Properties

Label 52.6.a.b
Level $52$
Weight $6$
Character orbit 52.a
Self dual yes
Analytic conductor $8.340$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [52,6,Mod(1,52)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(52, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("52.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 52 = 2^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 52.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(8.33995863027\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 17 q^{3} - 91 q^{5} - 233 q^{7} + 46 q^{9} + 134 q^{11} + 169 q^{13} - 1547 q^{15} + 797 q^{17} - 1310 q^{19} - 3961 q^{21} - 2016 q^{23} + 5156 q^{25} - 3349 q^{27} - 1290 q^{29} + 8780 q^{31} + 2278 q^{33}+ \cdots + 6164 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 17.0000 0 −91.0000 0 −233.000 0 46.0000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(13\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 52.6.a.b 1
3.b odd 2 1 468.6.a.b 1
4.b odd 2 1 208.6.a.a 1
8.b even 2 1 832.6.a.b 1
8.d odd 2 1 832.6.a.g 1
13.b even 2 1 676.6.a.c 1
13.d odd 4 2 676.6.d.c 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
52.6.a.b 1 1.a even 1 1 trivial
208.6.a.a 1 4.b odd 2 1
468.6.a.b 1 3.b odd 2 1
676.6.a.c 1 13.b even 2 1
676.6.d.c 2 13.d odd 4 2
832.6.a.b 1 8.b even 2 1
832.6.a.g 1 8.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3} - 17 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(52))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T - 17 \) Copy content Toggle raw display
$5$ \( T + 91 \) Copy content Toggle raw display
$7$ \( T + 233 \) Copy content Toggle raw display
$11$ \( T - 134 \) Copy content Toggle raw display
$13$ \( T - 169 \) Copy content Toggle raw display
$17$ \( T - 797 \) Copy content Toggle raw display
$19$ \( T + 1310 \) Copy content Toggle raw display
$23$ \( T + 2016 \) Copy content Toggle raw display
$29$ \( T + 1290 \) Copy content Toggle raw display
$31$ \( T - 8780 \) Copy content Toggle raw display
$37$ \( T + 7055 \) Copy content Toggle raw display
$41$ \( T + 17632 \) Copy content Toggle raw display
$43$ \( T - 15247 \) Copy content Toggle raw display
$47$ \( T + 20581 \) Copy content Toggle raw display
$53$ \( T + 12928 \) Copy content Toggle raw display
$59$ \( T - 26842 \) Copy content Toggle raw display
$61$ \( T + 30968 \) Copy content Toggle raw display
$67$ \( T + 54226 \) Copy content Toggle raw display
$71$ \( T - 41317 \) Copy content Toggle raw display
$73$ \( T - 34850 \) Copy content Toggle raw display
$79$ \( T + 20536 \) Copy content Toggle raw display
$83$ \( T - 8556 \) Copy content Toggle raw display
$89$ \( T + 121510 \) Copy content Toggle raw display
$97$ \( T - 144982 \) Copy content Toggle raw display
show more
show less