Properties

Label 520.2.f.a.129.2
Level $520$
Weight $2$
Character 520.129
Analytic conductor $4.152$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [520,2,Mod(129,520)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(520, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("520.129");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 520 = 2^{3} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 520.f (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.15222090511\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} + 11x^{8} + 36x^{6} + 42x^{4} + 13x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 129.2
Root \(-1.56822i\) of defining polynomial
Character \(\chi\) \(=\) 520.129
Dual form 520.2.f.a.129.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.14926i q^{3} +(-1.82442 - 1.29287i) q^{5} -2.12171 q^{7} -1.61930 q^{9} -0.796315i q^{11} +(-3.57359 + 0.479016i) q^{13} +(-2.77870 + 3.92114i) q^{15} +4.56010i q^{17} +0.220019i q^{19} +4.56010i q^{21} -4.73499i q^{23} +(1.65699 + 4.71745i) q^{25} -2.96747i q^{27} -8.17671 q^{29} +1.17805i q^{31} -1.71149 q^{33} +(3.87088 + 2.74309i) q^{35} -0.121710 q^{37} +(1.02953 + 7.68056i) q^{39} +4.87481i q^{41} -3.16559i q^{43} +(2.95429 + 2.09354i) q^{45} +2.12171 q^{47} -2.49835 q^{49} +9.80082 q^{51} -11.0043i q^{53} +(-1.02953 + 1.45281i) q^{55} +0.472877 q^{57} -3.72871i q^{59} -3.36438 q^{61} +3.43569 q^{63} +(7.13902 + 3.74625i) q^{65} -7.43569 q^{67} -10.1767 q^{69} -15.2081i q^{71} -5.43569 q^{73} +(10.1390 - 3.56130i) q^{75} +1.68955i q^{77} -9.05575 q^{79} -11.2358 q^{81} +14.1563 q^{83} +(5.89560 - 8.31952i) q^{85} +17.5738i q^{87} -15.6846i q^{89} +(7.58212 - 1.01633i) q^{91} +2.53193 q^{93} +(0.284455 - 0.401406i) q^{95} -2.09143 q^{97} +1.28948i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 3 q^{5} + 2 q^{7} - 8 q^{9} - 2 q^{13} + 13 q^{15} - q^{25} + 8 q^{29} - 8 q^{33} - 3 q^{35} + 22 q^{37} - 12 q^{39} + 4 q^{45} - 2 q^{47} + 12 q^{49} - 30 q^{51} + 12 q^{55} + 12 q^{57} - 16 q^{61}+ \cdots - 72 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/520\mathbb{Z}\right)^\times\).

\(n\) \(41\) \(261\) \(391\) \(417\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.14926i 1.24087i −0.784256 0.620437i \(-0.786955\pi\)
0.784256 0.620437i \(-0.213045\pi\)
\(4\) 0 0
\(5\) −1.82442 1.29287i −0.815904 0.578188i
\(6\) 0 0
\(7\) −2.12171 −0.801931 −0.400966 0.916093i \(-0.631325\pi\)
−0.400966 + 0.916093i \(0.631325\pi\)
\(8\) 0 0
\(9\) −1.61930 −0.539768
\(10\) 0 0
\(11\) 0.796315i 0.240098i −0.992768 0.120049i \(-0.961695\pi\)
0.992768 0.120049i \(-0.0383052\pi\)
\(12\) 0 0
\(13\) −3.57359 + 0.479016i −0.991135 + 0.132855i
\(14\) 0 0
\(15\) −2.77870 + 3.92114i −0.717458 + 1.01243i
\(16\) 0 0
\(17\) 4.56010i 1.10599i 0.833186 + 0.552993i \(0.186514\pi\)
−0.833186 + 0.552993i \(0.813486\pi\)
\(18\) 0 0
\(19\) 0.220019i 0.0504758i 0.999681 + 0.0252379i \(0.00803432\pi\)
−0.999681 + 0.0252379i \(0.991966\pi\)
\(20\) 0 0
\(21\) 4.56010i 0.995095i
\(22\) 0 0
\(23\) 4.73499i 0.987314i −0.869657 0.493657i \(-0.835660\pi\)
0.869657 0.493657i \(-0.164340\pi\)
\(24\) 0 0
\(25\) 1.65699 + 4.71745i 0.331398 + 0.943491i
\(26\) 0 0
\(27\) 2.96747i 0.571090i
\(28\) 0 0
\(29\) −8.17671 −1.51838 −0.759188 0.650871i \(-0.774404\pi\)
−0.759188 + 0.650871i \(0.774404\pi\)
\(30\) 0 0
\(31\) 1.17805i 0.211584i 0.994388 + 0.105792i \(0.0337378\pi\)
−0.994388 + 0.105792i \(0.966262\pi\)
\(32\) 0 0
\(33\) −1.71149 −0.297931
\(34\) 0 0
\(35\) 3.87088 + 2.74309i 0.654299 + 0.463667i
\(36\) 0 0
\(37\) −0.121710 −0.0200090 −0.0100045 0.999950i \(-0.503185\pi\)
−0.0100045 + 0.999950i \(0.503185\pi\)
\(38\) 0 0
\(39\) 1.02953 + 7.68056i 0.164857 + 1.22987i
\(40\) 0 0
\(41\) 4.87481i 0.761317i 0.924716 + 0.380659i \(0.124303\pi\)
−0.924716 + 0.380659i \(0.875697\pi\)
\(42\) 0 0
\(43\) 3.16559i 0.482748i −0.970432 0.241374i \(-0.922402\pi\)
0.970432 0.241374i \(-0.0775981\pi\)
\(44\) 0 0
\(45\) 2.95429 + 2.09354i 0.440399 + 0.312087i
\(46\) 0 0
\(47\) 2.12171 0.309483 0.154742 0.987955i \(-0.450545\pi\)
0.154742 + 0.987955i \(0.450545\pi\)
\(48\) 0 0
\(49\) −2.49835 −0.356907
\(50\) 0 0
\(51\) 9.80082 1.37239
\(52\) 0 0
\(53\) 11.0043i 1.51156i −0.654827 0.755779i \(-0.727258\pi\)
0.654827 0.755779i \(-0.272742\pi\)
\(54\) 0 0
\(55\) −1.02953 + 1.45281i −0.138822 + 0.195897i
\(56\) 0 0
\(57\) 0.472877 0.0626341
\(58\) 0 0
\(59\) 3.72871i 0.485437i −0.970097 0.242719i \(-0.921961\pi\)
0.970097 0.242719i \(-0.0780392\pi\)
\(60\) 0 0
\(61\) −3.36438 −0.430764 −0.215382 0.976530i \(-0.569100\pi\)
−0.215382 + 0.976530i \(0.569100\pi\)
\(62\) 0 0
\(63\) 3.43569 0.432857
\(64\) 0 0
\(65\) 7.13902 + 3.74625i 0.885487 + 0.464665i
\(66\) 0 0
\(67\) −7.43569 −0.908415 −0.454207 0.890896i \(-0.650077\pi\)
−0.454207 + 0.890896i \(0.650077\pi\)
\(68\) 0 0
\(69\) −10.1767 −1.22513
\(70\) 0 0
\(71\) 15.2081i 1.80487i −0.430823 0.902437i \(-0.641777\pi\)
0.430823 0.902437i \(-0.358223\pi\)
\(72\) 0 0
\(73\) −5.43569 −0.636200 −0.318100 0.948057i \(-0.603045\pi\)
−0.318100 + 0.948057i \(0.603045\pi\)
\(74\) 0 0
\(75\) 10.1390 3.56130i 1.17075 0.411224i
\(76\) 0 0
\(77\) 1.68955i 0.192542i
\(78\) 0 0
\(79\) −9.05575 −1.01885 −0.509426 0.860515i \(-0.670142\pi\)
−0.509426 + 0.860515i \(0.670142\pi\)
\(80\) 0 0
\(81\) −11.2358 −1.24842
\(82\) 0 0
\(83\) 14.1563 1.55386 0.776930 0.629587i \(-0.216776\pi\)
0.776930 + 0.629587i \(0.216776\pi\)
\(84\) 0 0
\(85\) 5.89560 8.31952i 0.639468 0.902379i
\(86\) 0 0
\(87\) 17.5738i 1.88411i
\(88\) 0 0
\(89\) 15.6846i 1.66256i −0.555854 0.831280i \(-0.687609\pi\)
0.555854 0.831280i \(-0.312391\pi\)
\(90\) 0 0
\(91\) 7.58212 1.01633i 0.794822 0.106541i
\(92\) 0 0
\(93\) 2.53193 0.262549
\(94\) 0 0
\(95\) 0.284455 0.401406i 0.0291845 0.0411834i
\(96\) 0 0
\(97\) −2.09143 −0.212352 −0.106176 0.994347i \(-0.533861\pi\)
−0.106176 + 0.994347i \(0.533861\pi\)
\(98\) 0 0
\(99\) 1.28948i 0.129597i
\(100\) 0 0
\(101\) 6.29285 0.626162 0.313081 0.949726i \(-0.398639\pi\)
0.313081 + 0.949726i \(0.398639\pi\)
\(102\) 0 0
\(103\) 11.9659i 1.17904i 0.807755 + 0.589518i \(0.200682\pi\)
−0.807755 + 0.589518i \(0.799318\pi\)
\(104\) 0 0
\(105\) 5.89560 8.31952i 0.575352 0.811902i
\(106\) 0 0
\(107\) 14.5166i 1.40337i −0.712488 0.701685i \(-0.752432\pi\)
0.712488 0.701685i \(-0.247568\pi\)
\(108\) 0 0
\(109\) 7.92736i 0.759303i −0.925130 0.379652i \(-0.876044\pi\)
0.925130 0.379652i \(-0.123956\pi\)
\(110\) 0 0
\(111\) 0.261586i 0.0248287i
\(112\) 0 0
\(113\) 14.0651i 1.32314i 0.749884 + 0.661569i \(0.230109\pi\)
−0.749884 + 0.661569i \(0.769891\pi\)
\(114\) 0 0
\(115\) −6.12171 + 8.63859i −0.570852 + 0.805553i
\(116\) 0 0
\(117\) 5.78673 0.775673i 0.534983 0.0717110i
\(118\) 0 0
\(119\) 9.67521i 0.886925i
\(120\) 0 0
\(121\) 10.3659 0.942353
\(122\) 0 0
\(123\) 10.4772 0.944699
\(124\) 0 0
\(125\) 3.07600 10.7489i 0.275125 0.961408i
\(126\) 0 0
\(127\) 12.0754i 1.07152i −0.844371 0.535758i \(-0.820026\pi\)
0.844371 0.535758i \(-0.179974\pi\)
\(128\) 0 0
\(129\) −6.80367 −0.599029
\(130\) 0 0
\(131\) 7.22229 0.631014 0.315507 0.948923i \(-0.397825\pi\)
0.315507 + 0.948923i \(0.397825\pi\)
\(132\) 0 0
\(133\) 0.466816i 0.0404781i
\(134\) 0 0
\(135\) −3.83654 + 5.41390i −0.330197 + 0.465954i
\(136\) 0 0
\(137\) 14.6883 1.25490 0.627452 0.778656i \(-0.284098\pi\)
0.627452 + 0.778656i \(0.284098\pi\)
\(138\) 0 0
\(139\) −17.8503 −1.51404 −0.757020 0.653392i \(-0.773345\pi\)
−0.757020 + 0.653392i \(0.773345\pi\)
\(140\) 0 0
\(141\) 4.56010i 0.384030i
\(142\) 0 0
\(143\) 0.381448 + 2.84570i 0.0318983 + 0.237970i
\(144\) 0 0
\(145\) 14.9177 + 10.5714i 1.23885 + 0.877906i
\(146\) 0 0
\(147\) 5.36959i 0.442876i
\(148\) 0 0
\(149\) 16.6689i 1.36557i 0.730618 + 0.682786i \(0.239232\pi\)
−0.730618 + 0.682786i \(0.760768\pi\)
\(150\) 0 0
\(151\) 0.999600i 0.0813463i 0.999173 + 0.0406732i \(0.0129502\pi\)
−0.999173 + 0.0406732i \(0.987050\pi\)
\(152\) 0 0
\(153\) 7.38419i 0.596976i
\(154\) 0 0
\(155\) 1.52306 2.14926i 0.122335 0.172632i
\(156\) 0 0
\(157\) 10.7778i 0.860162i −0.902790 0.430081i \(-0.858485\pi\)
0.902790 0.430081i \(-0.141515\pi\)
\(158\) 0 0
\(159\) −23.6511 −1.87565
\(160\) 0 0
\(161\) 10.0463i 0.791757i
\(162\) 0 0
\(163\) −2.91622 −0.228416 −0.114208 0.993457i \(-0.536433\pi\)
−0.114208 + 0.993457i \(0.536433\pi\)
\(164\) 0 0
\(165\) 3.12246 + 2.21272i 0.243083 + 0.172260i
\(166\) 0 0
\(167\) 19.9225 1.54165 0.770826 0.637046i \(-0.219844\pi\)
0.770826 + 0.637046i \(0.219844\pi\)
\(168\) 0 0
\(169\) 12.5411 3.42362i 0.964699 0.263355i
\(170\) 0 0
\(171\) 0.356277i 0.0272452i
\(172\) 0 0
\(173\) 17.6853i 1.34459i 0.740285 + 0.672293i \(0.234691\pi\)
−0.740285 + 0.672293i \(0.765309\pi\)
\(174\) 0 0
\(175\) −3.51566 10.0091i −0.265759 0.756615i
\(176\) 0 0
\(177\) −8.01396 −0.602366
\(178\) 0 0
\(179\) 9.28135 0.693721 0.346860 0.937917i \(-0.387248\pi\)
0.346860 + 0.937917i \(0.387248\pi\)
\(180\) 0 0
\(181\) 21.9022 1.62797 0.813987 0.580883i \(-0.197293\pi\)
0.813987 + 0.580883i \(0.197293\pi\)
\(182\) 0 0
\(183\) 7.23091i 0.534524i
\(184\) 0 0
\(185\) 0.222050 + 0.157355i 0.0163254 + 0.0115690i
\(186\) 0 0
\(187\) 3.63128 0.265545
\(188\) 0 0
\(189\) 6.29611i 0.457975i
\(190\) 0 0
\(191\) −23.0822 −1.67017 −0.835084 0.550123i \(-0.814581\pi\)
−0.835084 + 0.550123i \(0.814581\pi\)
\(192\) 0 0
\(193\) −18.0186 −1.29700 −0.648502 0.761213i \(-0.724604\pi\)
−0.648502 + 0.761213i \(0.724604\pi\)
\(194\) 0 0
\(195\) 8.05165 15.3436i 0.576591 1.09878i
\(196\) 0 0
\(197\) 7.75883 0.552794 0.276397 0.961044i \(-0.410860\pi\)
0.276397 + 0.961044i \(0.410860\pi\)
\(198\) 0 0
\(199\) −10.9641 −0.777221 −0.388611 0.921402i \(-0.627045\pi\)
−0.388611 + 0.921402i \(0.627045\pi\)
\(200\) 0 0
\(201\) 15.9812i 1.12723i
\(202\) 0 0
\(203\) 17.3486 1.21763
\(204\) 0 0
\(205\) 6.30248 8.89368i 0.440184 0.621162i
\(206\) 0 0
\(207\) 7.66739i 0.532920i
\(208\) 0 0
\(209\) 0.175204 0.0121191
\(210\) 0 0
\(211\) −9.28135 −0.638954 −0.319477 0.947594i \(-0.603507\pi\)
−0.319477 + 0.947594i \(0.603507\pi\)
\(212\) 0 0
\(213\) −32.6862 −2.23962
\(214\) 0 0
\(215\) −4.09269 + 5.77536i −0.279119 + 0.393876i
\(216\) 0 0
\(217\) 2.49948i 0.169676i
\(218\) 0 0
\(219\) 11.6827i 0.789444i
\(220\) 0 0
\(221\) −2.18436 16.2959i −0.146936 1.09618i
\(222\) 0 0
\(223\) −8.71704 −0.583736 −0.291868 0.956459i \(-0.594277\pi\)
−0.291868 + 0.956459i \(0.594277\pi\)
\(224\) 0 0
\(225\) −2.68317 7.63899i −0.178878 0.509266i
\(226\) 0 0
\(227\) −26.6758 −1.77054 −0.885268 0.465082i \(-0.846025\pi\)
−0.885268 + 0.465082i \(0.846025\pi\)
\(228\) 0 0
\(229\) 28.6735i 1.89480i 0.320058 + 0.947398i \(0.396298\pi\)
−0.320058 + 0.947398i \(0.603702\pi\)
\(230\) 0 0
\(231\) 3.63128 0.238920
\(232\) 0 0
\(233\) 1.07818i 0.0706341i −0.999376 0.0353171i \(-0.988756\pi\)
0.999376 0.0353171i \(-0.0112441\pi\)
\(234\) 0 0
\(235\) −3.87088 2.74309i −0.252509 0.178939i
\(236\) 0 0
\(237\) 19.4631i 1.26427i
\(238\) 0 0
\(239\) 20.8728i 1.35015i −0.737751 0.675073i \(-0.764112\pi\)
0.737751 0.675073i \(-0.235888\pi\)
\(240\) 0 0
\(241\) 0.466816i 0.0300703i 0.999887 + 0.0150351i \(0.00478601\pi\)
−0.999887 + 0.0150351i \(0.995214\pi\)
\(242\) 0 0
\(243\) 15.2461i 0.978040i
\(244\) 0 0
\(245\) 4.55802 + 3.23003i 0.291201 + 0.206359i
\(246\) 0 0
\(247\) −0.105393 0.786257i −0.00670597 0.0500283i
\(248\) 0 0
\(249\) 30.4256i 1.92814i
\(250\) 0 0
\(251\) 2.42778 0.153240 0.0766201 0.997060i \(-0.475587\pi\)
0.0766201 + 0.997060i \(0.475587\pi\)
\(252\) 0 0
\(253\) −3.77054 −0.237052
\(254\) 0 0
\(255\) −17.8808 12.6712i −1.11974 0.793499i
\(256\) 0 0
\(257\) 17.8618i 1.11419i −0.830450 0.557094i \(-0.811916\pi\)
0.830450 0.557094i \(-0.188084\pi\)
\(258\) 0 0
\(259\) 0.258234 0.0160459
\(260\) 0 0
\(261\) 13.2406 0.819571
\(262\) 0 0
\(263\) 25.7344i 1.58685i 0.608668 + 0.793425i \(0.291704\pi\)
−0.608668 + 0.793425i \(0.708296\pi\)
\(264\) 0 0
\(265\) −14.2271 + 20.0764i −0.873964 + 1.23329i
\(266\) 0 0
\(267\) −33.7101 −2.06303
\(268\) 0 0
\(269\) −6.41097 −0.390884 −0.195442 0.980715i \(-0.562614\pi\)
−0.195442 + 0.980715i \(0.562614\pi\)
\(270\) 0 0
\(271\) 21.3789i 1.29868i 0.760500 + 0.649338i \(0.224954\pi\)
−0.760500 + 0.649338i \(0.775046\pi\)
\(272\) 0 0
\(273\) −2.18436 16.2959i −0.132204 0.986274i
\(274\) 0 0
\(275\) 3.75658 1.31949i 0.226530 0.0795681i
\(276\) 0 0
\(277\) 6.71292i 0.403340i −0.979454 0.201670i \(-0.935363\pi\)
0.979454 0.201670i \(-0.0646369\pi\)
\(278\) 0 0
\(279\) 1.90762i 0.114206i
\(280\) 0 0
\(281\) 24.5081i 1.46203i −0.682361 0.731015i \(-0.739047\pi\)
0.682361 0.731015i \(-0.260953\pi\)
\(282\) 0 0
\(283\) 3.55044i 0.211052i −0.994417 0.105526i \(-0.966347\pi\)
0.994417 0.105526i \(-0.0336526\pi\)
\(284\) 0 0
\(285\) −0.862724 0.611367i −0.0511034 0.0362142i
\(286\) 0 0
\(287\) 10.3429i 0.610524i
\(288\) 0 0
\(289\) −3.79451 −0.223206
\(290\) 0 0
\(291\) 4.49502i 0.263503i
\(292\) 0 0
\(293\) 1.36844 0.0799450 0.0399725 0.999201i \(-0.487273\pi\)
0.0399725 + 0.999201i \(0.487273\pi\)
\(294\) 0 0
\(295\) −4.82073 + 6.80273i −0.280674 + 0.396070i
\(296\) 0 0
\(297\) −2.36304 −0.137118
\(298\) 0 0
\(299\) 2.26814 + 16.9209i 0.131170 + 0.978562i
\(300\) 0 0
\(301\) 6.71647i 0.387131i
\(302\) 0 0
\(303\) 13.5250i 0.776989i
\(304\) 0 0
\(305\) 6.13803 + 4.34969i 0.351462 + 0.249063i
\(306\) 0 0
\(307\) 8.92584 0.509425 0.254712 0.967017i \(-0.418019\pi\)
0.254712 + 0.967017i \(0.418019\pi\)
\(308\) 0 0
\(309\) 25.7178 1.46303
\(310\) 0 0
\(311\) −13.1052 −0.743127 −0.371563 0.928408i \(-0.621178\pi\)
−0.371563 + 0.928408i \(0.621178\pi\)
\(312\) 0 0
\(313\) 12.5277i 0.708108i −0.935225 0.354054i \(-0.884803\pi\)
0.935225 0.354054i \(-0.115197\pi\)
\(314\) 0 0
\(315\) −6.26814 4.44189i −0.353170 0.250272i
\(316\) 0 0
\(317\) 0.455813 0.0256010 0.0128005 0.999918i \(-0.495925\pi\)
0.0128005 + 0.999918i \(0.495925\pi\)
\(318\) 0 0
\(319\) 6.51124i 0.364559i
\(320\) 0 0
\(321\) −31.1998 −1.74140
\(322\) 0 0
\(323\) −1.00331 −0.0558255
\(324\) 0 0
\(325\) −8.18115 16.0645i −0.453808 0.891099i
\(326\) 0 0
\(327\) −17.0379 −0.942200
\(328\) 0 0
\(329\) −4.50165 −0.248184
\(330\) 0 0
\(331\) 3.67559i 0.202029i 0.994885 + 0.101014i \(0.0322088\pi\)
−0.994885 + 0.101014i \(0.967791\pi\)
\(332\) 0 0
\(333\) 0.197086 0.0108002
\(334\) 0 0
\(335\) 13.5658 + 9.61336i 0.741179 + 0.525234i
\(336\) 0 0
\(337\) 16.2959i 0.887696i −0.896102 0.443848i \(-0.853613\pi\)
0.896102 0.443848i \(-0.146387\pi\)
\(338\) 0 0
\(339\) 30.2296 1.64185
\(340\) 0 0
\(341\) 0.938100 0.0508010
\(342\) 0 0
\(343\) 20.1527 1.08815
\(344\) 0 0
\(345\) 18.5666 + 13.1571i 0.999590 + 0.708356i
\(346\) 0 0
\(347\) 0.809921i 0.0434788i −0.999764 0.0217394i \(-0.993080\pi\)
0.999764 0.0217394i \(-0.00692042\pi\)
\(348\) 0 0
\(349\) 17.7333i 0.949244i 0.880190 + 0.474622i \(0.157415\pi\)
−0.880190 + 0.474622i \(0.842585\pi\)
\(350\) 0 0
\(351\) 1.42147 + 10.6045i 0.0758723 + 0.566027i
\(352\) 0 0
\(353\) −1.80442 −0.0960395 −0.0480198 0.998846i \(-0.515291\pi\)
−0.0480198 + 0.998846i \(0.515291\pi\)
\(354\) 0 0
\(355\) −19.6621 + 27.7460i −1.04356 + 1.47260i
\(356\) 0 0
\(357\) −20.7945 −1.10056
\(358\) 0 0
\(359\) 26.4760i 1.39735i 0.715440 + 0.698674i \(0.246226\pi\)
−0.715440 + 0.698674i \(0.753774\pi\)
\(360\) 0 0
\(361\) 18.9516 0.997452
\(362\) 0 0
\(363\) 22.2789i 1.16934i
\(364\) 0 0
\(365\) 9.91697 + 7.02763i 0.519078 + 0.367843i
\(366\) 0 0
\(367\) 30.5490i 1.59464i 0.603555 + 0.797321i \(0.293750\pi\)
−0.603555 + 0.797321i \(0.706250\pi\)
\(368\) 0 0
\(369\) 7.89380i 0.410935i
\(370\) 0 0
\(371\) 23.3480i 1.21217i
\(372\) 0 0
\(373\) 1.72151i 0.0891362i −0.999006 0.0445681i \(-0.985809\pi\)
0.999006 0.0445681i \(-0.0141912\pi\)
\(374\) 0 0
\(375\) −23.1021 6.61110i −1.19299 0.341396i
\(376\) 0 0
\(377\) 29.2202 3.91678i 1.50492 0.201724i
\(378\) 0 0
\(379\) 32.5223i 1.67056i −0.549825 0.835280i \(-0.685305\pi\)
0.549825 0.835280i \(-0.314695\pi\)
\(380\) 0 0
\(381\) −25.9531 −1.32962
\(382\) 0 0
\(383\) 24.7170 1.26298 0.631491 0.775383i \(-0.282443\pi\)
0.631491 + 0.775383i \(0.282443\pi\)
\(384\) 0 0
\(385\) 2.18436 3.08244i 0.111325 0.157096i
\(386\) 0 0
\(387\) 5.12605i 0.260572i
\(388\) 0 0
\(389\) −14.1181 −0.715817 −0.357908 0.933757i \(-0.616510\pi\)
−0.357908 + 0.933757i \(0.616510\pi\)
\(390\) 0 0
\(391\) 21.5920 1.09196
\(392\) 0 0
\(393\) 15.5226i 0.783009i
\(394\) 0 0
\(395\) 16.5215 + 11.7079i 0.831285 + 0.589087i
\(396\) 0 0
\(397\) 5.15964 0.258955 0.129477 0.991582i \(-0.458670\pi\)
0.129477 + 0.991582i \(0.458670\pi\)
\(398\) 0 0
\(399\) −1.00331 −0.0502282
\(400\) 0 0
\(401\) 11.7358i 0.586059i −0.956103 0.293030i \(-0.905337\pi\)
0.956103 0.293030i \(-0.0946634\pi\)
\(402\) 0 0
\(403\) −0.564306 4.20987i −0.0281101 0.209709i
\(404\) 0 0
\(405\) 20.4987 + 14.5263i 1.01859 + 0.721820i
\(406\) 0 0
\(407\) 0.0969196i 0.00480413i
\(408\) 0 0
\(409\) 21.4394i 1.06011i 0.847963 + 0.530056i \(0.177829\pi\)
−0.847963 + 0.530056i \(0.822171\pi\)
\(410\) 0 0
\(411\) 31.5689i 1.55718i
\(412\) 0 0
\(413\) 7.91125i 0.389287i
\(414\) 0 0
\(415\) −25.8270 18.3022i −1.26780 0.898422i
\(416\) 0 0
\(417\) 38.3648i 1.87873i
\(418\) 0 0
\(419\) 27.9618 1.36602 0.683011 0.730408i \(-0.260670\pi\)
0.683011 + 0.730408i \(0.260670\pi\)
\(420\) 0 0
\(421\) 11.1126i 0.541596i −0.962636 0.270798i \(-0.912712\pi\)
0.962636 0.270798i \(-0.0872875\pi\)
\(422\) 0 0
\(423\) −3.43569 −0.167049
\(424\) 0 0
\(425\) −21.5121 + 7.55605i −1.04349 + 0.366522i
\(426\) 0 0
\(427\) 7.13824 0.345443
\(428\) 0 0
\(429\) 6.11615 0.819829i 0.295290 0.0395817i
\(430\) 0 0
\(431\) 14.5679i 0.701712i 0.936429 + 0.350856i \(0.114109\pi\)
−0.936429 + 0.350856i \(0.885891\pi\)
\(432\) 0 0
\(433\) 15.7268i 0.755779i 0.925851 + 0.377890i \(0.123350\pi\)
−0.925851 + 0.377890i \(0.876650\pi\)
\(434\) 0 0
\(435\) 22.7206 32.0620i 1.08937 1.53726i
\(436\) 0 0
\(437\) 1.04179 0.0498354
\(438\) 0 0
\(439\) 7.16424 0.341931 0.170965 0.985277i \(-0.445311\pi\)
0.170965 + 0.985277i \(0.445311\pi\)
\(440\) 0 0
\(441\) 4.04558 0.192647
\(442\) 0 0
\(443\) 19.6963i 0.935801i −0.883781 0.467900i \(-0.845011\pi\)
0.883781 0.467900i \(-0.154989\pi\)
\(444\) 0 0
\(445\) −20.2780 + 28.6152i −0.961271 + 1.35649i
\(446\) 0 0
\(447\) 35.8258 1.69450
\(448\) 0 0
\(449\) 6.34820i 0.299590i −0.988717 0.149795i \(-0.952139\pi\)
0.988717 0.149795i \(-0.0478614\pi\)
\(450\) 0 0
\(451\) 3.88188 0.182791
\(452\) 0 0
\(453\) 2.14840 0.100941
\(454\) 0 0
\(455\) −15.1469 7.94846i −0.710099 0.372629i
\(456\) 0 0
\(457\) −14.6109 −0.683469 −0.341735 0.939796i \(-0.611014\pi\)
−0.341735 + 0.939796i \(0.611014\pi\)
\(458\) 0 0
\(459\) 13.5320 0.631618
\(460\) 0 0
\(461\) 2.52938i 0.117805i −0.998264 0.0589024i \(-0.981240\pi\)
0.998264 0.0589024i \(-0.0187601\pi\)
\(462\) 0 0
\(463\) −11.4357 −0.531462 −0.265731 0.964047i \(-0.585613\pi\)
−0.265731 + 0.964047i \(0.585613\pi\)
\(464\) 0 0
\(465\) −4.61930 3.27345i −0.214215 0.151803i
\(466\) 0 0
\(467\) 14.8931i 0.689172i −0.938755 0.344586i \(-0.888019\pi\)
0.938755 0.344586i \(-0.111981\pi\)
\(468\) 0 0
\(469\) 15.7764 0.728486
\(470\) 0 0
\(471\) −23.1642 −1.06735
\(472\) 0 0
\(473\) −2.52081 −0.115907
\(474\) 0 0
\(475\) −1.03793 + 0.364569i −0.0476234 + 0.0167276i
\(476\) 0 0
\(477\) 17.8193i 0.815891i
\(478\) 0 0
\(479\) 32.1619i 1.46951i −0.678330 0.734757i \(-0.737296\pi\)
0.678330 0.734757i \(-0.262704\pi\)
\(480\) 0 0
\(481\) 0.434942 0.0583011i 0.0198316 0.00265830i
\(482\) 0 0
\(483\) 21.5920 0.982471
\(484\) 0 0
\(485\) 3.81564 + 2.70394i 0.173259 + 0.122780i
\(486\) 0 0
\(487\) 15.7484 0.713626 0.356813 0.934176i \(-0.383863\pi\)
0.356813 + 0.934176i \(0.383863\pi\)
\(488\) 0 0
\(489\) 6.26770i 0.283435i
\(490\) 0 0
\(491\) −1.19587 −0.0539688 −0.0269844 0.999636i \(-0.508590\pi\)
−0.0269844 + 0.999636i \(0.508590\pi\)
\(492\) 0 0
\(493\) 37.2866i 1.67930i
\(494\) 0 0
\(495\) 1.66712 2.35254i 0.0749315 0.105739i
\(496\) 0 0
\(497\) 32.2672i 1.44738i
\(498\) 0 0
\(499\) 41.0855i 1.83924i −0.392812 0.919619i \(-0.628498\pi\)
0.392812 0.919619i \(-0.371502\pi\)
\(500\) 0 0
\(501\) 42.8186i 1.91300i
\(502\) 0 0
\(503\) 34.9278i 1.55736i −0.627424 0.778678i \(-0.715891\pi\)
0.627424 0.778678i \(-0.284109\pi\)
\(504\) 0 0
\(505\) −11.4808 8.13582i −0.510888 0.362039i
\(506\) 0 0
\(507\) −7.35823 26.9540i −0.326790 1.19707i
\(508\) 0 0
\(509\) 6.97956i 0.309364i −0.987964 0.154682i \(-0.950565\pi\)
0.987964 0.154682i \(-0.0494352\pi\)
\(510\) 0 0
\(511\) 11.5330 0.510188
\(512\) 0 0
\(513\) 0.652899 0.0288262
\(514\) 0 0
\(515\) 15.4703 21.8308i 0.681704 0.961980i
\(516\) 0 0
\(517\) 1.68955i 0.0743063i
\(518\) 0 0
\(519\) 38.0102 1.66846
\(520\) 0 0
\(521\) −7.80036 −0.341740 −0.170870 0.985294i \(-0.554658\pi\)
−0.170870 + 0.985294i \(0.554658\pi\)
\(522\) 0 0
\(523\) 40.2344i 1.75933i 0.475596 + 0.879664i \(0.342232\pi\)
−0.475596 + 0.879664i \(0.657768\pi\)
\(524\) 0 0
\(525\) −21.5121 + 7.55605i −0.938863 + 0.329773i
\(526\) 0 0
\(527\) −5.37203 −0.234009
\(528\) 0 0
\(529\) 0.579871 0.0252118
\(530\) 0 0
\(531\) 6.03792i 0.262024i
\(532\) 0 0
\(533\) −2.33511 17.4206i −0.101145 0.754569i
\(534\) 0 0
\(535\) −18.7680 + 26.4843i −0.811411 + 1.14501i
\(536\) 0 0
\(537\) 19.9480i 0.860820i
\(538\) 0 0
\(539\) 1.98947i 0.0856926i
\(540\) 0 0
\(541\) 1.93217i 0.0830706i 0.999137 + 0.0415353i \(0.0132249\pi\)
−0.999137 + 0.0415353i \(0.986775\pi\)
\(542\) 0 0
\(543\) 47.0734i 2.02011i
\(544\) 0 0
\(545\) −10.2490 + 14.4628i −0.439020 + 0.619519i
\(546\) 0 0
\(547\) 0.299309i 0.0127975i −0.999980 0.00639876i \(-0.997963\pi\)
0.999980 0.00639876i \(-0.00203680\pi\)
\(548\) 0 0
\(549\) 5.44795 0.232513
\(550\) 0 0
\(551\) 1.79903i 0.0766412i
\(552\) 0 0
\(553\) 19.2137 0.817049
\(554\) 0 0
\(555\) 0.338196 0.477242i 0.0143556 0.0202578i
\(556\) 0 0
\(557\) 37.6211 1.59406 0.797028 0.603943i \(-0.206404\pi\)
0.797028 + 0.603943i \(0.206404\pi\)
\(558\) 0 0
\(559\) 1.51637 + 11.3125i 0.0641356 + 0.478469i
\(560\) 0 0
\(561\) 7.80454i 0.329508i
\(562\) 0 0
\(563\) 7.42476i 0.312917i −0.987685 0.156458i \(-0.949992\pi\)
0.987685 0.156458i \(-0.0500077\pi\)
\(564\) 0 0
\(565\) 18.1844 25.6607i 0.765022 1.07955i
\(566\) 0 0
\(567\) 23.8390 1.00115
\(568\) 0 0
\(569\) 42.0875 1.76440 0.882201 0.470874i \(-0.156061\pi\)
0.882201 + 0.470874i \(0.156061\pi\)
\(570\) 0 0
\(571\) −20.2286 −0.846541 −0.423270 0.906003i \(-0.639118\pi\)
−0.423270 + 0.906003i \(0.639118\pi\)
\(572\) 0 0
\(573\) 49.6095i 2.07247i
\(574\) 0 0
\(575\) 22.3371 7.84584i 0.931521 0.327194i
\(576\) 0 0
\(577\) 18.1986 0.757617 0.378809 0.925475i \(-0.376334\pi\)
0.378809 + 0.925475i \(0.376334\pi\)
\(578\) 0 0
\(579\) 38.7265i 1.60942i
\(580\) 0 0
\(581\) −30.0356 −1.24609
\(582\) 0 0
\(583\) −8.76290 −0.362922
\(584\) 0 0
\(585\) −11.5602 6.06632i −0.477957 0.250811i
\(586\) 0 0
\(587\) −30.4324 −1.25608 −0.628040 0.778181i \(-0.716142\pi\)
−0.628040 + 0.778181i \(0.716142\pi\)
\(588\) 0 0
\(589\) −0.259193 −0.0106799
\(590\) 0 0
\(591\) 16.6757i 0.685947i
\(592\) 0 0
\(593\) −18.3114 −0.751960 −0.375980 0.926628i \(-0.622694\pi\)
−0.375980 + 0.926628i \(0.622694\pi\)
\(594\) 0 0
\(595\) −12.5088 + 17.6516i −0.512809 + 0.723646i
\(596\) 0 0
\(597\) 23.5646i 0.964434i
\(598\) 0 0
\(599\) 32.0692 1.31031 0.655157 0.755493i \(-0.272603\pi\)
0.655157 + 0.755493i \(0.272603\pi\)
\(600\) 0 0
\(601\) 21.4255 0.873964 0.436982 0.899470i \(-0.356047\pi\)
0.436982 + 0.899470i \(0.356047\pi\)
\(602\) 0 0
\(603\) 12.0407 0.490333
\(604\) 0 0
\(605\) −18.9117 13.4017i −0.768869 0.544857i
\(606\) 0 0
\(607\) 25.7076i 1.04344i −0.853117 0.521720i \(-0.825291\pi\)
0.853117 0.521720i \(-0.174709\pi\)
\(608\) 0 0
\(609\) 37.2866i 1.51093i
\(610\) 0 0
\(611\) −7.58212 + 1.01633i −0.306740 + 0.0411165i
\(612\) 0 0
\(613\) 47.7114 1.92704 0.963522 0.267628i \(-0.0862399\pi\)
0.963522 + 0.267628i \(0.0862399\pi\)
\(614\) 0 0
\(615\) −19.1148 13.5456i −0.770783 0.546213i
\(616\) 0 0
\(617\) −43.5087 −1.75159 −0.875797 0.482679i \(-0.839664\pi\)
−0.875797 + 0.482679i \(0.839664\pi\)
\(618\) 0 0
\(619\) 27.8570i 1.11967i 0.828605 + 0.559834i \(0.189135\pi\)
−0.828605 + 0.559834i \(0.810865\pi\)
\(620\) 0 0
\(621\) −14.0509 −0.563845
\(622\) 0 0
\(623\) 33.2781i 1.33326i
\(624\) 0 0
\(625\) −19.5088 + 15.6336i −0.780350 + 0.625343i
\(626\) 0 0
\(627\) 0.376559i 0.0150383i
\(628\) 0 0
\(629\) 0.555010i 0.0221297i
\(630\) 0 0
\(631\) 26.4973i 1.05484i −0.849605 0.527420i \(-0.823160\pi\)
0.849605 0.527420i \(-0.176840\pi\)
\(632\) 0 0
\(633\) 19.9480i 0.792862i
\(634\) 0 0
\(635\) −15.6119 + 22.0305i −0.619538 + 0.874255i
\(636\) 0 0
\(637\) 8.92806 1.19675i 0.353743 0.0474169i
\(638\) 0 0
\(639\) 24.6266i 0.974213i
\(640\) 0 0
\(641\) −8.96406 −0.354059 −0.177029 0.984206i \(-0.556649\pi\)
−0.177029 + 0.984206i \(0.556649\pi\)
\(642\) 0 0
\(643\) 4.95848 0.195543 0.0977716 0.995209i \(-0.468829\pi\)
0.0977716 + 0.995209i \(0.468829\pi\)
\(644\) 0 0
\(645\) 12.4127 + 8.79623i 0.488750 + 0.346351i
\(646\) 0 0
\(647\) 16.3038i 0.640967i 0.947254 + 0.320483i \(0.103845\pi\)
−0.947254 + 0.320483i \(0.896155\pi\)
\(648\) 0 0
\(649\) −2.96923 −0.116553
\(650\) 0 0
\(651\) −5.37203 −0.210547
\(652\) 0 0
\(653\) 16.8293i 0.658583i −0.944228 0.329291i \(-0.893190\pi\)
0.944228 0.329291i \(-0.106810\pi\)
\(654\) 0 0
\(655\) −13.1765 9.33746i −0.514847 0.364845i
\(656\) 0 0
\(657\) 8.80204 0.343400
\(658\) 0 0
\(659\) −33.0231 −1.28640 −0.643199 0.765699i \(-0.722393\pi\)
−0.643199 + 0.765699i \(0.722393\pi\)
\(660\) 0 0
\(661\) 39.0519i 1.51894i 0.650541 + 0.759472i \(0.274542\pi\)
−0.650541 + 0.759472i \(0.725458\pi\)
\(662\) 0 0
\(663\) −35.0241 + 4.69475i −1.36022 + 0.182329i
\(664\) 0 0
\(665\) −0.603531 + 0.851667i −0.0234039 + 0.0330262i
\(666\) 0 0
\(667\) 38.7166i 1.49911i
\(668\) 0 0
\(669\) 18.7352i 0.724343i
\(670\) 0 0
\(671\) 2.67910i 0.103426i
\(672\) 0 0
\(673\) 41.8467i 1.61307i 0.591185 + 0.806536i \(0.298660\pi\)
−0.591185 + 0.806536i \(0.701340\pi\)
\(674\) 0 0
\(675\) 13.9989 4.91707i 0.538818 0.189258i
\(676\) 0 0
\(677\) 42.6066i 1.63751i −0.574146 0.818753i \(-0.694666\pi\)
0.574146 0.818753i \(-0.305334\pi\)
\(678\) 0 0
\(679\) 4.43741 0.170292
\(680\) 0 0
\(681\) 57.3332i 2.19701i
\(682\) 0 0
\(683\) −15.5212 −0.593901 −0.296951 0.954893i \(-0.595970\pi\)
−0.296951 + 0.954893i \(0.595970\pi\)
\(684\) 0 0
\(685\) −26.7975 18.9900i −1.02388 0.725569i
\(686\) 0 0
\(687\) 61.6266 2.35120
\(688\) 0 0
\(689\) 5.27124 + 39.3249i 0.200818 + 1.49816i
\(690\) 0 0
\(691\) 38.8594i 1.47828i 0.673551 + 0.739140i \(0.264768\pi\)
−0.673551 + 0.739140i \(0.735232\pi\)
\(692\) 0 0
\(693\) 2.73589i 0.103928i
\(694\) 0 0
\(695\) 32.5663 + 23.0780i 1.23531 + 0.875399i
\(696\) 0 0
\(697\) −22.2296 −0.842007
\(698\) 0 0
\(699\) −2.31729 −0.0876480
\(700\) 0 0
\(701\) −30.3813 −1.14749 −0.573744 0.819035i \(-0.694509\pi\)
−0.573744 + 0.819035i \(0.694509\pi\)
\(702\) 0 0
\(703\) 0.0267785i 0.00100997i
\(704\) 0 0
\(705\) −5.89560 + 8.31952i −0.222041 + 0.313331i
\(706\) 0 0
\(707\) −13.3516 −0.502139
\(708\) 0 0
\(709\) 30.3070i 1.13820i −0.822267 0.569102i \(-0.807291\pi\)
0.822267 0.569102i \(-0.192709\pi\)
\(710\) 0 0
\(711\) 14.6640 0.549944
\(712\) 0 0
\(713\) 5.57806 0.208900
\(714\) 0 0
\(715\) 2.98319 5.68491i 0.111565 0.212604i
\(716\) 0 0
\(717\) −44.8609 −1.67536
\(718\) 0 0
\(719\) 42.1802 1.57306 0.786528 0.617555i \(-0.211877\pi\)
0.786528 + 0.617555i \(0.211877\pi\)
\(720\) 0 0
\(721\) 25.3882i 0.945505i
\(722\) 0 0
\(723\) 1.00331 0.0373134
\(724\) 0 0
\(725\) −13.5487 38.5733i −0.503188 1.43257i
\(726\) 0 0
\(727\) 33.6752i 1.24894i −0.781047 0.624472i \(-0.785314\pi\)
0.781047 0.624472i \(-0.214686\pi\)
\(728\) 0 0
\(729\) −0.939438 −0.0347940
\(730\) 0 0
\(731\) 14.4354 0.533913
\(732\) 0 0
\(733\) −32.8827 −1.21455 −0.607276 0.794491i \(-0.707738\pi\)
−0.607276 + 0.794491i \(0.707738\pi\)
\(734\) 0 0
\(735\) 6.94216 9.79636i 0.256065 0.361344i
\(736\) 0 0
\(737\) 5.92115i 0.218109i
\(738\) 0 0
\(739\) 14.8051i 0.544615i −0.962210 0.272307i \(-0.912213\pi\)
0.962210 0.272307i \(-0.0877867\pi\)
\(740\) 0 0
\(741\) −1.68987 + 0.226516i −0.0620789 + 0.00832126i
\(742\) 0 0
\(743\) −23.5884 −0.865376 −0.432688 0.901544i \(-0.642435\pi\)
−0.432688 + 0.901544i \(0.642435\pi\)
\(744\) 0 0
\(745\) 21.5507 30.4111i 0.789557 1.11418i
\(746\) 0 0
\(747\) −22.9234 −0.838724
\(748\) 0 0
\(749\) 30.7999i 1.12541i
\(750\) 0 0
\(751\) 40.5393 1.47930 0.739650 0.672992i \(-0.234991\pi\)
0.739650 + 0.672992i \(0.234991\pi\)
\(752\) 0 0
\(753\) 5.21793i 0.190152i
\(754\) 0 0
\(755\) 1.29235 1.82369i 0.0470334 0.0663708i
\(756\) 0 0
\(757\) 43.8231i 1.59278i −0.604784 0.796389i \(-0.706741\pi\)
0.604784 0.796389i \(-0.293259\pi\)
\(758\) 0 0
\(759\) 8.10387i 0.294152i
\(760\) 0 0
\(761\) 20.5134i 0.743609i 0.928311 + 0.371804i \(0.121261\pi\)
−0.928311 + 0.371804i \(0.878739\pi\)
\(762\) 0 0
\(763\) 16.8196i 0.608909i
\(764\) 0 0
\(765\) −9.54677 + 13.4718i −0.345164 + 0.487075i
\(766\) 0 0
\(767\) 1.78611 + 13.3249i 0.0644929 + 0.481134i
\(768\) 0 0
\(769\) 38.6434i 1.39352i −0.717306 0.696758i \(-0.754625\pi\)
0.717306 0.696758i \(-0.245375\pi\)
\(770\) 0 0
\(771\) −38.3895 −1.38257
\(772\) 0 0
\(773\) −37.2827 −1.34097 −0.670484 0.741924i \(-0.733913\pi\)
−0.670484 + 0.741924i \(0.733913\pi\)
\(774\) 0 0
\(775\) −5.55740 + 1.95202i −0.199628 + 0.0701187i
\(776\) 0 0
\(777\) 0.555010i 0.0199109i
\(778\) 0 0
\(779\) −1.07255 −0.0384281
\(780\) 0 0
\(781\) −12.1105 −0.433346
\(782\) 0 0
\(783\) 24.2641i 0.867129i
\(784\) 0 0
\(785\) −13.9342 + 19.6632i −0.497335 + 0.701809i
\(786\) 0 0
\(787\) −48.7190 −1.73665 −0.868323 0.495999i \(-0.834802\pi\)
−0.868323 + 0.495999i \(0.834802\pi\)
\(788\) 0 0
\(789\) 55.3098 1.96908
\(790\) 0 0
\(791\) 29.8422i 1.06107i
\(792\) 0 0
\(793\) 12.0229 1.61159i 0.426946 0.0572293i
\(794\) 0 0
\(795\) 43.1494 + 30.5777i 1.53035 + 1.08448i
\(796\) 0 0
\(797\) 0.328613i 0.0116401i 0.999983 + 0.00582003i \(0.00185258\pi\)
−0.999983 + 0.00582003i \(0.998147\pi\)
\(798\) 0 0
\(799\) 9.67521i 0.342284i
\(800\) 0 0
\(801\) 25.3981i 0.897397i
\(802\) 0 0
\(803\) 4.32852i 0.152750i
\(804\) 0 0
\(805\) 12.9885 18.3286i 0.457784 0.645998i
\(806\) 0 0
\(807\) 13.7788i 0.485037i
\(808\) 0 0
\(809\) 24.2689 0.853249 0.426624 0.904429i \(-0.359703\pi\)
0.426624 + 0.904429i \(0.359703\pi\)
\(810\) 0 0
\(811\) 42.7416i 1.50086i −0.660950 0.750430i \(-0.729847\pi\)
0.660950 0.750430i \(-0.270153\pi\)
\(812\) 0 0
\(813\) 45.9488 1.61149
\(814\) 0 0
\(815\) 5.32040 + 3.77028i 0.186365 + 0.132067i
\(816\) 0 0
\(817\) 0.696489 0.0243671
\(818\) 0 0
\(819\) −12.2778 + 1.64575i −0.429020 + 0.0575073i
\(820\) 0 0
\(821\) 3.18294i 0.111085i 0.998456 + 0.0555426i \(0.0176889\pi\)
−0.998456 + 0.0555426i \(0.982311\pi\)
\(822\) 0 0
\(823\) 13.8891i 0.484143i −0.970258 0.242072i \(-0.922173\pi\)
0.970258 0.242072i \(-0.0778269\pi\)
\(824\) 0 0
\(825\) −2.83592 8.07385i −0.0987340 0.281096i
\(826\) 0 0
\(827\) −2.31427 −0.0804751 −0.0402375 0.999190i \(-0.512811\pi\)
−0.0402375 + 0.999190i \(0.512811\pi\)
\(828\) 0 0
\(829\) −36.5581 −1.26971 −0.634857 0.772630i \(-0.718941\pi\)
−0.634857 + 0.772630i \(0.718941\pi\)
\(830\) 0 0
\(831\) −14.4278 −0.500494
\(832\) 0 0
\(833\) 11.3927i 0.394734i
\(834\) 0 0
\(835\) −36.3470 25.7572i −1.25784 0.891364i
\(836\) 0 0
\(837\) 3.49583 0.120834
\(838\) 0 0
\(839\) 11.0809i 0.382557i −0.981536 0.191278i \(-0.938737\pi\)
0.981536 0.191278i \(-0.0612633\pi\)
\(840\) 0 0
\(841\) 37.8586 1.30547
\(842\) 0 0
\(843\) −52.6742 −1.81420
\(844\) 0 0
\(845\) −27.3064 9.96785i −0.939370 0.342904i
\(846\) 0 0
\(847\) −21.9934 −0.755702
\(848\) 0 0
\(849\) −7.63081 −0.261889
\(850\) 0 0
\(851\) 0.576296i 0.0197552i
\(852\) 0 0
\(853\) −9.12502 −0.312435 −0.156217 0.987723i \(-0.549930\pi\)
−0.156217 + 0.987723i \(0.549930\pi\)
\(854\) 0 0
\(855\) −0.460619 + 0.649998i −0.0157528 + 0.0222295i
\(856\) 0 0
\(857\) 4.81456i 0.164462i 0.996613 + 0.0822312i \(0.0262046\pi\)
−0.996613 + 0.0822312i \(0.973795\pi\)
\(858\) 0 0
\(859\) −42.1481 −1.43807 −0.719037 0.694971i \(-0.755417\pi\)
−0.719037 + 0.694971i \(0.755417\pi\)
\(860\) 0 0
\(861\) −22.2296 −0.757583
\(862\) 0 0
\(863\) −49.8252 −1.69607 −0.848035 0.529940i \(-0.822215\pi\)
−0.848035 + 0.529940i \(0.822215\pi\)
\(864\) 0 0
\(865\) 22.8647 32.2653i 0.777423 1.09705i
\(866\) 0 0
\(867\) 8.15537i 0.276971i
\(868\) 0 0
\(869\) 7.21123i 0.244624i
\(870\) 0 0
\(871\) 26.5721 3.56182i 0.900362 0.120688i
\(872\) 0 0
\(873\) 3.38666 0.114621
\(874\) 0 0
\(875\) −6.52637 + 22.8060i −0.220632 + 0.770983i
\(876\) 0 0
\(877\) −43.2831 −1.46157 −0.730784 0.682609i \(-0.760845\pi\)
−0.730784 + 0.682609i \(0.760845\pi\)
\(878\) 0 0
\(879\) 2.94112i 0.0992017i
\(880\) 0 0
\(881\) −20.2113 −0.680937 −0.340468 0.940256i \(-0.610586\pi\)
−0.340468 + 0.940256i \(0.610586\pi\)
\(882\) 0 0
\(883\) 20.3203i 0.683833i 0.939730 + 0.341916i \(0.111076\pi\)
−0.939730 + 0.341916i \(0.888924\pi\)
\(884\) 0 0
\(885\) 14.6208 + 10.3610i 0.491473 + 0.348281i
\(886\) 0 0
\(887\) 37.6498i 1.26416i −0.774904 0.632079i \(-0.782202\pi\)
0.774904 0.632079i \(-0.217798\pi\)
\(888\) 0 0
\(889\) 25.6205i 0.859283i
\(890\) 0 0
\(891\) 8.94721i 0.299743i
\(892\) 0 0
\(893\) 0.466816i 0.0156214i
\(894\) 0 0
\(895\) −16.9330 11.9995i −0.566009 0.401101i
\(896\) 0 0
\(897\) 36.3674 4.87481i 1.21427 0.162765i
\(898\) 0 0
\(899\) 9.63258i 0.321265i
\(900\) 0 0
\(901\) 50.1807 1.67176
\(902\) 0 0
\(903\) 14.4354 0.480380
\(904\) 0 0
\(905\) −39.9587 28.3166i −1.32827 0.941275i
\(906\) 0 0
\(907\) 20.9901i 0.696965i 0.937315 + 0.348482i \(0.113303\pi\)
−0.937315 + 0.348482i \(0.886697\pi\)
\(908\) 0 0
\(909\) −10.1900 −0.337982
\(910\) 0 0
\(911\) −20.5887 −0.682135 −0.341067 0.940039i \(-0.610788\pi\)
−0.341067 + 0.940039i \(0.610788\pi\)
\(912\) 0 0
\(913\) 11.2729i 0.373078i
\(914\) 0 0
\(915\) 9.34861 13.1922i 0.309055 0.436121i
\(916\) 0 0
\(917\) −15.3236 −0.506030
\(918\) 0 0
\(919\) 3.06293 0.101037 0.0505183 0.998723i \(-0.483913\pi\)
0.0505183 + 0.998723i \(0.483913\pi\)
\(920\) 0 0
\(921\) 19.1839i 0.632132i
\(922\) 0 0
\(923\) 7.28494 + 54.3476i 0.239787 + 1.78887i
\(924\) 0 0
\(925\) −0.201673 0.574162i −0.00663096 0.0188783i
\(926\) 0 0
\(927\) 19.3764i 0.636406i
\(928\) 0 0
\(929\) 12.2657i 0.402424i 0.979548 + 0.201212i \(0.0644880\pi\)
−0.979548 + 0.201212i \(0.935512\pi\)
\(930\) 0 0
\(931\) 0.549683i 0.0180151i
\(932\) 0 0
\(933\) 28.1664i 0.922127i
\(934\) 0 0
\(935\) −6.62496 4.69475i −0.216659 0.153535i
\(936\) 0 0
\(937\) 4.98472i 0.162844i −0.996680 0.0814219i \(-0.974054\pi\)
0.996680 0.0814219i \(-0.0259461\pi\)
\(938\) 0 0
\(939\) −26.9253 −0.878673
\(940\) 0 0
\(941\) 7.53068i 0.245493i 0.992438 + 0.122747i \(0.0391703\pi\)
−0.992438 + 0.122747i \(0.960830\pi\)
\(942\) 0 0
\(943\) 23.0822 0.751659
\(944\) 0 0
\(945\) 8.14003 11.4867i 0.264795 0.373663i
\(946\) 0 0
\(947\) −33.7019 −1.09517 −0.547583 0.836752i \(-0.684452\pi\)
−0.547583 + 0.836752i \(0.684452\pi\)
\(948\) 0 0
\(949\) 19.4249 2.60379i 0.630560 0.0845225i
\(950\) 0 0
\(951\) 0.979660i 0.0317677i
\(952\) 0 0
\(953\) 31.0905i 1.00712i 0.863960 + 0.503560i \(0.167977\pi\)
−0.863960 + 0.503560i \(0.832023\pi\)
\(954\) 0 0
\(955\) 42.1115 + 29.8422i 1.36270 + 0.965670i
\(956\) 0 0
\(957\) 13.9943 0.452372
\(958\) 0 0
\(959\) −31.1642 −1.00635
\(960\) 0 0
\(961\) 29.6122 0.955232
\(962\) 0 0
\(963\) 23.5067i 0.757494i
\(964\) 0 0
\(965\) 32.8734 + 23.2956i 1.05823 + 0.749912i
\(966\) 0 0
\(967\) 52.8189 1.69854 0.849271 0.527957i \(-0.177042\pi\)
0.849271 + 0.527957i \(0.177042\pi\)
\(968\) 0 0
\(969\) 2.15637i 0.0692724i
\(970\) 0 0
\(971\) 22.8041 0.731819 0.365910 0.930650i \(-0.380758\pi\)
0.365910 + 0.930650i \(0.380758\pi\)
\(972\) 0 0
\(973\) 37.8731 1.21416
\(974\) 0 0
\(975\) −34.5268 + 17.5834i −1.10574 + 0.563119i
\(976\) 0 0
\(977\) 0.156331 0.00500148 0.00250074 0.999997i \(-0.499204\pi\)
0.00250074 + 0.999997i \(0.499204\pi\)
\(978\) 0 0
\(979\) −12.4898 −0.399177
\(980\) 0 0
\(981\) 12.8368i 0.409848i
\(982\) 0 0
\(983\) −23.5630 −0.751542 −0.375771 0.926712i \(-0.622622\pi\)
−0.375771 + 0.926712i \(0.622622\pi\)
\(984\) 0 0
\(985\) −14.1553 10.0311i −0.451027 0.319618i
\(986\) 0 0
\(987\) 9.67521i 0.307965i
\(988\) 0 0
\(989\) −14.9890 −0.476624
\(990\) 0 0
\(991\) 14.0102 0.445048 0.222524 0.974927i \(-0.428570\pi\)
0.222524 + 0.974927i \(0.428570\pi\)
\(992\) 0 0
\(993\) 7.89979 0.250692
\(994\) 0 0
\(995\) 20.0030 + 14.1751i 0.634138 + 0.449380i
\(996\) 0 0
\(997\) 0.625270i 0.0198025i −0.999951 0.00990124i \(-0.996848\pi\)
0.999951 0.00990124i \(-0.00315172\pi\)
\(998\) 0 0
\(999\) 0.361171i 0.0114269i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 520.2.f.a.129.2 10
4.3 odd 2 1040.2.f.f.129.9 10
5.2 odd 4 2600.2.k.f.2001.3 20
5.3 odd 4 2600.2.k.f.2001.18 20
5.4 even 2 520.2.f.b.129.9 yes 10
13.12 even 2 520.2.f.b.129.2 yes 10
20.19 odd 2 1040.2.f.g.129.2 10
52.51 odd 2 1040.2.f.g.129.9 10
65.12 odd 4 2600.2.k.f.2001.4 20
65.38 odd 4 2600.2.k.f.2001.17 20
65.64 even 2 inner 520.2.f.a.129.9 yes 10
260.259 odd 2 1040.2.f.f.129.2 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
520.2.f.a.129.2 10 1.1 even 1 trivial
520.2.f.a.129.9 yes 10 65.64 even 2 inner
520.2.f.b.129.2 yes 10 13.12 even 2
520.2.f.b.129.9 yes 10 5.4 even 2
1040.2.f.f.129.2 10 260.259 odd 2
1040.2.f.f.129.9 10 4.3 odd 2
1040.2.f.g.129.2 10 20.19 odd 2
1040.2.f.g.129.9 10 52.51 odd 2
2600.2.k.f.2001.3 20 5.2 odd 4
2600.2.k.f.2001.4 20 65.12 odd 4
2600.2.k.f.2001.17 20 65.38 odd 4
2600.2.k.f.2001.18 20 5.3 odd 4