Properties

Label 2600.2.k.f.2001.4
Level $2600$
Weight $2$
Character 2600.2001
Analytic conductor $20.761$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2600,2,Mod(2001,2600)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2600, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2600.2001");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2600 = 2^{3} \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2600.k (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(20.7611045255\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 60x^{16} + 1134x^{12} + 6924x^{8} + 3545x^{4} + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{30} \)
Twist minimal: no (minimal twist has level 520)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2001.4
Root \(1.47826 + 1.47826i\) of defining polynomial
Character \(\chi\) \(=\) 2600.2001
Dual form 2600.2.k.f.2001.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.14926 q^{3} +2.12171i q^{7} +1.61930 q^{9} +0.796315i q^{11} +(0.479016 - 3.57359i) q^{13} -4.56010 q^{17} +0.220019i q^{19} -4.56010i q^{21} -4.73499 q^{23} +2.96747 q^{27} +8.17671 q^{29} -1.17805i q^{31} -1.71149i q^{33} +0.121710i q^{37} +(-1.02953 + 7.68056i) q^{39} -4.87481i q^{41} -3.16559 q^{43} -2.12171i q^{47} +2.49835 q^{49} +9.80082 q^{51} -11.0043 q^{53} -0.472877i q^{57} -3.72871i q^{59} -3.36438 q^{61} +3.43569i q^{63} +7.43569i q^{67} +10.1767 q^{69} +15.2081i q^{71} -5.43569i q^{73} -1.68955 q^{77} +9.05575 q^{79} -11.2358 q^{81} +14.1563i q^{83} -17.5738 q^{87} -15.6846i q^{89} +(7.58212 + 1.01633i) q^{91} +2.53193i q^{93} +2.09143i q^{97} +1.28948i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 16 q^{9} - 16 q^{29} + 24 q^{39} - 24 q^{49} - 60 q^{51} - 32 q^{61} + 24 q^{69} - 56 q^{79} + 44 q^{81} + 4 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2600\mathbb{Z}\right)^\times\).

\(n\) \(1301\) \(1601\) \(1951\) \(1977\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.14926 −1.24087 −0.620437 0.784256i \(-0.713045\pi\)
−0.620437 + 0.784256i \(0.713045\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 2.12171i 0.801931i 0.916093 + 0.400966i \(0.131325\pi\)
−0.916093 + 0.400966i \(0.868675\pi\)
\(8\) 0 0
\(9\) 1.61930 0.539768
\(10\) 0 0
\(11\) 0.796315i 0.240098i 0.992768 + 0.120049i \(0.0383052\pi\)
−0.992768 + 0.120049i \(0.961695\pi\)
\(12\) 0 0
\(13\) 0.479016 3.57359i 0.132855 0.991135i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −4.56010 −1.10599 −0.552993 0.833186i \(-0.686514\pi\)
−0.552993 + 0.833186i \(0.686514\pi\)
\(18\) 0 0
\(19\) 0.220019i 0.0504758i 0.999681 + 0.0252379i \(0.00803432\pi\)
−0.999681 + 0.0252379i \(0.991966\pi\)
\(20\) 0 0
\(21\) 4.56010i 0.995095i
\(22\) 0 0
\(23\) −4.73499 −0.987314 −0.493657 0.869657i \(-0.664340\pi\)
−0.493657 + 0.869657i \(0.664340\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 2.96747 0.571090
\(28\) 0 0
\(29\) 8.17671 1.51838 0.759188 0.650871i \(-0.225596\pi\)
0.759188 + 0.650871i \(0.225596\pi\)
\(30\) 0 0
\(31\) 1.17805i 0.211584i −0.994388 0.105792i \(-0.966262\pi\)
0.994388 0.105792i \(-0.0337378\pi\)
\(32\) 0 0
\(33\) 1.71149i 0.297931i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 0.121710i 0.0200090i 0.999950 + 0.0100045i \(0.00318459\pi\)
−0.999950 + 0.0100045i \(0.996815\pi\)
\(38\) 0 0
\(39\) −1.02953 + 7.68056i −0.164857 + 1.22987i
\(40\) 0 0
\(41\) 4.87481i 0.761317i −0.924716 0.380659i \(-0.875697\pi\)
0.924716 0.380659i \(-0.124303\pi\)
\(42\) 0 0
\(43\) −3.16559 −0.482748 −0.241374 0.970432i \(-0.577598\pi\)
−0.241374 + 0.970432i \(0.577598\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 2.12171i 0.309483i −0.987955 0.154742i \(-0.950545\pi\)
0.987955 0.154742i \(-0.0494545\pi\)
\(48\) 0 0
\(49\) 2.49835 0.356907
\(50\) 0 0
\(51\) 9.80082 1.37239
\(52\) 0 0
\(53\) −11.0043 −1.51156 −0.755779 0.654827i \(-0.772742\pi\)
−0.755779 + 0.654827i \(0.772742\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0.472877i 0.0626341i
\(58\) 0 0
\(59\) 3.72871i 0.485437i −0.970097 0.242719i \(-0.921961\pi\)
0.970097 0.242719i \(-0.0780392\pi\)
\(60\) 0 0
\(61\) −3.36438 −0.430764 −0.215382 0.976530i \(-0.569100\pi\)
−0.215382 + 0.976530i \(0.569100\pi\)
\(62\) 0 0
\(63\) 3.43569i 0.432857i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 7.43569i 0.908415i 0.890896 + 0.454207i \(0.150077\pi\)
−0.890896 + 0.454207i \(0.849923\pi\)
\(68\) 0 0
\(69\) 10.1767 1.22513
\(70\) 0 0
\(71\) 15.2081i 1.80487i 0.430823 + 0.902437i \(0.358223\pi\)
−0.430823 + 0.902437i \(0.641777\pi\)
\(72\) 0 0
\(73\) 5.43569i 0.636200i −0.948057 0.318100i \(-0.896955\pi\)
0.948057 0.318100i \(-0.103045\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −1.68955 −0.192542
\(78\) 0 0
\(79\) 9.05575 1.01885 0.509426 0.860515i \(-0.329858\pi\)
0.509426 + 0.860515i \(0.329858\pi\)
\(80\) 0 0
\(81\) −11.2358 −1.24842
\(82\) 0 0
\(83\) 14.1563i 1.55386i 0.629587 + 0.776930i \(0.283224\pi\)
−0.629587 + 0.776930i \(0.716776\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −17.5738 −1.88411
\(88\) 0 0
\(89\) 15.6846i 1.66256i −0.555854 0.831280i \(-0.687609\pi\)
0.555854 0.831280i \(-0.312391\pi\)
\(90\) 0 0
\(91\) 7.58212 + 1.01633i 0.794822 + 0.106541i
\(92\) 0 0
\(93\) 2.53193i 0.262549i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 2.09143i 0.212352i 0.994347 + 0.106176i \(0.0338608\pi\)
−0.994347 + 0.106176i \(0.966139\pi\)
\(98\) 0 0
\(99\) 1.28948i 0.129597i
\(100\) 0 0
\(101\) 6.29285 0.626162 0.313081 0.949726i \(-0.398639\pi\)
0.313081 + 0.949726i \(0.398639\pi\)
\(102\) 0 0
\(103\) 11.9659 1.17904 0.589518 0.807755i \(-0.299318\pi\)
0.589518 + 0.807755i \(0.299318\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 14.5166 1.40337 0.701685 0.712488i \(-0.252432\pi\)
0.701685 + 0.712488i \(0.252432\pi\)
\(108\) 0 0
\(109\) 7.92736i 0.759303i −0.925130 0.379652i \(-0.876044\pi\)
0.925130 0.379652i \(-0.123956\pi\)
\(110\) 0 0
\(111\) 0.261586i 0.0248287i
\(112\) 0 0
\(113\) 14.0651 1.32314 0.661569 0.749884i \(-0.269891\pi\)
0.661569 + 0.749884i \(0.269891\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0.775673 5.78673i 0.0717110 0.534983i
\(118\) 0 0
\(119\) 9.67521i 0.886925i
\(120\) 0 0
\(121\) 10.3659 0.942353
\(122\) 0 0
\(123\) 10.4772i 0.944699i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 12.0754 1.07152 0.535758 0.844371i \(-0.320026\pi\)
0.535758 + 0.844371i \(0.320026\pi\)
\(128\) 0 0
\(129\) 6.80367 0.599029
\(130\) 0 0
\(131\) 7.22229 0.631014 0.315507 0.948923i \(-0.397825\pi\)
0.315507 + 0.948923i \(0.397825\pi\)
\(132\) 0 0
\(133\) −0.466816 −0.0404781
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 14.6883i 1.25490i −0.778656 0.627452i \(-0.784098\pi\)
0.778656 0.627452i \(-0.215902\pi\)
\(138\) 0 0
\(139\) 17.8503 1.51404 0.757020 0.653392i \(-0.226655\pi\)
0.757020 + 0.653392i \(0.226655\pi\)
\(140\) 0 0
\(141\) 4.56010i 0.384030i
\(142\) 0 0
\(143\) 2.84570 + 0.381448i 0.237970 + 0.0318983i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −5.36959 −0.442876
\(148\) 0 0
\(149\) 16.6689i 1.36557i 0.730618 + 0.682786i \(0.239232\pi\)
−0.730618 + 0.682786i \(0.760768\pi\)
\(150\) 0 0
\(151\) 0.999600i 0.0813463i −0.999173 0.0406732i \(-0.987050\pi\)
0.999173 0.0406732i \(-0.0129502\pi\)
\(152\) 0 0
\(153\) −7.38419 −0.596976
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 10.7778 0.860162 0.430081 0.902790i \(-0.358485\pi\)
0.430081 + 0.902790i \(0.358485\pi\)
\(158\) 0 0
\(159\) 23.6511 1.87565
\(160\) 0 0
\(161\) 10.0463i 0.791757i
\(162\) 0 0
\(163\) 2.91622i 0.228416i −0.993457 0.114208i \(-0.963567\pi\)
0.993457 0.114208i \(-0.0364330\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 19.9225i 1.54165i −0.637046 0.770826i \(-0.719844\pi\)
0.637046 0.770826i \(-0.280156\pi\)
\(168\) 0 0
\(169\) −12.5411 3.42362i −0.964699 0.263355i
\(170\) 0 0
\(171\) 0.356277i 0.0272452i
\(172\) 0 0
\(173\) 17.6853 1.34459 0.672293 0.740285i \(-0.265309\pi\)
0.672293 + 0.740285i \(0.265309\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 8.01396i 0.602366i
\(178\) 0 0
\(179\) −9.28135 −0.693721 −0.346860 0.937917i \(-0.612752\pi\)
−0.346860 + 0.937917i \(0.612752\pi\)
\(180\) 0 0
\(181\) 21.9022 1.62797 0.813987 0.580883i \(-0.197293\pi\)
0.813987 + 0.580883i \(0.197293\pi\)
\(182\) 0 0
\(183\) 7.23091 0.534524
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 3.63128i 0.265545i
\(188\) 0 0
\(189\) 6.29611i 0.457975i
\(190\) 0 0
\(191\) −23.0822 −1.67017 −0.835084 0.550123i \(-0.814581\pi\)
−0.835084 + 0.550123i \(0.814581\pi\)
\(192\) 0 0
\(193\) 18.0186i 1.29700i −0.761213 0.648502i \(-0.775396\pi\)
0.761213 0.648502i \(-0.224604\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 7.75883i 0.552794i −0.961044 0.276397i \(-0.910860\pi\)
0.961044 0.276397i \(-0.0891404\pi\)
\(198\) 0 0
\(199\) 10.9641 0.777221 0.388611 0.921402i \(-0.372955\pi\)
0.388611 + 0.921402i \(0.372955\pi\)
\(200\) 0 0
\(201\) 15.9812i 1.12723i
\(202\) 0 0
\(203\) 17.3486i 1.21763i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −7.66739 −0.532920
\(208\) 0 0
\(209\) −0.175204 −0.0121191
\(210\) 0 0
\(211\) −9.28135 −0.638954 −0.319477 0.947594i \(-0.603507\pi\)
−0.319477 + 0.947594i \(0.603507\pi\)
\(212\) 0 0
\(213\) 32.6862i 2.23962i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 2.49948 0.169676
\(218\) 0 0
\(219\) 11.6827i 0.789444i
\(220\) 0 0
\(221\) −2.18436 + 16.2959i −0.146936 + 1.09618i
\(222\) 0 0
\(223\) 8.71704i 0.583736i −0.956459 0.291868i \(-0.905723\pi\)
0.956459 0.291868i \(-0.0942769\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 26.6758i 1.77054i 0.465082 + 0.885268i \(0.346025\pi\)
−0.465082 + 0.885268i \(0.653975\pi\)
\(228\) 0 0
\(229\) 28.6735i 1.89480i 0.320058 + 0.947398i \(0.396298\pi\)
−0.320058 + 0.947398i \(0.603702\pi\)
\(230\) 0 0
\(231\) 3.63128 0.238920
\(232\) 0 0
\(233\) −1.07818 −0.0706341 −0.0353171 0.999376i \(-0.511244\pi\)
−0.0353171 + 0.999376i \(0.511244\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −19.4631 −1.26427
\(238\) 0 0
\(239\) 20.8728i 1.35015i −0.737751 0.675073i \(-0.764112\pi\)
0.737751 0.675073i \(-0.235888\pi\)
\(240\) 0 0
\(241\) 0.466816i 0.0300703i −0.999887 0.0150351i \(-0.995214\pi\)
0.999887 0.0150351i \(-0.00478601\pi\)
\(242\) 0 0
\(243\) 15.2461 0.978040
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0.786257 + 0.105393i 0.0500283 + 0.00670597i
\(248\) 0 0
\(249\) 30.4256i 1.92814i
\(250\) 0 0
\(251\) 2.42778 0.153240 0.0766201 0.997060i \(-0.475587\pi\)
0.0766201 + 0.997060i \(0.475587\pi\)
\(252\) 0 0
\(253\) 3.77054i 0.237052i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 17.8618 1.11419 0.557094 0.830450i \(-0.311916\pi\)
0.557094 + 0.830450i \(0.311916\pi\)
\(258\) 0 0
\(259\) −0.258234 −0.0160459
\(260\) 0 0
\(261\) 13.2406 0.819571
\(262\) 0 0
\(263\) 25.7344 1.58685 0.793425 0.608668i \(-0.208296\pi\)
0.793425 + 0.608668i \(0.208296\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 33.7101i 2.06303i
\(268\) 0 0
\(269\) 6.41097 0.390884 0.195442 0.980715i \(-0.437386\pi\)
0.195442 + 0.980715i \(0.437386\pi\)
\(270\) 0 0
\(271\) 21.3789i 1.29868i −0.760500 0.649338i \(-0.775046\pi\)
0.760500 0.649338i \(-0.224954\pi\)
\(272\) 0 0
\(273\) −16.2959 2.18436i −0.986274 0.132204i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 6.71292 0.403340 0.201670 0.979454i \(-0.435363\pi\)
0.201670 + 0.979454i \(0.435363\pi\)
\(278\) 0 0
\(279\) 1.90762i 0.114206i
\(280\) 0 0
\(281\) 24.5081i 1.46203i 0.682361 + 0.731015i \(0.260953\pi\)
−0.682361 + 0.731015i \(0.739047\pi\)
\(282\) 0 0
\(283\) −3.55044 −0.211052 −0.105526 0.994417i \(-0.533653\pi\)
−0.105526 + 0.994417i \(0.533653\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 10.3429 0.610524
\(288\) 0 0
\(289\) 3.79451 0.223206
\(290\) 0 0
\(291\) 4.49502i 0.263503i
\(292\) 0 0
\(293\) 1.36844i 0.0799450i 0.999201 + 0.0399725i \(0.0127270\pi\)
−0.999201 + 0.0399725i \(0.987273\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 2.36304i 0.137118i
\(298\) 0 0
\(299\) −2.26814 + 16.9209i −0.131170 + 0.978562i
\(300\) 0 0
\(301\) 6.71647i 0.387131i
\(302\) 0 0
\(303\) −13.5250 −0.776989
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 8.92584i 0.509425i −0.967017 0.254712i \(-0.918019\pi\)
0.967017 0.254712i \(-0.0819808\pi\)
\(308\) 0 0
\(309\) −25.7178 −1.46303
\(310\) 0 0
\(311\) −13.1052 −0.743127 −0.371563 0.928408i \(-0.621178\pi\)
−0.371563 + 0.928408i \(0.621178\pi\)
\(312\) 0 0
\(313\) −12.5277 −0.708108 −0.354054 0.935225i \(-0.615197\pi\)
−0.354054 + 0.935225i \(0.615197\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0.455813i 0.0256010i −0.999918 0.0128005i \(-0.995925\pi\)
0.999918 0.0128005i \(-0.00407464\pi\)
\(318\) 0 0
\(319\) 6.51124i 0.364559i
\(320\) 0 0
\(321\) −31.1998 −1.74140
\(322\) 0 0
\(323\) 1.00331i 0.0558255i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 17.0379i 0.942200i
\(328\) 0 0
\(329\) 4.50165 0.248184
\(330\) 0 0
\(331\) 3.67559i 0.202029i −0.994885 0.101014i \(-0.967791\pi\)
0.994885 0.101014i \(-0.0322088\pi\)
\(332\) 0 0
\(333\) 0.197086i 0.0108002i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 16.2959 0.887696 0.443848 0.896102i \(-0.353613\pi\)
0.443848 + 0.896102i \(0.353613\pi\)
\(338\) 0 0
\(339\) −30.2296 −1.64185
\(340\) 0 0
\(341\) 0.938100 0.0508010
\(342\) 0 0
\(343\) 20.1527i 1.08815i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0.809921 0.0434788 0.0217394 0.999764i \(-0.493080\pi\)
0.0217394 + 0.999764i \(0.493080\pi\)
\(348\) 0 0
\(349\) 17.7333i 0.949244i 0.880190 + 0.474622i \(0.157415\pi\)
−0.880190 + 0.474622i \(0.842585\pi\)
\(350\) 0 0
\(351\) 1.42147 10.6045i 0.0758723 0.566027i
\(352\) 0 0
\(353\) 1.80442i 0.0960395i −0.998846 0.0480198i \(-0.984709\pi\)
0.998846 0.0480198i \(-0.0152910\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 20.7945i 1.10056i
\(358\) 0 0
\(359\) 26.4760i 1.39735i 0.715440 + 0.698674i \(0.246226\pi\)
−0.715440 + 0.698674i \(0.753774\pi\)
\(360\) 0 0
\(361\) 18.9516 0.997452
\(362\) 0 0
\(363\) −22.2789 −1.16934
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −30.5490 −1.59464 −0.797321 0.603555i \(-0.793750\pi\)
−0.797321 + 0.603555i \(0.793750\pi\)
\(368\) 0 0
\(369\) 7.89380i 0.410935i
\(370\) 0 0
\(371\) 23.3480i 1.21217i
\(372\) 0 0
\(373\) −1.72151 −0.0891362 −0.0445681 0.999006i \(-0.514191\pi\)
−0.0445681 + 0.999006i \(0.514191\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 3.91678 29.2202i 0.201724 1.50492i
\(378\) 0 0
\(379\) 32.5223i 1.67056i −0.549825 0.835280i \(-0.685305\pi\)
0.549825 0.835280i \(-0.314695\pi\)
\(380\) 0 0
\(381\) −25.9531 −1.32962
\(382\) 0 0
\(383\) 24.7170i 1.26298i 0.775383 + 0.631491i \(0.217557\pi\)
−0.775383 + 0.631491i \(0.782443\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −5.12605 −0.260572
\(388\) 0 0
\(389\) 14.1181 0.715817 0.357908 0.933757i \(-0.383490\pi\)
0.357908 + 0.933757i \(0.383490\pi\)
\(390\) 0 0
\(391\) 21.5920 1.09196
\(392\) 0 0
\(393\) −15.5226 −0.783009
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 5.15964i 0.258955i −0.991582 0.129477i \(-0.958670\pi\)
0.991582 0.129477i \(-0.0413300\pi\)
\(398\) 0 0
\(399\) 1.00331 0.0502282
\(400\) 0 0
\(401\) 11.7358i 0.586059i 0.956103 + 0.293030i \(0.0946634\pi\)
−0.956103 + 0.293030i \(0.905337\pi\)
\(402\) 0 0
\(403\) −4.20987 0.564306i −0.209709 0.0281101i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −0.0969196 −0.00480413
\(408\) 0 0
\(409\) 21.4394i 1.06011i 0.847963 + 0.530056i \(0.177829\pi\)
−0.847963 + 0.530056i \(0.822171\pi\)
\(410\) 0 0
\(411\) 31.5689i 1.55718i
\(412\) 0 0
\(413\) 7.91125 0.389287
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −38.3648 −1.87873
\(418\) 0 0
\(419\) −27.9618 −1.36602 −0.683011 0.730408i \(-0.739330\pi\)
−0.683011 + 0.730408i \(0.739330\pi\)
\(420\) 0 0
\(421\) 11.1126i 0.541596i 0.962636 + 0.270798i \(0.0872875\pi\)
−0.962636 + 0.270798i \(0.912712\pi\)
\(422\) 0 0
\(423\) 3.43569i 0.167049i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 7.13824i 0.345443i
\(428\) 0 0
\(429\) −6.11615 0.819829i −0.295290 0.0395817i
\(430\) 0 0
\(431\) 14.5679i 0.701712i −0.936429 0.350856i \(-0.885891\pi\)
0.936429 0.350856i \(-0.114109\pi\)
\(432\) 0 0
\(433\) 15.7268 0.755779 0.377890 0.925851i \(-0.376650\pi\)
0.377890 + 0.925851i \(0.376650\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 1.04179i 0.0498354i
\(438\) 0 0
\(439\) −7.16424 −0.341931 −0.170965 0.985277i \(-0.554689\pi\)
−0.170965 + 0.985277i \(0.554689\pi\)
\(440\) 0 0
\(441\) 4.04558 0.192647
\(442\) 0 0
\(443\) −19.6963 −0.935801 −0.467900 0.883781i \(-0.654989\pi\)
−0.467900 + 0.883781i \(0.654989\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 35.8258i 1.69450i
\(448\) 0 0
\(449\) 6.34820i 0.299590i −0.988717 0.149795i \(-0.952139\pi\)
0.988717 0.149795i \(-0.0478614\pi\)
\(450\) 0 0
\(451\) 3.88188 0.182791
\(452\) 0 0
\(453\) 2.14840i 0.100941i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 14.6109i 0.683469i 0.939796 + 0.341735i \(0.111014\pi\)
−0.939796 + 0.341735i \(0.888986\pi\)
\(458\) 0 0
\(459\) −13.5320 −0.631618
\(460\) 0 0
\(461\) 2.52938i 0.117805i 0.998264 + 0.0589024i \(0.0187601\pi\)
−0.998264 + 0.0589024i \(0.981240\pi\)
\(462\) 0 0
\(463\) 11.4357i 0.531462i −0.964047 0.265731i \(-0.914387\pi\)
0.964047 0.265731i \(-0.0856133\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 14.8931 0.689172 0.344586 0.938755i \(-0.388019\pi\)
0.344586 + 0.938755i \(0.388019\pi\)
\(468\) 0 0
\(469\) −15.7764 −0.728486
\(470\) 0 0
\(471\) −23.1642 −1.06735
\(472\) 0 0
\(473\) 2.52081i 0.115907i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −17.8193 −0.815891
\(478\) 0 0
\(479\) 32.1619i 1.46951i −0.678330 0.734757i \(-0.737296\pi\)
0.678330 0.734757i \(-0.262704\pi\)
\(480\) 0 0
\(481\) 0.434942 + 0.0583011i 0.0198316 + 0.00265830i
\(482\) 0 0
\(483\) 21.5920i 0.982471i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 15.7484i 0.713626i −0.934176 0.356813i \(-0.883863\pi\)
0.934176 0.356813i \(-0.116137\pi\)
\(488\) 0 0
\(489\) 6.26770i 0.283435i
\(490\) 0 0
\(491\) −1.19587 −0.0539688 −0.0269844 0.999636i \(-0.508590\pi\)
−0.0269844 + 0.999636i \(0.508590\pi\)
\(492\) 0 0
\(493\) −37.2866 −1.67930
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −32.2672 −1.44738
\(498\) 0 0
\(499\) 41.0855i 1.83924i −0.392812 0.919619i \(-0.628498\pi\)
0.392812 0.919619i \(-0.371502\pi\)
\(500\) 0 0
\(501\) 42.8186i 1.91300i
\(502\) 0 0
\(503\) −34.9278 −1.55736 −0.778678 0.627424i \(-0.784109\pi\)
−0.778678 + 0.627424i \(0.784109\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 26.9540 + 7.35823i 1.19707 + 0.326790i
\(508\) 0 0
\(509\) 6.97956i 0.309364i −0.987964 0.154682i \(-0.950565\pi\)
0.987964 0.154682i \(-0.0494352\pi\)
\(510\) 0 0
\(511\) 11.5330 0.510188
\(512\) 0 0
\(513\) 0.652899i 0.0288262i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 1.68955 0.0743063
\(518\) 0 0
\(519\) −38.0102 −1.66846
\(520\) 0 0
\(521\) −7.80036 −0.341740 −0.170870 0.985294i \(-0.554658\pi\)
−0.170870 + 0.985294i \(0.554658\pi\)
\(522\) 0 0
\(523\) 40.2344 1.75933 0.879664 0.475596i \(-0.157768\pi\)
0.879664 + 0.475596i \(0.157768\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 5.37203i 0.234009i
\(528\) 0 0
\(529\) −0.579871 −0.0252118
\(530\) 0 0
\(531\) 6.03792i 0.262024i
\(532\) 0 0
\(533\) −17.4206 2.33511i −0.754569 0.101145i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 19.9480 0.860820
\(538\) 0 0
\(539\) 1.98947i 0.0856926i
\(540\) 0 0
\(541\) 1.93217i 0.0830706i −0.999137 0.0415353i \(-0.986775\pi\)
0.999137 0.0415353i \(-0.0132249\pi\)
\(542\) 0 0
\(543\) −47.0734 −2.02011
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 0.299309 0.0127975 0.00639876 0.999980i \(-0.497963\pi\)
0.00639876 + 0.999980i \(0.497963\pi\)
\(548\) 0 0
\(549\) −5.44795 −0.232513
\(550\) 0 0
\(551\) 1.79903i 0.0766412i
\(552\) 0 0
\(553\) 19.2137i 0.817049i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 37.6211i 1.59406i −0.603943 0.797028i \(-0.706404\pi\)
0.603943 0.797028i \(-0.293596\pi\)
\(558\) 0 0
\(559\) −1.51637 + 11.3125i −0.0641356 + 0.478469i
\(560\) 0 0
\(561\) 7.80454i 0.329508i
\(562\) 0 0
\(563\) −7.42476 −0.312917 −0.156458 0.987685i \(-0.550008\pi\)
−0.156458 + 0.987685i \(0.550008\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 23.8390i 1.00115i
\(568\) 0 0
\(569\) −42.0875 −1.76440 −0.882201 0.470874i \(-0.843939\pi\)
−0.882201 + 0.470874i \(0.843939\pi\)
\(570\) 0 0
\(571\) −20.2286 −0.846541 −0.423270 0.906003i \(-0.639118\pi\)
−0.423270 + 0.906003i \(0.639118\pi\)
\(572\) 0 0
\(573\) 49.6095 2.07247
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 18.1986i 0.757617i −0.925475 0.378809i \(-0.876334\pi\)
0.925475 0.378809i \(-0.123666\pi\)
\(578\) 0 0
\(579\) 38.7265i 1.60942i
\(580\) 0 0
\(581\) −30.0356 −1.24609
\(582\) 0 0
\(583\) 8.76290i 0.362922i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 30.4324i 1.25608i 0.778181 + 0.628040i \(0.216142\pi\)
−0.778181 + 0.628040i \(0.783858\pi\)
\(588\) 0 0
\(589\) 0.259193 0.0106799
\(590\) 0 0
\(591\) 16.6757i 0.685947i
\(592\) 0 0
\(593\) 18.3114i 0.751960i −0.926628 0.375980i \(-0.877306\pi\)
0.926628 0.375980i \(-0.122694\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −23.5646 −0.964434
\(598\) 0 0
\(599\) −32.0692 −1.31031 −0.655157 0.755493i \(-0.727397\pi\)
−0.655157 + 0.755493i \(0.727397\pi\)
\(600\) 0 0
\(601\) 21.4255 0.873964 0.436982 0.899470i \(-0.356047\pi\)
0.436982 + 0.899470i \(0.356047\pi\)
\(602\) 0 0
\(603\) 12.0407i 0.490333i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 25.7076 1.04344 0.521720 0.853117i \(-0.325291\pi\)
0.521720 + 0.853117i \(0.325291\pi\)
\(608\) 0 0
\(609\) 37.2866i 1.51093i
\(610\) 0 0
\(611\) −7.58212 1.01633i −0.306740 0.0411165i
\(612\) 0 0
\(613\) 47.7114i 1.92704i 0.267628 + 0.963522i \(0.413760\pi\)
−0.267628 + 0.963522i \(0.586240\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 43.5087i 1.75159i 0.482679 + 0.875797i \(0.339664\pi\)
−0.482679 + 0.875797i \(0.660336\pi\)
\(618\) 0 0
\(619\) 27.8570i 1.11967i 0.828605 + 0.559834i \(0.189135\pi\)
−0.828605 + 0.559834i \(0.810865\pi\)
\(620\) 0 0
\(621\) −14.0509 −0.563845
\(622\) 0 0
\(623\) 33.2781 1.33326
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0.376559 0.0150383
\(628\) 0 0
\(629\) 0.555010i 0.0221297i
\(630\) 0 0
\(631\) 26.4973i 1.05484i 0.849605 + 0.527420i \(0.176840\pi\)
−0.849605 + 0.527420i \(0.823160\pi\)
\(632\) 0 0
\(633\) 19.9480 0.792862
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 1.19675 8.92806i 0.0474169 0.353743i
\(638\) 0 0
\(639\) 24.6266i 0.974213i
\(640\) 0 0
\(641\) −8.96406 −0.354059 −0.177029 0.984206i \(-0.556649\pi\)
−0.177029 + 0.984206i \(0.556649\pi\)
\(642\) 0 0
\(643\) 4.95848i 0.195543i 0.995209 + 0.0977716i \(0.0311715\pi\)
−0.995209 + 0.0977716i \(0.968829\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −16.3038 −0.640967 −0.320483 0.947254i \(-0.603845\pi\)
−0.320483 + 0.947254i \(0.603845\pi\)
\(648\) 0 0
\(649\) 2.96923 0.116553
\(650\) 0 0
\(651\) −5.37203 −0.210547
\(652\) 0 0
\(653\) −16.8293 −0.658583 −0.329291 0.944228i \(-0.606810\pi\)
−0.329291 + 0.944228i \(0.606810\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 8.80204i 0.343400i
\(658\) 0 0
\(659\) 33.0231 1.28640 0.643199 0.765699i \(-0.277607\pi\)
0.643199 + 0.765699i \(0.277607\pi\)
\(660\) 0 0
\(661\) 39.0519i 1.51894i −0.650541 0.759472i \(-0.725458\pi\)
0.650541 0.759472i \(-0.274542\pi\)
\(662\) 0 0
\(663\) 4.69475 35.0241i 0.182329 1.36022i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −38.7166 −1.49911
\(668\) 0 0
\(669\) 18.7352i 0.724343i
\(670\) 0 0
\(671\) 2.67910i 0.103426i
\(672\) 0 0
\(673\) 41.8467 1.61307 0.806536 0.591185i \(-0.201340\pi\)
0.806536 + 0.591185i \(0.201340\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 42.6066 1.63751 0.818753 0.574146i \(-0.194666\pi\)
0.818753 + 0.574146i \(0.194666\pi\)
\(678\) 0 0
\(679\) −4.43741 −0.170292
\(680\) 0 0
\(681\) 57.3332i 2.19701i
\(682\) 0 0
\(683\) 15.5212i 0.593901i −0.954893 0.296951i \(-0.904030\pi\)
0.954893 0.296951i \(-0.0959697\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 61.6266i 2.35120i
\(688\) 0 0
\(689\) −5.27124 + 39.3249i −0.200818 + 1.49816i
\(690\) 0 0
\(691\) 38.8594i 1.47828i −0.673551 0.739140i \(-0.735232\pi\)
0.673551 0.739140i \(-0.264768\pi\)
\(692\) 0 0
\(693\) −2.73589 −0.103928
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 22.2296i 0.842007i
\(698\) 0 0
\(699\) 2.31729 0.0876480
\(700\) 0 0
\(701\) −30.3813 −1.14749 −0.573744 0.819035i \(-0.694509\pi\)
−0.573744 + 0.819035i \(0.694509\pi\)
\(702\) 0 0
\(703\) −0.0267785 −0.00100997
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 13.3516i 0.502139i
\(708\) 0 0
\(709\) 30.3070i 1.13820i −0.822267 0.569102i \(-0.807291\pi\)
0.822267 0.569102i \(-0.192709\pi\)
\(710\) 0 0
\(711\) 14.6640 0.549944
\(712\) 0 0
\(713\) 5.57806i 0.208900i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 44.8609i 1.67536i
\(718\) 0 0
\(719\) −42.1802 −1.57306 −0.786528 0.617555i \(-0.788123\pi\)
−0.786528 + 0.617555i \(0.788123\pi\)
\(720\) 0 0
\(721\) 25.3882i 0.945505i
\(722\) 0 0
\(723\) 1.00331i 0.0373134i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 33.6752 1.24894 0.624472 0.781047i \(-0.285314\pi\)
0.624472 + 0.781047i \(0.285314\pi\)
\(728\) 0 0
\(729\) 0.939438 0.0347940
\(730\) 0 0
\(731\) 14.4354 0.533913
\(732\) 0 0
\(733\) 32.8827i 1.21455i −0.794491 0.607276i \(-0.792262\pi\)
0.794491 0.607276i \(-0.207738\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −5.92115 −0.218109
\(738\) 0 0
\(739\) 14.8051i 0.544615i −0.962210 0.272307i \(-0.912213\pi\)
0.962210 0.272307i \(-0.0877867\pi\)
\(740\) 0 0
\(741\) −1.68987 0.226516i −0.0620789 0.00832126i
\(742\) 0 0
\(743\) 23.5884i 0.865376i −0.901544 0.432688i \(-0.857565\pi\)
0.901544 0.432688i \(-0.142435\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 22.9234i 0.838724i
\(748\) 0 0
\(749\) 30.7999i 1.12541i
\(750\) 0 0
\(751\) 40.5393 1.47930 0.739650 0.672992i \(-0.234991\pi\)
0.739650 + 0.672992i \(0.234991\pi\)
\(752\) 0 0
\(753\) −5.21793 −0.190152
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 43.8231 1.59278 0.796389 0.604784i \(-0.206741\pi\)
0.796389 + 0.604784i \(0.206741\pi\)
\(758\) 0 0
\(759\) 8.10387i 0.294152i
\(760\) 0 0
\(761\) 20.5134i 0.743609i −0.928311 0.371804i \(-0.878739\pi\)
0.928311 0.371804i \(-0.121261\pi\)
\(762\) 0 0
\(763\) 16.8196 0.608909
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −13.3249 1.78611i −0.481134 0.0644929i
\(768\) 0 0
\(769\) 38.6434i 1.39352i −0.717306 0.696758i \(-0.754625\pi\)
0.717306 0.696758i \(-0.245375\pi\)
\(770\) 0 0
\(771\) −38.3895 −1.38257
\(772\) 0 0
\(773\) 37.2827i 1.34097i −0.741924 0.670484i \(-0.766087\pi\)
0.741924 0.670484i \(-0.233913\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0.555010 0.0199109
\(778\) 0 0
\(779\) 1.07255 0.0384281
\(780\) 0 0
\(781\) −12.1105 −0.433346
\(782\) 0 0
\(783\) 24.2641 0.867129
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 48.7190i 1.73665i 0.495999 + 0.868323i \(0.334802\pi\)
−0.495999 + 0.868323i \(0.665198\pi\)
\(788\) 0 0
\(789\) −55.3098 −1.96908
\(790\) 0 0
\(791\) 29.8422i 1.06107i
\(792\) 0 0
\(793\) −1.61159 + 12.0229i −0.0572293 + 0.426946i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −0.328613 −0.0116401 −0.00582003 0.999983i \(-0.501853\pi\)
−0.00582003 + 0.999983i \(0.501853\pi\)
\(798\) 0 0
\(799\) 9.67521i 0.342284i
\(800\) 0 0
\(801\) 25.3981i 0.897397i
\(802\) 0 0
\(803\) 4.32852 0.152750
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −13.7788 −0.485037
\(808\) 0 0
\(809\) −24.2689 −0.853249 −0.426624 0.904429i \(-0.640297\pi\)
−0.426624 + 0.904429i \(0.640297\pi\)
\(810\) 0 0
\(811\) 42.7416i 1.50086i 0.660950 + 0.750430i \(0.270153\pi\)
−0.660950 + 0.750430i \(0.729847\pi\)
\(812\) 0 0
\(813\) 45.9488i 1.61149i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0.696489i 0.0243671i
\(818\) 0 0
\(819\) 12.2778 + 1.64575i 0.429020 + 0.0575073i
\(820\) 0 0
\(821\) 3.18294i 0.111085i −0.998456 0.0555426i \(-0.982311\pi\)
0.998456 0.0555426i \(-0.0176889\pi\)
\(822\) 0 0
\(823\) −13.8891 −0.484143 −0.242072 0.970258i \(-0.577827\pi\)
−0.242072 + 0.970258i \(0.577827\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 2.31427i 0.0804751i 0.999190 + 0.0402375i \(0.0128115\pi\)
−0.999190 + 0.0402375i \(0.987189\pi\)
\(828\) 0 0
\(829\) 36.5581 1.26971 0.634857 0.772630i \(-0.281059\pi\)
0.634857 + 0.772630i \(0.281059\pi\)
\(830\) 0 0
\(831\) −14.4278 −0.500494
\(832\) 0 0
\(833\) −11.3927 −0.394734
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 3.49583i 0.120834i
\(838\) 0 0
\(839\) 11.0809i 0.382557i −0.981536 0.191278i \(-0.938737\pi\)
0.981536 0.191278i \(-0.0612633\pi\)
\(840\) 0 0
\(841\) 37.8586 1.30547
\(842\) 0 0
\(843\) 52.6742i 1.81420i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 21.9934i 0.755702i
\(848\) 0 0
\(849\) 7.63081 0.261889
\(850\) 0 0
\(851\) 0.576296i 0.0197552i
\(852\) 0 0
\(853\) 9.12502i 0.312435i −0.987723 0.156217i \(-0.950070\pi\)
0.987723 0.156217i \(-0.0499300\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −4.81456 −0.164462 −0.0822312 0.996613i \(-0.526205\pi\)
−0.0822312 + 0.996613i \(0.526205\pi\)
\(858\) 0 0
\(859\) 42.1481 1.43807 0.719037 0.694971i \(-0.244583\pi\)
0.719037 + 0.694971i \(0.244583\pi\)
\(860\) 0 0
\(861\) −22.2296 −0.757583
\(862\) 0 0
\(863\) 49.8252i 1.69607i −0.529940 0.848035i \(-0.677785\pi\)
0.529940 0.848035i \(-0.322215\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −8.15537 −0.276971
\(868\) 0 0
\(869\) 7.21123i 0.244624i
\(870\) 0 0
\(871\) 26.5721 + 3.56182i 0.900362 + 0.120688i
\(872\) 0 0
\(873\) 3.38666i 0.114621i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 43.2831i 1.46157i 0.682609 + 0.730784i \(0.260845\pi\)
−0.682609 + 0.730784i \(0.739155\pi\)
\(878\) 0 0
\(879\) 2.94112i 0.0992017i
\(880\) 0 0
\(881\) −20.2113 −0.680937 −0.340468 0.940256i \(-0.610586\pi\)
−0.340468 + 0.940256i \(0.610586\pi\)
\(882\) 0 0
\(883\) 20.3203 0.683833 0.341916 0.939730i \(-0.388924\pi\)
0.341916 + 0.939730i \(0.388924\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 37.6498 1.26416 0.632079 0.774904i \(-0.282202\pi\)
0.632079 + 0.774904i \(0.282202\pi\)
\(888\) 0 0
\(889\) 25.6205i 0.859283i
\(890\) 0 0
\(891\) 8.94721i 0.299743i
\(892\) 0 0
\(893\) 0.466816 0.0156214
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 4.87481 36.3674i 0.162765 1.21427i
\(898\) 0 0
\(899\) 9.63258i 0.321265i
\(900\) 0 0
\(901\) 50.1807 1.67176
\(902\) 0 0
\(903\) 14.4354i 0.480380i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −20.9901 −0.696965 −0.348482 0.937315i \(-0.613303\pi\)
−0.348482 + 0.937315i \(0.613303\pi\)
\(908\) 0 0
\(909\) 10.1900 0.337982
\(910\) 0 0
\(911\) −20.5887 −0.682135 −0.341067 0.940039i \(-0.610788\pi\)
−0.341067 + 0.940039i \(0.610788\pi\)
\(912\) 0 0
\(913\) −11.2729 −0.373078
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 15.3236i 0.506030i
\(918\) 0 0
\(919\) −3.06293 −0.101037 −0.0505183 0.998723i \(-0.516087\pi\)
−0.0505183 + 0.998723i \(0.516087\pi\)
\(920\) 0 0
\(921\) 19.1839i 0.632132i
\(922\) 0 0
\(923\) 54.3476 + 7.28494i 1.78887 + 0.239787i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 19.3764 0.636406
\(928\) 0 0
\(929\) 12.2657i 0.402424i 0.979548 + 0.201212i \(0.0644880\pi\)
−0.979548 + 0.201212i \(0.935512\pi\)
\(930\) 0 0
\(931\) 0.549683i 0.0180151i
\(932\) 0 0
\(933\) 28.1664 0.922127
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 4.98472 0.162844 0.0814219 0.996680i \(-0.474054\pi\)
0.0814219 + 0.996680i \(0.474054\pi\)
\(938\) 0 0
\(939\) 26.9253 0.878673
\(940\) 0 0
\(941\) 7.53068i 0.245493i −0.992438 0.122747i \(-0.960830\pi\)
0.992438 0.122747i \(-0.0391703\pi\)
\(942\) 0 0
\(943\) 23.0822i 0.751659i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 33.7019i 1.09517i 0.836752 + 0.547583i \(0.184452\pi\)
−0.836752 + 0.547583i \(0.815548\pi\)
\(948\) 0 0
\(949\) −19.4249 2.60379i −0.630560 0.0845225i
\(950\) 0 0
\(951\) 0.979660i 0.0317677i
\(952\) 0 0
\(953\) 31.0905 1.00712 0.503560 0.863960i \(-0.332023\pi\)
0.503560 + 0.863960i \(0.332023\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 13.9943i 0.452372i
\(958\) 0 0
\(959\) 31.1642 1.00635
\(960\) 0 0
\(961\) 29.6122 0.955232
\(962\) 0 0
\(963\) 23.5067 0.757494
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 52.8189i 1.69854i −0.527957 0.849271i \(-0.677042\pi\)
0.527957 0.849271i \(-0.322958\pi\)
\(968\) 0 0
\(969\) 2.15637i 0.0692724i
\(970\) 0 0
\(971\) 22.8041 0.731819 0.365910 0.930650i \(-0.380758\pi\)
0.365910 + 0.930650i \(0.380758\pi\)
\(972\) 0 0
\(973\) 37.8731i 1.21416i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 0.156331i 0.00500148i −0.999997 0.00250074i \(-0.999204\pi\)
0.999997 0.00250074i \(-0.000796011\pi\)
\(978\) 0 0
\(979\) 12.4898 0.399177
\(980\) 0 0
\(981\) 12.8368i 0.409848i
\(982\) 0 0
\(983\) 23.5630i 0.751542i −0.926712 0.375771i \(-0.877378\pi\)
0.926712 0.375771i \(-0.122622\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −9.67521 −0.307965
\(988\) 0 0
\(989\) 14.9890 0.476624
\(990\) 0 0
\(991\) 14.0102 0.445048 0.222524 0.974927i \(-0.428570\pi\)
0.222524 + 0.974927i \(0.428570\pi\)
\(992\) 0 0
\(993\) 7.89979i 0.250692i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0.625270 0.0198025 0.00990124 0.999951i \(-0.496848\pi\)
0.00990124 + 0.999951i \(0.496848\pi\)
\(998\) 0 0
\(999\) 0.361171i 0.0114269i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2600.2.k.f.2001.4 20
5.2 odd 4 520.2.f.a.129.9 yes 10
5.3 odd 4 520.2.f.b.129.2 yes 10
5.4 even 2 inner 2600.2.k.f.2001.17 20
13.12 even 2 inner 2600.2.k.f.2001.3 20
20.3 even 4 1040.2.f.g.129.9 10
20.7 even 4 1040.2.f.f.129.2 10
65.12 odd 4 520.2.f.b.129.9 yes 10
65.38 odd 4 520.2.f.a.129.2 10
65.64 even 2 inner 2600.2.k.f.2001.18 20
260.103 even 4 1040.2.f.f.129.9 10
260.207 even 4 1040.2.f.g.129.2 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
520.2.f.a.129.2 10 65.38 odd 4
520.2.f.a.129.9 yes 10 5.2 odd 4
520.2.f.b.129.2 yes 10 5.3 odd 4
520.2.f.b.129.9 yes 10 65.12 odd 4
1040.2.f.f.129.2 10 20.7 even 4
1040.2.f.f.129.9 10 260.103 even 4
1040.2.f.g.129.2 10 260.207 even 4
1040.2.f.g.129.9 10 20.3 even 4
2600.2.k.f.2001.3 20 13.12 even 2 inner
2600.2.k.f.2001.4 20 1.1 even 1 trivial
2600.2.k.f.2001.17 20 5.4 even 2 inner
2600.2.k.f.2001.18 20 65.64 even 2 inner