0.259062 0.965861i \(-0.583413\pi\)
0.706929 + 0.707285i \(0.250080\pi\)
\(252\) 0 0
\(253\) 80.7385 301.320i 0.319124 1.19099i
\(254\) 0 0
\(255\) 206.896 206.896i 0.811358 0.811358i
\(256\) 0 0
\(257\) −225.400 130.135i −0.877043 0.506361i −0.00736090 0.999973i \(-0.502343\pi\)
−0.869682 + 0.493612i \(0.835676\pi\)
\(258\) 0 0
\(259\) 56.1909i 0.216953i
\(260\) 0 0
\(261\) −156.345 −0.599022
\(262\) 0 0
\(263\) 15.3605 26.6051i 0.0584048 0.101160i −0.835345 0.549727i \(-0.814732\pi\)
0.893749 + 0.448566i \(0.148065\pi\)
\(264\) 0 0
\(265\) 171.205 + 171.205i 0.646056 + 0.646056i
\(266\) 0 0
\(267\) −91.9236 24.6309i −0.344283 0.0922504i
\(268\) 0 0
\(269\) 166.534 + 288.445i 0.619085 + 1.07229i 0.989653 + 0.143481i \(0.0458296\pi\)
−0.370568 + 0.928805i \(0.620837\pi\)
\(270\) 0 0
\(271\) −66.9949 250.028i −0.247214 0.922614i −0.972258 0.233912i \(-0.924847\pi\)
0.725044 0.688702i \(-0.241819\pi\)
\(272\) 0 0
\(273\) 28.9974 157.336i 0.106218 0.576322i
\(274\) 0 0
\(275\) 136.540 36.5858i 0.496509 0.133039i
\(276\) 0 0
\(277\) 152.454 88.0191i 0.550374 0.317759i −0.198899 0.980020i \(-0.563737\pi\)
0.749273 + 0.662261i \(0.230403\pi\)
\(278\) 0 0
\(279\) 26.7738 99.9213i 0.0959636 0.358141i
\(280\) 0 0
\(281\) −50.8905 + 50.8905i −0.181105 + 0.181105i −0.791837 0.610732i \(-0.790875\pi\)
0.610732 + 0.791837i \(0.290875\pi\)
\(282\) 0 0
\(283\) 90.6574 + 52.3411i 0.320344 + 0.184951i 0.651546 0.758609i \(-0.274121\pi\)
−0.331202 + 0.943560i \(0.607454\pi\)
\(284\) 0 0
\(285\) 443.594i 1.55647i
\(286\) 0 0
\(287\) −202.685 −0.706219
\(288\) 0 0
\(289\) 72.6370 125.811i 0.251339 0.435332i
\(290\) 0 0
\(291\) −42.4594 42.4594i −0.145908 0.145908i
\(292\) 0 0
\(293\) −475.220 127.335i −1.62191 0.434590i −0.670349 0.742046i \(-0.733856\pi\)
−0.951562 + 0.307456i \(0.900522\pi\)
\(294\) 0 0
\(295\) 52.6931 + 91.2671i 0.178621 + 0.309380i
\(296\) 0 0
\(297\) 55.3274 + 206.485i 0.186288 + 0.695235i
\(298\) 0 0
\(299\) −302.605 + 24.1207i −1.01206 + 0.0806712i
\(300\) 0 0
\(301\) 161.810 43.3570i 0.537576 0.144043i
\(302\) 0 0
\(303\) −14.5059 + 8.37500i −0.0478743 + 0.0276402i
\(304\) 0 0
\(305\) 90.8473 339.047i 0.297860 1.11163i
\(306\) 0 0
\(307\) 121.001 121.001i 0.394141 0.394141i −0.482020 0.876160i \(-0.660097\pi\)
0.876160 + 0.482020i \(0.160097\pi\)
\(308\) 0 0
\(309\) 299.723 + 173.045i 0.969976 + 0.560016i
\(310\) 0 0
\(311\) 552.796i 1.77748i 0.458413 + 0.888739i \(0.348418\pi\)
−0.458413 + 0.888739i \(0.651582\pi\)
\(312\) 0 0
\(313\) 231.900 0.740893 0.370447 0.928854i \(-0.379205\pi\)
0.370447 + 0.928854i \(0.379205\pi\)
\(314\) 0 0
\(315\) −29.5250 + 51.1388i −0.0937302 + 0.162345i
\(316\) 0 0
\(317\) 61.8126 + 61.8126i 0.194993 + 0.194993i 0.797849 0.602857i \(-0.205971\pi\)
−0.602857 + 0.797849i \(0.705971\pi\)
\(318\) 0 0
\(319\) 431.779 + 115.695i 1.35354 + 0.362680i
\(320\) 0 0
\(321\) −83.3377 144.345i −0.259619 0.449673i
\(322\) 0 0
\(323\) −170.403 635.953i −0.527564 1.96890i
\(324\) 0 0
\(325\) −78.0267 113.286i −0.240082 0.348573i
\(326\) 0 0
\(327\) −512.322 + 137.276i −1.56673 + 0.419805i
\(328\) 0 0
\(329\) 4.23373 2.44435i 0.0128685 0.00742963i
\(330\) 0 0
\(331\) −162.185 + 605.282i −0.489984 + 1.82865i 0.0664983 + 0.997787i \(0.478817\pi\)
−0.556482 + 0.830859i \(0.687849\pi\)
\(332\) 0 0
\(333\) −55.7799 + 55.7799i −0.167507 + 0.167507i
\(334\) 0 0
\(335\) 136.810 + 78.9873i 0.408388 + 0.235783i
\(336\) 0 0
\(337\) 53.5886i 0.159017i −0.996834 0.0795084i \(-0.974665\pi\)
0.996834 0.0795084i \(-0.0253350\pi\)
\(338\) 0 0
\(339\) 327.400 0.965782
\(340\) 0 0
\(341\) −147.883 + 256.141i −0.433675 + 0.751147i
\(342\) 0 0
\(343\) −204.566 204.566i −0.596403 0.596403i
\(344\) 0 0
\(345\) 316.692 + 84.8574i 0.917948 + 0.245963i
\(346\) 0 0
\(347\) 8.86795 + 15.3597i 0.0255561 + 0.0442644i 0.878521 0.477705i \(-0.158531\pi\)
−0.852965 + 0.521969i \(0.825198\pi\)
\(348\) 0 0
\(349\) 98.1957 + 366.471i 0.281363 + 1.05006i 0.951456 + 0.307784i \(0.0995874\pi\)
−0.670093 + 0.742277i \(0.733746\pi\)
\(350\) 0 0
\(351\) 171.319 117.997i 0.488088 0.336174i
\(352\) 0 0
\(353\) −322.022 + 86.2854i −0.912243 + 0.244435i −0.684266 0.729232i \(-0.739877\pi\)
−0.227976 + 0.973667i \(0.573211\pi\)
\(354\) 0 0
\(355\) −198.940 + 114.858i −0.560395 + 0.323544i
\(356\) 0 0
\(357\) −66.3768 + 247.721i −0.185929 + 0.693898i
\(358\) 0 0
\(359\) −366.035 + 366.035i −1.01960 + 1.01960i −0.0197923 + 0.999804i \(0.506300\pi\)
−0.999804 + 0.0197923i \(0.993700\pi\)
\(360\) 0 0
\(361\) −551.795 318.579i −1.52852 0.882490i
\(362\) 0 0
\(363\) 212.484i 0.585355i
\(364\) 0 0
\(365\) −197.745 −0.541768
\(366\) 0 0
\(367\) 98.7059 170.964i 0.268954 0.465841i −0.699638 0.714497i \(-0.746656\pi\)
0.968592 + 0.248656i \(0.0799889\pi\)
\(368\) 0 0
\(369\) 201.202 + 201.202i 0.545264 + 0.545264i
\(370\) 0 0
\(371\) −204.987 54.9262i −0.552527 0.148049i
\(372\) 0 0
\(373\) −208.142 360.513i −0.558023 0.966523i −0.997661 0.0683488i \(-0.978227\pi\)
0.439639 0.898175i \(-0.355106\pi\)
\(374\) 0 0
\(375\) 129.302 + 482.560i 0.344804 + 1.28683i
\(376\) 0 0
\(377\) −34.5639 433.620i −0.0916814 1.15018i
\(378\) 0 0
\(379\) −13.5864 + 3.64047i −0.0358481 + 0.00960546i −0.276699 0.960957i \(-0.589240\pi\)
0.240850 + 0.970562i \(0.422574\pi\)
\(380\) 0 0
\(381\) −127.238 + 73.4611i −0.333959 + 0.192811i
\(382\) 0 0
\(383\) −13.2422 + 49.4206i −0.0345750 + 0.129036i −0.981056 0.193723i \(-0.937944\pi\)
0.946481 + 0.322759i \(0.104610\pi\)
\(384\) 0 0
\(385\) 119.382 119.382i 0.310084 0.310084i
\(386\) 0 0
\(387\) −203.667 117.587i −0.526271 0.303842i
\(388\) 0 0
\(389\) 451.736i 1.16128i −0.814162 0.580638i \(-0.802803\pi\)
0.814162 0.580638i \(-0.197197\pi\)
\(390\) 0 0
\(391\) 486.620 1.24455
\(392\) 0 0
\(393\) 281.620 487.781i 0.716591 1.24117i
\(394\) 0 0
\(395\) 285.252 + 285.252i 0.722157 + 0.722157i
\(396\) 0 0
\(397\) 373.710 + 100.135i 0.941334 + 0.252230i 0.696681 0.717381i \(-0.254659\pi\)
0.244653 + 0.969611i \(0.421326\pi\)
\(398\) 0 0
\(399\) 194.405 + 336.719i 0.487231 + 0.843908i
\(400\) 0 0
\(401\) −69.1311 258.001i −0.172397 0.643393i −0.996980 0.0776533i \(-0.975257\pi\)
0.824584 0.565740i \(-0.191409\pi\)
\(402\) 0 0
\(403\) 283.049 + 52.1668i 0.702356 + 0.129446i
\(404\) 0 0
\(405\) −371.257 + 99.4779i −0.916683 + 0.245624i
\(406\) 0 0
\(407\) 195.325 112.771i 0.479914 0.277078i
\(408\) 0 0
\(409\) −105.844 + 395.014i −0.258787 + 0.965805i 0.707158 + 0.707056i \(0.249977\pi\)
−0.965945 + 0.258749i \(0.916690\pi\)
\(410\) 0 0
\(411\) 401.145 401.145i 0.976022 0.976022i
\(412\) 0 0
\(413\) −79.9957 46.1855i −0.193694 0.111829i
\(414\) 0 0
\(415\) 518.841i 1.25022i
\(416\) 0 0
\(417\) 31.8650 0.0764148
\(418\) 0 0
\(419\) 228.302 395.431i 0.544874 0.943750i −0.453741 0.891134i \(-0.649911\pi\)
0.998615 0.0526160i \(-0.0167559\pi\)
\(420\) 0 0
\(421\) −81.6596 81.6596i −0.193966 0.193966i 0.603442 0.797407i \(-0.293796\pi\)
−0.797407 + 0.603442i \(0.793796\pi\)
\(422\) 0 0
\(423\) −6.62923 1.77630i −0.0156719 0.00419929i
\(424\) 0 0
\(425\) 110.253 + 190.964i 0.259419 + 0.449327i
\(426\) 0 0
\(427\) 79.6277 + 297.175i 0.186482 + 0.695959i
\(428\) 0 0
\(429\) 605.111 214.964i 1.41051 0.501081i
\(430\) 0 0
\(431\) −151.399 + 40.5674i −0.351275 + 0.0941238i −0.430142 0.902761i \(-0.641536\pi\)
0.0788669 + 0.996885i \(0.474870\pi\)
\(432\) 0 0
\(433\) −251.647 + 145.289i −0.581171 + 0.335539i −0.761599 0.648049i \(-0.775585\pi\)
0.180428 + 0.983588i \(0.442252\pi\)
\(434\) 0 0
\(435\) −121.597 + 453.806i −0.279533 + 1.04323i
\(436\) 0 0
\(437\) 521.666 521.666i 1.19374 1.19374i
\(438\) 0 0
\(439\) −368.628 212.827i −0.839699 0.484801i 0.0174626 0.999848i \(-0.494441\pi\)
−0.857162 + 0.515047i \(0.827775\pi\)
\(440\) 0 0
\(441\) 177.191i 0.401794i
\(442\) 0 0
\(443\) −593.192 −1.33903 −0.669517 0.742797i \(-0.733499\pi\)
−0.669517 + 0.742797i \(0.733499\pi\)
\(444\) 0 0
\(445\) −48.8645 + 84.6358i −0.109808 + 0.190193i
\(446\) 0 0
\(447\) −341.088 341.088i −0.763060 0.763060i
\(448\) 0 0
\(449\) 683.437 + 183.126i 1.52213 + 0.407854i 0.920443 0.390877i \(-0.127828\pi\)
0.601689 + 0.798731i \(0.294495\pi\)
\(450\) 0 0
\(451\) −406.773 704.552i −0.901936 1.56220i
\(452\) 0 0
\(453\) −31.5063 117.583i −0.0695503 0.259565i
\(454\) 0 0
\(455\) −148.360 70.5817i −0.326066 0.155125i
\(456\) 0 0
\(457\) −382.295 + 102.436i −0.836532 + 0.224148i −0.651561 0.758596i \(-0.725886\pi\)
−0.184971 + 0.982744i \(0.559219\pi\)
\(458\) 0 0
\(459\) −288.789 + 166.732i −0.629169 + 0.363251i
\(460\) 0 0
\(461\) 51.8233 193.407i 0.112415 0.419538i −0.886666 0.462411i \(-0.846984\pi\)
0.999081 + 0.0428729i \(0.0136511\pi\)
\(462\) 0 0
\(463\) −78.9928 + 78.9928i −0.170611 + 0.170611i −0.787248 0.616637i \(-0.788495\pi\)
0.616637 + 0.787248i \(0.288495\pi\)
\(464\) 0 0
\(465\) −269.208 155.428i −0.578943 0.334253i
\(466\) 0 0
\(467\) 899.100i 1.92527i 0.270808 + 0.962633i \(0.412709\pi\)
−0.270808 + 0.962633i \(0.587291\pi\)
\(468\) 0 0
\(469\) −138.465 −0.295234
\(470\) 0 0
\(471\) 411.652 713.002i 0.873995 1.51380i
\(472\) 0 0
\(473\) 475.455 + 475.455i 1.00519 + 1.00519i
\(474\) 0 0
\(475\) 322.911 + 86.5237i 0.679812 + 0.182155i
\(476\) 0 0
\(477\) 148.964 + 258.012i 0.312293 + 0.540907i
\(478\) 0 0
\(479\) 83.2815 + 310.811i 0.173865 + 0.648874i 0.996742 + 0.0806543i \(0.0257010\pi\)
−0.822877 + 0.568220i \(0.807632\pi\)
\(480\) 0 0
\(481\) −167.036 142.373i −0.347269 0.295994i
\(482\) 0 0
\(483\) −277.581 + 74.3776i −0.574702 + 0.153991i
\(484\) 0 0
\(485\) −53.4022 + 30.8318i −0.110108 + 0.0635707i
\(486\) 0 0
\(487\) −11.3837 + 42.4845i −0.0233751 + 0.0872372i −0.976628 0.214936i \(-0.931046\pi\)
0.953253 + 0.302174i \(0.0977122\pi\)
\(488\) 0 0
\(489\) −654.825 + 654.825i −1.33911 + 1.33911i
\(490\) 0 0
\(491\) 314.204 + 181.406i 0.639927 + 0.369462i 0.784586 0.620019i \(-0.212875\pi\)
−0.144659 + 0.989482i \(0.546209\pi\)
\(492\) 0 0
\(493\) 697.305i 1.41441i
\(494\) 0 0
\(495\) −237.018 −0.478824
\(496\) 0 0
\(497\) 100.673 174.371i 0.202562 0.350848i
\(498\) 0 0
\(499\) 542.545 + 542.545i 1.08727 + 1.08727i 0.995809 + 0.0914564i \(0.0291522\pi\)
0.0914564 + 0.995809i \(0.470848\pi\)
\(500\) 0 0
\(501\) −216.563 58.0278i −0.432261 0.115824i
\(502\) 0 0
\(503\) −29.0198 50.2638i −0.0576935 0.0999280i 0.835736 0.549131i \(-0.185041\pi\)
−0.893430 + 0.449203i \(0.851708\pi\)
\(504\) 0 0
\(505\) 4.45196 + 16.6149i 0.00881576 + 0.0329009i
\(506\) 0 0
\(507\) −394.234 484.848i −0.777582 0.956308i
\(508\) 0 0
\(509\) 620.186 166.178i 1.21844 0.326480i 0.408372 0.912816i \(-0.366097\pi\)
0.810068 + 0.586336i \(0.199430\pi\)
\(510\) 0 0
\(511\) 150.103 86.6620i 0.293744 0.169593i
\(512\) 0 0
\(513\) −130.847 + 488.327i −0.255062 + 0.951905i
\(514\) 0 0
\(515\) 251.313 251.313i 0.487986 0.487986i
\(516\) 0 0
\(517\) 16.9936 + 9.81124i 0.0328696 + 0.0189773i
\(518\) 0 0
\(519\) 435.075i 0.838295i
\(520\) 0 0
\(521\) −494.531 −0.949196 −0.474598 0.880203i \(-0.657406\pi\)
−0.474598 + 0.880203i \(0.657406\pi\)
\(522\) 0 0
\(523\) −59.9652 + 103.863i −0.114656 + 0.198590i −0.917642 0.397407i \(-0.869910\pi\)
0.802986 + 0.595998i \(0.203243\pi\)
\(524\) 0 0
\(525\) −92.0794 92.0794i −0.175389 0.175389i
\(526\) 0 0
\(527\) −445.654 119.413i −0.845644 0.226590i
\(528\) 0 0
\(529\) 8.13752 + 14.0946i 0.0153828 + 0.0266438i
\(530\) 0 0
\(531\) 33.5628 + 125.258i 0.0632069 + 0.235891i
\(532\) 0 0
\(533\) −513.551 + 602.513i −0.963510 + 1.13042i
\(534\) 0 0
\(535\) −165.331 + 44.3004i −0.309031 + 0.0828046i
\(536\) 0 0
\(537\) 284.351 164.170i 0.529517 0.305717i
\(538\) 0 0
\(539\) 131.121 489.351i 0.243268 0.907887i
\(540\) 0 0
\(541\) 38.1124 38.1124i 0.0704480 0.0704480i −0.671005 0.741453i \(-0.734137\pi\)
0.741453 + 0.671005i \(0.234137\pi\)
\(542\) 0 0
\(543\) −840.965 485.532i −1.54874 0.894165i
\(544\) 0 0
\(545\) 544.677i 0.999408i
\(546\) 0 0
\(547\) 69.2280 0.126559 0.0632797 0.997996i \(-0.479844\pi\)
0.0632797 + 0.997996i \(0.479844\pi\)
\(548\) 0 0
\(549\) 215.956 374.046i 0.393362 0.681323i
\(550\) 0 0
\(551\) 747.525 + 747.525i 1.35667 + 1.35667i
\(552\) 0 0
\(553\) −341.539 91.5150i −0.617611 0.165488i
\(554\) 0 0
\(555\) 118.524 + 205.290i 0.213557 + 0.369891i
\(556\) 0 0
\(557\) −173.421 647.216i −0.311348 1.16197i −0.927341 0.374216i \(-0.877912\pi\)
0.615993 0.787752i \(-0.288755\pi\)
\(558\) 0 0
\(559\) 281.100 590.862i 0.502863 1.05700i
\(560\) 0 0
\(561\) −994.317 + 266.427i −1.77240 + 0.474914i
\(562\) 0 0
\(563\) 360.527 208.150i 0.640367 0.369716i −0.144389 0.989521i \(-0.546122\pi\)
0.784756 + 0.619805i \(0.212788\pi\)
\(564\) 0 0
\(565\) 87.0192 324.760i 0.154016 0.574797i
\(566\) 0 0
\(567\) 238.214 238.214i 0.420131 0.420131i
\(568\) 0 0
\(569\) 783.324 + 452.252i 1.37667 + 0.794820i 0.991757 0.128134i \(-0.0408987\pi\)
0.384911 + 0.922954i \(0.374232\pi\)
\(570\) 0 0
\(571\) 81.7938i 0.143247i −0.997432 0.0716233i \(-0.977182\pi\)
0.997432 0.0716233i \(-0.0228179\pi\)
\(572\) 0 0
\(573\) 369.058 0.644081
\(574\) 0 0
\(575\) −123.543 + 213.982i −0.214857 + 0.372143i
\(576\) 0 0
\(577\) −86.8716 86.8716i −0.150557 0.150557i 0.627810 0.778367i \(-0.283952\pi\)
−0.778367 + 0.627810i \(0.783952\pi\)
\(578\) 0 0
\(579\) 597.410 + 160.076i 1.03180 + 0.276469i
\(580\) 0 0
\(581\) 227.382 + 393.837i 0.391363 + 0.677861i
\(582\) 0 0
\(583\) −220.466 822.789i −0.378157 1.41130i
\(584\) 0 0
\(585\) 77.2095 + 217.340i 0.131982 + 0.371522i
\(586\) 0 0
\(587\) 1004.82 269.241i 1.71179 0.458672i 0.735926 0.677062i \(-0.236747\pi\)
0.975862 + 0.218389i \(0.0700802\pi\)
\(588\) 0 0
\(589\) −605.763 + 349.737i −1.02846 + 0.593782i
\(590\) 0 0
\(591\) 324.421 1210.76i 0.548936 2.04866i
\(592\) 0 0
\(593\) 726.496 726.496i 1.22512 1.22512i 0.259332 0.965788i \(-0.416498\pi\)
0.965788 0.259332i \(-0.0835025\pi\)
\(594\) 0 0
\(595\) 228.082 + 131.683i 0.383331 + 0.221316i
\(596\) 0 0
\(597\) 69.7273i 0.116796i
\(598\) 0 0
\(599\) −1076.91 −1.79785 −0.898923 0.438108i \(-0.855649\pi\)
−0.898923 + 0.438108i \(0.855649\pi\)
\(600\) 0 0
\(601\) 98.1916 170.073i 0.163380 0.282983i −0.772699 0.634773i \(-0.781094\pi\)
0.936079 + 0.351790i \(0.114427\pi\)
\(602\) 0 0
\(603\) 137.452 + 137.452i 0.227947 + 0.227947i
\(604\) 0 0
\(605\) 210.771 + 56.4758i 0.348381 + 0.0933485i
\(606\) 0 0
\(607\) 306.762 + 531.327i 0.505373 + 0.875332i 0.999981 + 0.00621561i \(0.00197850\pi\)
−0.494607 + 0.869116i \(0.664688\pi\)
\(608\) 0 0
\(609\) −106.580 397.761i −0.175008 0.653139i
\(610\) 0 0
\(611\) 3.46098 18.7788i 0.00566445 0.0307345i
\(612\) 0 0
\(613\) −62.2311 + 16.6748i −0.101519 + 0.0272019i −0.309221 0.950990i \(-0.600068\pi\)
0.207702 + 0.978192i \(0.433402\pi\)
\(614\) 0 0
\(615\) 740.495 427.525i 1.20406 0.695163i
\(616\) 0 0
\(617\) 77.8358 290.487i 0.126152 0.470806i −0.873726 0.486418i \(-0.838303\pi\)
0.999878 + 0.0156125i \(0.00496982\pi\)
\(618\) 0 0
\(619\) −591.538 + 591.538i −0.955635 + 0.955635i −0.999057 0.0434221i \(-0.986174\pi\)
0.0434221 + 0.999057i \(0.486174\pi\)
\(620\) 0 0
\(621\) −323.598 186.830i −0.521092 0.300853i
\(622\) 0 0
\(623\) 85.6596i 0.137495i
\(624\) 0 0
\(625\) 248.503 0.397605
\(626\) 0 0
\(627\) −780.313 + 1351.54i −1.24452 + 2.15557i
\(628\) 0 0
\(629\) 248.781 + 248.781i 0.395519 + 0.395519i
\(630\) 0 0
\(631\) −522.771 140.076i −0.828480 0.221991i −0.180430 0.983588i \(-0.557749\pi\)
−0.648051 + 0.761597i \(0.724416\pi\)
\(632\) 0 0
\(633\) 52.0998 + 90.2395i 0.0823061 + 0.142558i
\(634\) 0 0
\(635\) 39.0503 + 145.738i 0.0614965 + 0.229508i
\(636\) 0 0
\(637\) −491.438 + 39.1726i −0.771487 + 0.0614954i
\(638\) 0 0
\(639\) −273.033 + 73.1590i −0.427282 + 0.114490i
\(640\) 0 0
\(641\) 474.405 273.898i 0.740101 0.427298i −0.0820047 0.996632i \(-0.526132\pi\)
0.822106 + 0.569334i \(0.192799\pi\)
\(642\) 0 0
\(643\) −285.002 + 1063.64i −0.443237 + 1.65418i 0.277311 + 0.960780i \(0.410557\pi\)
−0.720549 + 0.693404i \(0.756110\pi\)
\(644\) 0 0
\(645\) −499.710 + 499.710i −0.774744 + 0.774744i
\(646\) 0 0
\(647\) −689.905 398.317i −1.06631 0.615636i −0.139141 0.990273i \(-0.544434\pi\)
−0.927172 + 0.374636i \(0.877768\pi\)
\(648\) 0 0
\(649\) 370.764i 0.571284i
\(650\) 0 0
\(651\) 272.465 0.418533
\(652\) 0 0
\(653\) 236.088 408.916i 0.361544 0.626212i −0.626671 0.779284i \(-0.715583\pi\)
0.988215 + 0.153072i \(0.0489165\pi\)
\(654\) 0 0
\(655\) −408.996 408.996i −0.624422 0.624422i
\(656\) 0 0
\(657\) −235.033 62.9770i −0.357737 0.0958554i
\(658\) 0 0
\(659\) −441.736 765.109i −0.670313 1.16102i −0.977815 0.209468i \(-0.932827\pi\)
0.307503 0.951547i \(-0.400507\pi\)
\(660\) 0 0
\(661\) 82.0653 + 306.272i 0.124153 + 0.463346i 0.999808 0.0195911i \(-0.00623645\pi\)
−0.875655 + 0.482938i \(0.839570\pi\)
\(662\) 0 0
\(663\) 568.210 + 824.978i 0.857028 + 1.24431i
\(664\) 0 0
\(665\) 385.675 103.341i 0.579962 0.155400i
\(666\) 0 0
\(667\) −676.674 + 390.678i −1.01450 + 0.585724i
\(668\) 0 0
\(669\) −125.713 + 469.167i −0.187912 + 0.701296i
\(670\) 0 0
\(671\) −873.201 + 873.201i −1.30134 + 1.30134i
\(672\) 0 0
\(673\) 754.448 + 435.581i 1.12102 + 0.647223i 0.941662 0.336561i \(-0.109264\pi\)
0.179361 + 0.983783i \(0.442597\pi\)
\(674\) 0 0
\(675\) 169.320i 0.250844i
\(676\) 0 0
\(677\) 461.561 0.681774 0.340887 0.940104i \(-0.389273\pi\)
0.340887 + 0.940104i \(0.389273\pi\)
\(678\) 0 0
\(679\) 27.0241 46.8071i 0.0397998 0.0689353i
\(680\) 0 0
\(681\) −908.074 908.074i −1.33344 1.33344i
\(682\) 0 0
\(683\) −260.947 69.9207i −0.382061 0.102373i 0.0626767 0.998034i \(-0.480036\pi\)
−0.444737 + 0.895661i \(0.646703\pi\)
\(684\) 0 0
\(685\) −291.291 504.530i −0.425242 0.736541i
\(686\) 0 0
\(687\) 418.407 + 1561.52i 0.609035 + 2.27295i
\(688\) 0 0
\(689\) −682.662 + 470.189i −0.990801 + 0.682422i
\(690\) 0 0
\(691\) 720.453 193.045i 1.04262 0.279370i 0.303423 0.952856i \(-0.401870\pi\)
0.739200 + 0.673486i \(0.235204\pi\)
\(692\) 0 0
\(693\) 179.914 103.873i 0.259616 0.149889i
\(694\) 0 0
\(695\) 8.46935 31.6080i 0.0121861 0.0454792i
\(696\) 0 0
\(697\) 897.373 897.373i 1.28748 1.28748i
\(698\) 0 0
\(699\) 684.152 + 394.995i 0.978758 + 0.565086i
\(700\) 0 0
\(701\) 690.777i 0.985416i 0.870195 + 0.492708i \(0.163993\pi\)
−0.870195 + 0.492708i \(0.836007\pi\)
\(702\) 0 0
\(703\) 533.396 0.758743
\(704\) 0 0
\(705\) −10.3118 + 17.8605i −0.0146266 + 0.0253341i
\(706\) 0 0
\(707\) −10.6609 10.6609i −0.0150790 0.0150790i
\(708\) 0 0
\(709\) −147.552 39.5364i −0.208113 0.0557637i 0.153256 0.988186i \(-0.451024\pi\)
−0.361369 + 0.932423i \(0.617691\pi\)
\(710\) 0 0
\(711\) 248.195 + 429.886i 0.349079 + 0.604622i
\(712\) 0 0
\(713\) −133.806 499.372i −0.187667 0.700381i
\(714\) 0 0
\(715\) −52.3988 657.366i −0.0732850 0.919394i
\(716\) 0 0
\(717\) 25.6434 6.87113i 0.0357648 0.00958316i
\(718\) 0 0
\(719\) −124.371 + 71.8057i −0.172978 + 0.0998689i −0.583989 0.811761i \(-0.698509\pi\)
0.411011 + 0.911630i \(0.365176\pi\)
\(720\) 0 0
\(721\) −80.6265 + 300.902i −0.111826 + 0.417340i
\(722\) 0 0
\(723\) −156.876 + 156.876i −0.216979 + 0.216979i
\(724\) 0 0
\(725\) −306.627 177.031i −0.422934 0.244181i
\(726\) 0 0
\(727\) 686.820i 0.944731i −0.881403 0.472366i \(-0.843400\pi\)
0.881403 0.472366i \(-0.156600\pi\)
\(728\) 0 0
\(729\) 59.5725 0.0817182
\(730\) 0 0
\(731\) −524.444 + 908.364i −0.717434 + 1.24263i
\(732\) 0 0
\(733\) −872.245 872.245i −1.18997 1.18997i −0.977076 0.212890i \(-0.931713\pi\)
−0.212890 0.977076i \(-0.568287\pi\)
\(734\) 0 0
\(735\) 514.316 + 137.810i 0.699749 + 0.187497i
\(736\) 0 0
\(737\) −277.889 481.317i −0.377054 0.653076i
\(738\) 0 0
\(739\) −6.80119 25.3824i −0.00920324 0.0343469i 0.961172 0.275952i \(-0.0889930\pi\)
−0.970375 + 0.241605i \(0.922326\pi\)
\(740\) 0 0
\(741\) 1493.52 + 275.260i 2.01555 + 0.371472i
\(742\) 0 0
\(743\) 71.3965 19.1306i 0.0960922 0.0257478i −0.210453 0.977604i \(-0.567494\pi\)
0.306545 + 0.951856i \(0.400827\pi\)
\(744\) 0 0
\(745\) −428.995 + 247.680i −0.575832 + 0.332457i
\(746\) 0 0
\(747\) 165.238 616.676i 0.221202 0.825537i
\(748\) 0 0
\(749\) 106.084 106.084i 0.141634 0.141634i
\(750\) 0 0
\(751\) 1056.15 + 609.769i 1.40633 + 0.811942i 0.995032 0.0995605i \(-0.0317437\pi\)
0.411294 + 0.911503i \(0.365077\pi\)
\(752\) 0 0
\(753\) 479.971i 0.637411i
\(754\) 0 0
\(755\) −125.009 −0.165575
\(756\) 0 0
\(757\) −255.281 + 442.159i −0.337227 + 0.584094i −0.983910 0.178664i \(-0.942822\pi\)
0.646683 + 0.762759i \(0.276156\pi\)
\(758\) 0 0
\(759\) −815.628 815.628i −1.07461 1.07461i
\(760\) 0 0
\(761\) −200.823 53.8104i −0.263894 0.0707101i 0.124446 0.992226i \(-0.460285\pi\)
−0.388340 + 0.921516i \(0.626951\pi\)
\(762\) 0 0
\(763\) −238.705 413.449i −0.312851 0.541873i
\(764\) 0 0
\(765\) −95.6937 357.134i −0.125090 0.466841i
\(766\) 0 0
\(767\) −339.982 + 120.778i −0.443262 + 0.157467i
\(768\) 0 0
\(769\) 674.840 180.823i 0.877555 0.235140i 0.208203 0.978086i \(-0.433238\pi\)
0.669352 + 0.742945i \(0.266572\pi\)
\(770\) 0 0
\(771\) −833.445 + 481.190i −1.08099 + 0.624111i
\(772\) 0 0
\(773\) 56.4664 210.735i 0.0730483 0.272620i −0.919735 0.392539i \(-0.871597\pi\)
0.992784 + 0.119919i \(0.0382635\pi\)
\(774\) 0 0
\(775\) 165.652 165.652i 0.213745 0.213745i
\(776\) 0 0
\(777\) −179.936 103.886i −0.231578 0.133702i
\(778\) 0 0
\(779\) 1924.00i 2.46984i
\(780\) 0 0
\(781\) 808.176 1.03480
\(782\) 0 0
\(783\) 267.719 463.702i 0.341914 0.592212i
\(784\) 0 0
\(785\) −597.840 597.840i −0.761580 0.761580i
\(786\) 0 0
\(787\) 282.834 + 75.7852i 0.359383 + 0.0962963i 0.433993 0.900916i \(-0.357104\pi\)
−0.0746097 + 0.997213i \(0.523771\pi\)
\(788\) 0 0
\(789\) −56.7972 98.3757i −0.0719863 0.124684i
\(790\) 0 0
\(791\) 76.2724 + 284.653i 0.0964253 + 0.359864i
\(792\) 0 0
\(793\) 1085.15 + 516.258i 1.36842 + 0.651019i
\(794\) 0 0
\(795\) 864.764 231.713i 1.08775 0.291463i
\(796\) 0 0
\(797\) −155.324 + 89.6766i −0.194886 + 0.112518i −0.594268 0.804267i \(-0.702558\pi\)
0.399382 + 0.916785i \(0.369225\pi\)
\(798\) 0 0
\(799\) −7.92238 + 29.5667i −0.00991537 + 0.0370047i
\(800\) 0 0
\(801\) −85.0330 + 85.0330i −0.106159 + 0.106159i
\(802\) 0 0
\(803\) 602.491 + 347.849i 0.750300 + 0.433186i
\(804\) 0 0
\(805\) 295.111i 0.366598i
\(806\) 0 0
\(807\) 1231.56 1.52610
\(808\) 0 0
\(809\) −430.083 + 744.925i −0.531622 + 0.920797i 0.467696 + 0.883889i \(0.345084\pi\)
−0.999319 + 0.0369079i \(0.988249\pi\)
\(810\) 0 0
\(811\) −35.4247 35.4247i −0.0436803 0.0436803i 0.684929 0.728610i \(-0.259833\pi\)
−0.728610 + 0.684929i \(0.759833\pi\)
\(812\) 0 0
\(813\) −924.511 247.722i −1.13716 0.304701i
\(814\) 0 0
\(815\) 475.500 + 823.590i 0.583435 + 1.01054i
\(816\) 0 0
\(817\) 411.570 + 1536.00i 0.503757 + 1.88005i
\(818\) 0 0
\(819\) −153.857 131.140i −0.187860 0.160122i
\(820\) 0 0
\(821\) −638.186 + 171.001i −0.777328 + 0.208284i −0.625606 0.780139i \(-0.715148\pi\)
−0.151722 + 0.988423i \(0.548482\pi\)
\(822\) 0 0
\(823\) 584.548 337.489i 0.710264 0.410071i −0.100895 0.994897i \(-0.532170\pi\)
0.811159 + 0.584826i \(0.198837\pi\)
\(824\) 0 0
\(825\) 135.280 504.873i 0.163976 0.611968i
\(826\) 0 0
\(827\) −181.364 + 181.364i −0.219304 + 0.219304i −0.808205 0.588901i \(-0.799561\pi\)
0.588901 + 0.808205i \(0.299561\pi\)
\(828\) 0 0
\(829\) −107.685 62.1718i −0.129897 0.0749962i 0.433643 0.901085i \(-0.357228\pi\)
−0.563541 + 0.826088i \(0.690561\pi\)
\(830\) 0 0
\(831\) 650.923i 0.783301i
\(832\) 0 0
\(833\) 790.282 0.948718
\(834\) 0 0
\(835\) −115.120 + 199.393i −0.137868 + 0.238794i
\(836\) 0 0
\(837\) 250.510 + 250.510i 0.299295 + 0.299295i
\(838\) 0 0
\(839\) −1421.93 381.004i −1.69479 0.454117i −0.723170 0.690670i \(-0.757316\pi\)
−0.971618 + 0.236553i \(0.923982\pi\)
\(840\) 0 0
\(841\) −139.325 241.317i −0.165665 0.286941i
\(842\) 0 0
\(843\) 68.8764 + 257.050i 0.0817040 + 0.304923i
\(844\) 0 0
\(845\) −585.722 + 262.188i −0.693162 + 0.310282i
\(846\) 0 0
\(847\) −184.741 + 49.5011i −0.218112 + 0.0584429i
\(848\) 0 0
\(849\) 335.217 193.538i 0.394838 0.227960i
\(850\) 0 0
\(851\) −102.036 + 380.805i −0.119902 + 0.447479i
\(852\) 0 0
\(853\) −99.5753 + 99.5753i −0.116735 + 0.116735i −0.763061 0.646326i \(-0.776305\pi\)
0.646326 + 0.763061i \(0.276305\pi\)
\(854\) 0 0
\(855\) −485.440 280.269i −0.567766 0.327800i
\(856\) 0 0
\(857\) 781.188i 0.911537i 0.890098 + 0.455769i \(0.150636\pi\)
−0.890098 + 0.455769i \(0.849364\pi\)
\(858\) 0 0
\(859\) −988.460 −1.15071 −0.575355 0.817904i \(-0.695136\pi\)
−0.575355 + 0.817904i \(0.695136\pi\)
\(860\) 0 0
\(861\) −374.726 + 649.045i −0.435222 + 0.753826i
\(862\) 0 0
\(863\) 128.890 + 128.890i 0.149351 + 0.149351i 0.777828 0.628477i \(-0.216321\pi\)
−0.628477 + 0.777828i \(0.716321\pi\)
\(864\) 0 0
\(865\) −431.567 115.638i −0.498921 0.133686i
\(866\) 0 0
\(867\) −268.584 465.202i −0.309786 0.536565i
\(868\) 0 0
\(869\) −367.328 1370.89i −0.422702 1.57754i
\(870\) 0 0
\(871\) −350.834 + 411.609i −0.402795 + 0.472570i
\(872\) 0 0
\(873\) −73.2911 + 19.6383i −0.0839532 + 0.0224952i
\(874\) 0 0
\(875\) −389.431 + 224.838i −0.445064 + 0.256958i
\(876\) 0 0
\(877\) −129.844 + 484.583i −0.148054 + 0.552546i 0.851546 + 0.524280i \(0.175665\pi\)
−0.999600 + 0.0282663i \(0.991001\pi\)
\(878\) 0 0
\(879\) −1286.35 + 1286.35i −1.46342 + 1.46342i
\(880\) 0 0
\(881\) 434.781 + 251.021i 0.493508 + 0.284927i 0.726029 0.687664i \(-0.241364\pi\)
−0.232520 + 0.972592i \(0.574697\pi\)
\(882\) 0 0
\(883\) 35.9135i 0.0406722i 0.999793 + 0.0203361i \(0.00647362\pi\)
−0.999793 + 0.0203361i \(0.993526\pi\)
\(884\) 0 0
\(885\) 389.678 0.440314
\(886\) 0 0
\(887\) −12.4069 + 21.4894i −0.0139875 + 0.0242270i −0.872934 0.487838i \(-0.837786\pi\)
0.858947 + 0.512065i \(0.171119\pi\)
\(888\) 0 0
\(889\) −93.5115 93.5115i −0.105187 0.105187i
\(890\) 0 0
\(891\) 1306.13 + 349.978i 1.46592 + 0.392792i
\(892\) 0 0
\(893\) 23.2032 + 40.1891i 0.0259834 + 0.0450045i
\(894\) 0 0
\(895\) −87.2691 325.693i −0.0975074 0.363902i
\(896\) 0 0
\(897\) −482.219 + 1013.61i −0.537591 + 1.13000i
\(898\) 0 0
\(899\) 715.578 191.739i 0.795971 0.213280i
\(900\) 0 0
\(901\) 1150.75 664.385i 1.27719 0.737387i
\(902\) 0 0
\(903\) 160.318 598.314i 0.177539 0.662585i
\(904\) 0 0
\(905\) −705.136 + 705.136i −0.779155 + 0.779155i
\(906\) 0 0
\(907\) −619.873 357.884i −0.683432 0.394580i 0.117715 0.993047i \(-0.462443\pi\)
−0.801147 + 0.598468i \(0.795776\pi\)
\(908\) 0 0
\(909\) 21.1658i 0.0232847i
\(910\) 0 0
\(911\) −1087.62 −1.19387 −0.596935 0.802289i \(-0.703615\pi\)
−0.596935 + 0.802289i \(0.703615\pi\)
\(912\) 0 0
\(913\) −912.678 + 1580.80i −0.999647 + 1.73144i
\(914\) 0 0
\(915\) −917.748 917.748i −1.00300 1.00300i
\(916\) 0 0
\(917\) 489.700 + 131.215i 0.534024 + 0.143091i
\(918\) 0 0
\(919\) 839.377 + 1453.84i 0.913359 + 1.58198i 0.809287 + 0.587414i \(0.199854\pi\)
0.104072 + 0.994570i \(0.466813\pi\)
\(920\) 0 0
\(921\) −163.766 611.183i −0.177813 0.663608i
\(922\) 0 0
\(923\) −263.266 741.080i −0.285229 0.802903i
\(924\) 0 0
\(925\) −172.557 + 46.2366i −0.186549 + 0.0499855i
\(926\) 0 0
\(927\) 378.738 218.665i 0.408563 0.235884i
\(928\) 0 0
\(929\) 155.112 578.885i 0.166966 0.623127i −0.830815 0.556549i \(-0.812125\pi\)
0.997781 0.0665780i \(-0.0212081\pi\)
\(930\) 0 0
\(931\) 847.198 847.198i 0.909987 0.909987i
\(932\) 0 0
\(933\) 1770.18 + 1022.02i 1.89730 + 1.09541i
\(934\) 0 0
\(935\) 1057.11i 1.13060i
\(936\) 0 0
\(937\) 234.285 0.250037 0.125018 0.992154i \(-0.460101\pi\)
0.125018 + 0.992154i \(0.460101\pi\)
\(938\) 0 0
\(939\) 428.739 742.597i 0.456591 0.790838i
\(940\) 0 0
\(941\) 715.410 + 715.410i 0.760265 + 0.760265i 0.976370 0.216105i \(-0.0693353\pi\)
−0.216105 + 0.976370i \(0.569335\pi\)
\(942\) 0 0
\(943\) 1373.59 + 368.053i 1.45662 + 0.390300i
\(944\) 0 0
\(945\) −101.115 175.136i −0.107000 0.185330i
\(946\) 0 0
\(947\) −314.762 1174.71i −0.332378 1.24045i −0.906684 0.421810i \(-0.861395\pi\)
0.574306 0.818640i \(-0.305272\pi\)
\(948\) 0 0
\(949\) 122.706 665.784i 0.129300 0.701564i
\(950\) 0 0
\(951\) 312.219 83.6587i 0.328306 0.0879692i
\(952\) 0 0
\(953\) −229.051 + 132.242i −0.240347 + 0.138764i −0.615336 0.788265i \(-0.710980\pi\)
0.374989 + 0.927029i \(0.377646\pi\)
\(954\) 0 0
\(955\) 98.0915 366.082i 0.102714 0.383332i
\(956\) 0 0
\(957\) 1168.76 1168.76i 1.22127 1.22127i
\(958\) 0 0
\(959\) 442.221 + 255.317i 0.461127 + 0.266232i
\(960\) 0 0
\(961\) 470.832i 0.489940i
\(962\) 0 0
\(963\) −210.616 −0.218708
\(964\) 0 0
\(965\) 317.570 550.047i 0.329088 0.569997i
\(966\) 0 0
\(967\) −309.257 309.257i −0.319810 0.319810i 0.528884 0.848694i \(-0.322611\pi\)
−0.848694 + 0.528884i \(0.822611\pi\)
\(968\) 0 0
\(969\) −2351.52 630.087i −2.42675 0.650244i
\(970\) 0 0
\(971\) −381.974 661.599i −0.393383 0.681359i 0.599511 0.800367i \(-0.295362\pi\)
−0.992893 + 0.119008i \(0.962029\pi\)
\(972\) 0 0
\(973\) 7.42339 + 27.7045i 0.00762938 + 0.0284732i
\(974\) 0 0
\(975\) −507.026 + 40.4151i −0.520026 + 0.0414514i
\(976\) 0 0
\(977\) 755.665 202.480i 0.773455 0.207247i 0.149558 0.988753i \(-0.452215\pi\)
0.623897 + 0.781506i \(0.285548\pi\)
\(978\) 0 0
\(979\) 297.761 171.912i 0.304148 0.175600i
\(980\) 0 0
\(981\) −173.466 + 647.384i −0.176826 + 0.659923i
\(982\) 0 0
\(983\) −58.4984 + 58.4984i −0.0595101 + 0.0595101i −0.736236 0.676725i \(-0.763398\pi\)
0.676725 + 0.736236i \(0.263398\pi\)
\(984\) 0 0
\(985\) −1114.77 643.611i −1.13174 0.653412i
\(986\) 0 0
\(987\) 18.0765i 0.0183146i
\(988\) 0 0
\(989\) −1175.32 −1.18839
\(990\) 0 0
\(991\) 89.6331 155.249i 0.0904471 0.156659i −0.817252 0.576280i \(-0.804504\pi\)
0.907699 + 0.419621i \(0.137837\pi\)
\(992\) 0 0
\(993\) 1638.41 + 1638.41i 1.64996 + 1.64996i
\(994\) 0 0
\(995\) −69.1651 18.5327i −0.0695127 0.0186259i
\(996\) 0 0
\(997\) −43.0656 74.5919i −0.0431952 0.0748163i 0.843619 0.536941i \(-0.180420\pi\)
−0.886815 + 0.462125i \(0.847087\pi\)
\(998\) 0 0
\(999\) −69.9221 260.953i −0.0699921 0.261214i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 52.3.k.a.33.2 8
3.2 odd 2 468.3.cd.b.397.2 8
4.3 odd 2 208.3.bd.e.33.1 8
13.2 odd 12 inner 52.3.k.a.41.2 yes 8
13.4 even 6 676.3.g.c.437.1 8
13.6 odd 12 676.3.g.d.577.1 8
13.7 odd 12 676.3.g.c.577.1 8
13.9 even 3 676.3.g.d.437.1 8
39.2 even 12 468.3.cd.b.145.2 8
52.15 even 12 208.3.bd.e.145.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
52.3.k.a.33.2 8 1.1 even 1 trivial
52.3.k.a.41.2 yes 8 13.2 odd 12 inner
208.3.bd.e.33.1 8 4.3 odd 2
208.3.bd.e.145.1 8 52.15 even 12
468.3.cd.b.145.2 8 39.2 even 12
468.3.cd.b.397.2 8 3.2 odd 2
676.3.g.c.437.1 8 13.4 even 6
676.3.g.c.577.1 8 13.7 odd 12
676.3.g.d.437.1 8 13.9 even 3
676.3.g.d.577.1 8 13.6 odd 12